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Abstract. Nitrate contamination of subsurface aquifers is an ongoing environmental challenge due to nitrogen (N) losses from
intensive N fertilization and management on agricultural fields. The distribution and fate of nitrate in aquifers are primarily
governed by geological, hydrological and geochemical conditions of the subsurface. Therefore, we propose a novel approach
to model both geology and redox architectures simultaneously in high resolution 3D (25m x 25m x 2m) using multiple point
geostatistical simulation (MPS). Data consists of 1) mainly resistivities of the subsurface mapped with towed transient
electromagnetic measurements (tTEM), and 2) information of lithology and redox conditions obtained from the borehole
observations at point scale interpreted from the geological descriptions and colors of sediment samples, and chemistry analyses
of water samples. Based on the collected data and supplementary surface geology maps and digital elevation models, the

simulation domain was subdivided into geological elements with similar geological traits and depositional history. The

conceptual understandings of the geological and redox architectures of the study system were introduced to the simulation as

training images. These-data-were-combined-with-detailed-soil-maps-and-digital-elevation-models-to-identify-main-geologi

setup- for each geological element. On the basis of these training images and conditional data, independent realizations were

jointly simulated of geology and redox inside each geological element and stitched together into a larger model. The joint

simulation of geological and redox architectures, which is one of the strengths of the MPS simulations compared to other
geostatistical methods, secures that the two architectures in general show coherent patterns. Despite the inherent subjectivity
of interpretations of the training images and geological element boundaries, they enable an easy and intuitive incorporation of
qualitative knowledge of geology and geochemistry in quantitative simulations of the subsurface architectures. Altogether, we
conclude that our approach effectively simulates the coherent geological and redox architectures of the subsurface that can be
used for hydrological modelling with nitrogen (N-)-transport, which may be fundamental to better understanding of the
nitrogen-{N)--retention of the subsurface and to future more targeted regulation of agriculture.
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1 Introduction

The escape of reactive nitrogen (N) from agricultural soils results in adverse environmental and human health impacts
(Schullehner et al., 2018; Temkin et al., 2019), including eutrophication of freshwater and estuarine ecosystems and nitrate
contamination of groundwater and drinking water (Hansen et al., 2017 & 2019). In Denmark, since the 1980s N-regulations
of intensive agriculture at national or regional scales have succeeded in lowering the N-impact on the aquatic environment
(Dalgaard et al., 2014; Hansen et al., 2017). However, further actions are still required to improve the state of the aquatic
ecosystems to meet the requirements of e.g. the EU Water Framework Directive (Kallis and Butler, 2001). Moreover, this has
to be achieved in a cost-effective manner for the society and the agricultural industry. This creates a demand for new knowledge
and new solutions for more efficient future N-regulation of the agricultural sector both in Denmark and in other countries with
intensive agriculture. The proposed direction is to tailor the N-regulations depending on the site-specific conditions at field
level, called targeted N-regulations. The targeted N-regulations require detailed knowledge about the subsurface
hydrogeological and biogeochemical conditions because nitrate, which is the dominant form of N in aquatic environments, is
transported predominantly with water flow and undergoes reduction in the typical deeper reduced aquifers. Thus, it has now

become increasingly important to have detailed knowledge of the subsurface geology and redox architectures.

In a simple case with only vertical infiltration, nitrate concentrations in aquifers decrease with an increasing depth along three
sequential redox zones (Kim et al., 2019; Wilson et al., 2018):

1) Oxic zone: Nitrate conditions are equal to the leaching from the soil because of the oxic conditions preventing reduction
2) Nitrate-N-reducing zone: Nitrate decrease with increasing depth due to ongoing reduction of nitrate

3) Reduced zone: Nitrate free zone due to complete reduced redox conditions

The redox conditions of the subsurface has been widely investigated using various approaches focusing on different redox
sensitive chemical compounds such as nitrate, iron, sulphate, pyrite, organic matter, arsenic, uranium, and some organic
contaminants: 1) process-based approaches (e.g. {(Abbaspeur—et—al—(2007);—Hansen—et—al—(2014a,2016a);Lee—et-al;
{2008)Abbaspour et al. (2007); Hansen et al. (2014a,2016a); Lee et al., (2008)), 2) geostatistical methods (e.g., Kriging;

Ernstsen-et-al{(2008)-Goovaerts-et-al—{(2005);-Lin(2008)Ernstsen et al. (2008); Goovaerts et al. (2005); Lin, (2008)) and 3)
machine learning (Close et al., 2016; Koch et al., 2019; Nolan et al., 2015; Ransom et al., 2017; Rosecrans et al., 2017;

Tesoriero et al., 2015; Wilson et al., 2018). However, many of these approaches require large sets of data of especially
groundwater chemistry, and it is costly and time consuming to collect sufficient volumes of data. Furthermore, ancillary data
to spatially extrapolate the water chemistry, for instance soil types, topography, land use, surface slopes, only provide
information about the near surface conditions (i.e., topsoil layer); therefore, predicting the redox conditions below the topsoil
layer using these data may be inadequate. Particularly under geologically heterogeneous settings such as glacial terrain, the
redox architecture can be complex (e.g. Kim et al. (2019)) with many shifts in redox state with depth at the same location.
Upscaling of the point scale measurements of redox conditions into the 3D space thus requires detailed spatial information of
the subsurface geological architecture.

In Denmark, the uppermost 100 to 200 meters of the subsurface generally ecensistsconsist of unconsolidated sediments

reworked or generated by glacial processes, making the subsurface architecture complex (Hayer et al., 2015; Jgrgensen et al.,
2015). Through the National Groundwater Mapping Program, Denmark is extensively covered with airborne electromagnetic
measurements (AEM) (Mgller et al., 2009; Thomsen et al., 2004) and together with borehole data, 3D geological mapping of
Denmark has predominantly been carried out as cognitive modeling (see e.g. Hayer et al., 2015). In cognitive modeling, an
experienced geologist combines all available subsurface data (e.g. boreholes, electromagnetic data, and seismic data) with
preexisting geological background knowledge and performs interpretations through either manual (e.g. Jargensen et al., 2013)
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or semi-automatic approaches (e.g. Gulbrandsen et al., 2017; Jargensen et al., 2015). Complex geological settings, however,
pose a challenge for 3D modeling and interpretations between geological point data may lead to large uncertainties (Wellmann
and Caumon, 2018).

The subsurface information itself is attributed to uncertainties such as measurement errors (Malinverno and Briggs, 2004),
errors from using approximate physics (Hansen et al., 2014b; Madsen and Hansen, 2018), bias from interpolation methods
(Wellmann and Caumon, 2018), and processing errors when handling geophysical data (Claerbout et al., 2004; Madsen et al.,

2018; Viezzoli et al., 2013). Even geological knowledge cannot be considered uncertainty free (Bond, 2015; Lindsay et al.,
2012; Sandersen, 2008; Wellmann et al., 2018). In fact, subjective biases are accepted as one of the weak points of cognitive
geological modeling (Bond, 2015; Wycisk et al., 2009). Generally, it is therefore difficult to fully incorporate uncertainties
related to the subsurface information in cognitive modelling, and even more difficult to propagate these uncertainties through
to subsequent analysis such as hydrological modelling.

In recent years, some studies have adapted geostatistical simulation methods for geological mapping of the substratum in order
to quantify and possibly account for some of these uncertainties. A few examples exist of multiple-point geostatistical
simulation (MPS) utilized for mapping 3D geology with AEM data (Barfod et al., 2018; He et al., 2014b; Hayer et al., 2017;
Jorgensen et al., 2015; Vilhelmsen et al., 2019). However, AEM data provide structural information of the deeper subsurface
(100-200 m-deep) at a coarser resolution (Sgrensen and Auken, 2004), and hence may not be adequate to provide structural
information for simulations of N-transport at catchment level occurring mainly within the upper 30 m. A newly developed
towed transient electromagnetic method (tTEM) (Auken et al., 2019) provides data at much higher resolution but with a lower
penetration depth than AEM. tTEM is, therefore, ideal for high-resolution mapping when focusing on the uppermost 50 to 70
m of the subsurface. None of the previous studies has investigated the geological and redox architecture simultaneously
although these two are related and sometimes coevolved (Grenthe et al., 1992; Hansen et al., 2016a; Wilkin et al., 1996; Yan
etal., 2016).

The development of redox zones in the subsurface is dependent of several factors including 1) infiltration of atmospheric
oxygen in geologic time; 2) anthropogenic leaching of nitrate; 3) the amount and reactivity of geogenic reducing minerals as
pyrite or organic matter; and 4) the hydrogeological flow conditions. We propose a novel way to combine the available
information about hydrogeology and redox conditions (boreholes, electromagnetic data, geological maps and digital elevation
maps) and quantify uncertainty in modeling and data using geostatistical simulation. We specifically use MPS simulation to
describe the spatial uncertainty in our models through a series of possible realizations of the subsurface (Mariethoz and Caers,
2015). Using a bivariate training image (T1) of both geology and redox, we jointly simulate both redox and geology to ensure
these will be consistent in the realizations. Tls are created using expert knowledge combined with the available data to directly
incorporate prior expert geological information. In addition to our proposed efforts of combining redox and geology modeling,
we have also utilized data and geological knowledge to subdivide the simulation volume into smaller volumes based on

different geological characteristics and the depositional environment. We refer to such smaller volumes as ‘geological

between-the_(e.g. He et al., 2015; Hgyer et al., 2015). Individual TIs are created with cognitive voxel modeling for each

geological element such that they can be simulated independently and subsequently stitched together. Geological interpretation
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of the depositional environment and the age of the sediments will help create an event chronology that supports the

independence of the individual geological elements.

The aim of this paper is to demonstrate and review the proposed methodology fecusing-en-strengthsof jointly simulating and
weaknessesdetermining the distribution of redox and geology using MPS. This is, to our knowledge, the first study of

simultaneous modeling of geology and redox architectures in a geostatistical high-resolution 3D model. The novelty of this

paper is hence the presentation of the complete practical framework and steps needed to apply MPS for redox and geology

modeling. These steps include quantifying spatial variability in Tls, guantifying conditional information and accounting for

major geological depositional events via geological elements. This may be fundamental to better understanding N--retention

within the subsurface and important for future more targeted N--regulation and management of agriculture for protection of
vulnerable surface waters and groundwater. Thus, providing stakeholders with a powerful tool based on integrated expert
knowledge and quantified structural uncertainty through probabilistic predictions of the complex interplay between redox and
geological architecture.
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2 The study area

The study area is a small Danish agricultural first-order hydrological catchment to Horndrup Beek called LOOP3 with an area
approximately 550 ha. The area is located at the Jutland peninsula in Denmark, with a coastal temperate climate (Figure 1).
The dominant soil types are classified as sand-mixed clay (70%) and clay sand (24%). Forest accounts for 18% of the catchment
area, the rest being used for agricultural purposes except for a limited area taken up by buildings and roads. The catchment has
been part of the Danish National Environmental Monitoring Program since 1989 aiming at evaluating the effect of the Danish
N-regulation of agriculture on the aquatic environment (Hansen et al., 2019). During the last almost 30 years, the N—-
concentrations in soil water, drainage, shallow groundwater and streams have been measured regularly at several stations in
the agricultural fields (Blicher-Mathiesen et al., 2019). Therefore, the site is ideal for testing new subsurface mapping

techniques of geological and redox architectures.

The study area is located in a hilly glaciated landscape in the eastern part of Jutland just east of the highest point in Denmark
(Figure 1). The highest elevations reach 170 meters above sea level (m a.s.l.) in the southwestern part and slopes down to
around 40 m a.s.l. in the northeast (Figure 1a). To the north of the study area, a system of open tunnel valleys forms a low-
lying area with several lakes. The catchment is dominated by glacial till deposits from the latest glaciation and the orientation
of the hills generally show former ice push directions from the northeast. In the lowest parts of the terrain, occurrences of
meltwater sand are also found. i j
lews-(Jakebsen-etal;-2011)-Occurrences of postglacial freshwater deposits can be found locally in smaller topographical lows
(Jakobsen and Tougaard, 2020). Several buried valleys have been mapped outside the study area (Sandersen and Jgrgensen

(2016); www.buriedvalleys.dk (2020); Figure 1). The buried valleys were formed as elongated tunnel valleys underneath the
ice sheets, they are generally between 1 and 2 km wide and some of them have depths of more than 100 m (Jgrgensen and
Sandersen, 2006; Sandersen and Jgrgensen, 2017). These valleys are generally filled with younger Quaternary sediments. In
this region, the valleys mostly have two preferred orientations, one around WNW-ESE/NW-SE and the other around SW-
NE/WSW-ENE (Figure 1), with the first mentioned clearly visible in the present-day topography.
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Figure 1: The study area and available data, where a) display digital terrain model, geophysical data and outlined TI areas, b) an

orthophoto and geochemical data, and c) seia surface geology map (1 m below surface (Jakebsen-et-al—2011))(Jakobsen and
Tougaard, 2020)). Insets with map of Denmark and regional view of the study site with mapped buried valleys

(www.buriedvalleys.dk (2020)).
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3 Materials

Some data are specifically gathered for this study (tTEM and new boreholes, see Figure 1) while other existing data are freely
available through the Danish shallow borehole database “Jupiter” (Hansen and Pjetursson, 2011) and the Danish geophysical
database for onshore data “GERDA” (Mgller et al., 2009). All available data are shown in Figure 1 along with the terrain and

outline of the study area.

3.1 Geological and topographical data,

The digital elevation map presented in Figure 1a is available from Styrelsen for Dataforsyning og Effektivisering (2016). The
elevation map is resampled on a 25m x 25m grid such that adjustment with interpreted surfaces is seamless.

_The geological surface map (Figure 1c) of the surficial cover of Denmark is compiled from small pristine sediment samples
collected at c. 1 m depth using a so-called spear-auger. The mapping geologists interpret the origin and type of the sediment
in the field and classify a sediment-type following the current terminology described by Jakebsen-et-al {2011} Jakobsen and
Tougaard (2020). Samples are taken with a distance of 100-200 m to map the transitions between the different sediment types.
Afterwards the seilsurface geology-symbols are transferred to a master map, contoured and color-coded resulting in a
geological map sheet on a scale of 1:25.000 with a resolution of + 100 m (Figure 1c, https://eng.geus.dk/products-services-

facilities/data-and-maps/maps-of-denmark/ (2020))

Borehole lithological information (Figure 1a) is gathered from the Jupiter database to which lithological sample descriptions
have been reported since 1912. The borehole lithological samples are described and interpreted by geologists following
standards outlined by Gravesen and Fredericia (1984), including interpretation of depositional environment and

chronostratigraphy and thereby resulting in sediment types similar to those used in the geological mapping.

In our study site, a total 250f 18 specific sediment types are found in borehole descriptions and on the geological surface map
combined. To lower the number of variables in the geostatistical modelling and +apotentially later on in hydrological

simulations, the sediment types are grouped into five categories focusing on their hydrological properties {(Fable-1).—and

depositional environment (Table 1). For instance, the two till groups have vastly different hydrological properties because of

the overall grain size difference between clay tills and sand/gravelly tills. The partly organic postglacial sediments may show

variable hydrological properties. However, they are hugely important in terms of redox potential because of organic content;

therefore, they are categorized in one group.

Table 1: Lithology groups in the study area- i used in the geostatistical simulation. The sediment- type
abbreviations in the right column represent the Danish sediment characterization standards.
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Lithology groups — study area I
no. Group name SeilSediment type

1 Clay till ML, (L)

2 Meltwater sand/gravel DS, DS-DG, DG, G, S, TS, (O)

3 Meltwater clay/silt DL, DI, DV, (FL)

4 Sandy till MS, MG

5 Postglacial (partly org.) FP, FT,FS

6 Pre-Quaternary-clay ELSEHGLH)

7 Unknown BrUX

[ Formateret tabel
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3.2 Geophysical data

The tTEM (ertardground-based) and SKyTEM (airborne) are transient electromagnetic systems used for mapping subsurface
resistivity variations (Auken et al. 2019, Auken and Sgrensen 2004). The SKyTEM system carries the instrument, transmitter
loop and receiver coil in a sling load under a helicopter and is designed to map resistivity to several hundred meters depth. The
tTEM system applies the transient electromagnetic method in an offset-loop configuration which for the present study is
configured using a 2 m by 4 m transmitter loop and a receiver coil in a distance of 9 m, towed by an all-terrain vehicle (Auken
etal., 2019). The tTEM system is designed to resolve resistivity from 2-3 m depth to c. 70 m depth. Processing and inversion
of tTEM data follow in general the scheme for SkyTEM, described by Auken et al. (2009). The inversion of the data is based
on local 1D forward responses and spatial constraints between the model parameter forming a pseudo 3D model space (Auken
et al., 2015; Viezzoli et al., 2008).

The tTEM dataset has been collected in 2018. Although the coverage is rather patchy (< 50 % of the model area in Figure 1a),
it provides valuable information on the geological setting. The final tTEM information used in the geostatistical modelling is
the pseudo 3D model space moved to the closest grid node. Together with borehole lithological logs, tTEM represents the
basis for modelling the geology. A few deep boreholes are used for the correlation between resistivities and lithologies.

Although located outside the study area, the SkyTEM-data (Figure 1a) adds valuable information on the geological connections

to neighboring areas. A small survey of surface electrical resistivity tomography (ERT) (e.g. Loke etal. (2013)) gathered from
the GERDA database supplements the tTEM survey in the northern part of the study area.

3.3 Geochemical data

Redox conditions can be defined both by sediment colors, concentrations of redox sensitive elements such as dissolved oxygen,

nitrate, iron, and sulfate in water and the fraction of ferrous iron (Fel}) of the formic acid extractable Fe (Fel,+ Fel

(Ernstsen and von Platen, 2014; Hansen et al., 2016a, 2021; Kim et al., 2019). In this study, the sediment color was the primary

indicator to define redox conditions because it provides 1D profile information. The water chemistry, which provides point

scale information, was used to confirm and supplement the sediment color interpretations. The benefit of using the two types

8
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of data is that they provide independent measurements of redox conditions. The sediment color and water chemistry data were

extracted from the Jupiter database and the 9 new boreholes that were drilled in this study (Figure 1b).

Based on the sediment colors, oxic conditions are defined by red, orange, yellow and combinations of these colors. Gray, olive

240 and blue colors represent reduced conditions. Mixed colors between oxic and reduced colors (e.qg., yellowish gray) are defined

as N-reducing conditions. Within the catchment boundary, the sediment color data were available at 14 boreholes in the Jupiter

database and for the 9 new boreholes. Based on water chemistry, oxic is defined by dissolved oxygen greater than 1mg/L, N-

reducing is dissolved oxygen less than 1mg/L and nitrate greater than 1mg/L, and reduced is both dissolved oxygen and nitrate

below 1 mg/L and iron greater than 0.2 mg/L (Hansen et al., 2021). Based on sediment chemistry, the fraction of Fe/), over

245 Fell,+ Felll is close to 0 in oxic conditions and close to 1 fraction in reduced conditions (Hansen et al., 2021). The values in

between are interpreted as N-reducing conditions (Hansen et al., 2021). The water and sediment chemistry data were available

at 22 and 9 locations, respectively (13 in the Jupiter database and 9 in this study, see Figure 1b).
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4 Methods

4.1 MPS modelling

In this paper, we adopt a multiple-peint-geostatisties{MPS) simulation approach for quantifying the spatial uncertainty of the
subsurface. Geostatistical simulation generally provides a way of quantifying the spatial uncertainty through different possible
realizations of the subsurface architecture. These realizations are generated using stochastic modeling that accounts for the
spatial dependency between the model parameters. We choose MPS simulation over e.g. a two-point geostatistical approach
because it is generally more capable of producing realizations with geological realism in terms of correlation and coherency
of geological features {(Mariethoz-and-Caers;2015)-(Journel and Zhang, 2006; Madsen et al., 2021; Mariethoz and Caers
2015). Effectively reproducing coherent layers is key for a successful subsequent hydrological modeling. The expected

subsurface variability is portrayed in one or more training images (TIs). MPS simulation is then able to utilize these Tls to
generate different realizations of the portrayed subsurface through a stochastic sampling process. In total, these realizations,
stemming from the MPS algorithm plus TI, together represent the quantified prior information of the system. In our case, the
intuitive aspect of a TI, as opposed to a mathematical prior, is helpful for collaboration between mapping experts and
geostatisticians.

Many MPS algorithms exist today (Gravey and Mariethoz, 2019; Guardiano and Srivastava, 1993; Hansen et al., 2016b;

study we use direct sampling (Mariethoz et al., 2010) as implemented in the software package DeeSse (Straubhaar,-2019)-The
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matnreason-is-due-to(Straubhaar, 2019). The main reason is its ability to utilize a bivariate training image that allows for joint
simulation of geology and redox.

Simulations can be forced to match observational data creating conditional realizations (Chilés and Delfiner, 2012; Journel

and Huijbregts, 1978). Additional data not portrayed in the Tl enters the simulation setup as either hard or soft data. Hard data

corresponds to information not allowed to change between different realizations and is placed directly in the simulation grid.

Information from some boreholes can often be considered as hard data because it is fixed in space and can have a relatively

high resolution and accuracy. Hard data, in most cases, offers the first conditional nodes and patterns to be matched during

simulation, depending of course on the number of conditional points used. Consequently, hard data usually plays a significant

role in lowering the entropy of the final simulations. If data is not reliable enough (too uncertain) to be deemed hard data, they

can instead be treated as uncertain information (soft data), quantified through probability distributions. In DeeSse, soft data

are handled by introducing a penalty proportional to the soft data probability, such that it becomes difficult to find a match for
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290 agiven lithology group or redox condition if the soft probability is low and conversely easier if the soft probability is high.

(Mariethoz et al., 2015).

4.2 Ensemble statistics

We introduce the mode and entropy as summary statistics for the ensemble of possible models of the subsurface. For a discrete

probability distribution, the mode represents the most probable category in each voxel. The entropy, H, of a discrete probability

295 distribution with K outcomes is explicitly calculated as (Shannon, 1948): formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

H = =% logk(p(k)) p(k), @

where p(k) is the probability of the kth outcome. In our case, the entropy is calculated in each voxel where p(k) is the number
300 of times a certain category appears in the realizations divided by the number of realizations. The entropy reveals insights to
the variability and hence the certainty of a specific outcome of each voxel. For H=0 we have full certainty of the voxel category

and conversely for H=1. The mode and entropy are hence comparable to the mean and variance in Gaussian statistics.
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5 Modelling setup

In the following, we present the methodology progressing through the modeling workflow of the study area. The workflow
consistconsists of three phases: 1) Preparing input data, 2) data analysis and setup including delineation of geological elements,

construction of training images, preparing hard and soft data as well as setting up the simulation grid, and 3) ruarunning the
MPS simulations:simulation algorithm. A schematic overview of the workflow is seen in Figure-2,Figure 2. The following

sections primarily describe phase 2.
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JFigure 2: Schematic overview of the proposed workflow from input data (left) through data analysis and simulation setup (middle) formaterede: Skrifttype: +Bradtekst (Times New Roman), 9

formaterede. Skrifttype: +Brgdtekst (Times New Roman), 9

and geostatistical simulation (right). /[
formaterede: Skriftfarve: Brugerdefineret farve
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The simulation grid is discretized with a voxel resolution of 25m x 25m x 2m. The digital elevation model constitutes the top
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Table 2: Summary of number of voxels for simulation grid and Tls. The relative sizes of the Tls are calculated as the ratio between
the number of voxels in the T1 and the number of grid voxels.

Number of voxels Number of voxels in TI Relative size of
TI
Quaternary sequence (Element 1) 143698 voxels 54258 voxels 37.76%
Buried valley (Element 2) 57015 voxels 12449 voxels 21.83%
Total 200713 voxels 66707 voxels 33.24%

5.2 Geological elements

The modeling domain is split into geological elements in order to subdivide the subsurface into separate volumes based on the

geological event chronology. In this way, smaller volumes with different lithology and structure can be treated separately in

the geostatistical simulations. The geologist interprets and delineates the geological elements of the subsurface using the

geological, geophysical and topographical input data. Three distinct geological elements are identified in the study area, see
JFigure 3a; (1) An upper Quaternary succession of sediments havingwith an erosional boundary to the pre-Quaternary sediments
below, (2) A large, deeply eroded, buried tunnel valley and (3) Pre-Quaternary Paleogene clays defining the bottom of the
groundwater system. The simulation grid is chosen to include only the Geological Elements 1 and 2 (see Figure 3b). The third
geological element, the Paleogene clay, constitute a thick non-penetrable layer, and as its top defines the lower hydrological
boundary of the area, geostatistical simulation has not been performed on this geological element. We find it reasonable to do
so because the Paleogene clays are homogeneous and very thick. This type of clay is generally found as a good electrical
conductor in Denmark, and because the TEM method is sensitive to good conductors, the depth to the top of the layer can be
determined with low uncertainty (e.g, Danielsen et al. (2003)). Fhe-Delineation of the Paleogene clay surface is-hence-trivial
te-acguire-from the tTEM data; is therefore straightforward as long as it can be found within the depth of investigation of the
tTEM method (Vest Christiansen and Auken, 2012). Furthermore, in the study of Barfod et al. (2018), Paleogene clays were

given a discrete value in the MPS simulation but showed only little variability in the spatial extent.

We assume independence between the two uppermost geological elements because they appear to represent different
geological events. The buried valley to the north is apparently incised into both the Quaternary sequence and the pre-
Quaternary clay below, and the infill is clearly different compared to the Quaternary sediments to the south. The buried valley
(Geological Element 2) has a more complex infill with individual layers of limited extent compared to the Quaternary layers
of Geological Element 1, which show less complexity and more pronounced stratification. more or less undeformed by the

glaciations. The geological events that formed each element are therefore considered different although they contain the same
lithology groups, and this justifies the assumption of independence from a geological point of view. The buried valley to the
north takes up roughly a quarter of all voxels whereas the Quaternary sequence occupies the main part of the simulation grid
(Table 2),
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Figure 3: a) Conceptual drawing of SW/NE profile through the study area. b) Simulation grid—_showing the two main geological

elements used for the geostatistical simulation.

16

~| formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)




(a) Tl geology T — o

45 km

Postglacial sediments .cxaynu .SandyTill .Mekwatersand .Me!lwalerclay

(b) Tl redox [ ——— e R

200 M

. Oxic . Reduced . Reducing

Vertical exaggeration: 6.4x

17

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)




(a) Tl geology

V7

T Burled valley TI (T12)
Quaternary sequence TI (TI1) 5

® € [ g

ClayTill Meltwater sand

&

Meltwaterclay  Sandy Tl Postglacial sediments Vertical exaggeration: 6.4x

(b) Tl redox

Quaternary sequence TI{Tl1)

R f |
/ b Buried valley Tl (Ti2) I

Onic N-Reducing Vertical exaggeration: 6.4x

(c) Lithology-
resistivity
T 3

Quaternary sequence THTIT)

20 ™

Buried valley TI{TI2)

yflevation

':’g LMO!M

® @

Zone | Zone2 Zone3

Vertical exaggeration: 6.4x

Figure 4:-Fraining-images: a) Geology Tls overprinted on the simulation grid. b) Redox Tls overprinted on the simulation grid. c)

Zones in Tls used for resistivity-lithology relationship inference

18

{

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)

A

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)




360

365

370

375

380

5.3 Training images,

The training-images{THTIs providing information about the geology and redox conditions within the geological elements are
designed in a sequential workflow (Figure-2)-Figure 4a,b). At first, two geology TIs are generated, one within each of the two
geological elements. The first step is to appoint a smaller part of the simulation area for detailed geological characterization
and interpretation using a voxel modelling approach, see Figure 4a. The lithological population of the voxels is based on the
conceptual understanding of the geological event chronology, glacial processes forming the area, and an interpretation
combining borehole information, digital elevation maps, surface geology maps and the spatially distributed geophysics

{FEM)-using regional geological understanding. The criteria for T1 area selection in this specific study arewere dense data

coverage of geophysics and especially the availability of boreholes that penetrate the entire modeling domain with good quality
lithological legs—Likewise-descriptions. For despite having a better geophysical data coverage in the southernmost part of

study area according to Figure 1a, the Tl in the Quaternary element is chosen based on sufficient geophysical data coverage

and having the two main boreholes within its borders. The T section needs also to represent the expected variability in geology,

both in vertical and horizontal extent., which is another selection criterion. In reality, it is not possible to capture the total

variability and heterogeneity in the Tl-space, due to its finite size, but the important features must be represented. \We-enly

expeetthe=In TI1, smooth glaciotectonic deformation of the Quaternary units due to ice push from the northeast, is modelled.
Likewise, smaller incised buried valleys in the Eocene clay with mostly sandy tHgreup-(light-green)-to-appear-atthe-surface

of-theinfill is included based on the tTEM spatial data coverage, see Figure 3a. TI2 represents the sedimentary infill in a large,

buried valley (Elementgeological element, 2)—Fo-accommedate-this-the-sandy-tilHs-not presentin-the—H), where also more

regional information from nearby buried valleys of the same generation was taken into account (see Figure 1b). This

information combined with the tTEM data coverage, two boreholes within the valley north of the study area, and the surface

geology maps, has been the basis, for simutationthe voxel modelling of T12. The complexity in the infill of the buried valley is

represented by individual layers of limited extent as seen in Figure 3a,
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Figure 5: Profiles of redox conditions for sand and clay for each TI area based on geochemical observations. The redox
interpretation based on the sediment colors are done separately for sand (a) and clay (d) of the Quaternary sequence T1 and of the
Buried valley Tl (g and j, respectively), and the number of boreholes used in the interpretations are shown in b, e, h and k.
respectively. The number of boreholes of each redox color category (oxic, mixed oxic, mixed reduced and reduced colors) are
normalized and shown in %. The redox interpretations based on water and sediment chemistry of sand and clay of the
Quaternary sequence and buried valley Tls are shown in ¢, f, i, and |, respectively.

The geological training images are then translated into redox training-imagesTls by integrating-geechemicalupscaling the
redox interpretations of the sediment colors and water chemistry dataas described in section 3.3 (Figure 4b)—Nete-that-in-case

of-the-buried-valley-element-there-are-no-bereholes- and Figure 5). The sediment color data were first discretized into a 1m-

interval and then the redox condition for each interval was assigned according to the sediment color. The interpreted data were

summed up separately for sand and clay for each Tl area to produce depth profiles of redox conditions (Figure 5a, 5d, 5g and

5]). For the Quaternary sequence and buried valley Tls, 13 and 7 boreholes are available with sediment color descriptions
within-the-catehment—TFherefore;(Figure 5b, 5e, 5h and 5k), respectively, and 5 and 3 boreholes fremare available with water
and sediment chemistry (Figure 5c, 5f, 5i and 5I), respectively.

The redox interpretation revealed that in the Quaternary sequence, oxic conditions are much deeper in sand (at least 20 meters;
Figure 5a and 5c) than in clay (4-6 meters; Figure 5d and 5f). We postulated that the extersierQuaternary sequence is the
geological window type of redox architecture proposed by Kim et al. (2019): the sandy units exposed to the surface act as
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‘geological windows’, which allow transporting oxidants (i.e., oxygen and nitrate) via gas and water into the deeper subsurface,

resulting in development of a deep oxic zone below a reduced clay layer. In the Quaternary sequence area, all the boreholes

for the water and sediment chemistry were collected in these geological windows, which are predominantly in oxic conditions,
405 confirming our interpretations. In the buried valley-structure-outside-of-the-catchment-area-were-selected—and-the-sediment
color-data-were-extracted, the oxic layer was relatively shallow compared to that of the Quaternary sequence. This shallower

oxic layer may be attributed to a shallower and temporally invariant groundwater table in this area compared with the
Quaternary sequence. Lateral transport of oxidants (i.e., oxic groundwater from the Jupiter-database--upslope) is not expected

in this catchment, due to the clay-dominant conditions of the subsurface structure. We concluded that in the buried valley,

410 oxidants are delivered vertically via water infiltration or gas diffusion only, resulting in the planar type of redox architecture

(Kim et al. 2019).

Based on the-eriteriaforthe-redoxinterpretation-outhned-in-the-section-these interpretations, we assigned each lithology group
with a probability of belonging to each of the three redox conditions at the surface (Table 3). 80% of the meltwater sand in the

415 geological windows (sand units connected to the surface) of T11 were assigned to be oxic down to 20 meters, and the rest was

equally distributed between N-reducing and reduced conditions, respectively, to allow variability in simulations. These N-

reducing and reduced conditions were mainly located in lower elevations because of the higher possibility of water saturated

conditions. For the connected sand, with increasing depth, the fraction of oxic voxels was assumed to be decreased by 10%

compared to that of the overlying layer for the 20-30-meter interval and by 20% for depth below 30 meters. The sand voxels

420 that are not connected to the land surface was assumed to be reduced. The N-reducing conditions is always located at the

boundary of oxic conditions in the profiles the fraction was limited to 10 % of the total sandy voxels of each layer in the T|s.

The rest was assigned to reduced conditions. For clay till and meltwater clay of TI1, 60%, 20%, and 20% of the first layer

voxels (Table 3) were attributed to oxic, N-reducing, and reduced conditions in the order of elevation (lower elevation =

reduced condition) due to proximity to streams. With increasing depth, the fractions of N-reducing and reduced conditions

425  were assumed to be increased by 10% and 20%, respectively up to 6 meters below the land surface. Below 6 meters, clay was
always reduced.

For meltwater sand and sandy till of T12, 80%, 10%, and 10% of the top layer (Table 3) were attributed to oxic, N-reducing,
and reduced conditions in the order of elevation. Below the first layer, the fractions of the oxic and N-reducing voxels then

430 were assumed to be decreased by 70% and 50%, respectively, and the rest was assigned to reduced conditions. Clay till and

meltwater clay of the buried valley TI, 60%, 20% and 20% of the top layer (Table 3) were attributed to oxic, N-reducing, and

reduced conditions in the order of elevation. The fractions of oxic and N-reducing voxels were assumed to be lowered by 60%

and 20%, respectively, compared to those of the overlying layer with increasing depth. The rest was assigned reduced

conditions.
435
Postglacial sediments, which are freshwater deposits often rich in organic material (Jakobsen and Tougaard, 2020), were

assigned almost exclusively with reducing conditions (90% probability). Like the sandy and clayey sediments, we distributed

the remaining 10% probability equally among the other two redox conditions to allow for some variability.

Table 3: The probabilities for redox conditions (oxic, N-reducing and reduced) based on geochemical data-the-bereheleinformation — [ Formateret: Billedtekst
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for-each-geological-element—observations in Figure 5 for the top (surface) layer of the training images. The probabilities for each
lithology group sums to one.
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The described sequential workflow of geology and redox T construction ensures consistency between the two training images

in the joint simulation of the two variables. Approximately one-fourth of TI1 reaches outside of the study area whereas the
whole of TI2 is located within. We intentionally do this in-erder-to ease the construction of TI1 as the Fls:surrounding area to
the west shows similar geological variability to the Quaternary sequence and therefore provide helpful information during the

creation of TI1. Additionally, this information is independent and allows more possible matching configurations in the Tl
during simulation. TI1 is about one third of the size of the-Quaternary sequence element 1-and that of TI2 is one fifth of the
buried valley element 2-(Table 2). The Tls used in this study have different statistical properties depending on the location, i.e.

they are non-stationary. For instance, visually it is easy to confirm that the probability of finding an oxic redox condition in

the lower part of the T1 is much different than in the top. A non-stationary Tl is not unacceptable but can have some unwanted

effects when combined with MPS algorithms expecting a stationary T1 and will be discussed later.

5.4 Conditional data
5.4.1 Hard data

The geological surface map and the borehole data (both lithology and redox) were treated as hard data in the simulation grid
and are shown in Figure 6. The redox conditions-are grouped-into-the three main redox categeries:-oxic, nitrate reducing, an
FedHGedrl Thowwallc ind: Mrhn araa ic d min

and anbys anawwnll A
g ¥ &

The seilsediment types that were grouped into lithologies (Table 3) were placed at the top voxel in the simulation grid,
corresponding to the surface. We do not explicitly use the entire geological map as hard data. The borders between the lithol ogy
polygons of the soil-map-were-originally-delineated-based-on-soil-samples,-geomorphology,-and-topography-(Jakobsen-et-al

2041)-surface geology map were originally delineated based on sediment samples, geomorphology, and topography (Jakobsen

and Tougaard, 2020). In general, it means that the closer you are to the center of a polygon, the more certain you are of the
correct lithology. Conversely, the boundaries between polygons represent the least certain parts of the map. A buffer zone is
therefore adapted between the polygons to express the uncertainty of the geological surface map. The buffer zone is simply
created by checking all neighboring voxels for each voxel in the surface map. If the current voxel shares a value with all
surrounding voxels it is likely situated safely within a polygon and is kept as hard data. Conversely, if one of the neighboring
voxels provides a mismatch, the current voxel is likely close to a polygon boundary and is not included as hard data.
Alternatively, a negative buffer around each seil-unitpolygon could be adaptedadopted.
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The redox conditions are grouped into the three main redox categories; oxic, N-reducing, and reduced. The wells indicate that

the area is dominated by reduced conditions. Oxic conditions are mainly present in the upper meters of the simulation domain

and only one well displays the reverse trend with an oxic part below reduced conditions due to heterogenous geology.

5.4.2 Soft data

As-mentioned-abovewe\We use the geological surface map (Figure 1c) as a soft data indicator of lithology in the buffer zone.
Geological complexity is one of the main drivers of uncertainty in geological mapping along with the amount, quality and
spatial distribution of data (Keefer, 2007). Accessibility is an important factor to consider in terms of both amount and spatial
distribution of data (Keaton and Degraff, 1996). In Denmark, however, neither terrain nor private property poses a major issue
when mapping surface geology. On the level of investigation, the geology in the study area is relatively simple, alleviating
some of the uncertainty due to complexity. The main source of uncertainty in the surface geology maps comes from
interpretations of sediment types from the small samples and the final shape and size of polygons. We generally consider the
surface geology as very certain data and thus provide all values 0.87 probability of being true. The last 0.23 probability is split
equally between the four other lithologies—and—henee, which reflect the uncertainty level of

misinterpretationsRegardlessmisinterpretations. Regardless, because much of the geological surface map is used directly as
hard data, the quantified uncertainty only affects the buffer zone as outlined earlier._For the redox domain, we translate the

geological surface map to soft redox data using the soft probabilities provided in Table 3,
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tTEM 3D resistivity grid is converted into soft probabilities of geology. This requires a known lithology-resistivity relationship,
which here is established in two parts. Because
Firstly, because the geological trainingimagesTls are based on interpretations of resistivity data in combination with geological

information, many voxels in the Tls have a corresponding resistivity value in the resistivity grid- (Figure 7), Local histograms
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for the study area are built for each lithological group by collecting all the resistivity values in the two geology Tls. Fhe-final

pooled-histogram-for-the-two-Tls-is-shown-in-Figure7a—OveralWe divide the Tls into three zones to account for some of the
non-stationarity with depth that affects this relationship (Figure 4c). The upper 4 meters make up zone 1 and is the only place

where we expect postglacial sediments and sandy till. Because both of these lithology classes contain so few counts in the Tls

they would otherwise get underrepresented in a relationship covering the entire TI. Zone 2 covers the bulk part of the TIs from

4 m below surface and down to zone 3 covering the last 10 m of the TIs. Zone 3 contains very low resistivities from the

underlying conductive Paleogene clay that are “smeared” into the resistivities of the above lying material due to averaging

during inversion (dark blue colors in Figure 7). This smearing effect happens at large contrasts in the subsurface resistivity

and generally increases with depth as the resolution of the data decreases (Vignoli et al., 2015). This affects the inference of

the lithology-resistivity by lowering the overall resistivity of meltwater sand/gravel that mainly constitutes the lower parts of

the study area. By separating the last 10 meters in a disconnected zone from the bulk zone, we make sure that these low

resistivities do not affect the overall lithology-resistivity relationship in zone 2. The final pooled histograms for the two Tls

are shown in Figure 8a-c for each of the respective zones. For all zones, relatively low resistivities are attributed to clay-rich

deposits whereas relatively high resistivities are attributed to sandy lithologies, although meltwater accountsfor-many-of-the
lewerresistivities-counts—Heowever-the-histogramsand/gravel accounts for many of the lower resistivity counts in the zone 3
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relationship due to the smearing effect. Generally, the resistivity of clay till is so high that it corresponds to much of the

meltwater sand/gravel resistivities. Meltwater clay/silt is the most distinctive lithology group tending towards rather low

resistivity values. The histograms, confirms the common issue of lithologies overlapping in the resistivity domain (Barfod et
al., 2016; Schamper et al., 2014), The local-clay-till-resistivities-are-so-high-that-they-correspond-to-mueh-of-histogram with

the meltwatersand/gravelresistivities—The-best separation is seen in the-meliwaterelay/sitt-categoryzone 2, which tendste
haveratherindicate the importance of detaching the, low resistivity-values-resistive meltwater sand in zone 3, The sandy till in
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zone 1, is associated with some of the highest resistivity values found in the T area, whereas the postglacial sediments cover
a large spectrum within the most ambiguous resistivity values. For each bin in theg histogram, we summarize the size of each
lithology group and stack them. If we then normalize with the total number of counts within that resistivity bin, we get a
cumulative distribution of the lithologies (Figure 8b)—Becaused-f).

Secondly, because there are very few counts for the low and high resistivities-{<4Qum-and =120Q#);, here defined as <50 0.5%
of the total counts for each zone, we let an a priori established relationship govern these values,-consisting-ofequal-probability
between-the-clayey-lithelogy-groupsfor-. We assume that low resistivities and-vice-versaforsand-andare associated with clay
till and meltwater clay/silt, whereas high resistivities {Figure-7b).are associated with sandy till and meltwater sand/gravel. This
is based on general observations from Barfod et al. (2016) and Schamper et al. (2014). The ebvious-differenceproportion
between e.g. the generaltwo low-resistive lithology groups are found by retrieving the proportion between clay till and fecat
{H-based)-relationship-is-that meltwater sand-can-obtain-lewclay/silt in the respective zone of the Tls (Figure 4). For instance
there is no meltwater clay/silt in zone 1 of the TIs and hence we expect that low resistivities using-the-are only attributed to

clay till (Figure 8d), while meltwater clay/silt covers approximately 25% among the two low-resistive lithology groups in zone
2 (Figure 8e). To smooth the transition between the relationship inferred relatienship-(from the Tls and the a priori distribution,

we weight the adjacent 10 bins between the two relationships. The weights are distributed linearly such that below the cut-off

of 0.5% only the a priori relationship is used and 10 bins from there the relationship relies solely on the inferred relationships

from Figure 8a-c}.. Regardless, the effect of the a priori relationship is miniscule as mere-than-98-5in all zones approximately
95% of all resistivities in the simulation grid are supported solely or at least partially by the inferred relationship. The remaining
{<1.5%)% is supported solely by the a priori established relationship as seen in the total distribution of all resistivities in the

simulation grid Figure 8c.,
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Figure 8: Resistivity-lithology relationships illustrated as a)-histegram)-c) histograms of resistivity for each lithological group based
on the training images (Figure 4) and the corresponding values in the 3D resistivity grid (Figure 7), bd)-f) TlI-based cumulative
distribution for all lithological groups for each bin and a priori relationship for rare resistivities €g)-i) distribution of resistivity
values in the full-corresponding zone in the simulation grid (Figure-6)Figure 9f) overprinted with the lithology-resistivity relationship
established in bd-f).

JFigure 9 presents the final soft probabilities each of the k lithology classes p;, (k). In zone 2 and 3 (Figure 9f) the inferred

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gré - 10%)

(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)

lithology-resistivity relationships from Figure 8e and Figure 8f are used to convert the resistivity grid in Figure 7_to soft

formaterede: Engelsk (USA)

probabilities p,rgy (k). At the surface the soft probabilities from the surface geology ps, (k)_—presents—the—finalsoft
. . i :

are combined with probabilities from the resistivity data to obtain the final soft probabilities p; (k):

Psg (K)perEM(K) (2)

k) =
Prot (k) ¥ Psg(OPeTEM(K)

lithologies. The stronger colors at the surface represent the overall certainty level of 0.87 from the surface geology discussed

previously.-In-voxels-where-soft-probability-information-is-available-from-both M-and-surface-geology—each-informa
is-used-aceordingto-equation2. The tTEM data is largely more ambiguous in guiding the soft probabilities as evident from the
resistivity-lithology relationship in Figure 8 and is mostly within the color range of yellow and red in Figure 9a-c. The

dominance of the clay till and meltwater sand/gravel (Figure 9a-b) in the study area are apparent in the soft probabilities when
compared to e.g. meltwater clay/silt which is expected primarily in areas of lower resistivities. We do not expect much
meltwater clay/silt at the boundary of the modeling domain as portrayed in the training images. The low-resistivities-of-the

sand/silt to lower resistivities-and-it, but may not affect the results more than the general uncertainty in the boundary estimate,

which depends largely on the tTEM resolution. Due to the low count of sandy till and postglacial sediments (Figure 9d-e) in
the Tls the probability for these lithology classes is considerably lower than the three main classes of the study area.

Based on these soft probabilities a mode and entropy is calculated and shown in Figure 10. The entropy is elearly
lewestgenerally low at the surface where the soft information from the surface geological map is present. Similarly the mode
is dominated by the soft information from the surface geological map. Due to the overlapping reattionshiprelationship in the
resistiviy domain (Figure 8), the soft data based on the tTEM data is not as informative as-at the surface and heneedoes not

help to lower the seft-data-entropy is-highermuch further. In general the entropy of the tTEM data ranges between 0.8 (yellow

color in Figure 10b):) and 0.3 (red color). In areas of particularly high resistivity the entropy drops even lower (black color),

implying that the tTEM data provides high certainty on the lithology group. The overall pattern in the mode model (Figure

10a) reveals a slight tendency to form coherent layers, especially seen in the buried valley. However, in many places the mode
of the soft data is also raher patchy and changes between small clusters of either meltwater sand or clay till.
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A small fraction of soft data with probability >= 50% for a single category is converted into hard data. This makes sure that

soft data are not underrepresented in MPS simulations which is a recurring problem in MPS simulation (e.g. Hansen et al.

2018). The conversion rate is shown in Table 4.

Table 4: Conversion rates for soft data in the conditional realization.

Soft data 0.5<= 0.6 <= 0.7 <= 0.8 <= 09<=
probability for probability | probability | probability | probability | probability
single category <0.6 <0.7 <08 <0.9 <1

Conversion rate of 2% 3% 4% 5% 6%
soft to hard data
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Figure 9: a-e), Soft probabilities of geology for the buried valley element. Soft probabilities calculated from the surface geology and

tTEM data available. Note the smaller range in the color scale of the sandy till (d) and postglacial sediments (e).
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JFigure 10: a), Mode and b) entropy for soft data from Figure 9. Low entropy (certainty) is marked with black color, while white

Lcolors represent high entropy (uncertainty),

5.5 Parameterization of the simulation algorithm

In direct sampling, the nodes in the simulation grid are visited sequentially. The training image is consulted at each iteration
to find a suitable candidate at each visited node based on already simulated (conditional) nodes. To specify how this procedure
is performed, several fundamental parameters need to be set in direct sampling:
e The number of conditional data to take-inte-aceeuntconsider when searching the Tl-influeneing, which influences the
variability. Here, a maximum of 20 neighboring nodes are used which-sheuld-preventpreventing verbose copying

from the FsT1s happening too often.

e The distance measure determining how well the candidate value match the conditional nodes in the simulation grid.
Because both geology and redox are categorical variables we use the number of mismatching nodes as distance
measure with a tolerance of 10% mismatch. For 20 neighboring nodes, we hence allow t#62 conditional nodes to
differ between the T1 and the simulation grid to accept the currently proposed value.

e The maximum number of iterations allowed to find a suitable match within the TI. WeBecause the Tls in current

study are of a reasonable size, we allow a scan of the entire T in-erder-to find a suitable match. This alleviates some

of the problems with the non-stationarity mentioned earlier. If a match is still impossible to obtain, the candidate

providing the lowest misfit is retrieved and “flagged”. During post-processing the flagged cells are simulated again,

to-minimizeusing the same simulation setup and Tls. Because the larger structures are placed during the initial

simulation, the flagged cells in postprocessing have a higher probability of finding a matching event in the training

image, which minimizes the appearance of simulation artifacts.

e The path at which the simulation grid nodes are visited needs to be selected. We choose a random path as is often
used in MPS simulation. When combined with conditional hard data, the random path preferentially first visits nodes

that are in the vicinity of hard data. This is achieved by calculating distances to hard data and then randomly drawing

nodes according to these distances to create the visitation path (Straubhaar, 2019). This ensures that especially hard

data from the surface have a higher impact on the final realizations.

As pointed out by Tahmasebi (2018), a guantitative evaluation of the performance of MPS is still unresolved and the effect of

the simulation algorithm parameterization remains an area of active research (Juda et al., 2020). To ensure that the combination

of TI and MPS algorithm produce the sought-after spatial variability, we simulate two independent realizations without

including the conditional data, i.e. two realizations from the prior model. We adopt the heuristic strategy of Hayer etal., (2017),

making sure that the realizations from the prior model are in accordance with and represent our expectations of both redox and
geology. Such two unconditional realizations from the prior model are shown in Figure 11. The spatial variability and patterns

seen in the Tls (Figure 4) are generally represented for both redox and geology. As expected in the TI and conceptual model

for geology, the prior realizations show primarily horizontal stratification. In the buried valley infill the extent of geological

layers and redox structures is more limited than in the Quaternary sequence, which is also in accordance with our conceptual

understanding. In the Quaternary sequence, the geological layer order is correct with clay till predominantly found near terrain

while meltwater deposits are the main constituent of the deeper parts. Both sandy till (black) and postglacial sediments (blue)

only occur near the surface in accordance with the Tls, but more infrequent than portrayed.

For redox, the layer order from the Tl is likewise preserved in the unconditional realizations such that oxic conditions are

found primarily at the surface with increasing N-reducing and reduced conditions at lower depths. The prior model also

captures the possibility of secondary redox zones from geological windows that are portrayed in TI11. N-reducing conditions

formaterede: Engelsk (USA)

formaterede: Engelsk (USA)

| formaterede: Engelsk (USA)

formaterede: Engelsk (USA)

(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

formaterede: Engelsk (USA)

(
(
(
(
{ formaterede: Skriftfarve: Brugerdefineret farve
(
(

formaterede: Engelsk (USA)

o U U D

[ formaterede: Engelsk (Storbritannien)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154))

are found adjacent to oxic conditions at the surface and not in the bottom of the simulation domain in the unconditional
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realizations. The overall redox conditions can be visualized by plotting the accumulative probability for redox conditions as a

function of depth, constructed by summarizing over both realizations, which hence provides the 1D marginal distribution in

all voxels. This marginal distribution is accumulated with depth as shown in Figure 12. Less oxic and N-reducing conditions

(orange and green) are simulated in the prior model at the surface and does not stretch as far down as portrayed the Tls (Figure

12a), which can also be visually confirmed comparing Figure 4b and Figure 11b and f.

Due to the strict vertical layer ordering in the TI, the non-stationary characteristics are preserved in the unconditional

realizations despite the expectation of a stationary training image in MPS. We suspect that the full scan of the training image
helps to provide the necessary configurations to enable a more non-stationary output in the prior realization. However, the

MPS algorithm cannot fully capture all the non-stationarity of the Tls as there is a tendency to simulate less oxic conditions at

the surface along with sandy till and postglacial sediments being underrepresented. Furthermore, the size of the TIs may hinder

the reproduction of large-scale connected structures such as the oxic conditions at the surface (de Vries et al., 2009). This

tendency is hence beyond immediate remediation by changing any of the fundamental parameters in direct sampling but can

instead be guided by the incorporation of conditional data in the posterior model (Barfod et al., 2018). In summary, we conclude

that the current parameterization of the direct sampling algorithm provides the spatial variability that fits our understanding of

the system, albeit with some slight caveats. With the current simulation setup flagging occurs for approximately 8 % of the

cells during initial simulation and 4 % after post-processing. We emphasize that the unconditional realizations represent the

prior information of the system, not the Tls nor the exact parameters chosen in the DEESSE algorithm.
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Figure 11: Two unconditional realizations from the prior model. a-b) One realization of jointly simulated geology and redox c-d)
The same realization sliced in the X and Y direction. e-h) Same figure configuration as in a-d but for a different realization.
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6 Modeling results «—

In this section, we present the modeling results from the set of posterior realizations of both geology and redox generated-with
MpPSwhere the information from the prior model is conditioned to the data. We condition the simulation—Figure-10 to the hard

and soft data presented in section 5.4.

the posterior model. The impact of introducing the conditional data is immediately seen at the surface of the geology

simulations (Figure 13a,e), which is guided to a large degree by the information from the surface geology map. The architecture
stays relatively fixed between the realizations, and variability is predominantly small-scale. Given the high amount of

conditioning data, this is not unexpected. OeeurrencesofThe main part of the Quaternary sequence element is covered by an

approximately 8-10 m (sometimes reaching more than 20 m) thick clay till, followed by meltwater deposits. These meltwater

deposits exhibit a shorter correlation length than in the prior model as seen in Figure 13g. The lateral extent of layers in the

buried valley is less than in the Quaternary sequence, but not as significant as in the prior model. In general, the amount of

meltwater clay/silt in the posterior model is lower than in prior model and the realizations consist mostly of either clay till or

meltwater sand/gravel. This change is due to information from the geology soft data which is heavily dominated by clay till

ata is particularly dominating the realizations

with meltwater sand/gravel causing low variability between the two realizations as seen in e.g. Figure 13a,e. Just northwest of

the high resistive zone in the buried valley is an area with more ambiguous resistivities which leads to greater variability and

more dependency on the prior model. The bottom of the simulation domain is mainly made up of meltwater sand/gravel which

is likely information stemming from the prior model.

Due to the joint simulation of geology and redox in the current setup, the overall redox architecture in the realizations is

coherent with the geology as outlined in the TI. For example, postglacial sediments are attributed to reducing conditions and

meltwater sand/gravel is likely oxic at the surface. This coherency explains the predominantly oxic conditions at the surface

seen in the sandy part of the buried valley (Figure 13b,f). In the Quaternary sequence, the clay till at the surface show both

oxic and reduced conditions as indicated in the Tls (Figure 13d). Oxic conditions are clearly more present at the surface of the

posterior model than in the prior realizations. The oxic conditions are distributed in the low gradient parts of the simulation

domain, whereas reduced conditions are found along depressions in the landscape such as valleys and streams (Figure 13b),

which is in good accordance with our geochemical understanding of the system. The entire posterior redox probability profile

in Figure 12c also resembles the TI profile better than the prior model. Because there is no soft data aiding the occurrence of

N-reducing conditions in the posterior model, it inherits the capacity of simulating N-reducing conditions from the prior model

and is simulated less than in the T1 profile from Figure 12. Thus, N-reducing conditions are also simulated adjacent to oxic

conditions as in the prior model. The overall redox architecture is in place with planar type redox conditions in the buried

valley and geological window type conditions in the Quaternary sequence (Figure 13d). However, sole voxels differentfrom

of-the-simulation-setup-and-are-as-such-consideredof oxic conditions in the deeper parts of the realizations appear as unwanted
simulation artifacts-_(Figure 13h). Because these artifacts happen infrequently, are tiny and are surrounded by reduced
conditions, we argue that for N-retention simulations these artifacts may be negligible.
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In total, we simulate 100 realizations simitartelike those presented in Figure 13-—Fhe-rmodeie., which together represent the

in-full posterior model. To summarize the posterior

the hard data is-placed-directly-in-the-simulation-gridprovided from the surface geology map. The more uninformed parts of
the surface (lighter colors) correspendscorrespond to the buffer zone in the hard-data—Again,-mode-gives-the-most-probable
outcome-in-these-voxels-but-the-high-entropy-tels-ussurface geology map. The entropy is usually around 0.2-0.3, indicating

that most realizations of the posterior model provide the same outcome in the buffer zone. In few places along the buffer zone

an entropy level of 0.8 is reached, indicating that other categories are almost equally probable- to the one shown in the mode
model. This confirms the qualitative results from inspecting the individual realizations—Fhe-mode-of the-geclogy-does-net

that the effect of introducing MPS-via-Flsprior information and hard data inereasesincrease the information content (lowers

entropy) of the final models drastically compared to the soft data only QFlgure 10). For the lower part of the simulation domain,

-posterior model shows higher

entropy than at the surface. This means that the mode found in this region is usually more uncertain. Fhe-effect-ef-In some
areas of high resistivity, we also see very low entropy at depth, where the soft data provides the main architectural input and
the posterior mode model resembles the soft data mode. The effects of introducing the training-image-and-hard-dataprior
information for the architecture is clearly seen in the coherent structures produced in the posterior mode in contrast to the

patchiness of the mode in Figure 10a.

FheThe redox mode does not display some of the minor simulation artifacts seen in the individual realizations, because these

are averaged out over many realizations. This imply that simulation artifacts are not reoccurring in simulations and hence no

overall bias is found. Instead, we do see remnants of the converted oxic soft data at the surface of the mode model (Figure

14b) with zero entropy (Figure 14d). This is clearly an unwanted side-effect of the soft data conversion, since these sole oxic

voxels are not in accordance with the overall pattern of reduced conditions along the streamlines and valleys. The redox mode

shows few N-reducing conditions, in accordance with the redox depth profiles shown in Figure 12¢, demonstrating the

inclination to simulate either oxic or reduced conditions in the posterior model.

Overall, the entropy of redox is showing a reverse pattern to that of geology. Fhe-Counter intuitively, the redox entropy is
highest near the surface and decreases with increasing depth—espee@a#y—the—buﬂed-vauey (Figure 14d)-Ceunter-intuitively, the

-d). One could expect the highest
redox uncertainty at deeper depth because the density of the hard data is much higher near the surface and for the deeper part
of the architecture, the geochemical data is rarely available. However, the entropy sharply decreases in the reduced zone
beneath thereducing-zene.a certain depth. This pattern_instead fits well with the conceptual understanding of the redox

45

A

A

|

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

|

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Gr& - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)

formaterede: Skriftfarve: Brugerdefineret farve
(RGB(43;87;154)), Mgnster: Ingen (Grd - 10%)




825

830

structure evolution: oxic conditions are developed as oxidants (e.g., oxygen and nitrate) infiltrate from the root zone to the
subsurface where reduced layers are present. Therefore, a redox front propagates downward and under homogeneous
conditions with vertical flow of water, it would be unlikely to develop oxic conditions below the redox front. While the spatial
heterogeneity of the geological settings of the near surface environments at various scales (pore scale to landscape) has been

well documented (e.g. Baveye et al., 2018; Groffman et al., 2009; Sexstone et al., 1985), implying highly heterogeneous redox

conditions in the shallower depth. The sharp decrease in entropy of the buried valley take place due to the planar redox type

domain in the buried valley, whereas the possibilities of geological windows in the Quaternary sequence makes the high

entropy section develop further down. Some of the voxels at the surface of the Quaternary sequence element depart from the

overall pattern by having a very low entropy. This trend is likely aided by the soft data giving high probabilities of oxic
conditions at the surface. At the surface and down to about 10-20 m of the buried valley, we generally do not know much about
the redox conditions as indicated by the white yellowish colors in Figure 14. The more evenly distributed redox soft data
probabilities (Fable-3Table 3) could explain some of this high entropy. .
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Buried-valey-7 Discussion

To our knowledge, examples of mapping redox conditions with multiple-point geostatistical simulation are not present. This

study sets out with the aim of proposing and reviewing a methodology for modeling both redox architecture and geology
simultaneously in high-resolution 3D using MPS.

rrrrrrrrrrr (
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The spatial variability of the TIs is well represented in the prior realizations and conditional data guides our expectations of

the system to a posterior model. In some cases, due to the limited size of the TI, inconsistencies between conditional data and

the prior model exist. In some cases, these inconsistencies lead to simulation artifacts in the realizations, but are rare since they

are largely corrected during MPS post-processing. For the posterior model realizations, flagging is decreased to only about 5-

6% after post-processing while happening 19-22% of the time during the initial run of the algorithm. Some simulation artifacts

also occur in the prior model itself and therefore cannot alone be attributed to inconsistencies between the prior model and the

conditional data, which is underlined by the decrease in flagging that also happens during post-processing of the prior model

realizations. These inconsistencies are associated with a lack of matching events in the TI. To remedy such simulation artifacts

one either needs larger Tls to allow more spatial variability or artificially enhance the variability by lowering the amount of

conditional data to consider when searching for a match in the MPS algorithm. In the latter case, this will happen at the cost

of reproduction of the actual spatial variability portrayed in the TI. We argue, that in the current nitrate simulation at the

catchment scale, these artifacts do not affect the overall architecture (Figure 14) and redox trends with depth (Figure 12). It is

also expected to have negligible impact on hydrological modeling as the overall architecture allows groundwater flow pass by

such artifacts. Nevertheless, future studies are required to reduce artifacts of this kind or, at least, downplay their significance.
One solution could be to allow rotation during simulation could offer more configurations during simulation. But testing with

a setup allowing 360 degrees rotation in the horizontal plane did not enable a substantial improvement on this issue. The
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flexibility of the current methodology also allows the inclusion of soft probability maps through equation 2 indicating spatial

restrictions on certain lithologies or redox conditions, which could potentially remedy some of the deeper lying artifacts.

7.2 The role of soft data

The random path have a tendency to underestimate soft data and provide less resolution in the results compared to other path

types (Hansen et al., 2018).
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produce-even-betterresults—Howeverwe-adaptIn the current study the amount of soft data coverage was high (more than

43.5% of the simulation grid). To utilize the abundant soft data, we randomly converted a fraction of the soft data into hard

data to compensate the underestimation from the path. This helped transferring more weight towards the soft data during

simulation, with the caveat of introducing converted soft data in unwanted positions, such as oxic in an overall reduced

environment. This problem is however mostly encountered at the redox mode (Figure 14b) and does seemingly not pose as

big of a problem for the individual realizations in Figure 13b.f. By further processing the realizations by removing any sole

voxels that differ from the neighboring voxels, this problem can be removed entirely, but at the risk of removing actual sole

voxels. One could also randomly select a new set at each iteration, although this is not directly implemented in the DEESSE

software and still would not make sure that soft data in general are handled correctly. For instance, the current remediation

only handles categories with probability >= 50% and thereby cannot help improving the information content for any categories

with probability < 50%. This affects e.g. N-reducing conditions at the surface where soft probabilities are substantially lower

(Table 3). Thus, N-reducing conditions are bound to be underrepresented since they are not converted from soft data, which is

the tendency shown in the posterior redox profile compared with the T1 (Figure 12). Despite the clear advantages of converting

some soft data to provide more emphasis on them, the current simulation results could most likely be improved by better

incorporating the soft data information in general. However, neither a preferential path that visits voxels with soft data

information before other voxels, nor the use of non-collocated soft data is currently implemented in most state-of-the-art MPS

algorithms. The problem of how to best incorporate soft data information hence reaches beyond the current study. We

encourage that this remains an active area of research to make MPS simulation relevant for practitioners without the need for

too much ad-hoc remediation.
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+-2 Resistivity-lithology relationship

The established resistivity-lithology relationship allows us to map the prior probabilities of each lithological group based on
the tTEM in the simulation area. Utilizing tTEM as soft data information ensures that it does not have too much influence over
the final results. Here, the relationship is inferred from the resistivity grid and training images. When simulating, the general
mismatch between the training image patterns (based on interpreted geology) and the tTEM data is thus minimized. Methods
exist for establishing a relationship between resistivity and clay content (Christiansen et al., 2014; Foged et al., 2014).
Unfortunately, this is not directly applicable for the lithological groups used here as they are not defined on the basis of the
clay content. Alternatively, this relationship could be inferred using boreholes near the study site. Similar to the approach in
this study, inferring the resistivity-lithology relationship from boreholes is typically based on deriving probabilities from
histograms (Barfod et al., 2016; Gunnink and Siemon, 2015; He et al., 2014a). In accordance with the present results, these
studies also show a significant overlap between different lithologies and as such using nearby boreholes for inferring the
resistivity-lithology relationship would mainly minimize the reuse of data and avoid subjectivity cariedcarried over from the
Tls.

7.34 Geological modeling subjectivity and data reuse

The inclusion of geological mapping experts in the creation of Tls introduces modeling subjectivity. Thus, the final realizations
could include unverifiable modeling choices following the interpretation procedure in cognitive modeling. Through
experiments with geological interpretation of the uncertainty in boreholes, Randle et al. (2019) argued that expert elicitations
do not result in accurate predictions of interpretation error. Efforts have been made to make TI generators (Pyrcz et al., 2008)
and data-driven Tls without the need for expert knowledge (Vilhelmsen et al., 2019). However, process-based T| generation
from expert elicitation is a common approach in MPS applications (Mariethoz and Caers, 2015). A possible explanation for
this is the benefit of bringing in prior expert knowledge, which is otherwise difficult to quantify. This ensures that results are
in accordance with as much information as possible (Curtis, 2012; Tarantola, 2005) and realizations are not in clear conflict
with geological concepts (Jessell et al., 2010; Wellmann and Caumon, 2018).

Despite the potential subjectivity in the geological modeling of the study area these modeling choices are primarily guided by
data. The tTEM data collected in this study has e.g. contributed to a good correlation between the terrain and the subsurface
architectures in the geological interpretations. These observations fit well with the current knowledge of the latest geological
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events in the area, thus providing good possibilities of making robust geological correlations between the geological and
geophysical data.

It might be difficult to quantify the effect of the apparent loss in degrees of freedom that follows from using the same data for
establishing the prior information and simulation. In the current study, the problem of reusing data for outlining geological
elements, is most likely not critical as only large-scale structural information is partly interpreted from the resistivity data, such
as the top of the Paleogene clay layer. The degrees of freedom loss for reusing the resistivity information in the Tls and as
conditional data in simulation is undoubtly larger. Although the small size of the TIs may pose a problem for reproducing the
intended varibility, in this instance it acts to limit the effect of reusing data. This issue persist for approximately 33% of the

total voxels (Table 1).

7.45 Training images and geological elements

If possible, the TI should provide all possible dimensions and shapes of the geological features in the subsurface (Strebelle,
2012). However, sizes of the Tls in the current setup are relatively small compared to the simulation grid and hence do not
contain that many configurations. In general, the smaller the TI, the fewer possible structures can be represented (Mariethoz
and Caers, 2015). We consider two remedying factors. Firstly, the simplicity of the TI. In the study area, we expect a geology
with continuous clay and sand units partly restrained by incised valley structures in the Paleogene clays as seen in Figure 3.
Even though the TI is small and simple, it conveys the general pattern to be expected in geological features throughout the
simulation domain. The simplicity should alleviate some of this issue, although in an area with more expected heterogeneity,
a more diverse and larger Tl would be needed. Secondly, if the geological variability provided in the Tl is not sufficient,
algorithmically induced variability measures such as scaling and rotation of features is possible with direct simulation
(Mariethoz et al., 2010).

The non-stationarity of both sets of Tls is evident. This is a common problem when designing training images directly based
on, and mimicking geology, which is inherently non-stationary. This might pose a problem, as only a certain number of the
configurations in the Tls will produce a match during the direct simulation. Consequently, we might risk reproducing larger
parts of the T in the realizations. Such verbose copying is partially remedied by the addition of conditioning data and choosing
a smaller search radius as argued in Vilhelmsen et al. (2019). However, a smaller search radius comes at a price of not
reproducing the features in the T1 and adding variability more related to algorithmic choices than geological variability.
Luckily, plenty of conditioning data is available for the simulations to remedy some of the shortcomings of the training images.
As argued in de Vries et al. (2009), subdividing the Tls and simulation domain into different areas is another possibility to
handle non-stationarity. To some degree, the geological elements representsrepresent such a subdivision of the entire modeling

domain in the study area.

In the current study, we considered the boundaries between the geological elements fixed. In reality, there is some interpretation
uncertainty related to these boundaries especially in data scarce areas. Future studies may be able to quantify this uncertainty.
If this uncertainty is sufficiently large such that it affects the simulation results significantly, we put forward the idea of re-

simulating boundaries between geological elements as part of the simulation.

Because Tls are attributed to a specific geological element, these TIs may be reused in other simulation studies with comparable
geological elements and we therefore strongly recommend building a TI library. This approach would alleviate the most
fundamental of the issues in the current setups. Information between TI and data becomes independent when using a
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generalized TI. Specifically, the reuse of data (in constructing the TI and implicitly when inferring the resistivity-lithology
relationship) is eradicated. For a smaller geological element, the Tls developed in the study area may also represent a
proportionally larger portion of the expected variability. An additional bonus would be a reduction in labor/time since Tls are

pre-existing or maybe only need slight alteration.

Conceptual Tls or based on data from another study area would most likely be preferable from a geostatistical point of view
as it would ensure independence of information. However, in the case of a T1 based on nearby data, the Tl should be close
enough to the study area such that the depositional and redox setting are comparable. Furthermore, the study of Barfod et al.

(2018) suggests that Tls become secondary given a high amount of conditional data. In future studies and if a similar approach

of TI creation within the simulation domain is chosen, we recommend collaborative efforts between geologists and

geochemists in securing the best possible location for representative Tls.

7.56 Computationally attractive stochastic simulations

In the current setup, simulations are computationally feasible. 100 realizations of both elements are generated in less than 2.5
hours on a high-end personal laptop (Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz, 6 cores (12 threads) with 10 threads
allocated to DeeSse. The average simulation time for a single realization is hence just over 80 seconds. Several factors
contribute to this: 1) The relatively small Tls making the number of possible combinations limited, 2) The restriction on
maximum 20 conditioning points and 3) the subdivision of the simulation grid into geological elements. Some of the
abovementioned factors are algorithm tuning parameters, while others are added bonuses of understanding the geology in
question (e.g. the ability of breaking the problem up into smaller bits and choosing an acceptable level of simplicity in the

models). In this case, bringing expert field knowledge to the modeling setup is advantageous.

7.67 Multi-purpose modeling results through uncertainties

The proposed workflow allows the quantification of uncertainties in the input data and in the subsurface models. This is a
major advantage over e.g. static models. We specifically dealt with prior uncertainty in the geological and redox conditions as
portrayed in the Tls and geological map and resistivity data (soft data). Other sources of error (e.g. modeling and measurement
errors) in the input data can also be explored, as MPS offers a flexible setup for treating data with uncertainties. Additionally,
it is clearly shown in the comparison between mode and entropy of posterior and soft data that MPS adds additional valuable
information through the Tls that enable geologically viable architecture. Especially in cases where soft data is too weak to
provide significant support. The quantitative description of uncertainties as portrayed by the final ensemble of realizations also
has many useful properties for additional analysis. For instance, the ability to produce redox profiles as in Figure-12Figure 12
is trivial once the simulation is completed. These redox profiles make comparisons with previous studies possible, while
offering many other possibilities for summary statistics and quantifying uncertainty. This flexibility in the final analysis is one
of the main benefits of applying geostatistical mapping of redox conditions (and geology). With the current methodology,
depth profiles can also be calculated for specific sets of x- and y-coordinates to investigate some of the spatial variation in
redox. Another example would be to investigate the distribution of redox conditions in the geological groups, which allows
assessing new hypotheses on the coupling between geology and redox. It may also reveal insights to the spatial dependencies

of such couplings- and showcase potential geological windows for oxic conditions at depth. Entropy gives insight into the

nature of information content and therefore it would be an active tool in finding the best spot for further investigation, i.e.
showing where information is lacking. For instance, in the case of redox, entropy might be suited for assisting a focused field
campaign in retrieving more information of redox in the buried valley element. In the current case, the buried-valleyQuaternary
sequence many places showed a lack of information in the first 10-20 meters that is typically critical to model.
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From the study area, it seems that it is possible to create a computationally feasible joint stochastic 3D high-resolution model
of redox and geology with the current setup. However, these findings cannot be extrapolated directly to other study areas.
Future research includes testing the method in other catchment areas to assess the robustness and general applicability. Many
improvements, besides fine-tuning algorithm parameters, also exist. We e.g. expect improvements and minor changes to the

overall setup, as different study areas will contain site-specific challenges that should be addressed. ©reAs mentioned, one of

the current issues that need to be adressed is how best to quantify and integrate soft data. Besides the resitivity-lithology
relationship, we also recognize the need for an extensive study on the quantification of uncertainty in geological maps such as

the geological surface map presented here, but it is beyond the scope of the current study.
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1045 8 Conclusion

This study sets out to model both redox architecture and geology simultaneously in high-resolution 3D due to the dependency
of the evolution of the subsurface redox conditions on the hydrogeological pathways. This is achieved using a bivariate MPS
simulation. MPS modeling with a bivariate Tl of geology and redox presents some important features compared to previous
mapping studies: 1) MPS simulation effectively produces geology and redox following expectations and 2) Tls provide an
1050 intuitive and easy collaboration across different fields of expertise. Valuable expert information, otherwise difficult to quantify,
is seamlessly integrated within MPS. This ensures in our case that there is a correspondence between geology and redox
conditions, which is one of the key strengths of the proposed methodology. Although challenges in the current approach exist,
we conclude that the proposed methodology offers improvements to existing methods for mapping geology and redox by
producing consistent realizations of both variables. The flexibility of the geostatistical results as represented by the ensemble

1055 of realizations allows comparisons with traditional mapping techniques. We interpret and model individual sedimentary layers

| into coherent packagesvolumes (‘geological elements’) that greatly help to guide our simulation results and reduce
computation costs. This new mapping technique should aid our understanding of the uncertainties and limitations of our
knowledge and data. High-resolution 3D understanding of both redox and geological architecture will likely improve
| predictions of N--retention and water pathways in the subsurface. The generalizability of these results is subject to certain
1060 limitations as the proposed workflow is only tested on a single study site. This study lays the groundwork for future research
into coupled understanding of geology and redox using MPS simulation. Despite its exploratory nature, this study offers
valuable insights into the feasibility of joint geostatistical modeling of redox and geology. Several questions remain to be

answered regarding simulation—algerithm—parameterization—and—interdependence between different sets of quantified

information_and integration of soft data. The geological and redox architecture simulations might be incorporated in

1065 hydrological modeling with N-transport to be used for N-retention mapping of the subsurface important for future more
targeted N-regulation of agriculture.
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