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Abstract. Nitrate contamination of subsurface aquifers is an ongoing environmental challenge due to nitrogen (N) leaching 

from intensive N fertilization and management on agricultural fields. The distribution and fate of nitrate in aquifers are 

primarily governed by geological, hydrological and geochemical conditions of the subsurface. Therefore, we propose a novel 10 

approach to model both geology and redox architectures simultaneously in high resolution 3D (25m x 25m x 2m) using multiple 

point geostatistical simulation (MPS). Data consists of 1) mainly resistivities of the subsurface mapped with towed transient 

electromagnetic measurements (tTEM), and 2) lithologies from borehole observations, 3) redox conditions from colors 

reported in borehole observations, and 4) chemistry analyses from water samples. Based on the collected data and 

supplementary surface geology maps and digital elevation models, the simulation domain was subdivided into geological 15 

elements with similar geological traits and depositional history. The conceptual understandings of the geological and redox 

architectures of the study system were introduced to the simulation as training images for each geological element. On the 

basis of these training images and conditioning data, independent realizations were jointly simulated of geology and redox 

inside each geological element and stitched together into a larger model. The joint simulation of geological and redox 

architectures, which is one of the strengths of the MPS simulations compared to other geostatistical methods, secures that the 20 

two architectures in general show coherent patterns. Despite the inherent subjectivity of interpretations of the training images 

and geological element boundaries, they enable an easy and intuitive incorporation of qualitative knowledge of geology and 

geochemistry in quantitative simulations of the subsurface architectures. Altogether, we conclude that our approach effectively 

simulates the consistent geological and redox architectures of the subsurface that can be used for hydrological modelling with 

nitrogen (N)-transport, which may lead to a better understanding of N-fate in the subsurface and to future more targeted 25 

regulation of agriculture. 
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1 Introduction 

The loss of reactive nitrogen (N) from agricultural soils results in adverse environmental and human health impacts 

(Schullehner et al., 2018; Temkin et al., 2019), including eutrophication of freshwater and marine ecosystems and nitrate 30 

contamination of groundwater and drinking water (Schullehner and Hansen, 2014). In Denmark, since the 1980s N-regulations 

of intensive agriculture at national or regional scales have succeeded in lowering the N-impact on the aquatic environment 

(Dalgaard et al., 2014; Hansen et al., 2017).  However, further actions are still required to improve the state of the aquatic 

ecosystems to meet the requirements of e.g. the EU Water Framework Directive (European Commission, 2018; Hansen et al., 

2019; Kallis and Butler, 2001). Moreover, this must be achieved in a cost-effective manner for the society and the agricultural 35 

industry. This creates a demand for new knowledge and new solutions for more efficient future N-regulation of the agricultural 

sector both in Denmark and in other countries with intensive agriculture. The proposed direction is to introduce more targeted 

N-regulation depending on the site-specific conditions at field level. The targeted N-regulations require detailed knowledge 

about the subsurface hydrogeological and biogeochemical conditions because nitrate, which is the dominant form of N in 

aquatic environments, is transported predominantly with water flow and undergoes reduction in reducing zones of the 40 

subsurface. Thus, it has now become increasingly important to have detailed knowledge of the subsurface geology and redox 

architectures.   

 

In a simple case with only vertical infiltration, nitrate concentrations in aquifers decrease with an increasing depth along three 

sequential redox zones (Kim et al., 2019; Wilson et al., 2018):  45 

1) Oxic zone: Nitrate concentrations are equal to the leaching from the soil because of the oxic conditions preventing reduction 

2) N-reducing zone: Nitrate decrease with increasing depth due to ongoing reduction of nitrate 

3) Reduced zone: Nitrate free zone due to complete reduced redox conditions  

 

The redox conditions of the subsurface has been widely investigated using various approaches focusing on different redox 50 

sensitive chemical compounds in groundwater such as nitrate, iron, sulphate, arsenic, uranium, and some organic contaminants. 

Modeling approaches have included: 1) process-based approaches (e.g. Abbaspour et al., 2007; Hansen et al., 2014a,2016a; 

Lee et al., 2008), 2) geostatistical methods (e.g., Kriging; Ernstsen et al. 2008; Goovaerts et al. 2005; Lin, 2008) and 3) machine 

learning (Close et al., 2016; Koch et al., 2019; Nolan et al., 2015; Ransom et al., 2017; Rosecrans et al., 2017; Tesoriero et al., 

2015; Wilson et al., 2018). However, many of these approaches require large sets of data of especially groundwater chemistry, 55 

and it is costly and time consuming to collect sufficient volumes of data. Furthermore, ancillary data to spatially extrapolate 

the water chemistry, for instance soil types, topography, land use, surface slopes, only provide information about the near 

surface conditions (i.e., topsoil layer); therefore, predicting the redox conditions below the topsoil layer using these data may 

be inadequate. Particularly under geologically heterogeneous settings such as glacial terrain, the redox architecture can be 

complex (e.g. Hansen et al., 2021; Kim et al., 2019) with many shifts in redox state with depth at the same location. Upscaling 60 

of the point scale measurements of redox conditions into the 3D space would benefit from more detailed spatial information 

of the subsurface geological architecture.  

 

In Denmark, the uppermost 100 to 200 meters of the subsurface generally consist of unconsolidated sediments reworked or 

deposited by glacial processes, making the subsurface architecture complex (Høyer et al., 2015; Jørgensen et al., 2015). 65 

Through the National Groundwater Mapping Program, Denmark is extensively covered with airborne electromagnetic 

measurements (AEM) (Møller et al., 2009; Thomsen et al., 2004) and together with borehole data, 3D geological mapping of 

Denmark has predominantly been carried out as cognitive modeling (see e.g. Høyer et al., 2015). In cognitive modeling, an 

experienced geologist combines all available subsurface data (e.g. boreholes, electromagnetic data, and seismic data) with 

preexisting geological background knowledge and performs interpretations through either manual (e.g. Jørgensen et al., 2013) 70 
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or semi-automatic approaches (e.g. Gulbrandsen et al., 2017; Jørgensen et al., 2015). Complex geological settings, however, 

pose a challenge for 3D modeling and interpretations between geological point data may lead to large uncertainties (Wellmann 

and Caumon, 2018).  

 

The subsurface information itself contains uncertainties from sources that include measurement errors (Malinverno and Briggs, 75 

2004), errors from using approximate physics (Hansen et al., 2014b; Madsen and Hansen, 2018), bias from interpolation 

methods (Wellmann and Caumon, 2018), and processing errors when handling geophysical data (Claerbout et al., 2004; 

Madsen et al., 2018; Viezzoli et al., 2013). Even geological knowledge cannot be considered uncertainty free (Bond, 2015; 

Lindsay et al., 2012; Sandersen, 2008; Wellmann et al., 2018; Wilson et al., 2019) and may rely on the training and experience 

of the interpreter (Alcalde et al., 2017).  These subjective biases are seen by some as one of the weak points of cognitive 80 

geological modeling (Bond, 2015; Wycisk et al., 2009), but is also argued to not imply a lack of scientific rigor (Curtis, 2012). 

It is difficult to fully incorporate the various uncertainties related to the subsurface information in cognitive modelling, and 

even more difficult to propagate these uncertainties through to subsequent analysis such as hydrological modelling.  

 

In recent years, some studies have adopted geostatistical simulation methods for geological mapping of the substratum in order 85 

to quantify and possibly account for some of these uncertainties. A few examples exist of multiple-point geostatistical 

simulation (MPS) utilized for mapping 3D geology with AEM data (Barfod et al., 2018; He et al., 2014b; Høyer et al., 2017; 

Jørgensen et al., 2015; Vilhelmsen et al., 2019). However, AEM data provide structural information of the deeper subsurface 

(100-200 m) at a coarser resolution (Sørensen and Auken, 2004), and hence may not be adequate to provide structural 

information for simulations of N-transport at catchment level occurring mainly within the upper 30 m. A newly developed 90 

towed transient electromagnetic method (tTEM) (Auken et al., 2019) provides data at much higher resolution but with a lower 

penetration depth than AEM. tTEM is, therefore, ideal for high-resolution mapping when focusing on the uppermost 50 to 70 

m of the subsurface. None of the previous studies has investigated the geological and redox architecture simultaneously 

although these two are related and sometimes coevolved (Grenthe et al., 1992; Hansen et al., 2016a; Wilkin et al., 1996; Yan 

et al., 2016). 95 

 

The development of redox zones in the subsurface is dependent of several factors including 1) infiltration of atmospheric 

oxygen in geologic time; 2) anthropogenic leaching of nitrate; 3) the amount and reactivity of geogenic reducing minerals as 

pyrite or organic matter; and 4) the hydrogeological flow conditions. We propose a novel way to combine the available 

information about hydrogeology and redox conditions (boreholes, electromagnetic data, geological maps and digital elevation 100 

maps) by estimating a quantified uncertainty at unsampled locations in modeling using geostatistical simulation. We 

specifically use MPS simulation to describe the spatial uncertainty in our models through a series of realizations of the 

subsurface that describe a quantified posterior distribution (Mariethoz and Caers, 2015). Using a bivariate training image (TI) 

of both geology and redox, we jointly simulate both redox and geology to ensure these will be consistent in the realizations. 

TIs are created using expert knowledge combined with the available data to directly incorporate prior expert geological 105 

information. In addition to our proposed efforts of combining redox and geology modeling, we have also utilized data and 

geological knowledge to subdivide the simulation volume into smaller volumes based on different geological characteristics 

and the depositional environment. We refer to such smaller volumes as ‘geological elements’ (e.g. He et al., 2015; Høyer et 

al., 2015). Individual TIs are created with cognitive voxel modeling for each geological element such that they can be simulated 

independently and subsequently stitched together. Geological interpretation of the depositional environment and the age of the 110 

sediments will help create an event chronology that supports the independence of the individual geological elements.  
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The aim of this paper is to demonstrate and review the proposed methodology of jointly simulating and determining the 

distribution of redox and geology using MPS. This is, to our knowledge, the first study of simultaneous modeling of geology 

and redox architectures in a geostatistical high-resolution 3D model. The novelty of this paper is hence the presentation of the 115 

complete practical framework and steps needed to apply MPS for redox and geology modeling. These steps include quantifying 

spatial variability in TIs, quantifying conditional information and accounting for major geological depositional events via 

geological elements. This may be fundamental to better understanding N-retention within the subsurface and important for 

future more targeted N-regulation and management of agriculture for protection of vulnerable surface waters and groundwater. 

Thus, providing stakeholders with a powerful tool based on integrated expert knowledge and quantified estimates of structural 120 

uncertainty through probabilistic predictions of the complex interplay between redox and geological architecture. 
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2 The study area 

The study area is a small Danish agricultural first-order hydrological catchment to Horndrup Bæk called LOOP3 with an area 

of approximately 550 ha. The area is located at the Jutland peninsula in Denmark, with a coastal temperate climate (Figure 1). 125 

The dominant soil types are classified as sand-mixed clay (70%) and clay sand (24%). Forest accounts for 18% of the catchment 

area, the rest being used for agricultural purposes except for a limited area taken up by buildings and roads. The catchment has 

been part of the Danish National Environmental Monitoring Program since 1989 aiming at evaluating the effect of the Danish 

N-regulation of agriculture on the aquatic environment (Hansen et al., 2019). During the last almost 30 years, the N-

concentrations in soil water, drainage, shallow groundwater and streams have been measured regularly at several stations in 130 

the agricultural fields (Blicher-Mathiesen et al., 2019). Therefore, the site is ideal for testing new subsurface mapping 

techniques of geological and redox architectures.  

 

The study area is located in a hilly glaciated landscape in the eastern part of Jutland just east of the highest point in Denmark 

(Figure 1).  The highest elevations reach 170 meters above sea level (m a.s.l.) in the southwestern part and slopes down to 135 

around 40 m a.s.l. in the northeast (Figure 1a). To the north of the study area, a system of open tunnel valleys forms a low-

lying area with several lakes. The catchment is dominated by glacial till deposits from the latest glaciation and the orientation 

of the hills generally show former ice push directions from the northeast. In the lowest parts of the terrain, occurrences of 

meltwater sand are also found. Occurrences of postglacial freshwater deposits can be found locally in smaller topographical 

lows (Jakobsen and Tougaard, 2020). Several buried valleys have been mapped outside the study area (Sandersen and 140 

Jørgensen (2016); www.buriedvalleys.dk (2020); Figure 1). The buried valleys were formed as elongated tunnel valleys 

underneath the ice sheets, they are generally between 1 and 2 km wide and some of them have depths of more than 100 m 

(Jørgensen and Sandersen, 2006; Sandersen and Jørgensen, 2017). These valleys are generally filled with younger Quaternary 

sediments. In this region, the valleys mostly have two preferred orientations, one around WNW-ESE/NW-SE and the other 

around SW-NE/WSW-ENE (Figure 1), with the first mentioned clearly visible in the present-day topography. 145 
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Figure 1: The study area and available data, where a) display digital terrain model, geophysical data and outlined TI areas, b) an 
orthophoto and geochemical data, and c) a surface geology map (1 m below surface (Jakobsen and Tougaard, 2020)). Insets with 150 
map of Denmark and regional view of the study site with mapped buried valleys (www.buriedvalleys.dk (2020)). 

3 Materials 

Some data are specifically gathered for this study (tTEM and new boreholes, see Figure 1) while other existing data are freely 

available through the Danish borehole database “Jupiter” (Hansen and Pjetursson, 2011) and the Danish geophysical database 

for onshore data “GERDA” (Møller et al., 2009). All available data are shown in Figure 1 along with the terrain and outline 155 

of the study area. 

3.1 Geological and topographical data 

The digital elevation map presented in Figure 1a is available from Styrelsen for Dataforsyning og Effektivisering (2016). The 

elevation map is resampled on a 25m x 25m grid such that adjustment with interpreted surfaces is seamless. The geological 

surface map (Figure 1c) of the surficial cover of Denmark is compiled from small pristine sediment samples collected at c. 1 160 

m depth using a so-called spear-auger. The mapping geologists interpret the origin and type of the sediment in the field and 

classify a sediment-type following the current terminology described by Jakobsen and Tougaard (2020). Samples are taken 

with a distance of 100-200 m to map the transitions between the different sediment types. Afterwards the surface geology-

symbols are transferred to a master map, contoured and color-coded resulting in a geological map sheet on a scale of 1:25.000 

with a resolution of ± 100 m (Figure 1c, https://eng.geus.dk/products-services-facilities/data-and-maps/maps-of-denmark/ 165 

(2020)) 

 

Borehole lithological information (Figure 1a) is gathered from the Jupiter database to which lithological sample descriptions 

have been reported since 1912. The borehole lithological samples are described and interpreted by geologists following 

standards outlined by Gravesen and Fredericia (1984), including interpretation of depositional environment and 170 

chronostratigraphy and thereby resulting in sediment types similar to those used in the geological mapping.  

 

In our study site, a total of 18 specific sediment types are found in borehole descriptions and on the geological surface map 

combined. To lower the number of variables in the geostatistical modelling and potentially later on in hydrological simulations, 

the sediment types are grouped into five categories focusing on their hydrological properties and depositional environment 175 

(Table 1). For instance, the two till groups have vastly different hydrological properties because of the overall grain size 

difference between clay tills and sand/gravelly tills. The partly organic postglacial sediments may show variable hydrological 

properties. However, they are hugely important in terms of redox potential because of organic content; therefore, they are 

categorized in one group.   

 180 

Table 1: Lithology groups in the study area used in the geostatistical simulation. The sediment type abbreviations in the right column 
represent the Danish sediment characterization standards.   

Lithology groups – study area 

no. Group name Sediment type  

1 Clay till ML, (L) 

2 Meltwater sand/gravel DS, DS-DG, DG, G, S, TS, (O)  

3 Meltwater clay/silt DL, DI, DV, (FL) 

4 Sandy till MS, MG 

5 Postglacial (partly org.) FP, FT, FS 
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3.2 Geophysical data 

The tTEM (ground-based) and SkyTEM (airborne) are transient electromagnetic systems used for mapping subsurface 

resistivity variations (Auken et al. 2019, Auken and Sørensen 2004). The SkyTEM system carries the instrument, transmitter 185 

loop and receiver coil in a sling load under a helicopter and is designed to map resistivity to several hundred meters depth. The 

tTEM system applies the transient electromagnetic method in an offset-loop configuration which for the present study is 

configured using a 2 m by 4 m transmitter loop and a receiver coil in a distance of 9 m, towed by an all-terrain vehicle (Auken 

et al., 2019). The tTEM system is designed to resolve resistivity from 2-3 m depth to c. 70 m depth. Processing and inversion 

of tTEM data follow in general the scheme for SkyTEM, described by Auken et al. (2009). The inversion of the data is based 190 

on local 1D forward responses and spatial constraints between the model parameter forming a pseudo 3D model space (Auken 

et al., 2015; Viezzoli et al., 2008). 

 

The tTEM dataset has been collected in 2018. Although the coverage is rather patchy (< 50 % of the model area in Figure 1a), 

it provides valuable information on the geological setting. The final tTEM information used in the geostatistical modelling is 195 

the pseudo 3D model space moved to the closest grid node. Together with borehole lithological logs, tTEM represents the 

basis for modelling the geology. A few deep boreholes are used for the correlation between resistivities and lithologies. 

 

Although located outside the study area, the SkyTEM-data (Figure 1a) adds valuable information on the geological connections 

to neighboring areas. A small survey of surface electrical resistivity tomography (ERT) (e.g. Loke et al.  (2013)) gathered from 200 

the GERDA database supplements the tTEM survey in the northern part of the study area. 

 

3.3 Geochemical data  

Redox conditions can be defined both by sediment colors, concentrations of redox sensitive elements such as dissolved oxygen, 

nitrate, iron, and sulfate in water (Ernstsen and von Platen, 2014; Hansen et al., 2016a, 2021; Kim et al., 2019) and the sediment 205 

fraction of ferrous iron (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼 ) of the formic acid extractable Fe (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼) (Hansen et al., 2021). In this study, the sediment 

color was the primary indicator to define redox conditions, and the water chemistry was used to supplement the sediment color 

interpretations. The sediment colors may be the resultant of the cumulative effects of the redox structure evolution since the 

deglaciation while the water chemistry may display a snapshot of the short-term redox chemistry, which may be temporally 

variable. Therefore, we postulate that the redox conditions interpreted from the sediment colors may be more coherent with 210 

the geological structure than that of the water chemistry. In addition, the sediment colors provide 1D profile information of 

the redox conditions and more data points are available compared to water chemistry which provide point scale information. 

The sediment color and water chemistry data were extracted from the Jupiter database and the 9 new boreholes that were 

drilled in this study (Figure 1b).  

 215 

Based on the sediment colors, oxic conditions are defined by red, orange, yellow and combinations of these colors. Gray, olive 

and blue colors represent reduced conditions. Mixed colors between oxic and reduced colors (e.g., yellowish gray) are defined 

as N-reducing conditions. Within the catchment boundary, the sediment color data were available at 14 boreholes in the Jupiter 

database and for the 9 new boreholes. Based on water chemistry, oxic is defined by dissolved oxygen greater than 1mg/L, N-

reducing is dissolved oxygen less than 1mg/L and nitrate greater than 1mg/L, and reduced is both dissolved oxygen and nitrate 220 

below 1 mg/L and iron greater than 0.2 mg/L (Hansen et al., 2021). Based on sediment chemistry, the fraction of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼  over 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼 is close to 0 in oxic conditions and close to 1 fraction in reduced conditions (Hansen et al., 2021). The values in 

between are interpreted as N-reducing conditions (Hansen et al., 2021). The water and sediment chemistry data were available 

at 22 and 9 locations, respectively (13 in the Jupiter database and 9 in this study, see Figure 1b). 
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4 Methods  

4.1 MPS modelling 

In this paper, we adopt a MPS simulation approach for quantifying the spatial uncertainty of the subsurface. Geostatistical 

simulation generally provides a way of quantifying the spatial uncertainty through different possible realizations of the 

subsurface architecture. These realizations are generated using stochastic modeling that accounts for the spatial dependency 230 

between the model parameters. We choose MPS simulation over e.g. a two-point geostatistical approach because it is generally 

more capable of producing realizations with geological realism in terms of correlation and coherency of geological features 

(Journel and Zhang, 2006; Madsen et al., 2021; Mariethoz and Caers, 2015). Effectively reproducing coherent layers is key 

for a successful subsequent hydrological modeling. The expected subsurface variability is portrayed in one or more training 

images (TIs). MPS simulation is then able to utilize these TIs to generate different realizations of the portrayed subsurface 235 

through a stochastic sampling process. In total, these realizations, stemming from the MPS algorithm plus TI, together 

represent the quantified prior information of the system. In our case, the intuitive aspect of a TI, as opposed to a mathematical 

prior, is helpful for collaboration between mapping experts and geostatisticians. 

 

Many MPS algorithms exist today (Gravey and Mariethoz, 2019; Guardiano and Srivastava, 1993; Hansen et al., 2016b; 240 

Hoffimann et al., 2017; Mariethoz et al., 2010; Straubhaar et al., 2011; Strebelle, 2002; Tahmasebi et al., 2012). In the current 

study we use direct sampling (Mariethoz et al., 2010) as implemented in the software package DeeSse (Straubhaar, 2019). The 

main reason is its ability to utilize a bivariate training image that allows for joint simulation of geology and redox.  

 

Simulations can be forced to match observational data creating conditional realizations (Chilès and Delfiner, 2012; Journel 245 

and Huijbregts, 1978). Additional data not portrayed in the TI enters the simulation setup as either hard or soft data. Hard data 

corresponds to information not allowed to change between different realizations and is placed directly in the simulation grid. 

Information from some boreholes can often be considered as hard data because it is fixed in space and can have a relatively 

high resolution and accuracy. Hard data, in most cases, offers the first conditioning nodes and patterns to be matched during 

simulation, depending of course on the number of conditional points used. Consequently, hard data usually plays a significant 250 

role in lowering the entropy of the final simulations. If data is not reliable enough (too uncertain) to be deemed hard data, they 

can instead be treated as uncertain information (soft data), quantified through probability distributions. In DeeSse, soft data 

probabilities are handled by introducing a penalty proportional to the soft data probabilities, such that it becomes difficult to 

find a match for a given lithology group or redox condition if the probability is low and conversely easier if the probability is 

high. (Mariethoz et al., 2015).  255 

4.2 Ensemble statistics 

We introduce the mode and entropy as summary statistics for the ensemble of possible models of the subsurface. For a discrete 

probability distribution, the mode represents the most probable category in each voxel. The entropy, H, of a discrete probability 

distribution with K outcomes is explicitly calculated as (Shannon, 1948): 

 260 

H = −∑ log𝐾𝐾�𝑝𝑝(𝑘𝑘)� 𝑝𝑝(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ,          (1) 

 

where 𝑝𝑝(𝑘𝑘) is the probability of the kth outcome. In our case, the entropy is calculated in each voxel where 𝑝𝑝(𝑘𝑘) is the number 

of times a certain category appears in the realizations divided by the number of realizations. The entropy reveals insights to 

the variability and hence the certainty of a specific outcome of each voxel. For H=0 we have full certainty (maximum 265 
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information content) of the voxel category and conversely for H=1 (Hansen, 2021). The mode and entropy are hence 

comparable to the mean and variance in Gaussian statistics. 
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5 Modelling setup 

In the following, we present the methodology progressing through the modeling workflow of the study area. The workflow 270 

consists of three phases: 1) Preparing input data, 2) data analysis and setup including delineation of geological elements, 

construction of training images, preparing hard and soft data as well as setting up the simulation grid, and 3) running the MPS 

simulation algorithm. A schematic overview of the workflow is seen in Figure 2. The following sections primarily describe 

phase 2. 

 275 

 

Figure 2: Schematic overview of the proposed workflow from input data (left) through data analysis and simulation setup (middle) 
and geostatistical simulation (right).  

5.1 Simulation grid 

The simulation grid is discretized with a voxel resolution of 25m x 25m x 2m. The digital elevation model constitutes the top 280 

of the simulation grid, whereas both the bottom boundary and the internal subdivision into subvolumes are delineated by the 

geological elements (see below for details). The resulting simulation grid is shown in Figure 3b and the total number of voxels 

in the simulation grid is listed in Table 2.  

 
Table 2: Summary of number of voxels for simulation grid and TIs. The relative sizes of the TIs are calculated as the ratio between 285 
the number of voxels in the TI and the number of grid voxels. 

 Number of voxels Number of voxels in TI Relative size of 

TI 

Quaternary sequence (Element 1) 143698 voxels 54258 voxels  37.76% 

Buried valley (Element 2) 57015 voxels 12449 voxels 21.83% 

Total 200713 voxels 66707 voxels 33.24% 
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5.2 Geological elements  

The modeling domain is split into geological elements in order to subdivide the subsurface into separated volumes based on 

sediment heterogeneity and geological event chronology. In this way, smaller volumes with different lithology and structure 290 

can be treated separately in the geostatistical simulations. The geologist interprets and delineates the geological elements of 

the subsurface using the geological, geophysical and topographical input data. Three distinct geological elements are identified 

in the study area, see Figure 3a; (1) An upper Quaternary succession of sediments with an erosional boundary to the pre-

Quaternary sediments below, (2) A large, deeply eroded, buried tunnel valley and (3) Pre-Quaternary Paleogene clays defining 

the bottom of the groundwater system. The simulation grid is chosen to include only the Geological Elements 1 and 2 (see 295 

Figure 3b). The third geological element, the Paleogene clay, constitute a thick non-penetrable layer, and as its top defines the 

lower hydrological boundary of the area, geostatistical simulation has not been performed on this geological element. We find 

it reasonable to do so because the Paleogene clays are homogeneous and very thick. This type of clay is generally found as a 

good electrical conductor in Denmark, and because the TEM method is sensitive to good conductors, the depth to the top of 

the layer can be determined with low uncertainty (e.g. Danielsen et al. (2003)). Delineation of the Paleogene clay surface from 300 

the tTEM data is therefore straightforward as long as it can be found within the depth of investigation of the tTEM method 

(Vest Christiansen and Auken, 2012). Furthermore, in the study of Barfod et al. (2018), Paleogene clays were given a discrete 

value in the MPS simulation but showed only little variability in the spatial extent. 

 

We assume independence between the two uppermost geological elements because they appear to represent different 305 

geological events. The buried valley to the north is apparently incised into both the Quaternary sequence and the pre-

Quaternary clay below, and the infill is clearly different compared to the Quaternary sediments to the south. The buried valley 

(Geological Element 2) has a more complex infill with individual layers of limited extent compared to the Quaternary layers 

of Geological Element 1, which show less complexity and more pronounced stratification more or less undeformed by the 

glaciations. The geological events that formed each element are therefore considered different although they contain the same 310 

lithology groups, and this justifies the assumption of independence from a geological point of view. The buried valley to the 

north takes up roughly a quarter of all voxels whereas the Quaternary sequence occupies the main part of the simulation grid 

(Table 2). 



13 
 

 

 315 
Figure 3: a) Conceptual drawing of SW/NE profile through the study area. b) Simulation grid showing the two main geological 
elements used for the geostatistical simulation. 
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Figure 4: a) Geology TIs overprinted on the simulation grid. b) Redox TIs overprinted on the simulation grid. c) Zones in TIs used 
for resistivity-lithology relationship inference 320 
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5.3 Training images 

The TIs providing information about the geology and redox conditions within the geological elements are designed in a 

sequential workflow (Figure 4a,b). At first, two geology TIs are generated, one within each of the two geological elements. 

The first step is to appoint a smaller part of the simulation area for detailed geological characterization and interpretation using 

a voxel modelling approach, see Figure 4a. The lithological population of the voxels is based on the conceptual understanding 325 

of the geological event chronology, glacial processes forming the area, and an interpretation combining borehole information, 

digital elevation maps, surface geology maps and the spatially distributed geophysics using regional geological understanding. 

The criteria for TI area selection in this specific study were dense data coverage of geophysics and especially the availability 

of boreholes that penetrate the entire modeling domain with good quality lithological descriptions. For despite having a better 

geophysical data coverage in the southernmost part of study area according to Figure 1a, the TI in the Quaternary element is 330 

chosen based on sufficient geophysical data coverage and having the two main boreholes within its borders. The TI section 

needs also to represent the expected variability in geology, both in vertical and horizontal extent, which is another selection 

criterion. In reality, it is not possible to capture the total variability and heterogeneity in the TI, due to its finite size, but the 

important features must be represented. In TI1, smooth glaciotectonic deformation of the Quaternary units due to ice push 

from the northeast, is modelled. Likewise, smaller incised buried valleys in the Eocene clay with mostly sandy infill is included 335 

based on the tTEM spatial data coverage, see Figure 3a. TI2 represents the sedimentary infill in a large buried valley (geological 

element 2), where also more regional information from nearby buried valleys of the same generation was taken into account 

(see Figure 1b). This information combined with the tTEM data coverage, two boreholes within the valley north of the study 

area, and the surface geology maps, has been the basis for the voxel modelling of TI2. The complexity in the infill of the buried 

valley is represented by individual layers of limited extent as seen in Figure 3a. 340 
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Figure 5:  Profiles of redox conditions for sand and clay for each TI area based on geochemical observations.  The redox 
interpretation based on the sediment colors are done separately for sand (a) and clay (d) of the Quaternary sequence TI and of the 
Buried valley TI (g and j, respectively), and the number of boreholes used in the interpretations are shown in b, e, h and k, 345 
respectively.  The number of boreholes of each redox color category (oxic, mixed oxic, mixed reduced and reduced colors) are 
normalized and shown in %.  The redox interpretations based on water and sediment chemistry of sand and clay of the 
Quaternary sequence and buried valley TIs are shown in c, f, i, and l, respectively.  

 

The geological training images are then translated into redox TIs by upscaling the redox interpretations of the sediment colors 350 

and water chemistry as described in section 3.3 (Figure 4b and Figure 5). The sediment color data were first discretized into a 

1m-interval and then the redox condition for each interval was assigned according to the sediment color. The interpreted data 

were summed up separately for sand and clay for each TI area to produce depth profiles of redox conditions (Figure 5a, 5d, 5g 

and 5j). For the Quaternary sequence and buried valley TIs, 13 and 7 boreholes are available with sediment color descriptions 

(Figure 5b, 5e, 5h and 5k), respectively, and 5 and 3 boreholes are available with water and sediment chemistry (Figure 5c, 5f, 355 

5i and 5l), respectively.  

 

The redox interpretation revealed that in the Quaternary sequence, oxic conditions are much deeper in sand (at least 20 meters; 

Figure 5a and 5c) than in clay (4-6 meters; Figure 5d and 5f). We postulated that the Quaternary sequence is the geological 

window type of redox architecture proposed by Kim et al. (2019): the sandy units exposed to the surface act as ‘geological 360 

windows’, which allow transporting oxidants (i.e., oxygen and nitrate) via gas and water into the deeper subsurface, resulting 

in development of a deep oxic zone below a reduced clay layer. In the Quaternary sequence area, all the boreholes for the 

water and sediment chemistry were collected in these geological windows, which are predominantly in oxic conditions, 

confirming our interpretations. In the buried valley, the oxic layer was relatively shallow compared to that of the Quaternary 

sequence. This shallower oxic layer may be attributed to a shallower and temporally invariant groundwater table in this area 365 

compared with the Quaternary sequence. A secondary oxic layer below the first oxic layer is not expected, due to the clay-

dominant conditions of the surface geology (mainly clay-till; Figure 1c) and subsurface structure. We concluded that in the 

buried valley, oxidants are delivered either vertically via water infiltration or gas diffusion or the top oxic layer (4-6 meters 

below the land surface) from the Quaternary sequence, resulting in the planar type of redox architecture (Kim et al. 2019).  

 370 

Based on these interpretations, we assigned each lithology group with a probability of belonging to each of the three redox 

conditions at the surface (Table 3). 80% of the meltwater sand in the geological windows (sand units connected to the surface) 

of TI1 were assigned to be oxic down to 20 meters, and the rest was equally distributed between N-reducing and reduced 

conditions, respectively, to allow variability in simulations. These N-reducing and reduced conditions were mainly located in 

lower elevations because of the higher possibility of water saturated conditions. For the connected sand, with increasing depth, 375 

the fraction of oxic voxels was assumed to be reduced by 10% compared to that of the overlying layer for the 20-30-meter 

interval and by 20% for depth below 30 meters. The sand voxels that are not connected to the land surface was assumed to be 

reduced. The N-reducing conditions is always located at the boundary of oxic conditions in the profiles the fraction was limited 

to 10 % of the total sandy voxels of each layer in the TIs. The rest was assigned to reduced conditions.  For clay till and 

meltwater clay of TI1, 60%, 20%, and 20% of the first layer voxels (Table 3) were attributed to oxic, N-reducing, and reduced 380 

conditions in the order of elevation (lower elevation = reduced condition) due to proximity to streams. With increasing depth, 

the fractions of N-reducing and reduced conditions were assumed to be increased by 10% and 20%, respectively up to 6 meters 

below the land surface. Below 6 meters, clay was always reduced.    

 

For meltwater sand and sandy till of TI2, 80%, 10%, and 10% of the top layer (Table 3) were attributed to oxic, N-reducing, 385 

and reduced conditions in the order of elevation.  Below the first layer, the fractions of the oxic and N-reducing voxels then 

were assumed to be decreased by 70% and 50%, respectively, and the rest was assigned to reduced conditions.  Clay till and 
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meltwater clay of the buried valley TI, 60%, 20% and 20% of the top layer (Table 3) were attributed to oxic, N-reducing, and 

reduced conditions in the order of elevation. The fractions of oxic and N-reducing voxels were assumed to be lowered by 60% 

and 20%, respectively, compared to those of the overlying layer with increasing depth. The rest was assigned reduced 390 

conditions.  

 

Postglacial sediments, which are freshwater deposits often rich in organic material (Jakobsen and Tougaard, 2020), were 

assigned almost exclusively with reducing conditions (90% probability). Like the sandy and clayey sediments, we distributed 

the remaining 10% probability equally among the other two redox conditions to allow for some variability. 395 
Table 3: The probabilities for redox conditions (oxic, N-reducing and reduced) based on geochemical observations in Figure 5 for 
the top (surface) layer of the training images. The probabilities for each lithology group sums to one. 

Lithology group Oxic  N-Reducing Reduced  

Clay till 0.6 0.2 0.2 

Meltwater 

sand/gravel 

0.8 0.1 0.1 

Meltwater 

clay/silt 

0.6 0.2 0.2 

Sandy till 0.8 0.1 0.1 

Postglacial 0.05 0.05 0.9 

 

 

The described sequential workflow of geology and redox TI construction ensures consistency between the two training images 400 

in the joint simulation of the two variables. Approximately one-fourth of  1 reaches outside of the study area whereas the whole 

of TI2 is located within. We intentionally do this to ease the construction of TI1 as the surrounding area to the west shows 

similar geological variability to the Quaternary sequence and therefore provide helpful information during the creation of TI1. 

Additionally, this information is independent and allows more possible matching configurations in the TI during simulation. 

TI1 is about one third of the size of Quaternary sequence element and that of TI2 is one fifth of the buried valley element 405 

(Table 2). The TIs used in this study have different statistical properties depending on the location, i.e. they are non-stationary. 

For instance, visually it is easy to confirm that the probability of finding an oxic redox condition in the lower part of the TI is 

much different than in the top. A non-stationary TI is not unacceptable but can have some unwanted effects when combined 

with MPS algorithms expecting a stationary TI and will be discussed later. 

 410 

5.4 Conditioning data 

5.4.1 Hard data 

The geological surface map and the borehole data (both lithology and redox) were treated as hard data in the simulation grid 

and are shown in Figure 6.  

 415 

The sediment types that were grouped into lithologies (Table 3) were placed at the top voxel in the simulation grid, 

corresponding to the surface. We do not explicitly use the entire geological map as hard data. The borders between the lithology 

polygons of the surface geology map were originally delineated based on sediment samples, geomorphology, and 

topography(Jakobsen and Tougaard, 2020). In general, it means that the closer you are to the center of a polygon, the more 

certain you are of the correct lithology. Conversely, the boundaries between polygons represent the least certain parts of the 420 

map. A buffer zone is therefore adapted between the polygons to express the uncertainty of the geological surface map. The 
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buffer zone is simply created by checking all neighboring voxels for each voxel in the surface map. If the current voxel shares 

a value with all surrounding voxels it is likely situated safely within a polygon and is kept as hard data. Conversely, if one of 

the neighboring voxels provides a mismatch, the current voxel is likely close to a polygon boundary and is not included as 

hard data. Alternatively, a negative buffer around each polygon could be adopted. 425 

 

The redox conditions are grouped into the three main redox categories; oxic, N-reducing, and reduced. The wells indicate that 

the area is dominated by reduced conditions. Oxic conditions are mainly present in the upper meters of the simulation domain, 

and only one well displays the reverse trend with an oxic part below reduced conditions due to heterogenous geology.  

 430 

5.4.2 Soft data 

We use the geological surface map (Figure 1c) as a soft data indicator of lithology in the buffer zone. Geological complexity 

is one of the main drivers of uncertainty in geological mapping along with the amount, quality and spatial distribution of data 

(Keefer, 2007). Accessibility is an important factor to consider in terms of both amount and spatial distribution of data  (Keaton 

and Degraff, 1996). In Denmark, however, neither terrain nor private property poses a major issue when mapping surface 435 

geology. On the level of investigation, the geology in the study area is relatively simple, alleviating some of the uncertainty 

due to complexity. The main source of uncertainty in the surface geology maps comes from interpretations of sediment types 

from the small samples and the final shape and size of polygons. We generally consider the surface geology as very certain 

data and thus provide all values 0.7 probability of being true. The last 0.3 probability is split equally between the four other 

lithologies, which reflect the uncertainty level of misinterpretations. Regardless, because much of the geological surface map 440 

is used directly as hard data, the quantified uncertainty only affects the buffer zone as outlined earlier. For the redox domain, 

we translate the geological surface map to soft redox data using the probabilities provided in Table 3. 
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Figure 6: a) The geology surface map along with the geology wells placed on the simulation grid as hard data. b) The redox wells on 
the simulation grid as hard data.  445 
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Figure 7: 3D resistivity grid from the tTEM model results in a grid equal to the simulation grid.  

The tTEM 3D resistivities in the simulation grid contains 87547 voxels covering 43.5% of the simulation grid (Figure 7). The 450 

tTEM 3D resistivity grid is converted into soft data probabilities of geology. This requires a known lithology-resistivity 

relationship, which here is established in two parts.  

Firstly, because the geological TIs are based on interpretations of resistivity data in combination with geological information, 

many voxels in the TIs have a corresponding resistivity value in the resistivity grid (Figure 7). Local histograms for the study 

area are built for each lithological group by collecting all the resistivity values in the two geology TIs. We divide the TIs into 455 

three zones to account for some of the non-stationarity with depth that affects this relationship (Figure 4c). The upper 4 meters 

make up zone 1 and is the only place where we expect postglacial sediments and sandy till. Because both of these lithology 

classes contain so few counts in the TIs they would otherwise get underrepresented in a relationship covering the entire TI. 

Zone 2 covers the bulk part of the TIs from 4 m below surface and down to zone 3 covering the last 10 m of the TIs. Zone 3 

contains very low resistivities from the underlying conductive Paleogene clay that are “smeared” into the resistivities of the 460 

above lying material due to averaging during inversion (dark blue colors in Figure 7). This smearing effect happens at large 

contrasts in the subsurface resistivity and generally increases with depth as the resolution of the data decreases (Vignoli et al., 

2015). This affects the inference of the lithology-resistivity by lowering the overall resistivity of meltwater sand/gravel that 

mainly constitutes the lower parts of the study area. By separating the last 10 meters in a disconnected zone from the bulk 

zone, we minimize the effect of these low resistivities on the overall lithology-resistivity relationship in zone 2. The final 465 

pooled histograms for the two TIs are shown in Figure 8a-c for each of the respective zones. For all zones, relatively low 

resistivities are attributed to clay-rich deposits whereas relatively high resistivities are attributed to sandy lithologies, although 

meltwater sand/gravel accounts for many of the lower resistivity counts in the zone 3 relationship due to the smearing effect. 

Generally, the resistivity of clay till is so high that it corresponds to much of the meltwater sand/gravel resistivities. Meltwater 

clay/silt is the most distinctive lithology group tending towards rather low resistivity values. The histograms confirms the 470 
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common issue of lithologies overlapping in the resistivity domain (Barfod et al., 2016; Schamper et al., 2014). The histogram 

with the best separation is seen in zone 2, which indicate the importance of detaching the low resistive meltwater sand in zone 

3. The sandy till in zone 1 is associated with some of the highest resistivity values found in the TI area, whereas the postglacial 

sediments cover a large spectrum within the most ambiguous resistivity values. For each bin in a histogram, we summarize 

the size of each lithology group and stack them. If we then normalize with the total number of counts within that resistivity 475 

bin, we get a cumulative distribution of the lithologies (Figure 8d-f).  

 

Secondly, because there are very few counts for the low and high resistivities, here defined as < 0.5% of the total counts for 

each zone, we let an a priori established relationship govern these values. We assume that low resistivities are associated with 

clay till and meltwater clay/silt, whereas high resistivities are associated with sandy till and meltwater sand/gravel. This is 480 

based on our general understanding of the lithology-resistivity relationship in the area and supported by Barfod et al. (2016) 

and Schamper et al. (2014). The proportion between e.g. the two low-resistive lithology groups are found by retrieving the 

proportion between clay till and meltwater clay/silt in the respective zone of the TIs (Figure 4). For instance, there is no 

meltwater clay/silt in zone 1 of the TIs and hence we expect that low resistivities are only attributed to clay till (Figure 8d), 

while meltwater clay/silt covers approximately 25% among the two low-resistive lithology groups in zone 2 (Figure 8e). To 485 

smooth the transition between the relationship inferred from the TIs and the a priori distribution, we weight the adjacent 10 

bins between the two relationships. The weights are distributed linearly such that below the cut-off of 0.5% only the a priori 

relationship is used and 10 bins from there the relationship relies solely on the inferred relationships from Figure 8a-c. 

Regardless, the effect of the a priori relationship is miniscule as in all zones approximately 95% of all resistivities in the 

simulation grid are supported solely or at least partially by the relationship inferred relationship. The remaining 5% is supported 490 

solely by the a priori established relationship as seen in the total distribution of all resistivities in the simulation grid Figure 

8c. 
 

 
Figure 8: Resistivity-lithology relationships illustrated as a)-c) histograms of resistivity for each lithological group based on the 495 
training images (Figure 4) and the corresponding values in the 3D resistivity grid (Figure 7), d)-f) TI-based cumulative distribution 
for all lithological groups for each bin and a priori relationship for rare resistivities g)-i) distribution of resistivity values in the 
corresponding zone in the simulation grid (Figure 9f) overprinted with the lithology-resistivity relationship established in d-f). 
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Figure 9 presents the final soft data probabilities each of the k lithology classes 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘). In zone 2 and 3 (Figure 9f) the inferred 

lithology-resistivity relationships from Figure 8e and Figure 8f are used to convert the resistivity grid from Figure 7 to soft 500 

data probabilities 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘). At the surface the soft data probabilities from the surface geology 𝑝𝑝𝑠𝑠𝑠𝑠(𝑘𝑘) are combined with 

probabilities from the resistivity data to obtain the final soft data probabilities 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘):  

 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘) = 𝑝𝑝𝑠𝑠𝑠𝑠(𝑘𝑘)𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘)

∑ 𝑝𝑝𝑠𝑠𝑠𝑠(𝑘𝑘)𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘)𝐾𝐾
𝑘𝑘=1

          (2) 

 505 

for each of the K=5 lithologies. The stronger colors at the surface represent the overall certainty level of 0.7 from the surface 

geology discussed previously. The tTEM data is largely more ambiguous in guiding the soft data probabilities as evident from 

the resistivity-lithology relationship in Figure 8 and is mostly within the color range of yellow and red in Figure 9a-c. The 

dominance of the clay till and meltwater sand/gravel (Figure 9a-b) in the study area are apparent in the soft data probabilities 

when compared to e.g. meltwater clay/silt which is expected primarily in areas of lower resistivities. We do not expect much 510 

meltwater clay/silt at the boundary of the modeling domain as portrayed in the training images. The inferred relationship in 

zone 3 helps guide meltwater sand/silt to lower resistivities, but may not affect the results more than the general uncertainty in 

the boundary estimate, which depends largely on the tTEM resolution. Due to the low count of sandy till and postglacial 

sediments (Figure 9d-e) in the TIs the probability for these lithology classes is considerably lower than the three main classes 

of the study area.  515 

 

Based on these soft data probabilities a mode and entropy is calculated and shown in Figure 10. The entropy is generally low 

at the surface where the soft information from the surface geological map is present. Similarly the mode is dominated by the 

soft information from the surface geological map. Due to the overlapping relationship in the resistiviy domain (Figure 8), the 

soft data based on the tTEM data is not as informative at the surface and does not help to lower the entropy much further. In 520 

general the entropy of the tTEM data ranges between 0.8 (yellow color in Figure 10b) and 0.3 (red color). In areas of 

particularly high resistivity the entropy drops even lower (black color), implying that the tTEM data provides high certainty 

on the lithology group. The overall pattern in the mode model (Figure 10a) reveals a slight tendency to form coherent layers, 

especially seen in the buried valley. However, in many places the mode of the soft data is also raher patchy and changes 

between small clusters of either meltwater sand or clay till. These clusters simultaneously show high entropy (Figure 10b), 525 

which imply a wide distribtution of possible outcomes. Thus, these patchy structures can be consistent with information of 

more coherent layers. 

 
If a single lithology group has a soft data probability greater than or equal to 0.5, a small fraction of this soft data is converted 

into hard data. This makes sure that soft data are not underrepresented in MPS simulations which is a recurring problem in 530 

MPS simulation (e.g. Hansen et al., 2018). The conversion rates based on the soft data probabilities are shown in Table 4. 

 
Table 4: Conversion rates for soft data in the conditional realization. 

Soft data 

probability for a 

single lithology 

group 

0.5 to 0.6 0.6 to 0.7 0.7 to 0.8 0.8 to 0.9 0.9 to 1 

Conversion rate of 

soft to hard data 

2% 3% 4% 5% 6% 
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 535 
Figure 9: a-e) Soft data probabilities of geology for the buried valley element. Soft data probabilities calculated from the surface 
geology and tTEM data available. Note the smaller range in the color scale of the sandy till (d) and postglacial sediments (e). 
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Figure 10: a) Mode and b) entropy for soft data from Figure 9. Low entropy (certainty) is marked with black color, while white 
colors represent high entropy (uncertainty). 540 
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5.5 Parameterization of the simulation algorithm 

In direct sampling, the nodes in the simulation grid are visited sequentially. The training image is consulted at each iteration 

to find a suitable candidate at each visited node based on already simulated (conditional) nodes. To specify how this procedure 

is performed, several fundamental parameters need to be set in direct sampling (Mariethoz et al., 2010): 

• The number of conditional data to consider when searching the TI, which influences the variability. Here, a maximum 545 

of 20 neighboring nodes are used preventing verbose copying from the TIs happening too often. 

• The distance measure determining how well the candidate value match the conditional nodes in the simulation grid. 

Because both geology and redox are categorical variables we use the number of mismatching nodes as distance 

measure with a tolerance of 10% mismatch. For 20 neighboring nodes, we hence allow 2 conditional nodes to differ 

between the TI and the simulation grid to accept the currently proposed value.  550 

• The maximum number of iterations allowed to find a suitable match within the TI. Because the TIs in current study 

are of a reasonable size, we allow a scan of the entire TI to find a suitable match. This alleviates some of the problems 

with the non-stationarity mentioned earlier. If a match is still impossible to obtain, the candidate providing the lowest 

misfit is retrieved and “flagged”. During post-processing the flagged cells are simulated again using the same 

simulation setup and TIs. Because the larger structures are placed during the initial simulation, the flagged cells in 555 

postprocessing have a higher probability of finding a matching event in the training image, which minimizes the 

appearance of simulation artifacts. 

• The path at which the simulation grid nodes are visited needs to be selected. We choose a random path as is often 

used in MPS simulation. When combined with conditional hard data, the random path preferentially first visits nodes 

that are in the vicinity of hard data. This is achieved by calculating distances to hard data and then randomly drawing 560 

nodes according to these distances to create the visitation path (Straubhaar, 2019). This ensures that especially hard 

data from the surface have a higher impact on the final realizations. 

 

As pointed out by Tahmasebi (2018), a quantitative evaluation of the performance of MPS is still unresolved and the effect of 

the simulation algorithm parameterization remains an area of active research (Juda et al., 2020). To ensure that the combination 565 

of TI and MPS algorithm produce the sought-after spatial variability, we simulate 10 independent realizations without 

including the conditioning data, i.e. two realizations from the prior model. We adopt the heuristic strategy of Høyer et al., 

(2017), making sure that the realizations from the prior model are in accordance with and represent our expectations of both 

redox and geology. Two unconditional realizations from the prior model are shown in Figure 11. The spatial variability and 

patterns seen in the TIs (Figure 4) are generally represented for both redox and geology. As expected in the TI and conceptual 570 

model for geology, the prior realizations show primarily horizontal stratification. In the buried valley infill the extent of 

geological layers and redox structures is more limited than in the Quaternary sequence, which is also in accordance with our 

conceptual understanding. In the Quaternary sequence, the geological layer order is correct with clay till predominantly found 

near terrain while meltwater deposits are the main constituent of the deeper parts. Both sandy till (black) and postglacial 

sediments (blue) only occur near the surface in accordance with the TIs, much more infrequently than portrayed. 575 

 

For redox, the layer order from the TI is likewise preserved in the unconditional realizations such that oxic conditions are 

found primarily at the surface with increasing N-reducing and reduced conditions at lower depths. The prior model also 

captures the possibility of secondary redox zones from geological windows that are portrayed in TI1. N-reducing conditions 

are found adjacent to oxic conditions at the surface and not in the bottom of the simulation domain in the unconditional 580 

realizations. The overall redox conditions can be visualized by plotting the accumulative probability for redox conditions as a 

function of depth, constructed by summarizing over both realizations, which hence provides the 1D marginal distribution in 

all voxels. This marginal distribution is accumulated with depth as shown in Figure 12. Less oxic and N-reducing conditions 
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(orange and green) are simulated in the prior model at the surface and does not stretch as far down as portrayed the TIs (Figure 

12a), which can also be visually confirmed comparing Figure 4b and Figure 11b and f. 585 

 

Due to the strict vertical layer ordering in the TI, the non-stationary characteristics are preserved in the unconditional 

realizations despite the expectation of a stationary training image in MPS. We suspect that the full scan of the training image 

helps to provide the necessary configurations to enable a more non-stationary output in the prior realization. However, the 

MPS algorithm cannot fully capture all the non-stationarity of the TIs as there is a tendency to simulate less oxic conditions at 590 

the surface along with sandy till and postglacial sediments being underrepresented. Furthermore, the size of the TIs may hinder 

the reproduction of large-scale connected structures such as the oxic conditions at the surface (de Vries et al., 2009). This 

tendency is hence beyond immediate remediation by changing any of the fundamental parameters in direct sampling but can 

instead be guided by the incorporation of conditioning data in the posterior model (Barfod et al., 2018). In summary, we 

conclude that the current parameterization of the direct sampling algorithm provides the spatial variability that fits our 595 

understanding of the system, albeit with some slight caveats. With the current simulation setup flagging occurs for 

approximately 8 % of the cells during initial simulation and 4 % after post-processing. We emphasize that the unconditional 

realizations represent the prior information of the system, not the TIs nor the exact parameters chosen in the DEESSE 

algorithm. 
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 600 
Figure 11: Two unconditional realizations from the prior model. a-b) One realization of jointly simulated geology and redox c-d) 
The same realization sliced in the X and Y direction. e-h) Same figure configuration as in a-d but for a different realization. 



28 
 

 
Figure 12: Accumulative probability profiles of redox conditions in the study area for a) TIs, b) prior distribution and c) posterior 
distribution 605 
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6 Modeling results 

In this section, we present the modeling results from the set of posterior realizations of both geology and redox where the 

information from the prior model is conditioned to the data. We condition the simulation to the hard and soft data presented in 

section 5.4. 610 

 

Figure 13 shows two conditioned realizations from the posterior model. The impact of introducing the conditioning data is 

immediately seen at the surface of the geology simulations (Figure 13a,e), which is guided to a large degree by the information 

from the surface geology map. The architecture stays relatively fixed between the realizations, and variability is predominantly 

small-scale. Given the high amount of conditioning data, this is not unexpected. The main part of the Quaternary sequence 615 

element is covered by an approximately 8-10 m (sometimes reaching more than 20 m) thick clay till, followed by meltwater 

deposits. These meltwater deposits exhibit a shorter correlation length than in the prior model as seen in Figure 13g. The lateral 

extent of layers in the buried valley is less than in the Quaternary sequence, but not as significant as in the prior model. In 

general, the amount of meltwater clay/silt in the posterior model is lower than in prior model and the realizations consist mostly 

of either clay till or meltwater sand/gravel. This change is due to information from the geology soft data which is heavily 620 

dominated by clay till and meltwater sand/gravel (Figure 9). In fact, in zones of high resistivity, the soft data is the dominant 

constraint on the realizations with meltwater sand/gravel causing low variability between the two realizations as seen in e.g. 

Figure 13a,e. Just northwest of the high resistive zone in the buried valley is an area with more ambiguous resistivities which 

leads to greater variability and more dependency on the prior model. The bottom of the simulation domain is mainly made up 

of meltwater sand/gravel which is likely information stemming from the prior model. 625 

 

Due to the joint simulation of geology and redox in the current setup, the overall redox architecture in the realizations is 

coherent with the geology as outlined in the TI. For example, postglacial sediments are attributed to reducing conditions and 

meltwater sand/gravel is likely oxic at the surface. This consistency explains the predominantly oxic conditions at the surface 

seen in the sandy part of the buried valley (Figure 13b,f). In the Quaternary sequence, the clay till at the surface show both 630 

oxic and reduced conditions as indicated in the TIs (Figure 13d). Oxic conditions are clearly more present at the surface of the 

posterior model than in the prior realizations. The oxic conditions are distributed in the low gradient parts of the simulation 

domain, whereas reduced conditions are found along depressions in the landscape such as valleys and streams (Figure 13b), 

which is in good accordance with our geochemical understanding of the system. The entire posterior redox probability profile 

in Figure 12c also resembles the TI profile better than the prior model. Because there is no soft data aiding the occurrence of 635 

N-reducing conditions in the posterior model, it inherits the capacity of simulating N-reducing conditions from the prior model 

and is simulated less than in the TI profile from Figure 12. Thus, N-reducing conditions are also simulated adjacent to oxic 

conditions as in the prior model. The overall redox architecture is in place with planar type redox conditions in the buried 

valley and geological window type conditions in the Quaternary sequence (Figure 13d). However, sole voxels of oxic 

conditions in the deeper parts of the realizations appear as unwanted simulation artifacts (Figure 13h). Because these artifacts 640 

happen infrequently, are tiny and are surrounded by reduced conditions, we argue that for N-retention simulations these 

artifacts may be negligible.   
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Figure 13: Two conditioned realizations from the posterior model. a-b) One realization of jointly simulated geology and redox c-d) 645 
The same realization sliced in the X and Y direction. e-h) Same figure configuration as in a-d but for a different realization. 



31 
 

 

 

 
Figure 14: Mode and entropy of 100 geology and redox realizations. Low entropy (certainty) is marked with black color, while white 650 
colours represent high entropy (uncertainty). 

In total, we simulate 100 realizations like those presented in Figure 13, which together are used to represent the full posterior 

model. To summarize the posterior model, we present ensemble statistics (from section 4.2) in Figure 14. The entropy of 

geology (Figure 14c) at the surface is 0 at most locations due to the hard data provided from the surface geology map. The 

more uninformed parts of the surface (lighter colors) correspond to the buffer zone in the surface geology map. The entropy is 655 

usually around 0.2-0.3, indicating that most realizations of the posterior model provide the same outcome in the buffer zone. 

In few places along the buffer zone an entropy level of 0.8 is reached, indicating that these voxels have a near uniform 

distribution among several different categories to the one shown in the mode model. This confirms the qualitative results from 

inspecting the individual realizations, that the effect of introducing prior information and hard data increase the information 

content (lowers entropy) of the final models drastically compared to the soft data only (Figure 10). For the lower part of the 660 

simulation domain, the posterior model shows higher entropy than at the surface. This means that the mode found in this region 

is usually more uncertain. In some areas of high resistivity, we also see very low entropy at depth, where the soft data provides 

the main architectural input and the posterior mode model resembles the soft data mode. The effects of introducing the prior 

information for the architecture is clearly seen in the coherent structures produced in the posterior mode in contrast to the 

patchiness of the mode in Figure 10a.  665 

 

The redox mode does not display some of the minor simulation artifacts seen in the individual realizations, because these are 

averaged out over many realizations. Instead, we do see remnants of the converted oxic soft data at the surface of the mode 

model (Figure 14b) with zero entropy (Figure 14d). This is clearly a side-effect of the soft data conversion, since these sole 
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oxic voxels are not in accordance with the overall pattern of reduced conditions along the streamlines and valleys. The redox 670 

mode shows few N-reducing conditions, in accordance with the redox depth profiles shown in Figure 12c, demonstrating the 

inclination to simulate either oxic or reduced conditions in the posterior model. 

 

Overall, the entropy of redox is showing a reverse pattern to that of geology. The redox entropy is highest near the surface and 

decreases with increasing depth (Figure 14d). One could at first expect the highest redox uncertainty at deeper depth because 675 

the density of the hard data is much higher near the surface and for the deeper part of the architecture, the geochemical data is 

rarely available. However, the entropy sharply decreases in the reduced zone beneath a certain depth. This pattern instead fits 

well with the conceptual understanding of the redox structure evolution: oxic conditions are developed as oxidants (e.g., 

oxygen and nitrate) infiltrate from the root zone to the subsurface where reduced layers are present. Therefore, a redox front 

propagates downward and under homogeneous conditions with vertical flow of water, it would be unlikely to develop oxic 680 

conditions below the redox front. While the spatial heterogeneity of the geological settings of the near surface environments 

at various scales (pore scale to landscape) has been well documented (e.g. Baveye et al., 2018; Groffman et al., 2009; Sexstone 

et al., 1985), implying highly heterogeneous redox conditions in the shallower depth. The sharp decrease in entropy of the 

buried valley take place due to the planar redox type domain in the buried valley, whereas the possibilities of geological 

windows in the Quaternary sequence makes the high entropy section develop further down. Some of the voxels at the surface 685 

of the Quaternary sequence element depart from the overall pattern by having a very low entropy. This trend is likely aided by 

the soft data giving high probabilities of oxic conditions at the surface. The high entropy at the surface is likely also aided by 

the soft data. At the surface and down to about 10-20 m of the buried valley, we generally do not know much about the redox 

conditions as indicated by the white yellowish colors in Figure 14. The more evenly distributed redox soft data probabilities 

(Table 3) could explain some of this high entropy. 690 
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7 Discussion 

To our knowledge, examples of simulating redox conditions with sediment-texture distributions using multiple-point 

geostatistical methods have not been done before. This study sets out with the aim of proposing and reviewing a methodology 

for modeling both redox architecture and geology simultaneously in high-resolution 3D using MPS.  695 

 

7.1 Simulation artifacts 

The spatial variability of the TIs is represented in the prior realizations and conditioning data guides our expectations of the 

system to a posterior model. In some cases, due to the limited size of the TI, inconsistencies between conditioning data and 

the prior model exist. In some cases, these inconsistencies lead to simulation artifacts in the realizations, but are rare since they 700 

are largely corrected during MPS post-processing. For the posterior model realizations, flagging is decreased to only about 5-

6% after post-processing while happening 19-22% of the time during the initial run of the algorithm. Some simulation artifacts 

also occur in the prior model itself and therefore cannot alone be attributed to inconsistencies between the prior model and the 

conditioning data, which is underlined by the decrease in flagging that also happens during post-processing of the prior model 

realizations. These inconsistencies are associated with a lack of matching events in the TI. To remedy such simulation artifacts 705 

one either needs larger TIs to allow more spatial variability or artificially enhance the variability by lowering the amount of 

conditional data to consider when searching for a match in the MPS algorithm. In the latter case, this will happen at the cost 

of reproduction of the actual spatial variability portrayed in the TI. We argue, that in the current nitrate simulation at the 

catchment scale, these artifacts do not affect the overall architecture (Figure 14) and redox trends with depth (Figure 12). It is 

also expected to have negligible impact on hydrological modeling as the overall architecture allows groundwater flow pass by 710 

such artifacts. Nevertheless, future studies are required to reduce artifacts of this kind or, at least, downplay their significance. 

One solution could be to allow rotation during simulation could offer more configurations during simulation. But testing with 

a setup allowing 360 degrees rotation in the horizontal plane did not enable a substantial improvement on this issue. The 

flexibility of the current methodology also allows the inclusion of soft data probability maps through equation 2 indicating 

spatial restrictions on certain lithologies or redox conditions, which could potentially remedy some of the deeper lying artifacts.  715 

 

7.2 The role of soft data 

The random path have a tendency to underestimate soft data and provide less resolution in the results compared to other path 

types (Hansen et al., 2018). In the current study the amount of soft data coverage was high (more than 43.5% of the simulation 

grid). To utilize the abundant soft data, we randomly converted a fraction of the soft data into hard data to compensate the 720 

underestimation from the path. This helped transferring more weight towards the soft data during simulation, with the caveat 

of introducing converted soft data in unwanted positions, such as oxic in an overall reduced environment. This problem is 

however mostly encountered at the redox mode (Figure 14b) and does seemingly not pose as big of a problem for the individual 

realizations in Figure 13b,f. By further processing the realizations by removing any sole voxels that differ from the neighboring 

voxels, this problem can be removed entirely, but at the risk of removing actual sole voxels. One could also randomly select a 725 

new set at each iteration, although this is not directly implemented in the DEESSE software and still would not make sure that 

soft data in general are handled correctly. For instance, the current remediation only handles lithology groups with probability 

>= 50% and thereby cannot help improving the information content for any categories with probability < 50%. This affects 

e.g. N-reducing conditions at the surface where soft data probabilities are substantially lower (Table 3). Thus, N-reducing 

conditions are bound to be underrepresented since they are not converted from soft data, which is the tendency shown in the 730 

posterior redox profile compared with the TI (Figure 12). Despite the clear advantages of converting some soft data to provide 

more emphasis on them, the current simulation results could most likely be improved by better incorporating the soft data 
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information in general. However, neither a preferential path that visits voxels with soft data information before other voxels, 

nor the use of non-collocated soft data is currently implemented in most state-of-the-art MPS algorithms. The problem of how 

to best incorporate soft data information hence reaches beyond the current study. We encourage that this remains an active 735 

area of research to make MPS simulation relevant for practitioners without the need for too much ad-hoc remediation. 

 

7.3 Resistivity-lithology relationship 

The established resistivity-lithology relationship allows us to map the prior probabilities of each lithological group based on 

the tTEM in the simulation area. Utilizing tTEM as soft data information ensures that it does not have too much influence over 740 

the final results. Here, the relationship is inferred from the resistivity grid and training images. When simulating, the general 

mismatch between the training image patterns (based on interpreted geology) and the tTEM data is thus minimized. Methods 

exist for establishing a relationship between resistivity and clay content (Christiansen et al., 2014; Foged et al., 2014). 

Unfortunately, this is not directly applicable for the lithological groups used here as they are not defined on the basis of the 

clay content. Alternatively, this relationship could be inferred using boreholes near the study site. Similar to the approach in 745 

this study, inferring the resistivity-lithology relationship from boreholes is typically based on deriving probabilities from 

histograms (Barfod et al., 2016; Gunnink and Siemon, 2015; He et al., 2014a). In accordance with the present results, these 

studies also show a significant overlap between different lithologies and as such using nearby boreholes for inferring the 

resistivity-lithology relationship would mainly minimize the reuse of data and avoid subjectivity carried over from the TIs.  

 750 

7.4 Geological modeling subjectivity and data reuse 

The inclusion of geological mapping experts in the creation of TIs introduces modeling subjectivity. Thus, the final realizations 

could include unverifiable modeling choices following the interpretation procedure in cognitive modeling. Through 

experiments with geological interpretation of the uncertainty in boreholes, Randle et al. (2019) argued that expert elicitations 

do not result in accurate predictions of interpretation error. Schaff and Bond (2019) propose the quantification of interpretation 755 

uncertainty for inclusion in geostatistical simulation, while efforts have been made to make TI generators (Pyrcz et al., 2008) 

and data-driven TIs without the need for expert knowledge (Vilhelmsen et al., 2019). However, our approach of process-based 

TI generation from expert elicitation is a common approach in MPS applications (Mariethoz and Caers, 2015). A possible 

explanation for this is the benefit of bringing in prior expert knowledge, which is otherwise difficult to quantify. This ensures 

that results are in accordance with as much information as possible (Curtis, 2012; Tarantola, 2005) and realizations are not in 760 

clear conflict with geological concepts (Jessell et al., 2010; Wellmann and Caumon, 2018).  

 
Despite the potential subjectivity in the geological modeling of the study area these modeling choices are primarily guided by 

data. The tTEM data collected in this study has e.g. contributed to a good correlation between the terrain and the subsurface 

architectures in the geological interpretations. These observations fit well with the current knowledge of the latest geological 765 

events in the area, thus providing good possibilities of making robust geological correlations between the geological and 

geophysical data.  

 
It might be difficult to quantify the effect of the apparent loss in degrees of freedom that follows from using the same data for 

establishing the prior information and as condition data during simulation. In the current study, the problem of reusing data 770 

for outlining geological elements, is most likely not critical as only large-scale structural information is partly interpreted from 

the resistivity data, such as the top of the Paleogene clay layer. The degrees of freedom loss for reusing the resistivity 

information in the TIs and as conditioning data in simulation is undoubtly larger. Although the small size of the TIs may pose 
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a problem for reproducing the intended varibility, in this instance it acts to limit the effect of reusing data. This issue persist 

for approximately 33% of the total voxels (Table 1). 775 

 

7.5 Training images and geological elements 

If possible, the TI should provide all possible dimensions and shapes of the geological features in the subsurface (Strebelle, 

2012). However, sizes of the TIs in the current setup are relatively small compared to the simulation grid and hence do not 

contain that many configurations. In general, the smaller the TI, the fewer possible structures can be represented (Mariethoz 780 

and Caers, 2015). We consider two remedying factors. Firstly, the simplicity of the TI. In the study area, we expect a geology 

with continuous clay and sand units partly restrained by incised valley structures in the Paleogene clays as seen in Figure 3. 

Even though the TI is small and simple, it conveys the general pattern to be expected in geological features throughout the 

simulation domain. The simplicity should alleviate some of this issue, although in an area with more expected heterogeneity, 

a more diverse and larger TI would be needed. Secondly, if the geological variability provided in the TI is not sufficient, 785 

algorithmically induced variability measures such as scaling and rotation of features is possible with direct simulation 

(Mariethoz et al., 2010).  

 
The non-stationarity of both sets of TIs is evident. This is a common problem when designing training images directly based 

on, and mimicking geology, which is inherently non-stationary. This might pose a problem, as only a certain number of the 790 

configurations in the TIs will produce a match during the direct simulation. Consequently, we might risk reproducing larger 

parts of the TI in the realizations. Such verbose copying is partially remedied by the addition of conditioning data and choosing 

a smaller search radius as argued in Vilhelmsen et al. (2019). However, a smaller search radius comes at a price of not 

reproducing the features in the TI and adding variability more related to algorithmic choices than geological variability. 

Luckily, plenty of conditioning data is available for the simulations to remedy some of the shortcomings of the training images. 795 

As argued in de Vries et al. (2009), subdividing the TIs and simulation domain into different areas is another possibility to 

handle non-stationarity. To some degree, the geological elements represent such a subdivision of the entire modeling domain 

in the study area.  

 
In the current study, we considered the boundaries between the geological elements fixed. In reality, there is some interpretation 800 

uncertainty related to these boundaries especially in data scarce areas. Future studies may be able to quantify this uncertainty. 

If this uncertainty is sufficiently large such that it affects the simulation results significantly, we put forward the idea of re-

simulating boundaries between geological elements as part of the simulation.  

 
Because TIs are attributed to a specific geological element, these TIs may be reused in other simulation studies with comparable 805 

geological elements and we therefore strongly recommend building a TI library. This approach would alleviate the most 

fundamental of the issues in the current setups. Information between TI and data becomes independent when using a 

generalized TI. Specifically, the reuse of data (in constructing the TI and implicitly when inferring the resistivity-lithology 

relationship) is eradicated. For a smaller geological element, the TIs developed in the study area may also represent a 

proportionally larger portion of the expected variability. An additional bonus would be a reduction in labor/time since TIs are 810 

pre-existing or maybe only need slight alteration.  

 
Conceptual TIs or based on data from another study area would most likely be preferable from a geostatistical point of view 

as it would ensure independence of information. However, in the case of a TI based on nearby data, the TI should be close 

enough to the study area such that the depositional and redox setting are comparable. Furthermore, the study of Barfod et al. 815 
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(2018) suggests that TIs become secondary given a high amount of conditioning data. In future studies and if a similar approach 

of TI creation within the simulation domain is chosen, we recommend collaborative efforts between geologists and 

geochemists in securing the best possible location for representative TIs. We also suggest that the level of detail in the TI 

should be case-specific involving a trade-off between the time to construct the TI, the level of support in the available data, 

the background knowledge, limitations due to size and how well the features can be reproduced with the chosen 820 

parameterization.  

 

7.6 Computationally attractive stochastic simulations 

In the current setup, simulations are computationally feasible. 100 realizations of both elements are generated in less than 2.5 

hours on a high-end personal laptop (Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz, 6 cores (12 threads) with 10 threads 825 

allocated to DeeSse. The average simulation time for a single realization is hence just over 80 seconds. Several factors 

contribute to this: 1) The relatively small TIs making the number of possible combinations limited, 2) The restriction on 

maximum 20 conditioning points and 3) the subdivision of the simulation grid into geological elements. Some of the 

abovementioned factors are algorithm tuning parameters, while others are added bonuses of understanding the geology in 

question (e.g. the ability of breaking the problem up into smaller bits and choosing an acceptable level of simplicity in the 830 

models). In this case, bringing expert field knowledge to the modeling setup is advantageous. 

7.7 Multi-purpose modeling results through uncertainties 

The proposed workflow allows incorporation of quantified uncertainties in the input data and structural uncertainties in the 

subsurface models. This is a major advantage over e.g. static models. We specifically dealt with prior uncertainty in the 

geological and redox conditions as portrayed in the TIs and geological map and resistivity data (soft data). Other sources of 835 

error (e.g. modeling and measurement errors) in the input data can also be explored, as MPS offers a flexible setup for treating 

data with uncertainties. Additionally, it is clearly shown in the comparison between mode and entropy of posterior and soft 

data that MPS adds additional valuable information through the TIs that enable geologically viable architecture. Especially in 

cases where soft data is too weak to provide significant support. The quantitative description of uncertainties as portrayed by 

the final ensemble of realizations also has many useful properties for additional analysis. For instance, the ability to produce 840 

redox profiles as in Figure 12 is trivial once the simulation is completed. These redox profiles make comparisons with previous 

studies possible, while offering many other possibilities for summary statistics and quantifying uncertainty. This flexibility in 

the final analysis is one of the main benefits of applying geostatistical mapping of redox conditions (and geology). With the 

current methodology, depth profiles can also be calculated for specific sets of x- and y-coordinates to investigate some of the 

spatial variation in redox. Another example would be to investigate the distribution of redox conditions in the geological 845 

groups, which allows assessing new hypotheses on the coupling between geology and redox. It may also reveal insights to the 

spatial dependencies of such couplings and showcase potential geological windows for oxic conditions at depth. Entropy gives 

insight into the nature of information content and therefore it would be an active tool in finding the best spot for further 

investigation, i.e. showing where information is lacking. For instance, in the case of redox, entropy might be suited for assisting 

a focused field campaign in retrieving more information of redox in the buried valley element. In the current case, the 850 

Quaternary sequence many places showed a lack of information in the first 10-20 meters that is typically critical to model. 

 
From the study area, it seems that it is possible to create a computationally feasible joint stochastic 3D high-resolution model 

of redox and geology with the current setup. However, these findings cannot be extrapolated directly to other study areas. 

Future research includes testing the method in other catchment areas to assess the robustness and general applicability. Many 855 

improvements, besides fine-tuning algorithm parameters, also exist. We e.g. expect improvements and minor changes to the 
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overall setup, as different study areas will contain site-specific challenges that should be addressed. As mentioned, one of the 

current issues that need to be adressed is how best to quantify and integrate soft data. Besides the resitivity-lithology 

relationship, we also recognize the need for an extensive study on the quantification of uncertainty in geological maps such as 

the geological surface map presented here, but it is beyond the scope of the current study.  860 
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8 Conclusion 

This study sets out to model both redox architecture and geology simultaneously in high-resolution 3D due to the dependency 

of the evolution of the subsurface redox conditions on the hydrogeological pathways. This is achieved using a bivariate MPS 

simulation. MPS modeling with a bivariate TI of geology and redox presents some important features compared to previous 865 

mapping studies: 1) MPS simulation effectively produces geology and redox following expectations and 2) TIs provide an 

intuitive and easy collaboration across different fields of expertise. Valuable expert information, otherwise difficult to quantify, 

is seamlessly integrated within MPS. This ensures in our case that there is a correspondence between geology and redox 

conditions, which is one of the key strengths of the proposed methodology. Although challenges in the current approach exist, 

we conclude that the proposed methodology offers improvements to existing methods for mapping geology and redox by 870 

producing consistent realizations of both variables. The flexibility of the geostatistical results as represented by the ensemble 

of realizations allows comparisons with traditional mapping techniques. We interpret and model individual sedimentary layers 

into coherent volumes (‘geological elements’) that greatly help to guide our simulation results and reduce computation costs. 

This new mapping technique should aid our understanding of the uncertainties and limitations of our knowledge and data. 

High-resolution 3D understanding of both redox and geological architecture will likely improve predictions of N-retention and 875 

water pathways in the subsurface. The generalizability of these results is subject to certain limitations as the proposed workflow 

is only tested on a single study site. This study lays the groundwork for future research into coupled understanding of geology 

and redox using MPS simulation. Despite its exploratory nature, this study offers valuable insights into the feasibility of joint 

geostatistical modeling of redox and geology. Several questions remain to be answered regarding interdependence between 

different sets of quantified information and integration of soft data. The geological and redox architecture simulations might 880 

be incorporated in hydrological modeling with N-transport to be used for N-retention mapping of the subsurface important for 

future more targeted N-regulation of agriculture.  
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