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Abstract. Nitrate contamination of subsurface aquifers is an ongoing environmental challenge due to nitrogen (N) losses from 

intensive N fertilization and management on agricultural fields. The distribution and fate of nitrate in aquifers are primarily 

governed by geological, hydrological and geochemical conditions of the subsurface. Therefore, we propose a novel approach 10 

to model both geology and redox architectures simultaneously in high resolution 3D (25m x 25m x 2m) using multiple point 

geostatistical simulation (MPS). Data consists of 1) mainly resistivities of the subsurface mapped with towed transient 

electromagnetic measurements (tTEM), and 2) information of lithology and redox conditions obtained from the borehole 

observations at point scale interpreted from the geological descriptions and colors of sediment samples, and chemistry analyses 

of water samples. Based on the collected data and supplementary surface geology maps and digital elevation models, the 15 

simulation domain was subdivided into geological elements with similar geological traits and depositional history. The 

conceptual understandings of the geological and redox architectures of the study system were introduced to the simulation as 

training images. These data were combined with detailed soil maps and digital elevation models to identify main geological 

elements defined as volumes within the subsurface. From a geological perspective, these data are considered independent from 

each other in terms of formation. This approach became computationally attractive by simulating smaller geological elements 20 

individually instead of the entire catchment. The final realizations were stitched together using simulations of the individual 

geological elements, resulting in an ensemble of realizations representing a quantification of the uncertainty for the given 

setup. for each geological element. On the basis of these training images and conditional data, independent realizations were 

jointly simulated of geology and redox inside each geological element and stitched together into a larger model. The joint 

simulation of geological and redox architectures, which is one of the strengths of the MPS simulations compared to other 25 

geostatistical methods, secures that the two architectures in general show coherent patterns. Despite the inherent subjectivity 

of interpretations of the training images and geological element boundaries, they enable an easy and intuitive incorporation of 

qualitative knowledge of geology and geochemistry in quantitative simulations of the subsurface architectures. Altogether, we 

conclude that our approach effectively simulates the coherent geological and redox architectures of the subsurface that can be 

used for hydrological modelling with nitrogen (N-)-transport, which may be fundamental to better understanding of the 30 

nitrogen (N) -retention of the subsurface and to future more targeted regulation of agriculture. 
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1 Introduction 

The escape of reactive nitrogen (N) from agricultural soils results in adverse environmental and human health impacts 

(Schullehner et al., 2018; Temkin et al., 2019), including eutrophication of freshwater and estuarine ecosystems and nitrate 35 

contamination of groundwater and drinking water (Hansen et al., 2017 & 2019). In Denmark, since the 1980s N-regulations 

of intensive agriculture at national or regional scales have succeeded in lowering the N-impact on the aquatic environment 

(Dalgaard et al., 2014; Hansen et al., 2017).  However, further actions are still required to improve the state of the aquatic 

ecosystems to meet the requirements of e.g. the EU Water Framework Directive (Kallis and Butler, 2001). Moreover, this has 

to be achieved in a cost-effective manner for the society and the agricultural industry. This creates a demand for new knowledge 40 

and new solutions for more efficient future N-regulation of the agricultural sector both in Denmark and in other countries with 

intensive agriculture. The proposed direction is to tailor the N-regulations depending on the site-specific conditions at field 

level, called targeted N-regulations. The targeted N-regulations require detailed knowledge about the subsurface 

hydrogeological and biogeochemical conditions because nitrate, which is the dominant form of N in aquatic environments, is 

transported predominantly with water flow and undergoes reduction in the typical deeper reduced aquifers. Thus, it has now 45 

become increasingly important to have detailed knowledge of the subsurface geology and redox architectures.   

 

In a simple case with only vertical infiltration, nitrate concentrations in aquifers decrease with an increasing depth along three 

sequential redox zones (Kim et al., 2019; Wilson et al., 2018):  

1) Oxic zone: Nitrate conditions are equal to the leaching from the soil because of the oxic conditions preventing reduction 50 

2) Nitrate N-reducing zone: Nitrate decrease with increasing depth due to ongoing reduction of nitrate 

3) Reduced zone: Nitrate free zone due to complete reduced redox conditions  

 

The redox conditions of the subsurface has been widely investigated using various approaches focusing on different redox 

sensitive chemical compounds such as nitrate, iron, sulphate, pyrite, organic matter, arsenic, uranium, and some organic 55 

contaminants: 1) process-based approaches (e.g. (Abbaspour et al. (2007); Hansen et al. (2014a,2016a); Lee et al., 

(2008)Abbaspour et al. (2007); Hansen et al. (2014a,2016a); Lee et al., (2008)), 2) geostatistical methods (e.g., Kriging; 

Ernstsen et al. (2008); Goovaerts et al. (2005); Lin, (2008)Ernstsen et al. (2008); Goovaerts et al. (2005); Lin, (2008)) and 3) 

machine learning (Close et al., 2016; Koch et al., 2019; Nolan et al., 2015; Ransom et al., 2017; Rosecrans et al., 2017; 

Tesoriero et al., 2015; Wilson et al., 2018). However, many of these approaches require large sets of data of especially 60 

groundwater chemistry, and it is costly and time consuming to collect sufficient volumes of data. Furthermore, ancillary data 

to spatially extrapolate the water chemistry, for instance soil types, topography, land use, surface slopes, only provide 

information about the near surface conditions (i.e., topsoil layer); therefore, predicting the redox conditions below the topsoil 

layer using these data may be inadequate. Particularly under geologically heterogeneous settings such as glacial terrain, the 

redox architecture can be complex (e.g. Kim et al. (2019)) with many shifts in redox state with depth at the same location. 65 

Upscaling of the point scale measurements of redox conditions into the 3D space thus requires detailed spatial information of 

the subsurface geological architecture.  

 

In Denmark, the uppermost 100 to 200 meters of the subsurface generally consistsconsist of unconsolidated sediments 

reworked or generated by glacial processes, making the subsurface architecture complex (Høyer et al., 2015; Jørgensen et al., 70 

2015). Through the National Groundwater Mapping Program, Denmark is extensively covered with airborne electromagnetic 

measurements (AEM) (Møller et al., 2009; Thomsen et al., 2004) and together with borehole data, 3D geological mapping of 

Denmark has predominantly been carried out as cognitive modeling (see e.g. Høyer et al., 2015). In cognitive modeling, an 

experienced geologist combines all available subsurface data (e.g. boreholes, electromagnetic data, and seismic data) with 

preexisting geological background knowledge and performs interpretations through either manual (e.g. Jørgensen et al., 2013) 75 
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or semi-automatic approaches (e.g. Gulbrandsen et al., 2017; Jørgensen et al., 2015). Complex geological settings, however, 

pose a challenge for 3D modeling and interpretations between geological point data may lead to large uncertainties (Wellmann 

and Caumon, 2018).  

 

The subsurface information itself is attributed to uncertainties such as measurement errors (Malinverno and Briggs, 2004), 80 

errors from using approximate physics (Hansen et al., 2014b; Madsen and Hansen, 2018), bias from interpolation methods 

(Wellmann and Caumon, 2018), and processing errors when handling geophysical data (Claerbout et al., 2004; Madsen et al., 

2018; Viezzoli et al., 2013). Even geological knowledge cannot be considered uncertainty free (Bond, 2015; Lindsay et al., 

2012; Sandersen, 2008; Wellmann et al., 2018). In fact, subjective biases are accepted as one of the weak points of cognitive 

geological modeling (Bond, 2015; Wycisk et al., 2009). Generally, it is therefore difficult to fully incorporate uncertainties 85 

related to the subsurface information in cognitive modelling, and even more difficult to propagate these uncertainties through 

to subsequent analysis such as hydrological modelling.  

 

In recent years, some studies have adapted geostatistical simulation methods for geological mapping of the substratum in order 

to quantify and possibly account for some of these uncertainties. A few examples exist of multiple-point geostatistical 90 

simulation (MPS) utilized for mapping 3D geology with AEM data (Barfod et al., 2018; He et al., 2014b; Høyer et al., 2017; 

Jørgensen et al., 2015; Vilhelmsen et al., 2019). However, AEM data provide structural information of the deeper subsurface 

(100-200 m deep) at a coarser resolution (Sørensen and Auken, 2004), and hence may not be adequate to provide structural 

information for simulations of N-transport at catchment level occurring mainly within the upper 30 m. A newly developed 

towed transient electromagnetic method (tTEM) (Auken et al., 2019) provides data at much higher resolution but with a lower 95 

penetration depth than AEM. tTEM is, therefore, ideal for high-resolution mapping when focusing on the uppermost 50 to 70 

m of the subsurface. None of the previous studies has investigated the geological and redox architecture simultaneously 

although these two are related and sometimes coevolved (Grenthe et al., 1992; Hansen et al., 2016a; Wilkin et al., 1996; Yan 

et al., 2016). 

 100 

The development of redox zones in the subsurface is dependent of several factors including 1) infiltration of atmospheric 

oxygen in geologic time; 2) anthropogenic leaching of nitrate; 3) the amount and reactivity of geogenic reducing minerals as 

pyrite or organic matter; and 4) the hydrogeological flow conditions. We propose a novel way to combine the available 

information about hydrogeology and redox conditions (boreholes, electromagnetic data, geological maps and digital elevation 

maps) and quantify uncertainty in modeling and data using geostatistical simulation. We specifically use MPS simulation to 105 

describe the spatial uncertainty in our models through a series of possible realizations of the subsurface (Mariethoz and Caers, 

2015). Using a bivariate training image (TI) of both geology and redox, we jointly simulate both redox and geology to ensure 

these will be consistent in the realizations. TIs are created using expert knowledge combined with the available data to directly 

incorporate prior expert geological information. In addition to our proposed efforts of combining redox and geology modeling, 

we have also utilized data and geological knowledge to subdivide the simulation volume into smaller volumes based on 110 

different geological characteristics and the depositional environment. We refer to such smaller volumes as ‘geological 

elements’. Individual TIs are created with cognitive voxel modeling for each geological element so that they can be simulated 

independently and subsequently stitched together. This is computationally attractive since both training images and simulation 

grids shrink in size in contrast to simulating the entire volume in a single operation. Geological interpretation of the 

depositional environment and the age of the sediments will help create an event chronology that supports the independence 115 

between the (e.g. He et al., 2015; Høyer et al., 2015). Individual TIs are created with cognitive voxel modeling for each 

geological element such that they can be simulated independently and subsequently stitched together. Geological interpretation 
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of the depositional environment and the age of the sediments will help create an event chronology that supports the 

independence of the individual geological elements.  

 120 

The aim of this paper is to demonstrate and review the proposed methodology focusing on strengthsof jointly simulating and 

weaknessesdetermining the distribution of redox and geology using MPS. This is, to our knowledge, the first study of 

simultaneous modeling of geology and redox architectures in a geostatistical high-resolution 3D model. The novelty of this 

paper is hence the presentation of the complete practical framework and steps needed to apply MPS for redox and geology 

modeling. These steps include quantifying spatial variability in TIs, quantifying conditional information and accounting for 125 

major geological depositional events via geological elements. This may be fundamental to better understanding N -retention 

within the subsurface and important for future more targeted N -regulation and management of agriculture for protection of 

vulnerable surface waters and groundwater. Thus, providing stakeholders with a powerful tool based on integrated expert 

knowledge and quantified structural uncertainty through probabilistic predictions of the complex interplay between redox and 

geological architecture. 130 
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2 The study area 

The study area is a small Danish agricultural first-order hydrological catchment to Horndrup Bæk called LOOP3 with an area 

approximately 550 ha. The area is located at the Jutland peninsula in Denmark, with a coastal temperate climate (Figure 1). 

The dominant soil types are classified as sand-mixed clay (70%) and clay sand (24%). Forest accounts for 18% of the catchment 135 

area, the rest being used for agricultural purposes except for a limited area taken up by buildings and roads. The catchment has 

been part of the Danish National Environmental Monitoring Program since 1989 aiming at evaluating the effect of the Danish 

N-regulation of agriculture on the aquatic environment (Hansen et al., 2019). During the last almost 30 years, the N -

concentrations in soil water, drainage, shallow groundwater and streams have been measured regularly at several stations in 

the agricultural fields (Blicher-Mathiesen et al., 2019). Therefore, the site is ideal for testing new subsurface mapping 140 

techniques of geological and redox architectures.  

 

The study area is located in a hilly glaciated landscape in the eastern part of Jutland just east of the highest point in Denmark 

(Figure 1).  The highest elevations reach 170 meters above sea level (m a.s.l.) in the southwestern part and slopes down to 

around 40 m a.s.l. in the northeast (Figure 1a). To the north of the study area, a system of open tunnel valleys forms a low-145 

lying area with several lakes. The catchment is dominated by glacial till deposits from the latest glaciation and the orientation 

of the hills generally show former ice push directions from the northeast. In the lowest parts of the terrain, occurrences of 

meltwater sand are also found. Occurrences of postglacial freshwater deposits can be found locally in smaller topographical 

lows (Jakobsen et al., 2011).Occurrences of postglacial freshwater deposits can be found locally in smaller topographical lows 

(Jakobsen and Tougaard, 2020). Several buried valleys have been mapped outside the study area (Sandersen and Jørgensen 150 

(2016); www.buriedvalleys.dk (2020); Figure 1). The buried valleys were formed as elongated tunnel valleys underneath the 

ice sheets, they are generally between 1 and 2 km wide and some of them have depths of more than 100 m (Jørgensen and 

Sandersen, 2006; Sandersen and Jørgensen, 2017). These valleys are generally filled with younger Quaternary sediments. In 

this region, the valleys mostly have two preferred orientations, one around WNW-ESE/NW-SE and the other around SW-

NE/WSW-ENE (Figure 1), with the first mentioned clearly visible in the present-day topography.  155 
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Figure 1: The study area and available data, where a) display digital terrain model, geophysical data and outlined TI areas, b) an 

orthophoto and geochemical data, and c) soila surface geology map (1 m below surface (Jakobsen et al., 2011)).(Jakobsen and 160 
Tougaard, 2020)). Insets with map of Denmark and regional view of the study site with mapped buried valleys 

(www.buriedvalleys.dk (2020)). 
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3 Materials 

Some data are specifically gathered for this study (tTEM and new boreholes, see Figure 1) while other existing data are freely 

available through the Danish shallow borehole database “Jupiter” (Hansen and Pjetursson, 2011) and the Danish geophysical 165 

database for onshore data “GERDA” (Møller et al., 2009). All available data are shown in Figure 1 along with the terrain and 

outline of the study area. 

3.1 Geological and topographical data 

The digital elevation map presented in Figure 1a is available from Styrelsen for Dataforsyning og Effektivisering (2016). The 

elevation map is resampled on a 25m x 25m grid such that adjustment with interpreted surfaces is seamless. 170 

 The geological surface map (Figure 1c) of the surficial cover of Denmark is compiled from small pristine sediment samples 

collected at c. 1 m depth using a so-called spear-auger. The mapping geologists interpret the origin and type of the sediment 

in the field and classify a sediment-type following the current terminology described by Jakobsen et al., (2011).Jakobsen and 

Tougaard (2020). Samples are taken with a distance of 100-200 m to map the transitions between the different sediment types. 

Afterwards the soilsurface geology-symbols are transferred to a master map, contoured and color-coded resulting in a 175 

geological map sheet on a scale of 1:25.000 with a resolution of ± 100 m (Figure 1c, https://eng.geus.dk/products-services-

facilities/data-and-maps/maps-of-denmark/ (2020)) 

 

Borehole lithological information (Figure 1a) is gathered from the Jupiter database to which lithological sample descriptions 

have been reported since 1912. The borehole lithological samples are described and interpreted by geologists following 180 

standards outlined by Gravesen and Fredericia (1984), including interpretation of depositional environment and 

chronostratigraphy and thereby resulting in sediment types similar to those used in the geological mapping.  

 

In our study site, a total 25of 18 specific sediment types are found in borehole descriptions and on the geological surface map 

combined. To lower the number of variables in the geostatistical modelling and inpotentially later on in hydrological 185 

simulations, the sediment types are grouped into five categories focusing on their hydrological properties (Table 1). and 

depositional environment (Table 1). For instance, the two till groups have vastly different hydrological properties because of 

the overall grain size difference between clay tills and sand/gravelly tills. The partly organic postglacial sediments may show 

variable hydrological properties. However, they are hugely important in terms of redox potential because of organic content; 

therefore, they are categorized in one group.   190 

 

Table 1: Lithology groups in the study area. The five bold face groups are used in the geostatistical simulation. The sediment- type 

abbreviations in the right column represent the Danish sediment characterization standards.   

Lithology groups – study area 

no. Group name SoilSediment type  

1 Clay till ML, (L) 

2 Meltwater sand/gravel DS, DS-DG, DG, G, S, TS, (O)  

3 Meltwater clay/silt DL, DI, DV, (FL) 

4 Sandy till MS, MG 

5 Postglacial (partly org.) FP, FT, FS 

6 Pre-Quaternary clay LL, SL, (GL) 

7 Unknown B, U, X 
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3.2 Geophysical data 

The tTEM (on landground-based) and SkyTEM (airborne) are transient electromagnetic systems used for mapping subsurface 195 

resistivity variations (Auken et al. 2019, Auken and Sørensen 2004). The SkyTEM system carries the instrument, transmitter 

loop and receiver coil in a sling load under a helicopter and is designed to map resistivity to several hundred meters depth.  The 

tTEM system applies the transient electromagnetic method in an offset-loop configuration which for the present study is 

configured using a 2 m by 4 m transmitter loop and a receiver coil in a distance of 9 m, towed by an all-terrain vehicle (Auken 

et al., 2019). The tTEM system is designed to resolve resistivity from 2-3 m depth to c. 70 m depth. Processing and inversion 200 

of tTEM data follow in general the scheme for SkyTEM, described by Auken et al. (2009). The inversion of the data is based 

on local 1D forward responses and spatial constraints between the model parameter forming a pseudo 3D model space (Auken 

et al., 2015; Viezzoli et al., 2008). 

 

The tTEM dataset has been collected in 2018. Although the coverage is rather patchy (< 50 % of the model area in Figure 1a), 205 

it provides valuable information on the geological setting. The final tTEM information used in the geostatistical modelling is 

the pseudo 3D model space moved to the closest grid node. Together with borehole lithological logs, tTEM represents the 

basis for modelling the geology. A few deep boreholes are used for the correlation between resistivities and lithologies. 

 

Although located outside the study area, the SkyTEM-data (Figure 1a) adds valuable information on the geological connections 210 

to neighboring areas. A small survey of surface electrical resistivity tomography (ERT) (e.g. Loke et al.  (2013)) gathered from 

the GERDA database supplements the tTEM survey in the northern part of the study area. 

 

3.3 Geochemical data  

The sediment colors and groundwater chemistry were the main input data for the redox condition interpretations. These data 215 

were extracted from the Jupiter database and the 9 new boreholes that were drilled in this study (Figure 1b). In this study we 

use both sediment colors and redox sensitive water compounds to define the redox conditions of the aquifer. The benefit of 

using the two types of data is that they provide independent measurements of redox conditions.  

 

In Denmark, sediment colors have been widely used to interpret redox conditions (Ernstsen and von Platen, 2014; Hansen et 220 

al., 2016a; Kim et al., 2019) and these data are publicly accessible in the Jupiter database. Red, orange, yellow and 

combinations of these colors represent oxic conditions and gray, olive and blue colors represent reduced conditions. Mixed 

colors between oxic and reduced colors (e.g., yellowish gray) are defined as N-reducing conditions. Within the catchment 

boundary, the sediment color data were available at 14 boreholes in the Jupiter database and for the 9 new boreholes.   

 225 

The concentrations of redox sensitive compounds in groundwater and soil water samples, mainly dissolved oxygen (DO), 

nitrate, iron, and sulfate, were used for the redox interpretation in this study as well (Hansen et al., 2017 & 2019).  Based on 

water chemistry, oxic is defined by DO greater than 1mg/L, N-reducing is DO less than 1mg/L and nitrate greater than 1mg/L, 

and reduced is both DO and nitrate below 1 mg/L and iron greater than 0.2 mg/L. The water chemistry data were available at 

22 locations (13 in the Jupiter database and 9 in this study). 230 

Redox conditions can be defined both by sediment colors, concentrations of redox sensitive elements such as dissolved oxygen, 

nitrate, iron, and sulfate in water and the fraction of ferrous iron (𝐹𝑒𝐹𝐴
𝐼𝐼 ) of the formic acid extractable Fe (𝐹𝑒𝐹𝐴

𝐼𝐼 + 𝐹𝑒𝐹𝐴
𝐼𝐼𝐼) 

(Ernstsen and von Platen, 2014; Hansen et al., 2016a, 2021; Kim et al., 2019). In this study, the sediment color was the primary 

indicator to define redox conditions because it provides 1D profile information. The water chemistry, which provides point 

scale information, was used to confirm and supplement the sediment color interpretations. The benefit of using the two types 235 
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of data is that they provide independent measurements of redox conditions. The sediment color and water chemistry data were 

extracted from the Jupiter database and the 9 new boreholes that were drilled in this study (Figure 1b).  

 

Based on the sediment colors, oxic conditions are defined by red, orange, yellow and combinations of these colors. Gray, olive 

and blue colors represent reduced conditions. Mixed colors between oxic and reduced colors (e.g., yellowish gray) are defined  240 

as N-reducing conditions. Within the catchment boundary, the sediment color data were available at 14 boreholes in the Jupiter 

database and for the 9 new boreholes. Based on water chemistry, oxic is defined by dissolved oxygen greater than 1mg/L, N-

reducing is dissolved oxygen less than 1mg/L and nitrate greater than 1mg/L, and reduced is both dissolved oxygen and nitrate 

below 1 mg/L and iron greater than 0.2 mg/L (Hansen et al., 2021). Based on sediment chemistry, the fraction of 𝐹𝑒𝐹𝐴
𝐼𝐼  over 

𝐹𝑒𝐹𝐴
𝐼𝐼 + 𝐹𝑒𝐹𝐴

𝐼𝐼𝐼 is close to 0 in oxic conditions and close to 1 fraction in reduced conditions (Hansen et al., 2021). The values in 245 

between are interpreted as N-reducing conditions (Hansen et al., 2021). The water and sediment chemistry data were available 

at 22 and 9 locations, respectively (13 in the Jupiter database and 9 in this study, see Figure 1b). 
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4 Methods  

4.1 MPS modelling 250 

In this paper, we adopt a multiple-point geostatistics (MPS) simulation approach for quantifying the spatial uncertainty of the 

subsurface. Geostatistical simulation generally provides a way of quantifying the spatial uncertainty through different possible 

realizations of the subsurface architecture. These realizations are generated using stochastic modeling that accounts for the 

spatial dependency between the model parameters. We choose MPS simulation over e.g. a two-point geostatistical approach 

because it is generally more capable of producing realizations with geological realism in terms of correlation and coherency 255 

of geological features (Mariethoz and Caers, 2015).(Journel and Zhang, 2006; Madsen et al., 2021; Mariethoz and Caers, 

2015). Effectively reproducing coherent layers is key for a successful subsequent hydrological modeling. The expected 

subsurface variability is portrayed in one or more training images (TIs). MPS simulation is then able to utilize these TIs to 

generate different realizations of the portrayed subsurface through a stochastic sampling process. In total, these realizations, 

stemming from the MPS algorithm plus TI, together represent the quantified prior information of the system. In our case, the 260 

intuitive aspect of a TI, as opposed to a mathematical prior, is helpful for collaboration between mapping experts and 

geostatisticians. 

 

Many MPS algorithms exist today (Gravey and Mariethoz, 2019; Guardiano and Srivastava, 1993; Hansen et al., 2016b; 

Hoffimann et al., 2017; Mariethoz et al., 2010; Straubhaar et al., 2011; Strebelle, 2002; Tahmasebi et al., 2012). In the current 265 

study we use direct sampling (Mariethoz et al., 2010) as implemented in the software package DeeSse (Straubhaar, 2019). The 

main reason is due to(Straubhaar, 2019). The main reason is its ability to utilize a bivariate training image that allows for joint 

simulation of geology and redox.  

 

Simulations can be forced to match observational data creating conditional realizations (Chilès and Delfiner, 2012; Journel 270 

and Huijbregts, 1989). Additional data not portrayed in the TI enters the simulation setup as either hard or soft data. Hard data 

corresponds to information not allowed to change between different realizations and is placed directly in the simulation grid. 

Information from some boreholes can often be considered as hard data because it is fixed in space and can have a relatively 

high resolution and accuracy. Hard data, in most cases, offers the first conditional nodes and patterns to be matched during 

simulation, depending of course on the number of conditional points used. Consequently, hard data usually plays a significant 275 

role in lowering the entropy of the final simulations. If data is not reliable enough (too uncertain) to be deemed hard data, they 

can instead be treated as uncertain information (soft data), quantified through probability distributions. In DeeSse, a penalty 

proportional to the soft data mismatch is applied when searching for a matching event in the TI to incorporate this information 

in the final simulations (Mariethoz et al., 2015). 

 280 

Simulations can be forced to match observational data creating conditional realizations (Chilès and Delfiner, 2012; Journel 

and Huijbregts, 1978). Additional data not portrayed in the TI enters the simulation setup as either hard or soft data. Hard data 

corresponds to information not allowed to change between different realizations and is placed directly in the simulation grid. 

Information from some boreholes can often be considered as hard data because it is fixed in space and can have a relatively 

high resolution and accuracy. Hard data, in most cases, offers the first conditional nodes and patterns to be matched during 285 

simulation, depending of course on the number of conditional points used. Consequently, hard data usually plays a significant 

role in lowering the entropy of the final simulations. If data is not reliable enough (too uncertain) to be deemed hard data, they 

can instead be treated as uncertain information (soft data), quantified through probability distributions. In DeeSse, soft data 

are handled by introducing a penalty proportional to the soft data probability, such that it becomes difficult to find a match for 

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mønster: Ingen (Grå - 10%)

formaterede: Dansk

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mønster: Ingen (Grå - 10%)



 

11 

 

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mønster: Ingen (Grå - 10%)

a given lithology group or redox condition if the soft probability is low and conversely easier if the soft probability is high. 290 

(Mariethoz et al., 2015).  

4.2 Ensemble statistics 

We introduce the mode and entropy as summary statistics for the ensemble of possible models of the subsurface. For a discrete 

probability distribution, the mode represents the most probable category in each voxel. The entropy, H, of a discrete probability 

distribution with K outcomes is explicitly calculated as (Shannon, 1948): 295 

 

H = −∑ log𝐾(𝑝(𝑘)) 𝑝(𝑘)
𝐾
𝑘=1 ,          (1) 

 

where 𝑝(𝑘) is the probability of the kth outcome. In our case, the entropy is calculated in each voxel where 𝑝(𝑘) is the number 

of times a certain category appears in the realizations divided by the number of realizations. The entropy reveals insights to 300 

the variability and hence the certainty of a specific outcome of each voxel. For H=0 we have full certainty of the voxel category 

and conversely for H=1. The mode and entropy are hence comparable to the mean and variance in Gaussian statistics. 
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5 Modelling setup 

In the following, we present the methodology progressing through the modeling workflow of the study area. The workflow 305 

consistconsists of three phases: 1) Preparing input data, 2) data analysis and setup including delineation of geological elements, 

construction of training images, preparing hard and soft data as well as setting up the simulation grid, and 3) runrunning the 

MPS simulations.simulation algorithm. A schematic overview of the workflow is seen in Figure 2.Figure 2. The following 

sections primarily describe phase 2. 
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310 

 

Figure 2: Schematic overview of the proposed workflow from input data (left) through data analysis and simulation setup (middle) 

and geostatistical simulation (right).  

5.1 Simulation grid 

The simulation grid is discretized with a voxel resolution of 25m x 25m x 2m. The digital elevation model constitutes the top 315 

of the simulation grid, whereas both the bottom boundary and the internal subdivision into subvolumes are delineated by the 

geological elements (see below for details). The resulting simulation grid is shown in Figure 3b and the total number of voxels 

in the simulation grid is listed in Table 2.  
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Table 2: Summary of number of voxels for simulation grid and TIs. The relative sizes of the TIs are calculated as the ratio between 320 
the number of voxels in the TI and the number of grid voxels. 

 Number of voxels Number of voxels in TI Relative size of 

TI 

Quaternary sequence (Element 1) 143698 voxels 54258 voxels  37.76% 

Buried valley (Element 2) 57015 voxels 12449 voxels 21.83% 

Total 200713 voxels 66707 voxels 33.24% 

 

5.2 Geological elements  

The modeling domain is split into geological elements in order to subdivide the subsurface into separate volumes based on the  

geological event chronology. In this way, smaller volumes with different lithology and structure can be treated separately in 325 

the geostatistical simulations. The geologist interprets and delineates the geological elements of the subsurface using the 

geological, geophysical and topographical input data. Three distinct geological elements are identified in the study area, see 

Figure 3a; (1) An upper Quaternary succession of sediments havingwith an erosional boundary to the pre-Quaternary sediments 

below, (2) A large, deeply eroded, buried tunnel valley and (3) Pre-Quaternary Paleogene clays defining the bottom of the 

groundwater system. The simulation grid is chosen to include only the Geological Elements 1 and 2 (see Figure 3b). The third 330 

geological element, the Paleogene clay, constitute a thick non-penetrable layer, and as its top defines the lower hydrological 

boundary of the area, geostatistical simulation has not been performed on this geological element. We find it reasonable to do 

so because the Paleogene clays are homogeneous and very thick. This type of clay is generally found as a good electrical 

conductor in Denmark, and because the TEM method is sensitive to good conductors, the depth to the top of the layer can be 

determined with low uncertainty (e.g. Danielsen et al. (2003)).  The Delineation of the Paleogene clay surface is hence trivial 335 

to acquire from the tTEM data, is therefore straightforward as long as it can be found within the depth of investigation of the 

tTEM method (Vest Christiansen and Auken, 2012). Furthermore, in the study of Barfod et al. (2018), Paleogene clays were 

given a discrete value in the MPS simulation but showed only little variability in the spatial extent. 

 

We assume independence between the two uppermost geological elements because they appear to represent different 340 

geological events. The buried valley to the north is apparently incised into both the Quaternary sequence and the pre-

Quaternary clay below, and the infill is clearly different compared to the Quaternary sediments to the south. The buried valley 

(Geological Element 2) has a more complex infill with individual layers of limited extent compared to the Quaternary layers 

of Geological Element 1, which show less complexity and more pronounced stratification. more or less undeformed by the 

glaciations. The geological events that formed each element are therefore considered different although they contain the same 345 

lithology groups, and this justifies the assumption of independence from a geological point of view. The buried valley to the 

north takes up roughly a quarter of all voxels whereas the Quaternary sequence occupies the main part of the simulation grid  

(Table 2). 

 

 350 
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Figure 3: a) Conceptual drawing of SW/NE profile through the study area. b) Simulation grid.  showing the two main geological 

elements used for the geostatistical simulation. 355 
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Figure 4: Training images. a) Geology TIs overprinted on the simulation grid. b) Redox TIs overprinted on the simulation grid. c) 

Zones in TIs used for resistivity-lithology relationship inference 
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5.3 Training images 360 

The training images (TI)TIs providing information about the geology and redox conditions within the geological elements are 

designed in a sequential workflow (Figure 2).Figure 4a,b). At first, two geology TIs are generated, one within each of the two 

geological elements. The first step is to appoint a smaller part of the simulation area for detailed geological characterization 

and interpretation using a voxel modelling approach, see Figure 4a. The lithological population of the voxels is based on the 

conceptual understanding of the geological event chronology, glacial processes forming the area, and an interpretation 365 

combining borehole information, digital elevation maps, surface geology maps and the spatially distributed geophysics 

(tTEM).using regional geological understanding. The criteria for TI area selection in this specific study arewere dense data 

coverage of geophysics and especially the availability of boreholes that penetrate the entire modeling domain with good quality 

lithological logs. Likewise, descriptions. For despite having a better geophysical data coverage in the southernmost part of 

study area according to Figure 1a, the TI in the Quaternary element is chosen based on sufficient geophysical data coverage 370 

and having the two main boreholes within its borders. The TI section needs also to represent the expected variability in geology, 

both in vertical and horizontal extent., which is another selection criterion. In reality, it is not possible to capture the total 

variability and heterogeneity in the TI space, due to its finite size, but the important features must be represented. We only 

expect the “In TI1, smooth glaciotectonic deformation of the Quaternary units due to ice push from the northeast, is modelled. 

Likewise, smaller incised buried valleys in the Eocene clay with mostly sandy till” group (light green) to appear at the surface 375 

of theinfill is included based on the tTEM spatial data coverage, see Figure 3a. TI2 represents the sedimentary infill in a large 

buried valley (Elementgeological element 2). To accommodate this the sandy till is not present in the TI), where also more 

regional information from nearby buried valleys of the same generation was taken into account (see Figure 1b). This 

information combined with the tTEM data coverage, two boreholes within the valley north of the study area, and the surface 

geology maps, has been the basis for simulationthe voxel modelling of TI2. The complexity in the infill of the buried valley is 380 

represented by individual layers of limited extent as seen in Figure 3a. 
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Figure 5:  Profiles of redox conditions for sand and clay for each TI area based on geochemical observations.  The redox 

interpretation based on the sediment colors are done separately for sand (a) and clay (d) of the Quaternary sequence TI and of the 

Buried valley TI (g and j, respectively), and the number of boreholes used in the interpretations are shown in b, e, h and k, 385 
respectively.  The number of boreholes of each redox color category (oxic, mixed oxic, mixed reduced and reduced colors) are 

normalized and shown in %.  The redox interpretations based on water and sediment chemistry of sand and clay of the 

Quaternary sequence and buried valley TIs are shown in c, f, i, and l, respectively.  

 

The geological training images are then translated into redox training imagesTIs by integrating geochemicalupscaling the 390 

redox interpretations of the sediment colors and water chemistry dataas described in section 3.3 (Figure 4b).  Note that in case 

of the buried valley element, there are no boreholes  and Figure 5). The sediment color data were first discretized into a 1m-

interval and then the redox condition for each interval was assigned according to the sediment color. The interpreted data were 

summed up separately for sand and clay for each TI area to produce depth profiles of redox conditions (Figure 5a, 5d, 5g and 

5j). For the Quaternary sequence and buried valley TIs, 13 and 7 boreholes are available with sediment color descriptions 395 

within the catchment. Therefore,(Figure 5b, 5e, 5h and 5k), respectively, and 5 and 3 boreholes fromare available with water 

and sediment chemistry (Figure 5c, 5f, 5i and 5l), respectively.  

 

The redox interpretation revealed that in the Quaternary sequence, oxic conditions are much deeper in sand (at least 20 meters; 

Figure 5a and 5c) than in clay (4-6 meters; Figure 5d and 5f). We postulated that the extensionQuaternary sequence is the 400 

geological window type of redox architecture proposed by Kim et al. (2019): the sandy units exposed to the surface act as 
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‘geological windows’, which allow transporting oxidants (i.e., oxygen and nitrate) via gas and water into the deeper subsurfa ce, 

resulting in development of a deep oxic zone below a reduced clay layer. In the Quaternary sequence area, all the boreholes 

for the water and sediment chemistry were collected in these geological windows, which are predominantly in oxic conditions, 

confirming our interpretations. In the buried valley structure outside of the catchment area were selected, and the sediment 405 

color data were extracted, the oxic layer was relatively shallow compared to that of the Quaternary sequence. This shallower 

oxic layer may be attributed to a shallower and temporally invariant groundwater table in this area compared with the 

Quaternary sequence. Lateral transport of oxidants (i.e., oxic groundwater from the Jupiter database. upslope) is not expected 

in this catchment, due to the clay-dominant conditions of the subsurface structure. We concluded that in the buried valley, 

oxidants are delivered vertically via water infiltration or gas diffusion only, resulting in the planar type of redox architecture 410 

(Kim et al. 2019).  

 

Based on the criteria for the redox interpretation outlined in the section these interpretations, we assigned each lithology group 

with a probability of belonging to each of the three redox conditions at the surface (Table 3). 80% of the meltwater sand in the 

geological windows (sand units connected to the surface) of TI1 were assigned to be oxic down to 20 meters, and the rest was 415 

equally distributed between N-reducing and reduced conditions, respectively, to allow variability in simulations. These N-

reducing and reduced conditions were mainly located in lower elevations because of the higher possibility of water saturated 

conditions. For the connected sand, with increasing depth, the fraction of oxic voxels was assumed to be decreased by 10% 

compared to that of the overlying layer for the 20-30-meter interval and by 20% for depth below 30 meters. The sand voxels 

that are not connected to the land surface was assumed to be reduced. The N-reducing conditions is always located at the 420 

boundary of oxic conditions in the profiles the fraction was limited to 10 % of the total sandy voxels of each layer in the T Is. 

The rest was assigned to reduced conditions.  For clay till and meltwater clay of TI1, 60%, 20%, and 20% of the first layer 

voxels (Table 3) were attributed to oxic, N-reducing, and reduced conditions in the order of elevation (lower elevation = 

reduced condition) due to proximity to streams. With increasing depth, the fractions of N-reducing and reduced conditions 

were assumed to be increased by 10% and 20%, respectively up to 6 meters below the land surface. Below 6 meters, clay was 425 

always reduced.    

 

For meltwater sand and sandy till of TI2, 80%, 10%, and 10% of the top layer (Table 3) were attributed to oxic, N-reducing, 

and reduced conditions in the order of elevation.  Below the first layer, the fractions of the oxic and N-reducing voxels then 

were assumed to be decreased by 70% and 50%, respectively, and the rest was assigned to reduced conditions.  Clay till and 430 

meltwater clay of the buried valley TI, 60%, 20% and 20% of the top layer (Table 3) were attributed to oxic, N-reducing, and 

reduced conditions in the order of elevation. The fractions of oxic and N-reducing voxels were assumed to be lowered by 60% 

and 20%, respectively, compared to those of the overlying layer with increasing depth. The rest was assigned reduced 

conditions.  

 435 

Postglacial sediments, which are freshwater deposits often rich in organic material (Jakobsen and Tougaard, 2020), were 

assigned almost exclusively with reducing conditions (90% probability). Like the sandy and clayey sediments, we distributed 

the remaining 10% probability equally among the other two redox conditions to allow for some variability. 

Table 3: The probabilities for redox conditions (oxic, N-reducing and reduced) based on geochemical data, the borehole information 

and water chemistry data were translated to redox conditions, allowing the estimation of redox profiles with depth for sand and clay 440 
for each geological element. observations in Figure 5 for the top (surface) layer of the training images. The probabilities for each 

lithology group sums to one. 

 

This  

Lithology group Oxic  N-Reducing Reduced  
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Clay till 0.6 0.2 0.2 

Meltwater 

sand/gravel 

0.8 0.1 0.1 

Meltwater 

clay/silt 

0.6 0.2 0.2 

Sandy till 0.8 0.1 0.1 

Postglacial 0.05 0.05 0.9 

 445 

 

The described sequential workflow of geology and redox TI construction ensures consistency between the two training images 

in the joint simulation of the two variables. Approximately one-fourth of TI1 reaches outside of the study area whereas the 

whole of TI2 is located within. We intentionally do this in order to ease the construction of TI1 as the TIs.surrounding area to 

the west shows similar geological variability to the Quaternary sequence and therefore provide helpful information during the 450 

creation of TI1. Additionally, this information is independent and allows more possible matching configurations in the TI 

during simulation. TI1 is about one third of the size of the Quaternary sequence element 1 and that of TI2 is one fifth of the 

buried valley element 2 (Table 2). The TIs used in this study have different statistical properties depending on the location, i.e. 

they are non-stationary. For instance, visually it is easy to confirm that the probability of finding an oxic redox condition in 

the lower part of the TI is much different than in the top. A non-stationary TI is not unacceptable but can have some unwanted 455 

effects when combined with MPS algorithms expecting a stationary TI and will be discussed later. 

 

5.4 Conditional data 

5.4.1 Hard data 

The geological surface map and the borehole data (both lithology and redox) were treated as hard data in the simulation grid 460 

and are shown in Figure 6. The redox conditions are grouped into the three main redox categories; oxic, nitrate reducing, and 

reduced.. The wells indicate that the area is dominated by reduced conditions. Oxic conditions are mainly present in the upper 

meters of the simulation domain, and only one well displays the reverse trend with an oxic part below reduced conditions due 

to heterogenous geology.  

 465 

The soilsediment types that were grouped into lithologies (Table 3) were placed at the top voxel in the simulation grid, 

corresponding to the surface. We do not explicitly use the entire geological map as hard data. The borders between the lithology 

polygons of the soil map were originally delineated based on soil samples, geomorphology, and topography (Jakobsen et al., 

2011).surface geology map were originally delineated based on sediment samples, geomorphology, and topography(Jakobsen 

and Tougaard, 2020). In general, it means that the closer you are to the center of a polygon, the more certain you are of the 470 

correct lithology. Conversely, the boundaries between polygons represent the least certain parts of the map. A buffer zone is 

therefore adapted between the polygons to express the uncertainty of the geological surface map. The buffer zone is simply 

created by checking all neighboring voxels for each voxel in the surface map. If the current voxel shares a value with  all 

surrounding voxels it is likely situated safely within a polygon and is kept as hard data. Conversely, if one of the neighboring 

voxels provides a mismatch, the current voxel is likely close to a polygon boundary and is not included as hard data. 475 

Alternatively, a negative buffer around each soil unitpolygon could be adaptedadopted. 
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The redox conditions are grouped into the three main redox categories; oxic, N-reducing, and reduced. The wells indicate that 

the area is dominated by reduced conditions. Oxic conditions are mainly present in the upper meters of the simulation domain, 

and only one well displays the reverse trend with an oxic part below reduced conditions due to heterogenous geology.  480 

 

5.4.2 Soft data 

As mentioned above, weWe use the geological surface map (Figure 1c) as a soft data indicator of lithology in the buffer zone. 

Geological complexity is one of the main drivers of uncertainty in geological mapping along with the amount, quality and 

spatial distribution of data (Keefer, 2007). Accessibility is an important factor to consider in terms of both amount and spatial 485 

distribution of data  (Keaton and Degraff, 1996). In Denmark, however, neither terrain nor private property poses a major issue 

when mapping surface geology. On the level of investigation, the geology in the study area is relatively simple, alleviating 

some of the uncertainty due to complexity. The main source of uncertainty in the surface geology maps comes from 

interpretations of sediment types from the small samples and the final shape and size of polygons. We generally consider the 

surface geology as very certain data and thus provide all values 0.87 probability of being true. The last 0.23 probability is split 490 

equally between the four other lithologies and hence, which reflect the uncertainty level of 

misinterpretationsRegardlessmisinterpretations. Regardless, because much of the geological surface map is used directly as 

hard data, the quantified uncertainty only affects the buffer zone as outlined earlier. For the redox domain, we translate the 

geological surface map to soft redox data using the soft probabilities provided in Table 3. 

 495 
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Figure 6: a) The geology surface map along with the geology wells placed on the simulation grid. Right: as hard data. b) The redox 

wells on the simulation grid.  

For the redox domain, we translate the geological surface map to soft redox data. Lithology and water saturation may be two key 500 
factors on determining redox conditions in soils by regulating rates of delivery of oxidants (e.g., oxygen and nitrate) via gas and 

water (Schaetzl and Anderson, 2005). For example, dry and sandy soils will likely be oxic due to rapid exchange of the soil gas with 

the atmosphere compared to clayey and wet soils. Indeed, all boreholes in the area that show meltwater sand/gravel in the 

Quaternary sediment package (element 1) displayed oxic colors. However, soil moisture as hard data are not available for this study 

site. Therefore, we adopted the topographic feature i.e., slope as a surrogate of the relative spatial variability of soil moisture. In 505 
general, upslope areas with steeper topography are drier compared to lowland areas with flat slope because of a thinner soil layer, 

larger depth to the groundwater table, topography- and gravity-driven redistribution of moisture, and/or faster evaporation due to 
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higher total input of solar radiant in the upslope area (e.g. Famiglietti et al., 1998; Hawley et al., 1983; Tromp-van Meerveld and 

McDonnell, 2006). The probabilities used to translate the geological surface map into soft redox surface data hence differs between 

the steeper sloped Quaternary sequence of Geological Element 1 and the flatter appearance of the buried valley infill of Geological 510 
Element 2.  

 

Since borehole information is available for the Quaternary sequence, the sediment color data associated with the lithological 

samples from the upper parts of the boreholes are used to obtain the translational probabilities (Table 3). Although the sediment 

colors of all the meltwater sand/gravel indicate oxic conditions, we conservatively attribute oxic conditions with 0.95 515 

probability and reducing with 0.05 probability not to eliminate the possibility of reducing conditions in the coarse-grained 

meltwater deposits. For the buried valley, which is located in the flat lowland, the translational probability of oxic conditions 

of the Quaternary sequence area were multiplied by a slope factor of 0.3 and that of the reducing values were increased by a 

slope factor of 1.2. These values were arbitrarily chosen in a conservative manner, such that the resulting probabilities were 

more equally distributed between the three categories, i.e. softer, than for the Quaternary sequence. Reduced conditions were 520 

calculated as the leftover when summing to one over all three redox categories.  

 

Table 3: The soft probabilities for redox (oxic, reducing and reduced) at the surface on the combination of soil texture and 

topography. The probabilities for each lithology sums to one. 

 TI1: Southern Quaternary sequence  TI2: Northern buried valley 

Lithology group Oxic  Reducing Reduced  Oxic Reducing Reduced 

Clay till 0.8 0.20 0 0.24 0.24 0.52 

Meltwater 

sand/gravel 

0.95 0.05 0 0.285 0.06 0.655 

Meltwater 

clay/silt 

0.8 0.20 0 0.24 0.24 0.52 

Sandy till 0.95 0.05 0 0.285 0.06 0.655 

Postglacial 0.65 0.25 0.1 0.195 0.3 0.505 

 525 
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Figure 7: 3D resistivity grid from the tTEM model results in a grid equal to the simulation grid.  

The tTEM 3D resistivities in the simulation grid contains 87547 voxels covering 43.5 % of the simulation grid (Figure 7). The 530 

tTEM 3D resistivity grid is converted into soft probabilities of geology. This requires a known lithology-resistivity relationship, 

which here is established in two parts. Because 

Firstly, because the geological training imagesTIs are based on interpretations of resistivity data in combination with geological 

information, many voxels in the TIs have a corresponding resistivity value in the resistivity grid. (Figure 7). Local histograms 

for the study area are built for each lithological group by collecting all the resistivity values in the two geology TIs.  The final 535 

pooled histogram for the two TIs is shown in Figure 7a. OverallWe divide the TIs into three zones to account for some of the 

non-stationarity with depth that affects this relationship (Figure 4c). The upper 4 meters make up zone 1 and is the only place 

where we expect postglacial sediments and sandy till. Because both of these lithology classes contain so few counts in the TIs 

they would otherwise get underrepresented in a relationship covering the entire TI. Zone 2 covers the bulk part of the TIs from 

4 m below surface and down to zone 3 covering the last 10 m of the TIs. Zone 3 contains very low resistivities from the 540 

underlying conductive Paleogene clay that are “smeared” into the resistivities of the above lying material due to averaging 

during inversion (dark blue colors in Figure 7). This smearing effect happens at large contrasts in the subsurface resistivity 

and generally increases with depth as the resolution of the data decreases (Vignoli et al., 2015). This affects the inference of 

the lithology-resistivity by lowering the overall resistivity of meltwater sand/gravel that mainly constitutes the lower parts of 

the study area. By separating the last 10 meters in a disconnected zone from the bulk zone, we make sure that these low 545 

resistivities do not affect the overall lithology-resistivity relationship in zone 2. The final pooled histograms for the two TIs 

are shown in Figure 8a-c for each of the respective zones. For all zones, relatively low resistivities are attributed to clay-rich 

deposits whereas relatively high resistivities are attributed to sandy lithologies, although meltwater accounts for many of the 

lower resistivities counts. However, the histogramsand/gravel accounts for many of the lower resistivity counts in the zone 3 
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relationship due to the smearing effect. Generally, the resistivity of clay till is so high that it corresponds to much of the 550 

meltwater sand/gravel resistivities. Meltwater clay/silt is the most distinctive lithology group tending towards rather low 

resistivity values. The histograms confirms the common issue of lithologies overlapping in the resistivity domain (Barfod et 

al., 2016; Schamper et al., 2014). The local clay till resistivities are so high that they correspond to much of histogram with 

the meltwater sand/gravel resistivities. The best separation is seen in the meltwater clay/silt categoryzone 2, which tends to 

have ratherindicate the importance of detaching the low resistivity values.resistive meltwater sand in zone 3. The sandy till in 555 

zone 1 is associated with some of the highest resistivity values found in the TI area, whereas the postglacial sediments cover 

a large spectrum within the most ambiguous resistivity values. For each bin in thea histogram, we summarize the size of each 

lithology group and stack them. If we then normalize with the total number of counts within that resistivity bin, we get a 

cumulative distribution of the lithologies (Figure 8b). Becaused-f).  

 560 

Secondly, because there are very few counts for the low and high resistivities (<4Ωm and >120Ωm),, here defined as <50 0.5% 

of the total counts for each zone, we let an a priori established relationship govern these values, consisting of equal probability 

between the clayey lithology groups for . We assume that low resistivities and vice versa for sand andare associated with clay 

till and meltwater clay/silt, whereas high resistivities (Figure 7b).are associated with sandy till and meltwater sand/gravel. This 

is based on general observations from Barfod et al. (2016) and Schamper et al. (2014). The obvious differenceproportion 565 

between e.g. the generaltwo low-resistive lithology groups are found by retrieving the proportion between clay till and local 

(TI-based) relationship is that meltwater sand can obtain lowclay/silt in the respective zone of the TIs (Figure 4). For instance, 

there is no meltwater clay/silt in zone 1 of the TIs and hence we expect that low resistivities using the are only attributed to 

clay till (Figure 8d), while meltwater clay/silt covers approximately 25% among the two low-resistive lithology groups in zone 

2 (Figure 8e). To smooth the transition between the relationship inferred relationship (from the TIs and the a priori distribution, 570 

we weight the adjacent 10 bins between the two relationships. The weights are distributed linearly such that below the cut-off 

of 0.5% only the a priori relationship is used and 10 bins from there the relationship relies solely on the inferred relationships 

from Figure 8a-c).. Regardless, the effect of the a priori relationship is miniscule as more than 98.5in all zones approximately 

95% of all resistivities in the simulation grid are supported solely or at least partially by the inferred relationship. The remaining 

(<1.5%)% is supported solely by the a priori established relationship as seen in the total distribution of all resistivities in the 575 

simulation grid Figure 8c. 
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Figure 8: Resistivity-lithology relationships illustrated as a) histogram)-c) histograms of resistivity for each lithological group based 

on the training images (Figure 4) and the corresponding values in the 3D resistivity grid (Figure 7), bd)-f) TI-based cumulative 

distribution for all lithological groups for each bin and a priori relationship for rare resistivities cg)-i) distribution of resistivity 

values in the full corresponding zone in the simulation grid (Figure 6)Figure 9f) overprinted with the lithology-resistivity relationship 

established in bd-f). 585 

Figure 9 presents the final soft probabilities each of the k lithology classes 𝑝𝑡𝑜𝑡(𝑘). In zone 2 and 3 (Figure 9f) the inferred 

lithology-resistivity relationships from Figure 8e and Figure 8f are used to convert the resistivity grid in Figure 7 to soft 

probabilities 𝑝𝑡𝑇𝐸𝑀(𝑘) . At the surface the soft probabilities from the surface geology 𝑝𝑠𝑔(𝑘)   presents the final soft 

probabilities each of the k lithology classes 𝑝𝑡𝑜𝑡(𝑘) calculated as: 

are combined with probabilities from the resistivity data to obtain the final soft probabilities 𝑝𝑡𝑜𝑡(𝑘):  590 

 

𝑝𝑡𝑜𝑡(𝑘) =
𝑝𝑠𝑔(𝑘)𝑝𝑡𝑇𝐸𝑀(𝑘)

∑ 𝑝𝑠𝑔(𝑘)𝑝𝑡𝑇𝐸𝑀(𝑘)
𝐾
𝑘=1

          (2) 

 

where 𝑝𝑠𝑔(𝑘) and 𝑝𝑡𝑇𝐸𝑀(𝑘) are the soft probabilities from the surface geology and tTEM respectively for each of the K=5 

lithologies. The stronger colors at the surface represent the overall certainty level of 0.87 from the surface geology discussed 595 

previously. In voxels where soft probability information is available from both tTEM and surface geology, each information 

is used according to equation 2. The tTEM data is largely more ambiguous in guiding the soft probabilities as evident from the 

resistivity-lithology relationship in Figure 8 and is mostly within the color range of yellow and red in Figure 9a-c. The 

dominance of the clay till and meltwater sand/gravel (Figure 9a-b) in the study area are apparent in the soft probabilities when 

compared to e.g. meltwater clay/silt which is expected primarily in areas of lower resistivities. We do not expect much 600 

meltwater clay/silt at the boundary of the modeling domain as portrayed in the training images. The low resistivities of the 

Paleogene clays at the bottom boundary of the model domain creates this effect. A spatially dependent relationship between 

resistivity and lithology would remedy such effects. However, the inferred relationship in zone 3 helps guide meltwater 

sand/silt to lower resistivities and it, but may not affect the results more than the general uncertainty in the boundary estimate, 

which depends largely on the tTEM resolution. Due to the low count of sandy till and postglacial sediments (Figure 9d-e) in 605 

the TIs the probability for these lithology classes is considerably lower than the three main classes of the study area.  

 

Based on these soft probabilities a mode and entropy is calculated and shown in Figure 10. The entropy is clearly 

lowestgenerally low at the surface where the soft information from the surface geological map is present. Similarly the mode 

is dominated by the soft information from the surface geological map. Due to the overlapping realtionshiprelationship in the 610 

resistiviy domain (Figure 8), the soft data based on the tTEM data is not as informative as at the surface and hencedoes not 

help to lower the soft data entropy is highermuch further. In general the entropy of the tTEM data ranges between 0.8 (yellow 

color in Figure 10b).) and 0.3 (red color). In areas of particularly high resistivity the entropy drops even lower (black color), 

implying that the tTEM data provides high certainty on the lithology group. The overall pattern in the mode model (Figure 

10a) reveals a slight tendency to form coherent layers, especially seen in the buried valley. However, in many places the mode 615 

of the soft data is also raher patchy and changes between small clusters of either meltwater sand or clay till. 
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A small fraction of soft data with probability >= 50% for a single category is converted into hard data. This makes sure that 

soft data are not underrepresented in MPS simulations which is a recurring problem in MPS simulation (e.g. Hansen et al., 620 

2018). The conversion rate is shown in Table 4. 

 

Table 4: Conversion rates for soft data in the conditional realization. 

Soft data 

probability for 

single category 

0.5 <= 

probability 

< 0.6 

0.6 <= 

probability 

< 0.7 

0.7 <= 

probability 

< 0.8 

0.8 <= 

probability 

< 0.9 

0.9 <= 

probability 

< 1 

Conversion rate of 

soft to hard data 

2% 3% 4% 5% 6% 
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 625 

Figure 9: a-e) Soft probabilities of geology for the buried valley element. Soft probabilities calculated from the surface geology and 

tTEM data available. Note the smaller range in the color scale of the sandy till (d) and postglacial sediments (e). 
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Figure 10: a) Mode and b) entropy for soft data from Figure 9. Low entropy (certainty) is marked with black color, while white 630 
colors represent high entropy (uncertainty). 

5.5 Parameterization of the simulation algorithm 

In direct sampling, the nodes in the simulation grid are visited sequentially. The training image is consulted at each iteration  

to find a suitable candidate at each visited node based on already simulated (conditional) nodes. To specify how this procedure 

is performed, several fundamental parameters need to be set in direct sampling: 635 

• The number of conditional data to take into accountconsider when searching the TI influencing, which influences the 

variability. Here, a maximum of 20 neighboring nodes are used which should preventpreventing verbose copying 

from the TI’sTIs happening too often. 

• The distance measure determining how well the candidate value match the conditional nodes in the simulation grid. 

Because both geology and redox are categorical variables we use the number of mismatching nodes as distance 640 

measure with a tolerance of 10% mismatch. For 20 neighboring nodes, we hence allow two2 conditional nodes to 

differ between the TI and the simulation grid to accept the currently proposed value.  

• The maximum number of iterations allowed to find a suitable match within the TI. WeBecause the TIs in current 

study are of a reasonable size, we allow a scan of the entire TI in order to find a suitable match. This alleviates some 

of the problems with the non-stationarity mentioned earlier. If a match is still impossible to obtain, the candidate 645 

providing the lowest misfit is retrieved and “flagged”. During post-processing the flagged cells are simulated again 

to minimizeusing the same simulation setup and TIs. Because the larger structures are placed during the initial 

simulation, the flagged cells in postprocessing have a higher probability of finding a matching event in the training 

image, which minimizes the appearance of simulation artifacts. 

• The path at which the simulation grid nodes are visited needs to be selected. We choose a random path as is often 650 

used in MPS simulation. When combined with conditional hard data, the random path preferentially first visits nodes 

that are in the vicinity of hard data. This is achieved by calculating distances to hard data and then randomly drawing 

nodes according to these distances to create the visitation path (Straubhaar, 2019). This ensures that especially hard 

data from the surface have a higher impact on the final realizations. 

 655 

As pointed out by Tahmasebi (2018), a quantitative evaluation of the performance of MPS is still unresolved and the effect of 

the simulation algorithm parameterization remains an area of active research (Juda et al., 2020). To ensure that the combination 

of TI and MPS algorithm produce the sought-after spatial variability, we simulate two independent realizations without 

including the conditional data, i.e. two realizations from the prior model. We adopt the heuristic strategy of Høyer et al., (2017), 

making sure that the realizations from the prior model are in accordance with and represent our expectations of both redox and 660 

geology. Such two unconditional realizations from the prior model are shown in Figure 11. The spatial variability and patterns 

seen in the TIs (Figure 4) are generally represented for both redox and geology. As expected in the TI and conceptual model 

for geology, the prior realizations show primarily horizontal stratification. In the buried valley infill the extent of geological 

layers and redox structures is more limited than in the Quaternary sequence, which is also in accordance with our conceptual 

understanding. In the Quaternary sequence, the geological layer order is correct with clay till predominantly found near terrain 665 

while meltwater deposits are the main constituent of the deeper parts. Both sandy till (black) and postglacial sediments (blue) 

only occur near the surface in accordance with the TIs, but more infrequent than portrayed. 

 

For redox, the layer order from the TI is likewise preserved in the unconditional realizations such that oxic conditions are 

found primarily at the surface with increasing N-reducing and reduced conditions at lower depths. The prior model also 670 

captures the possibility of secondary redox zones from geological windows that are portrayed in TI1. N-reducing conditions 

are found adjacent to oxic conditions at the surface and not in the bottom of the simulation domain in the unconditional 
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realizations. The overall redox conditions can be visualized by plotting the accumulative probability for redox conditions as a 

function of depth, constructed by summarizing over both realizations, which hence provides the 1D marginal distribution in 

all voxels. This marginal distribution is accumulated with depth as shown in Figure 12. Less oxic and N-reducing conditions 675 

(orange and green) are simulated in the prior model at the surface and does not stretch as far down as portrayed the TIs (Figure 

12a), which can also be visually confirmed comparing Figure 4b and Figure 11b and f. 

 

Due to the strict vertical layer ordering in the TI, the non-stationary characteristics are preserved in the unconditional 

realizations despite the expectation of a stationary training image in MPS. We suspect that the full scan of the training image 680 

helps to provide the necessary configurations to enable a more non-stationary output in the prior realization. However, the 

MPS algorithm cannot fully capture all the non-stationarity of the TIs as there is a tendency to simulate less oxic conditions at 

the surface along with sandy till and postglacial sediments being underrepresented. Furthermore, the size of the TIs may hinder 

the reproduction of large-scale connected structures such as the oxic conditions at the surface (de Vries et al., 2009). This 

tendency is hence beyond immediate remediation by changing any of the fundamental parameters in direct sampling but can 685 

instead be guided by the incorporation of conditional data in the posterior model (Barfod et al., 2018). In summary, we conclude 

that the current parameterization of the direct sampling algorithm provides the spatial variability that fits our understanding of 

the system, albeit with some slight caveats. With the current simulation setup flagging occurs for approximately 8 % of the 

cells during initial simulation and 4 % after post-processing. We emphasize that the unconditional realizations represent the 

prior information of the system, not the TIs nor the exact parameters chosen in the DEESSE algorithm. 690 
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Figure 11: Two unconditional realizations from the prior model. a-b) One realization of jointly simulated geology and redox c-d) 

The same realization sliced in the X and Y direction. e-h) Same figure configuration as in a-d but for a different realization. 
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Figure 12: Accumulative probability profiles of redox conditions in the study area for a) TIs, b) prior distribution and c) posterior 695 
distribution 
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• The path at which the simulation grid nodes are visited needs to be selected. We choose a random path as is often 

used in MPS simulation. The random path have a tendency to underestimate soft data and provide less resolution in 

the results compared to other path types (Hansen et al., 2018).   700 formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154))
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6 Modeling results 

In this section, we present the modeling results from the set of posterior realizations of both geology and redox generated with 

MPSwhere the information from the prior model is conditioned to the data.  We condition the simulation. Figure 10 to the hard 

and soft data presented in section 5.4. 

 705 

Figure 13 shows two such realizations of geology and redox, respectively. The overall geology and redox architecture are in 

accordance with the TIs. Geological layers are coherent and placed in the correct chronological order, while the redox 

architecture shows oxic conditions at the surface with increasing reducing conditions at depth.conditioned realizations from 

the posterior model. The impact of introducing the conditional data is immediately seen at the surface of the geology 

simulations (Figure 13a,e), which is guided to a large degree by the information from the surface geology map. The architecture 710 

stays relatively fixed between the realizations, and variability is predominantly small-scale. Given the high amount of 

conditioning data, this is not unexpected. Occurrences ofThe main part of the Quaternary sequence element is covered by an 

approximately 8-10 m (sometimes reaching more than 20 m) thick clay till, followed by meltwater deposits. These meltwater 

deposits exhibit a shorter correlation length than in the prior model as seen in Figure 13g. The lateral extent of layers in the 

buried valley is less than in the Quaternary sequence, but not as significant as in the prior model. In general, the amount of 715 

meltwater clay/silt in the posterior model is lower than in prior model and the realizations consist mostly of either clay till or 

meltwater sand/gravel. This change is due to information from the geology soft data which is heavily dominated by clay till 

and meltwater sand/gravel (Figure 9). In fact, in zones of high resistivity, the soft data is particularly dominating the realizations 

with meltwater sand/gravel causing low variability between the two realizations as seen in e.g. Figure 13a,e. Just northwest of 

the high resistive zone in the buried valley is an area with more ambiguous resistivities which leads to greater variability and 720 

more dependency on the prior model. The bottom of the simulation domain is mainly made up of meltwater sand/gravel which 

is likely information stemming from the prior model. 

 

Due to the joint simulation of geology and redox in the current setup, the overall redox architecture in the realizations is 

coherent with the geology as outlined in the TI. For example, postglacial sediments are attributed to reducing conditions and 725 

meltwater sand/gravel is likely oxic at the surface. This coherency explains the predominantly oxic conditions at the surface 

seen in the sandy part of the buried valley (Figure 13b,f). In the Quaternary sequence, the clay till at the surface show both 

oxic and reduced conditions as indicated in the TIs (Figure 13d). Oxic conditions are clearly more present at the surface of the 

posterior model than in the prior realizations. The oxic conditions are distributed in the low gradient parts of the simulation 

domain, whereas reduced conditions are found along depressions in the landscape such as valleys and streams (Figure 13b), 730 

which is in good accordance with our geochemical understanding of the system. The entire posterior redox probability profile 

in Figure 12c also resembles the TI profile better than the prior model. Because there is no soft data aiding the occurrence of 

N-reducing conditions in the posterior model, it inherits the capacity of simulating N-reducing conditions from the prior model 

and is simulated less than in the TI profile from Figure 12. Thus, N-reducing conditions are also simulated adjacent to oxic 

conditions as in the prior model. The overall redox architecture is in place with planar type redox conditions in the buried 735 

valley and geological window type conditions in the Quaternary sequence (Figure 13d). However, sole voxels different from 

the surroundings happens for both variables, albeit rarely. This deviation from the overall pattern of coherent layers is a product 

of the simulation setup and are as such consideredof oxic conditions in the deeper parts of the realizations appear as unwanted 

simulation artifacts. (Figure 13h). Because these artifacts happen infrequently, are tiny and are surrounded by reduced 

conditions, we argue that for N-retention simulations these artifacts may be negligible.   740 
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Figure 13:: Two conditioned realizations from the posterior model. a-b) One realization of jointly simulated geology and redox c-d) 

The same realization sliced in the X and Y direction. e-h) Same figure configuration as in a-d but for a different realization. 745 
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The main part of the Quaternary sequence element (Geological Element 1) is covered by an approximately 8-10 m thick clay 

till (Figure 10). Alternating layers of meltwater deposits follow this. Some deposits of sandy till and postglacial sediments are 

seen at the top of the models. The extent changes during simulation according to the buffer zone. These deposits are rarely 

deeper than 6 m. The buried valley (Geological Element 2) is mostly covered by a relatively thin layer of meltwater sand 750 

followed by clay till and more meltwater sand, respectively. The lateral extent of layers in the buried valley is less than in the 

Quaternary sequence, as portrayed in the TIs.  

 

Due to the joint simulation of geology and redox in the current setup, the overall redox architecture in the realizations is 

coherent with the geology as outlined in the TI. For example, the TIs indicate that meltwater sand beneath clay till at the 755 

surface is located where a thinner reducing zone (green) is expected, which is also the case when comparing e.g. Figure 10c,g 

with Figure 10d,h. This reducing zone is present in both redox realizations (Figure 10d and Figure 10h) and hence the overall 

redox architecture is in place, and the difference is mainly small-scale in the extent of this zone. The layered structure of the 

reducing zone below the reduced zone might be explained by the geological window structure around the sandy till (Figure 

10d,h; Kim et al., 2019). Alternatively, unsaturated sand may be situated just below the clay till or both a vertical and horizontal 760 

flow is occurring in the meltwater sand. In general, reducing conditions (green) are usually attributed to meltwater sand/gravel 

in the TIs, which is also the case for the realizations. However, small patches of reducing conditions in the deeper parts of the 

realizations are unwanted simulation artifacts. Because these are too tiny and surrounded by reduced conditions, we argue that 

for N-retention simulations these artifacts may be negligible. At the top of the simulation domain, the redox conditions display 

more variability than the geology, which are heavily influenced by hard data. The clearest example is found at the surface of 765 

the buried valley. Meltwater sand/gravel dominates the northernmost part of the simulation domain. The redox conditions at 

the surface at this location vary significantly between oxic and reducing conditions amongst the realizations. The southernmost 

part of the buried valley is more stable in the prediction of reduced conditions at the surface, but both reducing and in rare 

cases also oxic conditions seem to be possible in this area as well.  

 770 
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 775 

Figure 14: ModesMode and entropy of 100 geology and redox realizations. Low entropy (certainty) is marked with black color, while 

white colorscolours represent high entropy (uncertainty). 
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In total, we simulate 100 realizations similar tolike those presented in Figure 13. The mode, i.e., which together represent the 

most frequent category within each voxel is presented along the entropy in full posterior model. To summarize the posterior 

model, we present ensemble statistics (from section 4.2) in Figure 14. For example, the lowThe entropy inof geology (Figure 780 

14c) at the surface layer in the geology show that we are certain of the outcome. That outcome is then available in the mode. 

In this case, the entropy is expected to be close to zero in large parts of surface since this is where0 at most of locations due to 

the hard data is placed directly in the simulation gridprovided from the surface geology map. The more uninformed parts of 

the surface (lighter colors) correspondscorrespond to the buffer zone in the hard data. Again, mode gives the most probable 

outcome in these voxels, but the high entropy tells ussurface geology map. The entropy is usually around 0.2-0.3, indicating 785 

that most realizations of the posterior model provide the same outcome in the buffer zone. In few places along the buffer zone 

an entropy level of 0.8 is reached, indicating that other categories are almost equally probable. to the one shown in the mode 

model. This confirms the qualitative results from inspecting the individual realizations. The mode of the geology does not 

display some of the minor simulation artifacts seen in the individual realizations, because these are averaged out over many 

realizations. This indicates that simulation artifacts are not reoccurring in simulations and hence no overall bias is found. The 790 

, that the effect of introducing MPS via TIsprior information and hard data increasesincrease the information content (lowers 

entropy) of the final models drastically compared to the soft data only (Figure 10). For the lower part of the simulation domain, 

the situation is reversed, where the posterior realizations show almost zero information content.posterior model shows higher 

entropy than at the surface. This means that the mode found in this region is usually more uncertain. The effect of In some 

areas of high resistivity, we also see very low entropy at depth, where the soft data provides the main architectural input and 795 

the posterior mode model resembles the soft data mode. The effects of introducing the training image and hard dataprior 

information for the architecture is clearly seen in the coherent structures produced in the posterior mode in contrast to the 

patchiness of the mode in Figure 10a.  

 

For the redox architecture results, the smoothness of the mode model is apparent when e.g. comparing the continuity of the 800 

reducing zone layer (green in Figure 11b) with the individual realizations (Figure 10b,f) that look more fragmented and again 

the simulation artifacts tend to average out. Even though the TI (Figure 4b) is trying to convey the message of oxic conditions 

at the surface of the Quaternary sequence, this is not always the case in the realizations as seen in the mode of redox. The 

reducing or reduced surface conditions are seen in the valleys of the Quaternary sequence (Element 1). This is also visible in 

the individual realization of Figure 10b,f. 805 

 

TheThe redox mode does not display some of the minor simulation artifacts seen in the individual realizations, because these 

are averaged out over many realizations. This imply that simulation artifacts are not reoccurring in simulations and hence no 

overall bias is found. Instead, we do see remnants of the converted oxic soft data at the surface of the mode model (Figure 

14b) with zero entropy (Figure 14d). This is clearly an unwanted side-effect of the soft data conversion, since these sole oxic 810 

voxels are not in accordance with the overall pattern of reduced conditions along the streamlines and valleys. The redox mode 

shows few N-reducing conditions, in accordance with the redox depth profiles shown in Figure 12c, demonstrating the 

inclination to simulate either oxic or reduced conditions in the posterior model. 

 

Overall, the entropy of redox is showing a reverse pattern to that of geology. The Counter intuitively, the redox entropy is 815 

highest near the surface and decreases with increasing depth, especially the buried valley (Figure 14d). Counter intuitively, the 

largest redox uncertainty is at the top of the model and it decreases with increasing depth.d). One could expect the highest 

redox uncertainty at deeper depth because the density of the hard data is much higher near the surface and for the deeper part 

of the architecture, the geochemical data is rarely available. However, the entropy sharply decreases in the reduced zone 

beneath the reducing zone.a certain depth. This pattern instead fits well with the conceptual understanding of the redox 820 
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structure evolution: oxic conditions are developed as oxidants (e.g., oxygen and nitrate) infiltrate from the root zone to the 

subsurface where reduced layers are present. Therefore, a redox front propagates downward and under homogeneous 

conditions with vertical flow of water, it would be unlikely to develop oxic conditions below the redox front. While the spatial 

heterogeneity of the geological settings of the near surface environments at various scales (pore scale to landscape) has been 

well documented (e.g. Baveye et al., 2018; Groffman et al., 2009; Sexstone et al., 1985), implying highly heterogeneous redox 825 

conditions in the shallower depth. The sharp decrease in entropy of the buried valley take place due to the planar redox type 

domain in the buried valley, whereas the possibilities of geological windows in the Quaternary sequence makes the high 

entropy section develop further down. Some of the voxels at the surface of the Quaternary sequence element depart from the 

overall pattern by having a very low entropy. This trend is likely aided by the soft data giving high probabilities of oxic 

conditions at the surface. At the surface and down to about 10-20 m of the buried valley, we generally do not know much about 830 

the redox conditions as indicated by the white yellowish colors in Figure 14. The more evenly distributed redox soft data 

probabilities (Table 3Table 3) could explain some of this high entropy.  
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Figure 12: Accumulative probability profiles of redox conditions in the study area. Left: Quaternary sequence, Right: 

Buried valley. 7 Discussion 835 

To our knowledge, examples of mapping redox conditions with multiple-point geostatistical simulation are not present. This 

study sets out with the aim of proposing and reviewing a methodology for modeling both redox architecture and geology 

simultaneously in high-resolution 3D using MPS.  

 

 840 

The redox conditions can be visualized by plotting the accumulative probability for redox conditions as a function of 

depth, constructed by summing over all realizations, which hence provides the 1D marginal distribution in all voxels. 

These marginal distributions are accumulated with depth as shown in Figure 12 for the two geological elements. These 

are in overall agreement with the geochemical understanding of the study area as just described. Oxic conditions 

(orange) are primarily found at the surface. Most prominently in the buried valley (right). The reducing conditions 845 

(green) are expected primarily in a zone lying 10-20 m below the surface. Finally, reduced conditions dominate the 

lower parts of simulation area.7.1 Simulation artifacts 

The spatial variability of the TIs is well represented in the prior realizations and conditional data guides our expectations of 

the system to a posterior model. In some cases, due to the limited size of the TI, inconsistencies between conditional data and 

the prior model exist. In some cases, these inconsistencies lead to simulation artifacts in the realizations, but are rare since they 850 

are largely corrected during MPS post-processing. For the posterior model realizations, flagging is decreased to only about 5-

6% after post-processing while happening 19-22% of the time during the initial run of the algorithm. Some simulation artifacts 

also occur in the prior model itself and therefore cannot alone be attributed to inconsistencies between the prior model and the 

conditional data, which is underlined by the decrease in flagging that also happens during post-processing of the prior model 

realizations. These inconsistencies are associated with a lack of matching events in the TI. To remedy such simulation artifacts 855 

one either needs larger TIs to allow more spatial variability or artificially enhance the variability by lowering the amount of 

conditional data to consider when searching for a match in the MPS algorithm. In the latter case, this will happen at the cost 

of reproduction of the actual spatial variability portrayed in the TI. We argue, that in the current nitrate simulation at the 

catchment scale, these artifacts do not affect the overall architecture (Figure 14) and redox trends with depth (Figure 12). It is 

also expected to have negligible impact on hydrological modeling as the overall architecture allows groundwater flow pass by 860 

such artifacts. Nevertheless, future studies are required to reduce artifacts of this kind or, at least, downplay their significance. 

One solution could be to allow rotation during simulation could offer more configurations during simulation. But testing with 

a setup allowing 360 degrees rotation in the horizontal plane did not enable a substantial improvement on this issue. The 
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flexibility of the current methodology also allows the inclusion of soft probability maps through equation 2 indicating spatial 

restrictions on certain lithologies or redox conditions, which could potentially remedy some of the deeper lying artifacts.  865 

 

7.2 The role of soft data 

The random path have a tendency to underestimate soft data and provide less resolution in the results compared to other path 

types (Hansen et al., 2018).   formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154))
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7 Discussion 870 

To our knowledge, examples of mapping redox conditions with multiple-point geostatistical simulation are not present. This 

study sets out with the aim of proposing and reviewing a methodology for modeling both redox architecture and geology 

simultaneously in high-resolution 3D using MPS. Simulations generally seem to honor both the architecture outlined in the 

training images and the conditional data available. As pointed out by Tahmasebi (2018), a quantitative evaluation of the 

performance of MPS is still unresolved, and as previously mentioned, the parameterization could potentially be fine-tuned to 875 

produce even better results. However, we adaptIn the current study the amount of soft data coverage was high (more than 

43.5% of the simulation grid). To utilize the abundant soft data, we randomly converted a fraction of the soft data into hard 

data to compensate the underestimation from the path. This helped transferring more weight towards the soft data during 

simulation, with the caveat of introducing converted soft data in unwanted positions, such as oxic in an overall reduced 

environment. This problem is however mostly encountered at the redox mode (Figure 14b) and does seemingly not pose as 880 

big of a problem for the individual realizations in Figure 13b,f. By further processing the realizations by removing any sole 

voxels that differ from the neighboring voxels, this problem can be removed entirely, but at the risk of removing actual sole 

voxels. One could also randomly select a new set at each iteration, although this is not directly implemented in the DEESSE 

software and still would not make sure that soft data in general are handled correctly. For instance, the current remediation 

only handles categories with probability >= 50% and thereby cannot help improving the information content for any categories 885 

with probability < 50%. This affects e.g. N-reducing conditions at the surface where soft probabilities are substantially lower 

(Table 3). Thus, N-reducing conditions are bound to be underrepresented since they are not converted from soft data, which is 

the tendency shown in the posterior redox profile compared with the TI (Figure 12). Despite the clear advantages of converting 

some soft data to provide more emphasis on them, the current simulation results could most likely be improved by better 

incorporating the soft data information in general. However, neither a preferential path that visits voxels with soft data 890 

information before other voxels, nor the use of non-collocated soft data is currently implemented in most state-of-the-art MPS 

algorithms. The problem of how to best incorporate soft data information hence reaches beyond the current study. We 

encourage that this remains an active area of research to make MPS simulation relevant for practitioners without the need for 

too much ad-hoc remediation. 

 895 

7.3 the heuristic strategy of Høyer et al., (2017), making sure that the realizations are in accordance with our expectations and 

focus on presenting the methodology of simulating both geology and redox simultaneously in 3D high-resolution.  

7.1 Simulation artifacts 

As outlined in the results section, simulation artifacts are occurring in the form of isolated voxels in the deeper part of the 

simulation grid. For instance, postglacial sediments (yellow, see Figure 10a,e) simulated at unlikely locations, or single voxels 900 

of clay till within a unit of meltwater sand (see Figure 10c,g). These artifacts are likely a product of inconsistencies between 

the prior information and conditioning data. In the current nitrate simulation at the catchment scale, these artifacts do not affect 

the overall architecture (Figure 11) and redox trends with depth (Figure 12). It is also expected to have negligible impact on 

hydrological modeling as the overall architecture allows groundwater flow pass by such artifacts. Nevertheless, future studies 

are required to reduce artifacts of this kind or, at least, downplay their significance. We assume that more rigorous testing of 905 

parametrization would reveal insights into a more optimal simulation strategy. In the current setup, post-processing procedures 

help alleviate some of these simulation artifacts. The flexibility of the current methodology also allows the inclusion of soft 

probability maps through equation 2 indicating spatial restrictions on certain lithologies or redox conditions, which could 

remedy some of the deeper lying postglacial sediment artifacts. 

 910 
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A problem related specifically to the study area results is the distribution of redox conditions in the realizations. The TI (Figure 

4b) is not showing the possibility of reducing conditions at the surface of the buried valley element or reduced conditions at 

the surface of the Quaternary sequence as seen in the realizations (Figure 10b,f). MPS expects a stationary TI and hence does 

not consider such information, when looking for a match. In addition, the size of the TI and the features contained within it 

may not be representative of the whole area. Especially, since the location of TI areas were chosen primarily based on 915 

representative geology and good data coverage. If oxic conditions are known to be the only realistic outcome at the surface, 

this should instead be enforced through conditional data. Rotation in simulation could potentially solve this issue by offeri ng 

more configurations of oxic conditions to be placed in the valley in the Quaternary sequence. Regardless, from a geochemical 

perspective, it is reasonable to have reducing or reduced conditions in the valleys, because this is where streams are located in 

the landscape, leading to high content of organic matter and wetter conditions. In future studies and if a similar approach of TI 920 

creation within the simulation domain is chosen, we recommend collaborative efforts between geologists and geochemist in 

securing the best possible location for representative TIs.  

 

7.2 Resistivity-lithology relationship 

The established resistivity-lithology relationship allows us to map the prior probabilities of each lithological group based on 925 

the tTEM in the simulation area. Utilizing tTEM as soft data information ensures that it does not have too much influence over 

the final results. Here, the relationship is inferred from the resistivity grid and training images. When simulating, the general 

mismatch between the training image patterns (based on interpreted geology) and the tTEM data is thus minimized. Methods 

exist for establishing a relationship between resistivity and clay content (Christiansen et al., 2014; Foged et al., 2014). 

Unfortunately, this is not directly applicable for the lithological groups used here as they are not defined on the basis of the 930 

clay content. Alternatively, this relationship could be inferred using boreholes near the study site. Similar to the approach in 

this study, inferring the resistivity-lithology relationship from boreholes is typically based on deriving probabilities from 

histograms (Barfod et al., 2016; Gunnink and Siemon, 2015; He et al., 2014a). In accordance with the present results, these 

studies also show a significant overlap between different lithologies and as such using nearby boreholes for inferring the 

resistivity-lithology relationship would mainly minimize the reuse of data and avoid subjectivity cariedcarried over from the 935 

TIs.  

 

7.34 Geological modeling subjectivity and data reuse 

The inclusion of geological mapping experts in the creation of TIs introduces modeling subjectivity. Thus, the final realizations 

could include unverifiable modeling choices following the interpretation procedure in cognitive modeling. Through 940 

experiments with geological interpretation of the uncertainty in boreholes, Randle et al. (2019) argued that expert elicitations 

do not result in accurate predictions of interpretation error. Efforts have been made to make TI generators (Pyrcz et al., 2008) 

and data-driven TIs without the need for expert knowledge (Vilhelmsen et al., 2019). However, process-based TI generation 

from expert elicitation is a common approach in MPS applications (Mariethoz and Caers, 2015). A possible explanation for 

this is the benefit of bringing in prior expert knowledge, which is otherwise difficult to quantify. This ensures that results are 945 

in accordance with as much information as possible (Curtis, 2012; Tarantola, 2005) and realizations are not in clear conflict 

with geological concepts (Jessell et al., 2010; Wellmann and Caumon, 2018). 

 

Despite the potential subjectivity in the geological modeling of the study area these modeling choices are primarily guided by 

data. The tTEM data collected in this study has e.g. contributed to a good correlation between the terrain and the subsurface 950 

architectures in the geological interpretations. These observations fit well with the current knowledge of the latest geological 
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events in the area, thus providing good possibilities of making robust geological correlations between the geological and 

geophysical data.  

 

It might be difficult to quantify the effect of the apparent loss in degrees of freedom that follows from using the same data for 955 

establishing the prior information and simulation. In the current study, the problem of reusing data for outlining geological 

elements, is most likely not critical as only large-scale structural information is partly interpreted from the resistivity data, such 

as the top of the Paleogene clay layer. The degrees of freedom loss for reusing the resistivity information in the TIs and as 

conditional data in simulation is undoubtly larger. Although the small size of the TIs may pose a problem for reproducing the 

intended varibility, in this instance it acts to limit the effect of reusing data. This issue persist for approximately 33% of the 960 

total voxels (Table 1). 

 

7.45 Training images and geological elements 

If possible, the TI should provide all possible dimensions and shapes of the geological features in the subsurface (Strebelle, 

2012). However, sizes of the TIs in the current setup are relatively small compared to the simulation grid and hence do not 965 

contain that many configurations. In general, the smaller the TI, the fewer possible structures can be represented (Mariethoz 

and Caers, 2015). We consider two remedying factors. Firstly, the simplicity of the TI. In the study area, we expect a geology 

with continuous clay and sand units partly restrained by incised valley structures in the Paleogene clays as seen in Figure 3. 

Even though the TI is small and simple, it conveys the general pattern to be expected in geological features throughout the 

simulation domain. The simplicity should alleviate some of this issue, although in an area with more expected heterogeneity, 970 

a more diverse and larger TI would be needed. Secondly, if the geological variability provided in the TI is not suff icient, 

algorithmically induced variability measures such as scaling and rotation of features is possible with direct simulation 

(Mariethoz et al., 2010).  

 

The non-stationarity of both sets of TIs is evident. This is a common problem when designing training images directly based 975 

on, and mimicking geology, which is inherently non-stationary. This might pose a problem, as only a certain number of the 

configurations in the TIs will produce a match during the direct simulation. Consequently, we might risk reproducing larger 

parts of the TI in the realizations. Such verbose copying is partially remedied by the addition of conditioning data and choosing 

a smaller search radius as argued in Vilhelmsen et al. (2019). However, a smaller search radius comes at a price of not 

reproducing the features in the TI and adding variability more related to algorithmic choices than geological variability. 980 

Luckily, plenty of conditioning data is available for the simulations to remedy some of the shortcomings of the training images. 

As argued in de Vries et al. (2009), subdividing the TIs and simulation domain into different areas is another possibility to 

handle non-stationarity. To some degree, the geological elements representsrepresent such a subdivision of the entire modeling 

domain in the study area.  

 985 

In the current study, we considered the boundaries between the geological elements fixed. In reality, there is some interpretation 

uncertainty related to these boundaries especially in data scarce areas. Future studies may be able to quantify this uncertainty. 

If this uncertainty is sufficiently large such that it affects the simulation results significantly, we put forward the idea of re-

simulating boundaries between geological elements as part of the simulation.  

 990 

Because TIs are attributed to a specific geological element, these TIs may be reused in other simulation studies with comparable 

geological elements and we therefore strongly recommend building a TI library. This approach would alleviate the most 

fundamental of the issues in the current setups. Information between TI and data becomes independent when using a 
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generalized TI. Specifically, the reuse of data (in constructing the TI and implicitly when inferring the resistivity-lithology 

relationship) is eradicated. For a smaller geological element, the TIs developed in the study area may also represent a 995 

proportionally larger portion of the expected variability. An additional bonus would be a reduction in labor/time since TIs are 

pre-existing or maybe only need slight alteration.  

 

Conceptual TIs or based on data from another study area would most likely be preferable from a geostatistical point of view 

as it would ensure independence of information. However, in the case of a TI based on nearby data, the TI should be close 1000 

enough to the study area such that the depositional and redox setting are comparable. Furthermore, the study of Barfod et al. 

(2018) suggests that TIs become secondary given a high amount of conditional data. In future studies and if a similar approach 

of TI creation within the simulation domain is chosen, we recommend collaborative efforts between geologists and 

geochemists in securing the best possible location for representative TIs. 

 1005 

7.56 Computationally attractive stochastic simulations 

In the current setup, simulations are computationally feasible. 100 realizations of both elements are generated in less than 2.5 

hours on a high-end personal laptop (Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz, 6 cores (12 threads) with 10 threads 

allocated to DeeSse. The average simulation time for a single realization is hence just over 80 seconds. Several factors 

contribute to this: 1) The relatively small TIs making the number of possible combinations limited, 2) The restriction on 1010 

maximum 20 conditioning points and 3) the subdivision of the simulation grid into geological elements. Some of the 

abovementioned factors are algorithm tuning parameters, while others are added bonuses of understanding the geology in 

question (e.g. the ability of breaking the problem up into smaller bits and choosing an acceptable level of simplicity in the 

models). In this case, bringing expert field knowledge to the modeling setup is advantageous. 

7.67 Multi-purpose modeling results through uncertainties 1015 

The proposed workflow allows the quantification of uncertainties in the input data and in the subsurface models. This is a 

major advantage over e.g. static models. We specifically dealt with prior uncertainty in the geological and redox conditions as 

portrayed in the TIs and geological map and resistivity data (soft data). Other sources of error (e.g. modeling and measurement 

errors) in the input data can also be explored, as MPS offers a flexible setup for treating data with uncertainties. Additionally, 

it is clearly shown in the comparison between mode and entropy of posterior and soft data that MPS adds additional valuable 1020 

information through the TIs that enable geologically viable architecture. Especially in cases where soft data is too weak to 

provide significant support. The quantitative description of uncertainties as portrayed by the final ensemble of realizations also 

has many useful properties for additional analysis. For instance, the ability to produce redox profiles as in Figure 12Figure 12 

is trivial once the simulation is completed. These redox profiles make comparisons with previous studies possible, while 

offering many other possibilities for summary statistics and quantifying uncertainty. This flexibility in the final analysis is one 1025 

of the main benefits of applying geostatistical mapping of redox conditions (and geology). With the current methodology, 

depth profiles can also be calculated for specific sets of x- and y-coordinates to investigate some of the spatial variation in 

redox. Another example would be to investigate the distribution of redox conditions in the geological groups, which allows 

assessing new hypotheses on the coupling between geology and redox. It may also reveal insights to the spatial dependencies 

of such couplings. and showcase potential geological windows for oxic conditions at depth. Entropy gives insight into the 1030 

nature of information content and therefore it would be an active tool in finding the best spot for further investigation, i.e. 

showing where information is lacking. For instance, in the case of redox, entropy might be suited for assisting a focused field 

campaign in retrieving more information of redox in the buried valley element. In the current case, the buried valleyQuaternary 

sequence many places showed a lack of information in the first 10-20 meters that is typically critical to model. 
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 1035 

From the study area, it seems that it is possible to create a computationally feasible joint stochastic 3D high-resolution model 

of redox and geology with the current setup. However, these findings cannot be extrapolated directly to other study areas. 

Future research includes testing the method in other catchment areas to assess the robustness and general applicability.  Many 

improvements, besides fine-tuning algorithm parameters, also exist. We e.g. expect improvements and minor changes to the 

overall setup, as different study areas will contain site-specific challenges that should be addressed. OneAs mentioned, one of 1040 

the current issues that need to be adressed is how best to quantify and integrate soft data. Besides the resitivity-lithology 

relationship, we also recognize the need for an extensive study on the quantification of uncertainty in geological maps such as 

the geological surface map presented here, but it is beyond the scope of the current study.  
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8 Conclusion 1045 

This study sets out to model both redox architecture and geology simultaneously in high-resolution 3D due to the dependency 

of the evolution of the subsurface redox conditions on the hydrogeological pathways. This is achieved using a bivariate MPS 

simulation. MPS modeling with a bivariate TI of geology and redox presents some important features compared to previous 

mapping studies: 1) MPS simulation effectively produces geology and redox following expectations and 2) TIs provide an 

intuitive and easy collaboration across different fields of expertise. Valuable expert information, otherwise difficult to quantify, 1050 

is seamlessly integrated within MPS. This ensures in our case that there is a correspondence between geology and redox 

conditions, which is one of the key strengths of the proposed methodology. Although challenges in the current approach exist, 

we conclude that the proposed methodology offers improvements to existing methods for mapping geology and redox by 

producing consistent realizations of both variables. The flexibility of the geostatistical results as represented by the ensemble 

of realizations allows comparisons with traditional mapping techniques. We interpret and model individual sedimentary layers 1055 

into coherent packagesvolumes (‘geological elements’) that greatly help to guide our simulation results and reduce 

computation costs. This new mapping technique should aid our understanding of the uncertainties and limitations of our 

knowledge and data. High-resolution 3D understanding of both redox and geological architecture will likely improve 

predictions of N -retention and water pathways in the subsurface. The generalizability of these results is subject to certain 

limitations as the proposed workflow is only tested on a single study site. This study lays the groundwork for future research 1060 

into coupled understanding of geology and redox using MPS simulation. Despite its exploratory nature, this study offers 

valuable insights into the feasibility of joint geostatistical modeling of redox and geology. Several questions remain to be 

answered regarding simulation algorithm parameterization and interdependence between different sets of quantified 

information and integration of soft data. The geological and redox architecture simulations might be incorporated in 

hydrological modeling with N-transport to be used for N-retention mapping of the subsurface important for future more 1065 

targeted N-regulation of agriculture.  
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