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Abstract. Evaluating land surface models (LSMs) using available observations is important to understand
the potential and limitations of current Earth system models in simulating water- and carbon-related
variables. To reveal the error sources of a land-surface-medel{LSM), fiveour essential climate variables
have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index,-and
surface albedo, and precipitation) via simulations with IPSL LSM ORCHIDEE (Organizing Carbon and
Hydrology in Dynamic Ecosystems), particularly focusing on the difference between (i) forced
simulations with atmospheric forcing data (WATCH-Forcing-DATA-ERA-Interim: WFDEI) and (ii)
coupled simulations with the IPSL atmospheric general circulation model. Results from statistical
evaluation using satellite- and ground-based reference data show that ORCHIDEE is well equipped to

represent spatiotemporal patterns of all variables in general. However, further analysis against various
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landscape/meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests
potential uncertainty relating to freezing/snowmelt, temperate plant phenology, irrigation, as well as
contrasted responses between forced and coupled mode simulations. The biases in the simulated variables
are amplified in coupled mode via surface—atmosphere interactions, indicating a strong link between
irrigation—precipitation and a relatively complex link between precipitation—evapotranspiration that
reflects the hydrometeorological regime of the region (energy-limited or water-limited) and snow- albedo
feedback in mountainous and boreal regions. The different results between forced and coupled modes
imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in
the model.

1 Introduction

Land surface models (LSMs) are essential to understand large-scale exchange of energy, water, and
carbon between the land surface and the atmosphere. LSMs coupled with atmospheric general circulation
models (GCMs) have been used to simulate global climate and climate change under international
frameworks such as the Coupled Model Intercomparison Project (CMIP) (Taylor et al., 2012; Eyring et
al., 2016a), contributing to Earth sciences and policy making for mitigating and adapting to climate
change. To understand the potential and limitations of climate change simulations, evaluating outputs of
LSMs with available observations is important (Flato et al., 2013). Uncertainties associated with LSMs
can arise from a deficiency of model physics and parameterization (Liu et al., 2003), errors in atmospheric
forcing data (Guo et al., 2006; Nasonova et al., 2011; Yin et al., 2018), boundary conditions including
vegetation and land use changes (Guimberteau et al., 2017; Boisier et al., 2014), and/or error propagation
through land-atmosphere coupling (so-called “climate drift”) (Dirmeyer, 2001). Recently, convenient
tools for systematic model evaluation have been developed (e.g., Eyring et al., 2016c; Gleckler et al.,
2016; Best et al., 2015); however, further in-depth model evaluation is required to reveal the underlying
processes and sources that lead to uncertainties in simulations (Eyring et al. 2016b).

Notably, focusing on the differences between LSM simulations with and without GCM coupling
would provide novel knowledge about LSM evaluation (Liu et al., 2003; Zabel et al., 2012; Wang, T. et
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al., 2015). LSM simulations without GCM coupling but forced by an atmospheric dataset (also called
“offline” or “stand-alone” mode) do not allow feedback between the atmosphere and land surface.
Therefore, errors in the simulated values solely arise from deficiency model structure/parameterization,
uncertainty in the forcing data (Yin et al., 2018), and mismatch in land cover between model and forcing
data (Zabel et al., 2012). The foremost influential forcing factor on water cycle is precipitation (Qian et
al., 2006; Decharme and Douville 2006), although radiation and land cover (i.e., vegetation) can also
affect hydrological variables (Dirmeyer, 2001; Guo et al., 2006) such as surface soil moisture (SSM) or
evapotranspiration (ET), depending on the temporal scale (Guo et al., 2006) and the hydrometeorological
condition of the region (i.e., energy-limited or water-limited, Nasonova et al., 2011; Zabel et al., 2012).
Anthropogenic factors (e.g., irrigation) may also cause errors in the simulated variables when not
accounted for by the LSM (Yin et al., 2018). On the other hand, coupled LSM simulation are also affected
by errors in atmospheric simulation, which can be enhanced through land—atmosphere interaction
(Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al., 2015). Such errors occur at short time scale (i.e.,
several-days) up to seasonal time scale (Dirmeyer, 2001), via the interlinkage of hydrological variables
(e.g., rainfall, SSM, ET, and infiltration) in the LSM scheme and thermal variables (Cheruy et al., 2017,
AitMesbah et al., 2015).

Among various LSMs, we focused on the Organizing Carbon and Hydrology in Dynamic
Ecosystems (ORCHIDEE) LSM (e.g., Krinner et al., 2005; d’Orgeval et al., 2008; Guimberteau et al.,
2017), which enables the explicit representation of processes governing the water, carbon, and energy
budgets with highly flexible spatial resolution (Raoult et al., 2019). We used the ORCHIDEE (revision
4783, tag 2.0) version, which is implemented in the IPSL’s (Institute Pierre Simon Laplace) climate model
configurations used for CMIP6 (Eyling et al., 2016a), including the Land Surface, Snow and Soil Moisture
Model Intercomparison Project (LS3MIP) with offline simulations (van den Hurk et al., 2016). Through
an in-depth assessment of fiveeur simulated variables (i.e., SSM, ET, leaf area index (LAI), are-surface
albedo, and precipitation) that should be closely interlinked and a special focus on the differences between
forced and coupled simulations, the aim of this study is to better understand which land surface processes
deserve further improvements in the studied LSM and to investigate the land-atmosphere coupling role

in -diagnosed model uncertainties.
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The Global Climate Observing System (GCOS, 2010) designates the fivesur selected variables as
being essential climate variables (ECVs), thereby allowing us to take advantage of recent progress in their
global -scale observation. Using satellite data, researchers have developed various retrieval algorithms to
acquire SSM (Jackson et al., 1999; Wigneron et al., 2007, 2017), ET (Zhang et al., 2010; Miralles et al.,
2011; Zeng et al., 2014), LAI (Zhu et al., 2013), and-albedo (Schaaf et al., 2002; Qu et al., 2014), and

precipitration (Adler et al., 2003), which can be used as reference data for LSM evaluation. Empirical

upscaling products from global in situ observations (Jung et al., 2011, 2019) can also be used. The
selected variables are particularly interesting for land surface processes: SSM is a recognized driver of
surface—-atmosphere interactions (Seneviratne et al., 2010), constraining the partitioning of sensible/latent
heat and plant activity and determining ET and vegetation dynamics (e.g., Gu et al., 2006). ET affects
atmospheric humidity (usually described by the vapor pressure deficit) and cloud formation, creating
feedback systems among SSM, ET, and precipitation (Yang et al., 2018). Accounting for long-term
vegetation dynamics, which can be measured by LAI, interlinked with such hydrological processes, is
important in monitoring carbon cycle and ecosystem services that are related to climate change (IPCC,
2014) and natural disasters (Adikari and Noro 2010). Another important parameter in the surface energy
exchange is the surface albedo, which controls the reflection of incident solar radiation and is interlinked
with hydrological processes (especially through surface snow cover) and vegetation dynamics (Bonan,
2008).

To investigate the potential sources of model uncertainty, we considered various landscape factors
(“factor analysis™) in addition to the traditional statistical evaluation. This work aims at increasing
knowledge about the features and limitations of ORCHIDEE and is a practical example of in-depth model
evaluation focusing on the differences between forced and coupled modes. The remainder of this paper
is organized as follows. Section 2 describes the simulation setting, the reference datasets, and the factor
analysis. Section 3 presents results for the spatiotemporal patterns of the model uncertainties and factor

analysis. Finally, Sections 4 and 5 provide a discussion and conclusions, respectively.



115

120

125

130

135

2 Materials and methods
2.1 Model and simulations

2.1.1 Description of the land surface model

ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) is the LSM used in the IPSL
Earth System model (ESM). This global process-based model of the land surface describes the complex
links between the terrestrial biosphere and the water and the energy and carbon exchanges between the
land surface and the atmosphere (Krinner et al., 2005). -The used version in the IPSL-CM6 ESM for the
CMIP6 simulations (Boucher et al., 2020), which is known as tag 2.0, was previously described in many
papers (Raoult et al., 2019; Boucher et al., 2020; Cheruy et al., 2020; Tafasca et al., 2020), and we only
summarize its main features in this paper, with some details on the related parametrizations to the fiveour
studied ECVs.

The land cover is described with 15 plant functional types (PFTs), including one for bare soil, as
seen in the full list in Table 2, and they can all coexist in each grid-cell, where the-taken fractions taken
here are from the CMIP6 datasets (Boucher et al., 2020). For each PFT, the transpiration serves as a
coupling flux between the water, energy budget, and photosynthesis process, which drive the evolution
of the biomass and LAI owing to generic equations with PFT-specific parameters (Krinner et al., 2005).
Evapotranspiration (ET) is controlled by the energy and water budget via a bulk aerodynamic approach,
where four parallel fluxes are distinguished: sublimation, interception loss, soil evaporation, and
transpiration. In each grid-cell, the first two fluxes proceed at a potential rate from the grid-cell fractions
with snow and canopy water, respectively. The soil evaporation and transpiration originate from the
complementary snow-free fractions covered by bare soil and vegetation, which depend on LAI, where the
effectively foliage-covered fraction—by—fohage exponentially increases with the—LAl withhaving a
coefficient of 0.5, while the light extinction is controlled through the canopy, hence the photosynthesis
process. The two fluxes both depend on the soil moisture, where the transpiration is limited by the
stomatal resistance, as it increased when the soil moisture dropped from the field capacity to the wilting
point. The soil evaporation is not limited by the resistance but only by upward capillary fluxes, which

control the soil propensity to meet the evaporation demand.
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The soil moisture (SM) dynamics are described over a soil depth of 2 m and discretized into 11

soil layers to solve the Richards equation. SM in the top 10-centimeters is regarded as SSM. The hydraulic

conductivity and retention properties depend on the SM owing to the Van Genuchten-Mulaem equations,
with the parameters depending on the soil texture (Tafasca et al., 2020), and they are read from the map
of Zobler (1986). The infiltration is limited by the surface hydraulic conductivity, and it is calculated with
a time splitting procedure inspired by the Green-Ampt equation, where a sharp piston-like wetting front
is assumed (d’Orgeval et al., 2008; Vereecken et al., 2019). The surface runoff is made of non-infiltrated
water (infiltration-excess runoff); however, ponding is allowed in flat areas, and it can reinfiltrate at later
time steps. This so-called reinfiltration fraction linearly decreases from 1-to-0-in-totathy-flat-grid-celsl in
totally flat grid-cells to O, where the mean grid-cell slope exceeds 0.5%-{Bucharpe-et-al—in-prep). For
CMIP6, the ORCHIDEE does not include the irrigation effect on the seil-meistureSM, ET, and vegetation

growth, although the model can simulate this anthropogenic pressure (Xi et al., 2018).

The snow processes are described by a 3-layer scheme of intermediate complexity (Wang et al.,
2013), in which the snow albedo and insulating properties depend on the snow density and age. The
ORCHIDEE 2.0 also includes a revised parameterization of the interplay between the vegetation and the
snow albedo, and the optimized parameters match the remote sensing albedo data from the Moderate-
resolution Imaging Spectroradiometer (MODIS) sensor, distinguishing the visible and near-infrared
(NIR) bands (Boucher et al., 2020;-Peylin-et-al-in-prep). For the calculation of the heat diffusion, which
includes the soil freezing effects (permafrost), the soil is extended to 90 m, and the moisture content of

the deepest hydrological layer is extrapolated to the entire profile between 2 and 90 m. The thermal soil

properties depend on the soil texture, moisture, and carbon content (Guimberteau et al., 2018).

2.1.2 Forced and coupled simulations

To separate the errors caused by the ORCHIDEE model structure/parameterization from the ones
resulting from the simulated climate through land-—atmosphere coupling, we compared a forced and a
coupled simulation. In the coupled simulation, the ORCHIDEE LSM is coupled to the LMDZ6A
atmospheric GCM (Hourdin et al., 2020), as embedded in the IPSL-CM6 ESM for the CMIP6 simulations
(Boucher et al., 2020; Cheruy et al., 2020). -The only difference between the atmospheric physics used in
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this paper and the one used for CMIP6 concern the parameterization of deep and shallow convection and

their interaction to improve the description of the intertropical convergence zone and the EI Nino Southern

Oscillation. The description of these differences and their impact on precipitation and other variables

controlling the near surface climate can be found in Mignot et al., (2021).

The coupled simulation was run over 1985-2014 (following a 5-yr spin up) using a ‘nudging’
approach to constrain the large-scale atmosphere dynamics toward the synoptic atmospheric conditions
(Cheruy et al., 2013). To this end, the simulated wind fields (zonal and meridional wind components) are
relaxed toward the ERA-Interim winds (Dee et al., 2011) by adding a correction term in the evolution
equation for the wind. By reducing the internal variability, this method allows the direct comparison of
the observations and simulations, and it was successfully used for evaluating the coupled land-atmosphere
parameterizations (Cheruy et al., 2013; Wang, et al., 2016), including in-with the IPSL-CM6 ESM
(Cheruy et al., 20200).

In the forced simulation, which covers 1979-2009, the required near- surface meteorological data

by the ORCHIDEE LSM (liquid and solid precipitation, incoming longwave and shortwave radiation, 2-
m air temperature and specific humidity, 10-m wind speed, surface pressure) are prescribed from the
downscaled and bias-corrected reanalysis data [WATCH-Forcing-DATA-ERA-Interim (WFDEI)],
provided at the 0.5° resolution with a 3-hourly time step -(Weedon et al., 2011; Weedon et al., 2014).
Precipitation is bias-corrected using monthly data from the Global Precipitation Climatology Centre
(GPCC_Version V6, Schneider et al., 2014), with a specific correction of undercatch errors following
Adam and Lettenmaier (2003)-and-the-simulation-covers-1979-2009.

The spatial resolution differs between the two simulations, reflecting the grid of the atmospheric

data: the coupled simulation has a coarser resolution (144 x 142, corresponding roughly to 2.5° in
longitude and 1.25° in latitude) than that of the forced simulation (0.5° grid). To make the evaluation
consistent and simple, we used the same spatial resolution for our analyses, and we oversampled the
LMDz grid mesh to the finer resolution (0.5°) such as to keep as much spatial information as possible
from the high-resolution offline grid mesh. To investigate variability patterns on seasonal to interannual

scales, all the data were aggregated into monthly time steps. Fiveeur interlinked variables (SSM, ET, LAI,
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and albedo, and precipitation) were considered in this evaluation, and the study region was 60°S—90°N,
180°W-180°E (i.e., Antarctica and Greenland were excluded).

2.2 Reference data
2.2.1 Surface soil moisture

The SSM product provided by European Space Agency Climate Change Initiative (ESA CCI) (Liu et al.,
2012) was used as a reference. It is a merged product comprising multiple SSM data derived from various
passive and active microwave satellites (i.e., SMMR, SSM/I, TMI, AMSR-E, Windsat, SMOS, AMSR2,
AMI-WS, ASCAT-A, and ASCAT-B) providing a long-term (19789-20185) SSM dataset with 0.25°
resolution. The CCI-SSM product has been evaluated extensively against in situ observations (e.g., Al-
Yaari et al., 2019b), and their accuracy has been reported as being relatively high compared to that of
other existing products such as SMOS-L3, LPRM, and AMSR2 (Ma et al., 2019).

Because it includes low-quality data flags for snow, dense vegetation, and radio-frequency
interference (RFI) (Oliva et al., 2012), we applied data screening following Al-Yaari et al. (2016). We
screened out all the pixels where the provided uncertainty was larger than 0.06 m*/m? (volumetric water
content). Next, any data records in which the SSM was not in a valid range (either >0.6 or <0.0)
(Fernandez-Moran et al., 2017; Dorigo et al., 2013) were excluded. Finally, to exclude any areas covered
by snow or dense vegetation and other unreliable regions, we kept only those areas in which the quality
flag was zero (fine-quality pixels). The screened dataset was then aggregated into 0.5° x 0.5° and monthly
time steps. This screening process removed 3.6% of all the original pixels.

We performed an initial check on the time series of the global average of CCI-SSM and found an
artificial trend therein that depended on the availability of the observation data (Supplementary Fig. S65).
As reported by other researchers (e.g., Loew etal.,, 2013), this artificial trend could lead to
misinterpretation of long-term signals. To mitigate such artificial trends and initialization errors of each
data, we selected a stable period (i.e., without discontinuous jump in time series) during 1993-1999 for
comparison with both the forced and coupled simulations. Because of the differing natures of LSM-
simulated and observed SSM (e.g., dependence on meteorological forcing data/atmospheric model, model

parameterization), their absolute SSM [m3/m°] values (i.e., magnitudes) are not comparable (Reichle et al.,
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2004). In addition, since the CCI-SSM product is scaled by the comparison with a different LSM
(GLDAS-Noah), a direct comparison between CCI-SSM and ORCHIDEE may lead to misleading results,
as they have different soil representation (Raoult et al., 2019). Given this issue, the LSM- and satellite-
based SSM were compared with statistically normalized values rather than absolute values of SSM (e.g.,
Polcher et al., 2016). Therefore, a spatiotemporal normalization (Equation 1) was applied to each co-
masked dataset to eliminate systematic biases among the datasets and make the comparison reliable
(Supplementary Fig. S75B):

_ SSM-55M

SSMyorm = @

OsSsM
where SSMnorm is the normalized SSM, and SSM and osgy are the mean and standard deviation,

respectively, of all the available SSM sampled along spatial and temporal dimension during the period.

222ET

In a preliminary study, we compared a ground-based machine--learning ET product (Jung et al., 2011,
2019), three remote-sensing-based physical model products (Miralles et al., 2011; Zhang et al., 2010;
Zeng et al., 2014), and their ensemble (see Supplementary Figs. S2, S7). We found that they showed
similar spatiotemporal structures although they differed in absolute values in some regions, and the
ground-based product was the most consistent with the ensemble. Therefore, we decided to use the
ground-based ET (mm/d) as a representative, from 1987 to 2009. It is also advantageous in that it is
derived from upscaling of FLUXNET data (Jung et al., 2011; 2019) and is independent from specific ET-
retrieval algorithms. The original spatial resolution (1°) of the data was resampled into 0.5° resolution to
match that of forced simulation, and original temporal resolution was monthly time steps. A preliminary
check of the time series and spatial patterns of the reference data revealed no artifact patterns (e.g., no
abrupt jump in time series as found in CCI-SSM), so we used them with no pixel screening or

normalization.



245

250

255

P60

P65

2.2.3 LAI

We used the global LAI dataset of Zhu et al. (2013), referred to hereinafter as LAI3g, which is based on
a neural-network algorithm in conjunction with the third-generation Global Inventory Modeling and
Mapping Studies (GIMMS 3g) and Mederate-reselution—tmaging—Spectreradiometer{MODIS) LAl
product, with an original spatial resolution was 0.5° and half-monthly temporal resolution. Considering
the common period among LAI3g and the coupled/forced simulations, we selected 1987-2009 as the
comparison period, and we resampled all data at 0.5° spatial resolution and aggregated them into monthly

time steps.

2.2.4 Albedo

We used the MODIS albedo product (Qu et al., 2014) as reference data, which provided the bi-
hemispherical reflectance (white-sky albedo) for the visible and NIR bands. The original 500-m spatial
resolution and 16-d temporal resolution were resampled (i.e., upscaled) into 0.5° resolution and monthly
time steps. The common period between simulations and observation, 2003-2009, was used for

evaluation. The pixels with retrieval failure of albedo were excluded from the analysis.

2.2.5 Precipitation

Win-addition-to-the-four ECVs-we also evaluated the simulated precipitation- because it is the primary
factor that influences the hydrological variables (Qian et al., 2006; Decharme & Douville, 2006). To this
endr-additien, we used the GPCC dataset Version V6 (Schneider et al., 2014), which was also used to
eonstruetbias-correct bias-in-the WEDEI meteorological forcing of the offline ORCHIDEE simulation
(section 2.1.2). This gridded product at 0.5° provides monthly precipitation derived from quality-
controlled observed precipitation from over 65,000 werld-wide-stations world-wide, and accounts for a
climatological correction of undercatch based on Legates and Willmott (1990).(Sehneideret-al—2014).

10
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2.2.6 Data processing

For consistency between the observed and simulated data, we subjected the former to aggregation or
resampling towards the 0.5° spatial resolution and monthly time steps for each variable, as described
above. Due to the presence of data gaps in the reference data sets, which are either because of the
acquisition issues or the quality control and data screening, we masked the simulated datasets to match
the spatial-temporal data availability of the corresponding reference data. For the SSM, the dense snow
regions (with a snow water equivalent exceeding 48 mm) in the simulated data were further excluded so
as to avoid unreliable comparisons with uncertain references. Also, co-masking was performed after the
spatiotemporal resampling, followed by the statistical normalization (only for the SSM). The resulting
coverage of the selected comparison period is summarized in Table 1 for each variable.

After the above-mentioned pre-processing, to compare the spatial patterns of the observed and
simulated data, we focus on three accuracy criteria calculated at the 0.5° scale along monthly time steps:
the bias, Pearson’s correlation coefficient (CC), and root-mean-square error (RMSE). The criteria were
calculated along temporal axis for each pixel (i.e., the result was shown as one global map for a criterion).

The statistical significance of the bias (compared to zero) and CC was assessed at each pixel with

Student’s t-test and Pearson’s test, respectively, with a p-value of 5% in both cases. Note that the
evaluation periods were different among SSM (1993--1999), ET, LAI and precipitation (1987--2009),
and Aalbedo (2003--2009). However, the impact of the chosen period on the evaluation is likely to be

limited (see Supplementary Table S1).

2.3 Factor analysis

To reveal features of the simulations in detail, the accuracy criteria were evaluated against various
landscape/meteorological factors (Figure 1), namely PFT, LA, irrigation, precipitation, slope, snow, and
ET. For each factor, time series were averaged temporally to make only one global map (i.e., the
classification criteria were applied on long-term basis). The value of each factor was classified into a
specific number of levels (classes), which were used as ordinal scales. Each factor was classified as given

in Table 2, and each factor is described in detail below:
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1) For PFT, we used the input dataset that is used in ORCHIDEE. This includes fractional coverages in
each pixel of 15 PFTs. We created a dominant PFT map by picking up the PFT class that have maximum
fractional coverage for each pixel.

2) For LAI, we used the LAI3g data (above subsection), classifying them into three levels (see Table 1
for the specific class definitions).

3) For irrigation, we used a global map of irrigation areas (Siebert et al., 2010), which indicates the
fractional coverage (%) of an irrigated area with 5-arc-min spatial resolution. It was classified into six
levels.

4) For precipitation, we used the pluri-annual mean of GPCC during the same period as the investigated
ECVs. It was classified into five levels.

5) For slope, this classification was done by referring to the ETOPO51 DEM (52 arc-minute global relief
model of Earth’s surface; NOAA, 1988Amante-& Eakins,-2609), which is also used in ORCHIDEE to
control reinfiltration of the water.

6) Wror-SWE-we used the pluri-annual mean of the forced SWE for the factor analysis of the forced
simulation, and that of the coupled SWE for the coupled simulation.cerrespending-ORCHIDEE-SWE;
which The SWE was classified into five levels.

7) For ET, we used the pluri-annual mean of Jung et al. (2011; 2019) during the same period as the

investigated ECVs.

Here, dominant PFTs, irrigation, slope, and SWE were only used for the factor analysis, while LAI,

precipitation, and ET are also used validation and come from independent sources. The PFT fractions and

SWE, however, were not independent from our simulations, but we assumed it was not problematic for

factor analysis, which mostly aims at suggesting process-based explanations to the main model errors.

3 Results
3.1 Spatial and temporal patterns of model errors

Overall, the spatial structures of the ECVs simulated in both modes- were consistent with those of the

reference productss, as shown by comparing the corresponding pluri-annual mean maps (Supplementary
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Figures S1-S54:Fig—1A). To refine this comparison, Figure 2 shows the spatial bias patterns of the
fivefeur variables (normalized SSM, ET, LAI, ard-albedo, and precipitation), in both forced and coupled

modes;-and-ef-the-precipitation-tn-coupled-mede. Difference between forced and coupled modes are also

shown in Supplementary Figure S6. Spatiotemporal averages of bias, RMSE, and correlation coefficients

are summarized in Table 3. The spatial patterns of the temporal CC are also shown for SSM and albedo
(Figure 3) for further discussion.

The Pprecipitation bias in the-forced mode is very small in the most region since the simulation

relies on bias-corrected precipitation (WFDELI), which relies on the GPCC dataset used here as reference

data. Yet, it is not everywhere negligible (Figure 2A), and the forced ORCHIDEE precipitation (WFDEI)

is higher than GPCC in small tropical pockets, the US Great Plains, and boreal zones, which are prone to

precipitation undercatch because of strong winds and/or a large fraction of snowfall (Becker et al., 2013).

The largest precipitation biases in coupled mode, in absolute value, are found in the wettest areas (humid

tropics) and mountain ranges (Figure 2B), which is consistent with the analysis of Cheruy et al. (2020),

in terms of bias sign and spatial pattern.

Figure 2CA-DEC showed that the spatial pattern of normalized SSM bias in forced and coupled
modes were consistent and delineated the biased regions clearly. The strong negative biases in normalized
SSM was observed over the boreal region (except Eastern Siberia) with high SWE values (Figure 1JB),
suggesting the relation to snow or permafrost. Note that satellite observation uncertainties in such snowy
regions could also be a reason for the discrepancy. The farm belt of India and China (with a lot of irrigation
in Figure 1HE) exhibit a systematic lower bias in SSM. Apart from those, arid (North Africa, middle of
Australia, Nrorth China) and tropical (Congo and Amazon Basin) regions also showed lower correlation
(Figure 3A-C), part of which can be attributed to the inherent feature that CC tends to be low when the
range in which the sample varies is narrow. To better identify the error sources in SSM, we plotted the
mean seasonal cycles (i.e., monthly climatology) separately for each latitude zone (Figure 4). Substantial
parts of the time series were consistent between simulation and observation (except grayed-out period
due to insufficient sample size and low reliability of the reference data). The underestimated simulated
SSM values compared to the CCI-SSM values in the summer season in 30-60°N (Figure 4B) may be

attributed to anthropogenic water input due to irrigation because this region includes large-scale
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agricultural fields (Figure 1HE). In the low-latitude regions, the simulated values tend to underestimate
SSM in the dry season, and to show larger seasonal change (Figure 4C, D).

Most of the areas exhibited small ET biases in absolute value (Figure 2E, F), suggesting that
ORCHIDEE is highly capable of representing global ET. The coupled simulation tended to simulate larger
ET values than did the forced simulation, which can be explained to some degree by the larger mean
precipitation biases-in the coupled simulation_than that in the forced simutationone (--as shown by the

larger positive bias for the coupled simulation which-are-pesitive-on-average(in Table 3). -Regions with
large ET biases were distributed in the tropical (Amazon and Congo Basin, the maritime continent),

mountainous (the Rockies, Andes, and Himalayas), and agricultural (especially in India) regions.
Mountainous regions tended to be characterized by a positively biased precipitation in the coupled
simulation simulatien-(Figure 2BC), which caused a positive ET bias ef ET-in-the-coupled-simulation
(especially in North/South America). Tropical regions exhibited complex responses in ET between the
coupled and forced simulations. The maritime continent (Indonesia and the other tropical Pacific islands)
had negative ET biases for both simulations. Congo and a large part of the Amazon exhibited contrasting
patterns between the simulations (the uncoupled one had a negative bias whereas the coupled one had a
positive bias). The link between ET and precipitation in the coupled ET-simulation and-the-simulated
precipitation-was only straightforward in the Congo,e-where the positively biased precipitation (water

input) led to the-a positive bias of ET. In a part of the maritime continent, the coupled ET was negatively
biased despite the-a positive bias of precipitation. By-centrastConversely, the coupled ET was positively
biased in the Amazon despite the-a negative bias of precipitation.

Positive bias of LAl was observed in large areas globally (Figure 2GF, HG). Given the strong
similarity between the forced and the coupled bias maps, it is suggested that the bias comes mostly from
the surface component, such as PFT maps, or reference data itself. In fact, LAI retrievals by spaceborne
sensors like MODIS may be saturated for large values of LAl (Zhao etal., 2016), resulting in
underestimation of LAI in reference. Despite such a positive -bias tendency, the boreal region in Eastern
Siberia, the shores of the Great Lakes in North America, and the basin of the Mekong River all exhibited

negative bias of LAI. In addition, there were hotspots of negatively biased LAI in such regions as the
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Zambezi River system lying across Angola and Zambia. Contrasting biases between the simulations were

observed around the Himalayas.

In most regions, the simulated bias for total albedo was small, and spatial pattern of the bias were

generally similar between the forced and the coupled modesa-consistent spatial-pattern-with-reference-was

(Figure 21H, 4J). The largest biases were the overestimation in the mountainous regions (especially the
Himalayas in the coupled mode) and the underestimation in the boreal and polar regions, where snow
affects the albedo. In addition, simulated and observed albedo were uncorrelated (or negatively correlated)
in many regions apart from the boreal one (Figure 3C—F). Low correlation coefficients in the arid and
tropical region can be attributed to the temporal invariance of the land surface. However, even in some
temperate and semi-arid zones where temporal variance is likely to be high, low correlation was observed.
In such regions, seasonal changes of the land surface (caused mainly by vegetation phenology and the
snowfall/snowmelt cycle) may not be described well in ORCHIDEE. In fact, the global monthly
climatology (Figure 5A, F) showed a global mean overestimated NIR albedo in-JJAexcept MAM and
underestimated visible albedo in MAM. The main source of the NIR albedo overestimation seemed to be
that in the temperate zone (30-60°N; Figure 5C), suggesting overestimated vegetation cover (having high

reflectance in NIR spectral region) there from summer to autumnin-the-surmmer. There was a systematic

overestimation of albedo in the tropical band (Figure 5D, E, I, J), and a small underestimation in the snow-

related season (winter to spring) of the boreal band (Figure 5B, G).

3.2 Factor analysis

The bivariate linear regressions between simulated ECV bias and factors (Table 4), and the boxplots
against each factor class (Figures 6-8) firstly reveal a large bias variability within each class, resulting in
a large part from the spatial variability of the simulated variables across the various climates and biomes
of the globe. However, some controls could be identified despite this variability. It is particularly the case
for irrigation, which has an obvious impact on the simulated hydrological variables (SSM, ET, LAI, and
precipitation; Figure 6A, C, E, G): both the coupled and forced models show negatively biased values in

the largely irrigated areas (classes 5 and 6), except for the forced_-mode SSM. This is understandable

15



405

410

’415

‘420

7125

430

because the simulations overlook irrigation, which creates artificial water input to the soil, resulting in
additional ET and plant growth in reality. Interestingly, the coupled simulation underestimates the
observed values more than does the forced one (Figure 6A, C, E, G), which probably relates to a positive
feedback driven by surface—atmosphere coupling (Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al.,
2015). Since the forcing WEDEI precipitation is based {i-e+eal-werld-precipitationon in situ rain gauges
which } integrates the impact of the real-world irrigation, this factor has a relatively weak effect in the

forced mode.

The contrasting ET -bias pattern between forced and coupled modes in the Congo and the Amazon
(Figure 2EB, EF) was also confirmed in the factor analysis of precipitation (classes 4 and 5, which
probably correspond to tropical regions; Figure 6D), PFT (class 2: broadleaf evergreen in Figure 7A),
LAl (class 3 in Figure 7B), and ET (class 3 in Figure 8A). This also explains the contrasting correlation
sign of ET- bias with P, SSM, ET and LAl in Table 4.

The factor analysis confirms the positive bias of LAI in the tropical regions, which are
characterized by high precipitation (classes 4 and 5 in Figure 6F), broadleaf evergreen forest (PFT 2 in
Figure 7C), high LAI (class 3 in Figure 7D), and high ET (class 4 in Figure 8B). However, some of the
positive bias in such tropical regions might be compensated by the negative bias of the simulated
precipitation (especially in the Amazon; Figure 2B<, also confirmed by class 3 in Figure 7J), resulting in
a smaller bias of LAI in the coupled simulation than that in the forced simulation. Negative LAI bias in
the boreal region is also confirmed by the PFT factor analysis (classes 8, 9, and 15 in Figure 7C). Eastern

Siberia is the main place with negative LAl biases (Figure 2G, H). Possible explanations include persistent

snowpack reducing the vegetation growing season; underestimated maximum LAl in the model; and

errors in the reference LAI product especially at high latitudes, due to the less reliable assessment of solar

reflectance from space (Guimberteau et al., 2018).

For albedo, the effect appeared in the factor analysis against slope (class 3 in Figure 8C, D) and
SWE (classes 4 and 5 in Figure 8F, G) as a discrepancy between the coupled and forced simulations. In
the steep regions, the coupled simulation tended to be positively biased because of the precipitation bias.

In the high-SWE region, the negative bias of albedo was enhanced in the forced simulation. This is due

to the already mentioned compensation of the positive bias in the mountainous region with the negative
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bias in the boreal and polar regions (Figure 21H, 1J). The NIR albedo in the tropical region (classes 2 and
3in Figure 7E and class 3 in Figure 7F) tended to be slightly large for both simulations. This is consistent
with the positive bias of LAI in such regions (Figure 2GF, GH), although the range of bias was small.

4 Discussion

In general, the ORCHIDEE simulations show good spatial/temporal consistency with the reference data,
except for issues related to external water addition/subtraction and surface—atmosphere coupling. An
example of the external source of water input is irrigation. Largely irrigated areas obviously lead to
underestimated hydrology-related model parameters (i.e., SM, ET, and LAI). Although the impact of
irrigation on ORCHIDEE SSM simulation has been suggested by Yin et al. (2019) over a specific region
(China), our experiment demonstrated explicitly that the effect on SSM in the forced mode is relatively
small on the global scale, and rather larger on ET and LAI (Figure 6A, C, E). Integrating the irrigation
process in ORCHIDEE with an ancillary agricultural map and data assimilation (Raoult et al., 2019) may
improve the accuracy (de Rosnay et al., 2003). Through the land-—atmosphere coupling (Al-Yaari et al.,
2019a), the impact of the irrigation is emphasized in the coupled simulation (Figure 6A, C, E, G), where
strong negative bias was observed in not only ET, LAI, and precipitation but also SSM over largely
irrigated areas. Specifically, a lack of description of the additional water input and man-made vegetation
over irrigated agricultural land led to lower SSM and LAI, which in turn led to lower ET. In the coupled
simulation, the lower SSM also led to lower humidity and lower precipitation, resulting in enhanced
underestimation of SSM in the next time step (i.e., positive feedback). The enhanced SSM
underestimation caused enhanced ET underestimation, as well as enhanced LAI underestimation through
the parametrizations of carbon assimilation and vegetation phenology. The Yunderestimation of
precipitation in the coupled simulation over irrigated areas (e.g., India in Figure 2BS; classes 5 and 6 in
Figure 6G) supports the validity of this-seheme;-and-sueh-an emphasizing effect in the coupled model,
which is consistent with other reports (Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al., 2015). The
spatial similarity between the bias maps of SSM, ET, and precipitation (Figure 2A—FE) over central-south
Africa, Australia, and a large part of south and east Asia also suggests the-a strong interlink between them
in the-coupled mode. A potential interpretation is that precipitation is the first-order control on SSM and
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ET in the region (i.e., water-limited ET). It also can be interpreted as a result from positive feedback
between precipitation, SSM, and ET in such regions, as reported by Yang et al. (2018). Fhis-is-consistent

h-the re of-Yang-e 018) who-have reported-the positive feedback o M—precipitation-and

However, there-seem-to-be-other secendary-factors need to that-sheuld-be considered regarding
land-atmosphere feedback and their influence on coupled precipitation and ETthe-hydrometeorological

regime-{ke-energy-Himited-er-water-limited). In particular, ET is not controlled solely by precipitation
but also by radiation (Cheruy et al., 2020), and temperature determines the potential ET (Dirmeyer, 2001;

Nasonova et al., 2011). The complex response of ET to precipitation presented-_in the present study

suggests the importance of those factors.: ,

For example, there may be a negative feedback in the Amazon and the maritime continent between
precipitation and ET because these areas are strongly energy-limited (Seneviratne et al., 2010; McVicar
et al., 2012)-in-comparisonto-the-Conge. In the maritime continent, positive precipitation bias meant more
cloud coverage than reality, which decreased the available energy and ET. OppesitebyIn contrast, the
negative precipitation bias in the Amazon meant less cloud coverage, larger available energy, and larger
ET than in reality.

Although such feedback explains the overestimated ET in the Congo and the Amazon in the
coupled simulation, it does not explain the underestimated ET there in the forced simulation. Fhe-A

pPotential explanations arereasen-for-it-iscould-be excessive water stress on ET, insufficient soil water

holding capacity, underestimated precipitation or radiation in WFDEI, and/or an overestimation of ET by
the Jung product, in the regions of high precipitation-in-the-forced-modealthough-thatis-notclearin-the
upled-mode-because—of-thepositivePbias—which-could-cancel-the-negative bias. In—addition;

eConversely, too weak water stress in dry areas (either for transpiration or soil evaporation) can also

explain the negative correlation between the-forced-mode ET bias and the-precipitation (Table 4). A

solution wcould be to activate a resistance to soil evaporation, increasing with the top soil dryness (Cheruy
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et al., 2020). Such contrasting results between the forced and coupled modes imply the importance of
model evaluation under both modes to isolate the potential error sources.
Compared with the forced mode, the positively biased precipitation simulated by the coupled

mode may positively bias the albedo, particularly in the mountainous areas (high slope class in Figure 8C—

E) via considerable snow cover. This probably arose from incomplete atmospheric simulation of the local
climate (Cheruy et al., 2020) such as an updrift along a mountain slope. Coarse spatial resolution of the
atmospheric simulation in the coupled mode can also make it difficult to represent the impact of
mountainous topography on local climate (Decharme and Douville, 2006). Theoretically, the
overestimation of albedo should decrease the available energy at the surface, thereby decreasing ET and
surface temperature. The slight negative bias of ET in the Himalayas (Figure 2FE) despite the positive
bias of precipitation (Figure 2BE) can be explained by the decrease in available energy due to the
increased albedo (Figure 2J+). Such an ice—albedo interaction in the ORCHIDEE-LMDZ coupled mode
has also been reported over the boreal region (Wang, T. et al., 2015; particularly pronounced in spring
temperature over Eastern Siberia). Taking the ice—albedo feedback into consideration with the secondary
factors (i.e., radiation and temperature) that affect ET, the link between precipitation and ET in the
coupled mode is rather complex in the mountainous and boreal regions. Moreover, the deficit of available
energy may reduce photosynthesis thus vegetation growth, causing a peaky underestimation of LAl in the
Himalayas in the coupled mode (Figure 2H2G), which is not observed in the forced mode (Figure 2GF).

Part of the positive biases in normalized SSM in the Eastern Siberia and polar region (Figure 2AC,
BD) may be attributed to freezing/snowmelt and related vegetation phenology, as excessively large
or -fast Ssnowmelt that-is-censiderable-andlervery-fast-occurs in the spring in ORCHIDEE (Figure 5B,
G).-leading-to-overestimated-SSM- However, there-istikely-to-another control factors; are likely involved

in SSM overestimation, such as wetlands, permafrost, and albedo. The negative albedo bias found in the

boreal zone (Figure 21, J) in spite of the positive snowfall bias (Figure 2A, B) can also be explained by

the excessive snowmelt. This Yunderestimation of albedo in many boreal-zenes areas, also noted in

{Cheruy et al.; (2020), was expected to lead to overestimated ET, but it did not lead to an obvious ET bias
because of the underestimated LAI (Figure 2GF, GH). Given the spectral features of land cover (Petty,
2006), the NIR albedo is related largely to an abundance of vegetation, i.e., LAI. Therefore, uncertainty
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in snow and LAl leads to uncertainty in the surface albedo, which further propagates uncertainty in the
energy balance and water cycles. Such a complicated relationship should be treated in the special tuning
of ORCHIDEE for high latitudes (Druel et al., 2017; Guimberteau et al., 2018). In addition to high-
latitude regions, vegetation seasonality in the temperate zones seemed uncertain. In the temperate forests,
the model is likely to simulate spring green-up that is considerable and/or very fast (Figure 5C), which
causes an overestimated NIR albedo and discrepancies in LAI and albedo seasonality.

Regardless of the origin (i.e., satellite, reanalysis, or in situ), observations inevitably contain
inherent uncertainty, which leads to uncertainty in the model assessment. SSM retrieval over substantially
high/low vegetation, tropical/arid regions, and highly heterogeneous and high-roughness regions remains
challenging (Ma et al., 2019). Therefore, some part of the low SSM correlation in arid/tropical regions
(Figure 3A, B) can be attributed to uncertainties in the satellite products in addition to an inherent feature
of CC. Snow cover and RFI (Oliva et al., 2012) may also cause uncertainties in satellite-based SSM
estimation, although we attempted to remove such uncertain pixels by means of a preliminary quality
check. Using multiple data sources (e.g., the Soil Moisture Active Passive (SMAP) product ([Ma-et-al;
2019 Al-Yaari-etak—2019bEntekhabi et al., 2010})) as reference for model evaluation (Eyring etal.,
2016b) is a promising way to address such uncertainties. A brief attempt with SMOS-IC product

(Fernandez-Moran et al., 2017) was shown in Supplementary Fig. S86. Inconsistency between the model-
simulated SSM depth (up to 10 cm) and the penetration depth of satellite sensors (several centimeters)
may also cause uncertainties in the assessment, although using normalized SSM instead of absolute SSM
is likely to mitigate the effect to some extent.

The satellite-based LAI product (Zhu et al., 2013) may be affected by the saturation issue of
optical satellite data (i.e., MODIS) in regions with high LAI. The snow albedo of the MODIS product
(MCD43) has aslightly larger uncertainty (RMSE = 0.07) (Stroeve et al., 2005; Stroeve et al., 2013) than
that of the snow-free daily mean albedo (RMSE = 0.034) (Wang, D. et al., 2015). However, this does not
alter our conclusion about the ORCHIDEE albedo uncertainty in the snow region, but some of the
uncertainty might be attributed to the error in satellite observation.

We depended largely on satellite-derived data for the SSM, LAI, and albedo evaluations. By
contrast, we used a FLUXNET-based product (Jung etal., 2019) for the ET evaluation, which has
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potential uncertainties arising from (i) the statistical upscaling process (model tree ensemble: Jung et al.,
2009), (ii) the input data required in machine-learning prediction, and (iii) the heterogeneous distribution
of ground stations. Because the latter potential issue is particularly important for hardly accessible regions
such as tropical and mountainous areas, progress in the data coverage of the FLUXNET network is
desirable. Although ET products derived from satellite data (Miralles et al., 2011; Zhang et al., 2010;
Zeng et al., 2014) can also be used, unlike the other variables (SSM, LAI, and albedo), the retrieval of ET
is not done directly from the satellite observations but depends largely on the process-oriented models.
Therefore, in addition to the uncertainties in the satellite observations themselves, such products have
uncertainties that arise from ancillary data (e.g., atmospheric conditions, land cover) required in the model,
as well as from imperfections in the model structure/parameterization (preliminary comparison among
the different data sources can be found in Supplementary Fig. S97).-

The difference between the forced ORCHIDEE precipitation (WFDEI) and GPCC (Figure 2A)
probably comes from undercatch correction: based on Legates and Willmott (1990) for GPCC, and on
Adam and Lettenmeier (2003) for WFDEI. Schneider et al. (2014) acknowledge that for the GPCC

product, “the biggest uncertainty issue is the correction of the systematic gauge-measuring error (general

undercatch of the true precipitation)”, but this is very likely true for all precipitation products.
Note that the present study is based on a specific LSM (i.e., ORCHIDEE 2.0), atmospheric model
(i.e., LMDZ6A), and forcing data (WFDEI). Future work should include addressing the uncertainties that

arise from the LMDZ model structure/parameterization, as well as the resolution in the numerical

simulation (Hourdin et al., 2013). Uncertainties that arise from the atmospheric model have been analyzed
for some evaporation and SSM by Cheruy et al. (2020). For China, WEDFI-based simulations have
performed better than Princeton Global meteorological Forcing and Climatic Research Unit-National
Center for Environmental Prediction with ORCHIDEE (Yin et al., 2018). However, because varying the
forcing data has a comparable impact to varying the LSM in the forced simulation (Guo et al., 2006), the
uncertainty in selecting the forcing data should also be kept in mind. Other future work should be factor
analysis against other hydrometeorological parameters such as radiation, temperature, and precipitation

frequency (Qian et al., 2006; Yin et al., 2018). We confirmed the selection of study period did not make
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substantial difference in the result (Table S1) in terms of global mean; however, it should be also checked

in the regional scale in future.

5 Conclusions

This paper has presented an in-depth evaluation of fiveeur interlinked essential climate variables (namely
surface soil moisture, evapotranspiration, leaf area index, and-albedo, and precipitation) simulated by
ORCHIDEE land surface model under different simulation modes (either forcing by WFDEI or coupled
with LMDZ). Statistical evaluation was conducted using various reference-data sources (ESA CClI,
upscaled FLUXNET, GIMSS 3g, MODIS products, and GPCC), and factor analysis was conducted

against various landscape factors (namely plant functional type, leaf area index, irrigation, precipitation,

slope, snow water equivalent, and evapotranspiration). Although ORCHIDEE consistently represented
the spatiotemporal patterns of each essential climate variable in general, some issues were found relating
to water cycles and their different consequences between the forced and coupled simulations. Errors
relating to freezing/snowmelt, artificial water input such as irrigation, and precipitation bias propagated
through surface—atmosphere coupling in the coupled mode. The factor analysis revealed a strong link
between irrigation and precipitation (that further affected surface soil moisture, evapotranspiration, and
leaf area index, particularly in the coupled mode) and a relatively complex link between precipitation and
evapotranspiration that reflected the hydrometeorological regime of the region (energy-limited or water-
limited) and the snow-albedo feedback in mountainous and boreal regions. In addition, the description of
vegetation and snow seasonality seemed to be an issue in ORCHIDEE. Censiderable-Excessive and/or
very-too fast green-up in temperate forest may lead an overestimation of leaf area index and near infrared
albedo. Censiderable-Excessive and/or very-too fast snowmelt in spring in the boreal region may result
in the underestimation of albedo in such regions, which can affect energy balance and water cycles. The
different results between the forced and coupled modes stress the importance of model evaluation under

both modes to determine each potential error source in model simulation.
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https://vesq.ipsl.upmc.fr/thredds/catalog/IPSLFS/datapapers.

The other reference data are freely available from the following links. All the links were confirmed to be

accessible on 26 January 2021.

- The latest version of ESA CCIl SM. https://www.esa-soilmoisture-cci.org/node/145. ESA also

provides the previous version (version 4.4 was used in this study) upon request.

- The evapotranspiration product by Jung et al. (2019). https://www.bgc-
jena.mpg.de/geodb/projects/FileDetails.php (FLUXCOM data portal, on CC4.0 BY license).
- The latest version of LAI3g. https://daac.ornl.gov/VEGETATION/quides/Mean_Seasonal LAIl.html.

The original version used in this study (Zhu et al., 2013) can be obtained on request at

http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html.
- The MODIS albedo product (MCD43C3). https://Ipdaac.usgs.gov/products/mcd43c3v006/.
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- The latest version of GPCC (version 7). https://psl.noaa.qov/data/gridded/data.gpcc.html. The version

used in this study (version 6, 0.5-deg) is available at

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata v6 doi_download.html.

- Global Map of Irrigation Areas (GMIA; Sibert, 2013). http://www.fao.org/aquastat/en/geospatial-

information/global-maps-irrigated-areas/latest-version/.

- ETOPOS. https://www.ngdc.noaa.gov/mgag/global/etopo5.HTML.

Code availability
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available from http://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE 2 0/ORCHIDEE/ (Peylin

et al., 2020). Tag 2.0 is based on revision 4783, with updates regarding the number and format of output

variables to comply the CMIP6 requirements, and a few very minor bug corrections regarding the carbon

cycle. The code of revision 4783 can be obtained upon request to the corresponding author.
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Table 1. Overview of the selected reference datasets and period of analysis. The last column gives the percent
of land pixels in the maps of Figs. 2 and 3 with observed values. Smaller amount of SSM data is available
than the others as a result of relatively strict quality control. For ET and LAI, no data were available in
extremely arid regions.

975

Variable Reference product Evaluation Observed fraction of land area

period (%)

SSM ESA CCl v4.4 (Liu et al., 2012) 1993--1999 441

ET Jung et al. (2019) 1987--2009 89.3

LAI LAI3g (Zhu et al., 2013) 1987--2009 87.8

Precipitation | GPCC (Schneider et al., 2014) 1987--2009 98.5

Albedo MODIS (Qu et al., 2014) 2003--2009 87.4

Table 2. Correspondence between classification levels and values for each factor.

Factor Reference data How classified Fraction
of land
area (%)

PFT ORCHIDEE-defined |class 1: bare soil is dominant 154

plant functional types | class 2: tropical broadleaf evergreen forest is dominant 6.9
class 3: tropical broadleaf raingreen forest is dominant 32
class 4: temperate needleleaf evergreen forest is dominant 20
class 5: temperate broadleaf evergreen forest is dominant 3'
4

class 6: temperate broadleaf summergreen forest is dominant
class 7: boreal needleleaf evergreen forest is dominant 36
class 8: boreal broadleaf summergreen forest is dominant 8.6
class 9: boreal needleleaf summergreen forest is dominant | ¢
class 10: temperate C3 grasses are dominant

8.6
class 11: C4 grasses are dominant
class 12: C3 crops are dominant 6.6
class 13: C4 crops are dominant 8.8
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class 14: tropical C3 grasses are dominant 9.2

class 15: boreal C3 grasses are dominant 21

2.7
12.4
LAI Zhu et al. (2013) class 1 (low LAI): —0 — 1.0 —m?/m? 41.9
class 2 (middle LAI): 1.0 — 3.0 -m¥m? 37.1

class 3 (high LAI): —3.0 - ——m?/m? 8.7
ET Jung et al. (2019) class 1: less than 1 mm/d 45.8
class 2: 1-2 mm/d 23.6
class 3: 2-3 mm/d 13.0

class 4: more than 3 mm/d 6.9
Precipitation |GPCC, Schneider etal. |class 1 (extremely dry): less than 1 mm/d 41.0
(2014) class 2 (dry): 1 to 2 mm/d 24.1
class 3 (moderate): 2 to 4 mm/d 17.2
class 4 (wet): 4 to 7 mm/d 11.0

class 5 (extremely wet): more than 7 mm/d )

5.3
SWE ORCHIDEE- class 1: 0 mm 333
simulated SWE class 2: 0-16 mm 336

class 3: 16-32 mm 87

class 4: 32-48 mm 95

class 5: more than 48 mm '

14.8
Irrigated area | Siebert et al. (2010) | class 1: 0% 56.6
class 2: 0-5% 34.7

class 3: 5-10% 36

class 4: 10-20% 26

class 5: 20-50% '
class 6: 50-100% 19
0.5
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980

985

Slope

ETOPO5% (Amante-&
Eakins—2009NOAA
1988)

class 1 (flat): 0--0.5- degree
class 2 (middle): 0.5-2.0 degree
class 3 (steep): 2.0—- degree

3.0
28.1
67.4

Table 3. Land averages of the evaluation criteria (bias, RMSE, and correlation coefficient CC) for
the selected variables and reference data sets. The same bias sign on average over land for all
variables wasere observed between forced and coupled simulations. Positive systematic bias were
observed for LAI, and large uncertainty (i.e., RMSE) was observed for SSM and ET. ET shows the
best correlation coefficient. Overall, coupled simulation tends to behave more realistically, despite

overestimation of precipitation.

Forced Coupled
Bias Precipitation (mm/d) 0.112 0.186
SSM -(normalized) —0.072 —0.062
ET (mm/d) —0.231 —0.133
LAI () 0.325 0.220
Albedo (-) —-0.000 0.009
RMSE Precipitation (mm/d) 1.057 1.680
SSM -(normalized) 0.546 0.560
ET (mm/d) 0.513 0.540
LAI () 0.586 0.554
Albedo (-) 0.048 0.047
cC Precipitation (mm/d) 0.790 0.605
SSM -(normalized) 0.581 0.551
ET (mm/d) 0.744 0.692
LAI(-) 0.328 0.340
Albedo (-) 0.395 0.426
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990

Table 4. Spatial correlation coefficients (SCC) between biases (in forced and coupled modes) and
potential explanatory factors. PFT was excluded in the Table because it is nominal scale.
Statistically insignificant SCCs appear in italic. SSM tended to be underestimated in high P, SSM,
ET, LAI regions for both forced and coupled modes. Between forced and coupled ET, opposite

995 association with P, ET, and LAI was observed. LAI in both modes were positively biased in high P,
ET, SSM region (probably corresponding to the tropical region). Albedo and coupled P were
strongly associated with slope. Irrigation is likely to bias SSM and ET negatively, and the effect was
more enhanced in the coupled mode.

Biases of forced simulations
Factors P SSM-CCI ET LAI Albedo
P 0.054 —0.203 —0.168 0.375 0.283
ET 0.064 —0.163 —0.277 0.357 0.344
LAI 0.068 —0.083 —0.127 0.263 0.275
SWE 0.096 0.024 —0.103 —0.090 0.181
Irrigated fraction | —0.060 —-0.066 —0.170 0.012 0.059
Slope —0.027 —0.068 —-0.010 0.027 0.023
Biases of coupled simulations
Factors P SSM-CCI ET LAI Albedo
P —0.108 —0.234 0.200 0.258 0.130
ET 0.006 —0.164 0.163 0.245 0.139
LAI —-0.004 —0.121 0.264 0.092 0.103
SWE 0.034 —-0.009 —0.134 —0.060 0.073
Irrigated fraction | —-0.071 —0.118 —0.213 —0.012 0.030
Slope 0.267 0.085 —0.022 —0.031 0.249
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1005 Table S1. Pluri-annual land averages (excluding Greenland and Antarctica) of the simulated
variables over the different periods used for evaluation. The chosen period does not markedly
influence the observed mean, and thus the bias.

1010

Forced Coupled

1987— 1993— 2003— 1987— 1993— 2003—

2009 1999 2009 2009 1999 2009
(Pnrqerzi/%i)tation 2099 2094 2.129 2.295 2.313 2.298
SSM (m*/m°) | 0.163 0.164 0.162 0.194 0.193 0.192
ET (mm/d) 1.074 1.072 1.077 1.182 1.180 1.189
LAIL-(-) 1.555 1.550 1571 1.470 1.457 1.492
Albedo (-) 0.212 0.211 0.210 0.222 0.221 0.220
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Figure 1: Spatial patterns of pluri-annual mean reference data used for validation (marked with a +) and/or factor analysis (marked

D15 asax) is: (A+) SSM from ESA CCI; (B+x) ET product of Jung et al.
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(2019); (C+x) {A)-GHAMS-LAI3g; (D+) MODIS NIR albedo; (E+) MODIS visible albedo; (F+x) GPCC precipitation data; (Gx)
dominant plant functional type used in ORCHIDEE (see Table 2 for the class definition); (Hx) fractional area equipped with
irrigation; (1x){B) sSlope derived from ETOPOS; (-G)—#aeqenaLarea-equwedwm#F@atmn—(JxD) snow water equwalent derlved
from the forced-mode ORCHIDEE;{E)}GPCC precipitation-data{(F)ET product provided-b aka

1020  typeused-in-ORCHIDEE.
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Figure 2: Pluri-annualTemporaly-averaged average spatial-patterns-of bias (i.e., simulated values minus observed values) for the
D25  five evaluated variables, simulated in forced mode (left) and coupled mode (right): (A, B): Precipitation bias against GPCC; (C, D):
SSM bias against CCI-SSM, in normalized VWC during period 1 (1993-1999); (E, F): -ET bias against upscaled FLUXNET data;

(H, H): LAI bias against LAI3g data; (I, J): total-albedo bias against MODIS albedo product. Grey areas are statistically
insignificant pixels.
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1040 Figure 3: Spatial patterns of correlation coefficient along time series (with monthly time steps) per pixel, for SSM and albedo. (A),

(B): correlation coefficient between simulated SSM and CCI-SSM in normalized VWC for forced and coupled mode, respectively.

(C), (D): correlation coefficient between simulated and observed (MODIS) albedo in NIR band for forced and coupled mode,

| respectively. (E), (F): those in visible band. WhiteGray areas are null pixels that were excluded by the quality control, and greengrey
areas are statistically not significant pixels.
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same as that for NIR).
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Figure 6: Boxplots of mean biases (simulated minus observed values) of SSM, ET, LAI (forced/coupled), and precipitation (coupled
only) against each class of irrigation and precipitation. The upper limit, middle line, and lower limit of the boxes correspond 25-, 50-
and 75- percentile values, respectively. The upper and lower limits of whiskers are maximum and minimum values, respectively.
The diamond indicates mean value of the class. (A), (B): SSM bias; (C), (D): ET bias; (E), (F): LAI bias; (G), (H): eeupled
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precipitation bias vs. irrigation and precipitation classes, respectively. Blue and pink boxes correspond to forced and coupled mode,
1D65  respectively. ines-indicate-pixel-availability (i-eratio-of sampled-pixels-to-alg ixe h ~The
horizontal black line shows zero. Each class of landscape factors (i.e., x-axis) is defined in Table 1.
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1070 Figure 7: Boxplots of mean biases (simulated minus observed values) of ET, LAI, NIR/visible albedo (forced/coupled), and

precipitation (coupled only) against each class of PFT and LAL. (A), (B): ET bias; (C), (D): LAl bias; (E), (F): NIR -albedo bias; (G),
(H): visible -albedo bias; (1), (J): eeupled-precipitation bias vs. PFT and LAI classes, respectively. Legends and axes are the same as
in Figure 6, and each class of landscape factors (i.e., x-axis) is defined in Table 1.
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gainst SWE class, respectively. Legends and axes are the same as in Figure 6, and each class of landscape factors
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(i.e., x-axis) is defined in Table 1.

Figure 8: Boxplots of mean biases (simulated minus observed values) against each class of ET, slope, and SWE. (A), (B): ET and
LAI bias vs. ET class; (C), (D), (E): NIR albedo, visible albedo, and eoupled-precipitation bias vs. slope class; (F), (G): NIR- and

visible- albedo bias a
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D85  Figure S1: Pluri-annual average of surface soil moisture (SSM) in the forced and coupled mode (top row), and in the reference data
(bottom row).Cemparisen-ofspatial-p between-simulations-{forced-and-coupled)-and-observations: In addition to CCI-SSM,
another observation data source (SMOS-IC [Fernandez-Moran et al., 2017] version 1.05; not shown in the main text) was used just
to check difference in reference data selection. All available temperaktime series data (forced: 1979-2009, coupled: 1985-2014, CCI-
SSM: 1978-2018, SMOS-1C: 2010-2017) were averaged to create these maps (i.e., not separated into subperiods). The unit is SSM
D90 volumetric water content (VWC; m3¥m?). Greay indicates null values that were excluded in the quality control process.
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Figure S2: Pluri-annualFemperaty averaged of evapotranspiration (ET) simulated in forced and coupled mode, and that of
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3.0

15

reference data. In addition to product by Jung et al. (2011), three other data sources (Miralles et al., 2011; Zhang et al., 2010; Zeng

et al., 2014) were checked (not shown in the main text). To take temporal average during the common duration of all reference
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Figure S3: Pluri-annual Fermperathy-averaged of LAI simulated in (A) forced mode and (B) coupled mode,- and (C) Fthe reference
LAI (Zhu et al., 2013) for the study period (1987-2009).-can-be-found-in-Fig—1A:
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Figure S4: Pluri-annual Femperath-averaged of albedo simulation in forced and coupled modes, and MODIS observation (Qu et
al., 2014) during the study period (2003-2009), for both near infrared (NIR) and visible (VIS) spectral domains.
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Figure S5: Pluri-annual average of precipitation in (A) forced mode and (B) coupled mode, and (C) the reference precipitation
(GPCC product) during the study period (1987-2009).
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Figure S6: Pluri-annual mean relative differences between forced and coupled modes for normalized SSM, ET, LAI, albedo, and

precipitation, in % of the forced value. All data were temporally averaged for each study period (defined in Table 1).
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Figure S75: Time series of globally averaged SSM of forced and coupled simulations, and observations. In addition to CCI-SSM,
another observation data source (SMOS-IC [Fernandez-Moran et al., 2017]; not shown in the main text) was used just to check
difference in reference data selection. (A) Time series of quality-controlled data before co-masking and normalization. Dashed black
line shows ratio of available pixels to all land pixels (%), which strongly affected CCI1-SSM values. (B) Time series after co-masking
and normalization during subperiod 1 (1993-2001999), including CCI-SSM and forced and coupled simulations. (C) That during
subperiod 2 (2011-2014), including SMOS-IC and coupled simulation.
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Figure S86: Different appearance in factor analysis when using different reference data (CCI-SSM vs SMOS-IC). Blue and pink
boxes correspond to the mean bias of forced and coupled mode against CCI1-SSM, respectively, and green boxes corresponds to the
mean bias of coupled mode against SMOS-IC. The dashed and solid lines indicate pixel availability (i.e., ratio of sampled pixels to
all global land pixels) for each class in CCI-SSM and SMOS-IC data, respectively. Irrigation class is defined based on the fractional
coverage of irrigated area: classl (0%), class2 (0—0.1%b), class3 (0.1—-1%), class4 (1—-5%), class5 (5—10%), class6 (10—-20%), class7
(20—-35%), class8 (35—50%), class9 (50—75%), and class10 (75—-100%). Precipitation class definition is the same as Table 2. Because
of the different values and data coverages (particularly Amazon and Congo) between CCI-SSM and SMOS-IC, irrigation factor
analysis (A) using SMOS-1C emphasized the negative bias of SSM in the coupled simulation in comparison to CCI. Precipitation
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1135 factor analysis (B) emphasized the difference between the reference data that were used (CCI or SMOS), especially in the areas with
extremely high precipitation (classes 4 and 5).
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Figure S97: Mean bias, correlation coefficient, and RMSE maps derived from different reference data during 1987-2006. From the
top row, Jung et al. (2011), Miralles et al. (2011), Zhang et al. (2010), Zeng et al. (2014), and the ensemble mean of those four data
were used as reference. From the left column, mean bias of forced simulation, that of coupled simulation, correlation coefficient of
forced simulation with each reference, that of coupled simulation, RMSE of forced simulation, and that of coupled simulation were
shown. Jung et al. (2011) product has similar bias pattern as the four-product ensemble, and relatively less RMSE.
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