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Abstract. Evaluating land surface models (LSMs) using available observations is important to understand 

the potential and limitations of current Earth system models in simulating water- and carbon-related 

variables. To reveal the error sources of a land surface model (LSM), fiveour essential climate variables 

have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, and 25 

surface albedo, and precipitation) via simulations with IPSL LSM ORCHIDEE (Organizing Carbon and 

Hydrology in Dynamic Ecosystems), particularly focusing on the difference between (i) forced 

simulations with atmospheric forcing data (WATCH-Forcing-DATA-ERA-Interim: WFDEI) and (ii) 

coupled simulations with the IPSL atmospheric general circulation model. Results from statistical 

evaluation using satellite- and ground-based reference data show that ORCHIDEE is well equipped to 30 

represent spatiotemporal patterns of all variables in general. However, further analysis against various 
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landscape/meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests 

potential uncertainty relating to freezing/snowmelt, temperate plant phenology, irrigation, as well as 

contrasted responses between forced and coupled mode simulations. The biases in the simulated variables 

are amplified in coupled mode via surface–atmosphere interactions, indicating a strong link between 35 

irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that 

reflects the hydrometeorological regime of the region (energy-limited or water-limited) and snow- albedo 

feedback in mountainous and boreal regions. The different results between forced and coupled modes 

imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in 

the model. 40 

 

1 Introduction 

Land surface models (LSMs) are essential to understand large-scale exchange of energy, water, and 

carbon between the land surface and the atmosphere. LSMs coupled with atmospheric general circulation 

models (GCMs) have been used to simulate global climate and climate change under international 45 

frameworks such as the Coupled Model Intercomparison Project (CMIP) (Taylor et al., 2012; Eyring et 

al., 2016a), contributing to Earth sciences and policy making for mitigating and adapting to climate 

change. To understand the potential and limitations of climate change simulations, evaluating outputs of 

LSMs with available observations is important (Flato et al., 2013). Uncertainties associated with LSMs 

can arise from a deficiency of model physics and parameterization (Liu et al., 2003), errors in atmospheric 50 

forcing data (Guo et al., 2006; Nasonova et al., 2011; Yin et al., 2018), boundary conditions including 

vegetation and land use changes (Guimberteau et al., 2017; Boisier et al., 2014), and/or error propagation 

through land-atmosphere coupling (so-called “climate drift”) (Dirmeyer, 2001). Recently, convenient 

tools for systematic model evaluation have been developed (e.g., Eyring et al., 2016c; Gleckler et al., 

2016; Best et al., 2015); however, further in-depth model evaluation is required to reveal the underlying 55 

processes and sources that lead to uncertainties in simulations (Eyring et al. 2016b).  

Notably, focusing on the differences between LSM simulations with and without GCM coupling 

would provide novel knowledge about LSM evaluation (Liu et al., 2003; Zabel et al., 2012; Wang, T. et 
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al., 2015). LSM simulations without GCM coupling but forced by an atmospheric dataset (also called 

“offline” or “stand-alone” mode) do not allow feedback between the atmosphere and land surface. 60 

Therefore, errors in the simulated values solely arise from deficiency model structure/parameterization, 

uncertainty in the forcing data (Yin et al., 2018), and mismatch in land cover between model and forcing 

data (Zabel et al., 2012). The foremost influential forcing factor on water cycle is precipitation (Qian et 

al., 2006; Decharme and Douville 2006), although radiation and land cover (i.e., vegetation) can also 

affect hydrological variables (Dirmeyer, 2001; Guo et al., 2006) such as surface soil moisture (SSM) or 65 

evapotranspiration (ET), depending on the temporal scale (Guo et al., 2006) and the hydrometeorological 

condition of the region (i.e., energy-limited or water-limited, Nasonova et al., 2011; Zabel et al., 2012). 

Anthropogenic factors (e.g., irrigation) may also cause errors in the simulated variables when not 

accounted for by the LSM (Yin et al., 2018). On the other hand, coupled LSM simulation are also affected 

by errors in atmospheric simulation, which can be enhanced through land–-atmosphere interaction 70 

(Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al., 2015). Such errors occur at short time scale (i.e., 

several-days) up to seasonal time scale (Dirmeyer, 2001), via the interlinkage of hydrological variables 

(e.g., rainfall, SSM, ET, and infiltration) in the LSM scheme and thermal variables (Cheruy et al., 2017, 

AitMesbah et al., 2015). 

Among various LSMs, we focused on the Organizing Carbon and Hydrology in Dynamic 75 

Ecosystems (ORCHIDEE) LSM (e.g., Krinner et al., 2005; d’Orgeval et al., 2008; Guimberteau et al., 

2017), which enables the explicit representation of processes governing the water, carbon, and energy 

budgets with highly flexible spatial resolution (Raoult et al., 2019). We used the ORCHIDEE (revision 

4783, tag 2.0) version, which is implemented in the IPSL’s (Institute Pierre Simon Laplace) climate model 

configurations used for CMIP6 (Eyling et al., 2016a), including the Land Surface, Snow and Soil Moisture 80 

Model Intercomparison Project (LS3MIP) with offline simulations (van den Hurk et al., 2016). Through 

an in-depth assessment of fiveour simulated variables (i.e., SSM, ET, leaf area index (LAI), and surface 

albedo, and precipitation) that should be closely interlinked and a special focus on the differences between 

forced and coupled simulations, the aim of this study is to better understand which land surface processes 

deserve further improvements in the studied LSM and to investigate the land-atmosphere coupling role 85 

in  diagnosed model uncertainties.  
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The Global Climate Observing System (GCOS, 2010) designates the fiveour selected variables as 

being essential climate variables (ECVs), thereby allowing us to take advantage of recent progress in their 

global -scale observation. Using satellite data, researchers have developed various retrieval algorithms to 

acquire SSM (Jackson et al., 1999; Wigneron et al., 2007, 2017), ET (Zhang et al., 2010; Miralles et al., 90 

2011; Zeng et al., 2014), LAI (Zhu et al., 2013), and albedo (Schaaf et al., 2002; Qu et al., 2014), and 

precipitration (Adler et al., 2003), which can be used as reference data for LSM evaluation. Empirical 

upscaling products from global in situ observations (Jung et al., 2011, 2019) can also be used. The 

selected variables are particularly interesting for land surface processes: SSM is a recognized driver of 

surface–atmosphere interactions (Seneviratne et al., 2010), constraining the partitioning of sensible/latent 95 

heat and plant activity and determining ET and vegetation dynamics (e.g., Gu et al., 2006). ET affects 

atmospheric humidity (usually described by the vapor pressure deficit) and cloud formation, creating 

feedback systems among SSM, ET, and precipitation (Yang et al., 2018). Accounting for long-term 

vegetation dynamics, which can be measured by LAI, interlinked with such hydrological processes, is 

important in monitoring carbon cycle and ecosystem services that are related to climate change (IPCC, 100 

2014) and natural disasters (Adikari and Noro 2010). Another important parameter in the surface energy 

exchange is the surface albedo, which controls the reflection of incident solar radiation and is interlinked 

with hydrological processes (especially through surface snow cover) and vegetation dynamics (Bonan, 

2008). 

To investigate the potential sources of model uncertainty, we considered various landscape factors 105 

(“factor analysis”) in addition to the traditional statistical evaluation. This work aims at increasing 

knowledge about the features and limitations of ORCHIDEE and is a practical example of in-depth model 

evaluation focusing on the differences between forced and coupled modes. The remainder of this paper 

is organized as follows. Section 2 describes the simulation setting, the reference datasets, and the factor 

analysis. Section 3 presents results for the spatiotemporal patterns of the model uncertainties and factor 110 

analysis. Finally, Sections 4 and 5 provide a discussion and conclusions, respectively. 
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2 Materials and methods 

2.1 Model and simulations 

2.1.1 Description of the land surface model 

ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) is the LSM used in the IPSL 115 

Earth System model (ESM). This global process-based model of the land surface describes the complex 

links between the terrestrial biosphere and the water and the energy and carbon exchanges between the 

land surface and the atmosphere (Krinner et al., 2005).  The used version in the IPSL-CM6 ESM for the 

CMIP6 simulations (Boucher et al., 2020), which is known as tag 2.0, was previously described in many 

papers (Raoult et al., 2019; Boucher et al., 2020; Cheruy et al., 2020; Tafasca et al., 2020), and we only 120 

summarize its main features in this paper, with some details on the related parametrizations to the fiveour 

studied ECVs.  

The land cover is described with 15 plant functional types (PFTs), including one for bare soil, as 

seen in the full list in Table 2, and they can all coexist in each grid-cell, where the taken fractions taken 

here are from the CMIP6 datasets (Boucher et al., 2020). For each PFT, the transpiration serves as a 125 

coupling flux between the water, energy budget, and photosynthesis process, which drive the evolution 

of the biomass and LAI owing to generic equations with PFT-specific parameters (Krinner et al., 2005). 

Evapotranspiration (ET) is controlled by the energy and water budget via a bulk aerodynamic approach, 

where four parallel fluxes are distinguished: sublimation, interception loss, soil evaporation, and 

transpiration. In each grid-cell, the first two fluxes proceed at a potential rate from the grid-cell fractions 130 

with snow and canopy water, respectively. The soil evaporation and transpiration originate from the 

complementary snow-free fractions covered by bare soil and vegetation, which depend on LAI, where the 

effectively foliage-covered fraction by foliage exponentially increases with the LAI withhaving a 

coefficient of 0.5, while the light extinction is controlled through the canopy, hence the photosynthesis 

process. The two fluxes both depend on the soil moisture, where the transpiration is limited by the 135 

stomatal resistance, as it increased when the soil moisture dropped from the field capacity to the wilting 

point. The soil evaporation is not limited by the resistance but only by upward capillary fluxes, which 

control the soil propensity to meet the evaporation demand. 
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The soil moisture (SM) dynamics are described over a soil depth of 2 m and discretized into 11 

soil layers to solve the Richards equation. SM in the top 10-centimeters is regarded as SSM. The hydraulic 140 

conductivity and retention properties depend on the SM owing to the Van Genuchten-Mulaem equations, 

with the parameters depending on the soil texture (Tafasca et al., 2020), and they are read from the map 

of Zobler (1986). The infiltration is limited by the surface hydraulic conductivity, and it is calculated with 

a time splitting procedure inspired by the Green-Ampt equation, where a sharp piston-like wetting front 

is assumed (d’Orgeval et al., 2008; Vereecken et al., 2019). The surface runoff is made of non-infiltrated 145 

water (infiltration-excess runoff); however, ponding is allowed in flat areas, and it can reinfiltrate at later 

time steps. This so-called reinfiltration fraction linearly decreases from 1 to 0 in totally flat grid-cells1 in 

totally flat grid-cells to 0, where the mean grid-cell slope exceeds 0.5% (Ducharne et al., in prep). For 

CMIP6, the ORCHIDEE does not include the irrigation effect on the soil moistureSM, ET, and vegetation 

growth, although the model can simulate this anthropogenic pressure (Xi et al., 2018). 150 

The snow processes are described by a 3-layer scheme of intermediate complexity (Wang et al., 

2013), in which the snow albedo and insulating properties depend on the snow density and age. The 

ORCHIDEE 2.0 also includes a revised parameterization of the interplay between the vegetation and the 

snow albedo, and the optimized parameters match the remote sensing albedo data from the Moderate-

resolution Imaging Spectroradiometer (MODIS) sensor, distinguishing the visible and near-infrared 155 

(NIR) bands (Boucher et al., 2020; Peylin et al., in prep). For the calculation of the heat diffusion, which 

includes the soil freezing effects (permafrost), the soil is extended to 90 m, and the moisture content of 

the deepest hydrological layer is extrapolated to the entire profile between 2 and 90 m. The thermal soil 

properties depend on the soil texture, moisture, and carbon content (Guimberteau et al., 2018).  

 160 

2.1.2 Forced and coupled simulations  

To separate the errors caused by the ORCHIDEE model structure/parameterization from the ones 

resulting from the simulated climate through land-–atmosphere coupling, we compared a forced and a 

coupled simulation. In the coupled simulation, the ORCHIDEE LSM is coupled to the LMDZ6A 

atmospheric GCM (Hourdin et al., 2020), as embedded in the IPSL-CM6 ESM for the CMIP6 simulations 165 

(Boucher et al., 2020; Cheruy et al., 2020).  The only difference between the atmospheric physics used in 
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this paper and the one used for CMIP6 concern the parameterization of deep and shallow convection and 

their interaction to improve the description of the intertropical convergence zone and the El Nino Southern 

Oscillation. The description of these differences and their impact on precipitation and other variables 

controlling the near surface climate can be found in Mignot et al., (2021).  170 

The coupled simulation was run over 1985–2014 (following a 5-yr spin up) using a ‘nudging’ 

approach to constrain the large-scale atmosphere dynamics toward the synoptic atmospheric conditions 

(Cheruy et al., 2013). To this end, the simulated wind fields (zonal and meridional wind components) are 

relaxed toward the ERA-Interim winds (Dee et al., 2011) by adding a correction term in the evolution 

equation for the wind. By reducing the internal variability, this method allows the direct comparison of 175 

the observations and simulations, and it was successfully used for evaluating the coupled land-atmosphere 

parameterizations (Cheruy et al., 2013; Wang, et al., 2016), including in with the IPSL-CM6 ESM 

(Cheruy et al., 20200). 

In the forced simulation, which covers 1979–2009, the required near- surface meteorological data 

by the ORCHIDEE LSM (liquid and solid precipitation, incoming longwave and shortwave radiation, 2-180 

m air temperature and specific humidity, 10-m wind speed, surface pressure) are prescribed from the 

downscaled and bias-corrected reanalysis data [WATCH-Forcing-DATA-ERA-Interim (WFDEI)], 

provided at the 0.5° resolution with a 3-hourly time step  (Weedon et al., 2011; Weedon et al., 2014). 

Precipitation is bias-corrected using monthly data from the Global Precipitation Climatology Centre 

(GPCC Version V6, Schneider et al., 2014), with a specific correction of undercatch errors following 185 

Adam and Lettenmaier (2003) and the simulation covers 1979–2009.  

The spatial resolution differs between the two simulations, reflecting the grid of the atmospheric 

data: the coupled simulation has a coarser resolution (144 × 142, corresponding roughly to 2.5° in 

longitude and 1.25° in latitude) than that of the forced simulation (0.5° grid). To make the evaluation 

consistent and simple, we used the same spatial resolution for our analyses, and we oversampled the 190 

LMDz grid mesh to the finer resolution (0.5°) such as to keep as much spatial information as possible 

from the high-resolution offline grid mesh. To investigate variability patterns on seasonal to interannual 

scales, all the data were aggregated into monthly time steps. Fiveour interlinked variables (SSM, ET, LAI, 
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and albedo, and precipitation) were considered in this evaluation, and the study region was 60°S–90°N, 

180°W–180°E (i.e., Antarctica and Greenland were excluded). 195 

2.2 Reference data 

2.2.1 Surface soil moisture 

The SSM product provided by European Space Agency Climate Change Initiative (ESA CCI) (Liu et al., 

2012) was used as a reference. It is a merged product comprising multiple SSM data derived from various 

passive and active microwave satellites (i.e., SMMR, SSM/I, TMI, AMSR-E, Windsat, SMOS, AMSR2, 200 

AMI-WS, ASCAT-A, and ASCAT-B) providing a long-term (19789–20185) SSM dataset with 0.25° 

resolution. The CCI-SSM product has been evaluated extensively against in situ observations (e.g., Al-

Yaari et al., 2019b), and their accuracy has been reported as being relatively high compared to that of 

other existing products such as SMOS-L3, LPRM, and AMSR2 (Ma et al., 2019). 

Because it includes low-quality data flags for snow, dense vegetation, and radio-frequency 205 

interference (RFI) (Oliva et al., 2012), we applied data screening following Al-Yaari et al. (2016). We 

screened out all the pixels where the provided uncertainty was larger than 0.06 m3/m3 (volumetric water 

content). Next, any data records in which the SSM was not in a valid range (either >0.6 or <0.0) 

(Fernandez-Moran et al., 2017; Dorigo et al., 2013) were excluded. Finally, to exclude any areas covered 

by snow or dense vegetation and other unreliable regions, we kept only those areas in which the quality 210 

flag was zero (fine-quality pixels). The screened dataset was then aggregated into 0.5° × 0.5° and monthly 

time steps. This screening process removed 3.6% of all the original pixels.  

We performed an initial check on the time series of the global average of CCI-SSM and found an 

artificial trend therein that depended on the availability of the observation data (Supplementary Fig. S65). 

As reported by other researchers (e.g., Loew et al., 2013), this artificial trend could lead to 215 

misinterpretation of long-term signals. To mitigate such artificial trends and initialization errors of each 

data, we selected a stable period (i.e., without discontinuous jump in time series) during 1993–1999 for 

comparison with both the forced and coupled simulations. Because of the differing natures of LSM-

simulated and observed SSM (e.g., dependence on meteorological forcing data/atmospheric model, model 

parameterization), their absolute SSM [m3/m3] values (i.e., magnitudes) are not comparable (Reichle et al., 220 
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2004). In addition, since the CCI-SSM product is scaled by the comparison with a different LSM 

(GLDAS-Noah), a direct comparison between CCI-SSM and ORCHIDEE may lead to misleading results, 

as they have different soil representation (Raoult et al., 2019). Given this issue, the LSM- and satellite-

based SSM were compared with statistically normalized values rather than absolute values of SSM (e.g., 

Polcher et al., 2016). Therefore, a spatiotemporal normalization (Equation 1) was applied to each co-225 

masked dataset to eliminate systematic biases among the datasets and make the comparison reliable 

(Supplementary Fig. S75B): 

SSMnorm =
SSM−SSM

σSSM
,                            (1) 

where SSMnorm is the normalized SSM, and SSM  and  σSSM  are the mean and standard deviation, 

respectively, of all the available SSM sampled along spatial and temporal dimension during the period. 230 

 

2.2.2 ET 

In a preliminary study, we compared a ground-based machine- learning ET product (Jung et al., 2011; 

2019), three remote-sensing-based physical model products (Miralles et al., 2011; Zhang et al., 2010; 

Zeng et al., 2014), and their ensemble (see Supplementary Figs. S2, S7). We found that they showed 235 

similar spatiotemporal structures although they differed in absolute values in some regions, and the 

ground-based product was the most consistent with the ensemble. Therefore, we decided to use the 

ground-based ET (mm/d) as a representative, from 1987 to 2009. It is also advantageous in that it is 

derived from upscaling of FLUXNET data (Jung et al., 2011; 2019) and is independent from specific ET-

retrieval algorithms. The original spatial resolution (1°) of the data was resampled into 0.5° resolution to 240 

match that of forced simulation, and original temporal resolution was monthly time steps. A preliminary 

check of the time series and spatial patterns of the reference data revealed no artifact patterns (e.g., no 

abrupt jump in time series as found in CCI-SSM), so we used them with no pixel screening or 

normalization. 
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2.2.3 LAI 245 

We used the global LAI dataset of Zhu et al. (2013), referred to hereinafter as LAI3g, which is based on 

a neural-network algorithm in conjunction with the third-generation Global Inventory Modeling and 

Mapping Studies (GIMMS 3g) and Moderate-resolution Imaging Spectroradiometer (MODIS) LAI 

product, with an original spatial resolution was 0.5° and half-monthly temporal resolution. Considering 

the common period among LAI3g and the coupled/forced simulations, we selected 1987–2009 as the 250 

comparison period, and we resampled all data at 0.5° spatial resolution and aggregated them into monthly 

time steps. 

2.2.4 Albedo 

We used the MODIS albedo product (Qu et al., 2014) as reference data, which provided the bi-

hemispherical reflectance (white-sky albedo) for the visible and NIR bands. The original 500-m spatial 255 

resolution and 16-d temporal resolution were resampled (i.e., upscaled) into 0.5° resolution and monthly 

time steps. The common period between simulations and observation, 2003–2009, was used for 

evaluation. The pixels with retrieval failure of albedo were excluded from the analysis. 

2.2.5 Precipitation 

WIn addition to the four ECVs, we also evaluated the simulated precipitation  because it is the primary 260 

factor that influences the hydrological variables (Qian et al., 2006; Decharme & Douville, 2006). To this 

endIn addition, we used the GPCC dataset Version V6 (Schneider et al., 2014), which was also used to 

constructbias-correct bias in the WFDEI meteorological forcing of the offline ORCHIDEE simulation 

(section 2.1.2). This gridded product at 0.5° provides monthly precipitation derived from quality-

controlled observed precipitation from over 65,000 world-wide stations world-wide, and accounts for a 265 

climatological correction of undercatch based on Legates and Willmott (1990). (Schneider et al., 2014). 

As this is the forcing data, precipitation output in the forced simulation is identical to the reference. 

Therefore, model evaluation regarding precipitation was only conducted for the coupled simulation. 
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2.2.6 Data processing 270 

For consistency between the observed and simulated data, we subjected the former to aggregation or 

resampling towards the 0.5° spatial resolution and monthly time steps for each variable, as described 

above. Due to the presence of data gaps in the reference data sets, which are either because of the 

acquisition issues or the quality control and data screening, we masked the simulated datasets to match 

the spatial-temporal data availability of the corresponding reference data. For the SSM, the dense snow 275 

regions (with a snow water equivalent exceeding 48 mm) in the simulated data were further excluded so 

as to avoid unreliable comparisons with uncertain references. Also, co-masking was performed after the 

spatiotemporal resampling, followed by the statistical normalization (only for the SSM). The resulting 

coverage of the selected comparison period is summarized in Table 1 for each variable.  

After the above-mentioned pre-processing, to compare the spatial patterns of the observed and 280 

simulated data, we focus on three accuracy criteria calculated at the 0.5° scale along monthly time steps: 

the bias, Pearson’s correlation coefficient (CC), and root-mean-square error (RMSE). The criteria were 

calculated along temporal axis for each pixel (i.e., the result was shown as one global map for a criterion). 

The statistical significance of the bias (compared to zero) and CC was assessed at each pixel with 

Student’s t-test and Pearson’s test, respectively, with a p-value of 5% in both cases. Note that the 285 

evaluation periods were different among SSM (1993-–1999), ET, LAI and precipitation (1987-–2009), 

and Aalbedo (2003-–2009). However, the impact of the chosen period on the evaluation is likely to be 

limited (see Supplementary Table S1). 

2.3 Factor analysis 

To reveal features of the simulations in detail, the accuracy criteria were evaluated against various 290 

landscape/meteorological factors (Figure 1), namely PFT, LAI, irrigation, precipitation, slope, snow, and 

ET. For each factor, time series were averaged temporally to make only one global map (i.e., the 

classification criteria were applied on long-term basis). The value of each factor was classified into a 

specific number of levels (classes), which were used as ordinal scales. Each factor was classified as given 

in Table 2, and each factor is described in detail below:  295 
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1) For PFT, we used the input dataset that is used in ORCHIDEE. This includes fractional coverages in 

each pixel of 15 PFTs. We created a dominant PFT map by picking up the PFT class that have maximum 

fractional coverage for each pixel. 

2) For LAI, we used the LAI3g data (above subsection), classifying them into three levels (see Table 1 

for the specific class definitions). 300 

3) For irrigation, we used a global map of irrigation areas (Siebert et al., 2010), which indicates the 

fractional coverage (%) of an irrigated area with 5-arc-min spatial resolution. It was classified into six 

levels. 

4) For precipitation, we used the pluri-annual mean of GPCC during the same period as the investigated 

ECVs. It was classified into five levels. 305 

5) For slope, this classification was done by referring to the ETOPO51 DEM (51 arc-minute global relief 

model of Earth’s surface; NOAA, 1988Amante & Eakins, 2009), which is also used in ORCHIDEE to 

control reinfiltration of the water.  

6) WFor SWE, we used the pluri-annual mean of the forced SWE for the factor analysis of the forced 

simulation, and that of the coupled SWE for the coupled simulation.corresponding ORCHIDEE SWE, 310 

which The SWE was classified into five levels. 

7) For ET, we used the pluri-annual mean of Jung et al. (2011; 2019) during the same period as the 

investigated ECVs. 

Here, dominant PFTs, irrigation, slope, and SWE were only used for the factor analysis, while LAI, 

precipitation, and ET are also used validation and come from independent sources. The PFT fractions and 315 

SWE, however, were not independent from our simulations, but we assumed it was not problematic for 

factor analysis, which mostly aims at suggesting process-based explanations to the main model errors. 

3 Results 

3.1 Spatial and temporal patterns of model errors 

Overall, the spatial structures of the ECVs simulated in both modes  were consistent with those of the 320 

reference productss, as shown by comparing the corresponding pluri-annual mean maps (Supplementary 
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Figures S1-S54; Fig. 1A). To refine this comparison, Figure 2 shows the spatial bias patterns of the 

fivefour variables (normalized SSM, ET, LAI, and albedo, and precipitation), in both forced and coupled 

modes, and of the precipitation in coupled mode. Difference between forced and coupled modes are also 

shown in Supplementary Figure S6. Spatiotemporal averages of bias, RMSE, and correlation coefficients 325 

are summarized in Table 3. The spatial patterns of the temporal CC are also shown for SSM and albedo 

(Figure 3) for further discussion. 

The Pprecipitation bias in the forced mode is very small in the most region since the simulation 

relies on bias-corrected precipitation (WFDEI), which relies on the GPCC dataset used here as reference 

data. Yet, it is not everywhere negligible (Figure 2A), and the forced ORCHIDEE precipitation (WFDEI) 330 

is higher than GPCC in small tropical pockets, the US Great Plains, and boreal zones, which are prone to 

precipitation undercatch because of strong winds and/or a large fraction of snowfall (Becker et al., 2013). 

The largest precipitation biases in coupled mode, in absolute value, are found in the wettest areas (humid 

tropics) and mountain ranges (Figure 2B), which is consistent with the analysis of Cheruy et al. (2020), 

in terms of bias sign and spatial pattern. 335 

Figure 2CA–DC showed that the spatial pattern of normalized SSM bias in forced and coupled 

modes were consistent and delineated the biased regions clearly. The strong negative biases in normalized 

SSM was observed over the boreal region (except Eastern Siberia) with high SWE values (Figure 1JD), 

suggesting the relation to snow or permafrost. Note that satellite observation uncertainties in such snowy 

regions could also be a reason for the discrepancy. The farm belt of India and China (with a lot of irrigation 340 

in Figure 1HC) exhibit a systematic lower bias in SSM. Apart from those, arid (North Africa, middle of 

Australia, Nnorth China) and tropical (Congo and Amazon Basin) regions also showed lower correlation 

(Figure 3A–C), part of which can be attributed to the inherent feature that CC tends to be low when the 

range in which the sample varies is narrow. To better identify the error sources in SSM, we plotted the 

mean seasonal cycles (i.e., monthly climatology) separately for each latitude zone (Figure 4). Substantial 345 

parts of the time series were consistent between simulation and observation (except grayed-out period 

due to insufficient sample size and low reliability of the reference data). The underestimated simulated 

SSM values compared to the CCI-SSM values in the summer season in 30–60°N (Figure 4B) may be 

attributed to anthropogenic water input due to irrigation because this region includes large-scale 
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agricultural fields (Figure 1HC). In the low-latitude regions, the simulated values tend to underestimate 350 

SSM in the dry season, and to show larger seasonal change (Figure 4C, D).  

Most of the areas exhibited small ET biases in absolute value (Figure 2E, F), suggesting that 

ORCHIDEE is highly capable of representing global ET. The coupled simulation tended to simulate larger 

ET values than did the forced simulation, which can be explained to some degree by the larger mean 

precipitation biases in the coupled simulation than that in the forced simulationone (, as shown by the 355 

larger positive bias for the coupled simulation which are positive on average (in Table 3).  Regions with 

large ET biases were distributed in the tropical (Amazon and Congo Basin, the maritime continent), 

mountainous (the Rockies, Andes, and Himalayas), and agricultural (especially in India) regions. 

Mountainous regions tended to be characterized by a positively biased precipitation in the coupled 

simulation simulation (Figure 2BC), which caused a positive ET bias of ET in the coupled simulation 360 

(especially in North/South America). Tropical regions exhibited complex responses in ET between the 

coupled and forced simulations. The maritime continent (Indonesia and the other tropical Pacific islands) 

had negative ET biases for both simulations. Congo and a large part of the Amazon exhibited contrasting 

patterns between the simulations (the uncoupled one had a negative bias whereas the coupled one had a 

positive bias). The link between ET and precipitation in the coupled ET simulation and the simulated 365 

precipitation was only straightforward in the Congo, i.e.,where the positively biased precipitation (water 

input) led to the a positive bias of ET. In a part of the maritime continent, the coupled ET was negatively 

biased despite the a positive bias of precipitation. By contrastConversely, the coupled ET was positively 

biased in the Amazon despite the a negative bias of precipitation. 

Positive bias of LAI was observed in large areas globally (Figure 2GF, HG). Given the strong 370 

similarity between the forced and the coupled bias maps, it is suggested that the bias comes mostly from 

the surface component, such as PFT maps, or reference data itself. In fact, LAI retrievals by spaceborne 

sensors like MODIS may be saturated for large values of LAI (Zhao et al., 2016), resulting in 

underestimation of LAI in reference. Despite such a positive -bias tendency, the boreal region in Eastern 

Siberia, the shores of the Great Lakes in North America, and the basin of the Mekong River all exhibited 375 

negative bias of LAI. In addition, there were hotspots of negatively biased LAI in such regions as the 
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Zambezi River system lying across Angola and Zambia. Contrasting biases between the simulations were 

observed around the Himalayas. 

In most regions, the simulated bias for total albedo was small, and spatial pattern of the bias were 

generally similar between the forced and the coupled modesa consistent spatial pattern with reference was 380 

obtained for total albedo, with showing strong spatial similarity between the forced and the coupled modes 

(Figure 2IH, IJ). The largest biases were the overestimation in the mountainous regions (especially the 

Himalayas in the coupled mode) and the underestimation in the boreal and polar regions, where snow 

affects the albedo. In addition, simulated and observed albedo were uncorrelated (or negatively correlated) 

in many regions apart from the boreal one (Figure 3C–F). Low correlation coefficients in the arid and 385 

tropical region can be attributed to the temporal invariance of the land surface. However, even in some 

temperate and semi-arid zones where temporal variance is likely to be high, low correlation was observed. 

In such regions, seasonal changes of the land surface (caused mainly by vegetation phenology and the 

snowfall/snowmelt cycle) may not be described well in ORCHIDEE. In fact, the global monthly 

climatology (Figure 5A, F) showed a global mean overestimated NIR albedo in JJAexcept MAM and 390 

underestimated visible albedo in MAM. The main source of the NIR albedo overestimation seemed to be 

that in the temperate zone (30–60°N; Figure 5C), suggesting overestimated vegetation cover (having high 

reflectance in NIR spectral region) there from summer to autumnin the summer. There was a systematic 

overestimation of albedo in the tropical band (Figure 5D, E, I, J), and a small underestimation in the snow-

related season (winter to spring) of the boreal band (Figure 5B, G).  395 

3.2 Factor analysis 

The bivariate linear regressions between simulated ECV bias and factors (Table 4), and the boxplots 

against each factor class (Figures 6-8) firstly reveal a large bias variability within each class, resulting in 

a large part from the spatial variability of the simulated variables across the various climates and biomes 

of the globe. However, some controls could be identified despite this variability. It is particularly the case 400 

for irrigation, which has an obvious impact on the simulated hydrological variables (SSM, ET, LAI, and 

precipitation; Figure 6A, C, E, G): both the coupled and forced models show negatively biased values in 

the largely irrigated areas (classes 5 and 6), except for the forced -mode SSM. This is understandable 
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because the simulations overlook irrigation, which creates artificial water input to the soil, resulting in 

additional ET and plant growth in reality. Interestingly, the coupled simulation underestimates the 405 

observed values more than does the forced one (Figure 6A, C, E, G), which probably relates to a positive 

feedback driven by surface–atmosphere coupling (Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al., 

2015). Since the forcing WFDEI precipitation is based (i.e., real-world precipitationon in situ rain gauges 

which ) integrates the impact of the real-world irrigation, this factor has a relatively weak effect in the 

forced mode. 410 

The contrasting ET -bias pattern between forced and coupled modes in the Congo and the Amazon 

(Figure 2ED, EF) was also confirmed in the factor analysis of precipitation (classes 4 and 5, which 

probably correspond to tropical regions; Figure 6D), PFT (class 2: broadleaf evergreen in Figure 7A), 

LAI (class 3 in Figure 7B), and ET (class 3 in Figure 8A). This also explains the contrasting correlation 

sign of ET- bias with P, SSM, ET and LAI in Table 4. 415 

The factor analysis confirms the positive bias of LAI in the tropical regions, which are 

characterized by high precipitation (classes 4 and 5 in Figure 6F), broadleaf evergreen forest (PFT 2 in 

Figure 7C), high LAI (class 3 in Figure 7D), and high ET (class 4 in Figure 8B). However, some of the 

positive bias in such tropical regions might be compensated by the negative bias of the simulated 

precipitation (especially in the Amazon; Figure 2BC, also confirmed by class 3 in Figure 7J), resulting in 420 

a smaller bias of LAI in the coupled simulation than that in the forced simulation. Negative LAI bias in 

the boreal region is also confirmed by the PFT factor analysis (classes 8, 9, and 15 in Figure 7C). Eastern 

Siberia is the main place with negative LAI biases (Figure 2G, H). Possible explanations include persistent 

snowpack reducing the vegetation growing season; underestimated maximum LAI in the model; and 

errors in the reference LAI product especially at high latitudes, due to the less reliable assessment of solar 425 

reflectance from space (Guimberteau et al., 2018). 

For albedo, the effect appeared in the factor analysis against slope (class 3 in Figure 8C, D) and 

SWE (classes 4 and 5 in Figure 8F, G) as a discrepancy between the coupled and forced simulations. In 

the steep regions, the coupled simulation tended to be positively biased because of the precipitation bias. 

In the high-SWE region, the negative bias of albedo was enhanced in the forced simulation. This is due 430 

to the already mentioned compensation of the positive bias in the mountainous region with the negative 
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bias in the boreal and polar regions (Figure 2IH, IJ). The NIR albedo in the tropical region (classes 2 and 

3 in Figure 7E and class 3 in Figure 7F) tended to be slightly large for both simulations. This is consistent 

with the positive bias of LAI in such regions (Figure 2GF, GH), although the range of bias was small. 

4 Discussion 435 

In general, the ORCHIDEE simulations show good spatial/temporal consistency with the reference data, 

except for issues related to external water addition/subtraction and surface–atmosphere coupling. An 

example of the external source of water input is irrigation. Largely irrigated areas obviously lead to 

underestimated hydrology-related model parameters (i.e., SM, ET, and LAI). Although the impact of 

irrigation on ORCHIDEE SSM simulation has been suggested by Yin et al. (2019) over a specific region 440 

(China), our experiment demonstrated explicitly that the effect on SSM in the forced mode is relatively 

small on the global scale, and rather larger on ET and LAI (Figure 6A, C, E). Integrating the irrigation 

process in ORCHIDEE with an ancillary agricultural map and data assimilation (Raoult et al., 2019) may 

improve the accuracy (de Rosnay et al., 2003). Through the land-–atmosphere coupling (Al-Yaari et al., 

2019a), the impact of the irrigation is emphasized in the coupled simulation (Figure 6A, C, E, G), where 445 

strong negative bias was observed in not only ET, LAI, and precipitation but also SSM over largely 

irrigated areas. Specifically, a lack of description of the additional water input and man-made vegetation 

over irrigated agricultural land led to lower SSM and LAI, which in turn led to lower ET. In the coupled 

simulation, the lower SSM also led to lower humidity and lower precipitation, resulting in enhanced 

underestimation of SSM in the next time step (i.e., positive feedback). The enhanced SSM 450 

underestimation caused enhanced ET underestimation, as well as enhanced LAI underestimation through 

the parametrizations of carbon assimilation and vegetation phenology. The Uunderestimation of 

precipitation in the coupled simulation over irrigated areas (e.g., India in Figure 2BC; classes 5 and 6 in 

Figure 6G) supports the validity of this scheme, and such an emphasizing effect in the coupled model, 

which is consistent with other reports (Mahfouf et al., 1995; Liu et al., 2003; Wang, T. et al., 2015). The 455 

spatial similarity between the bias maps of SSM, ET, and precipitation (Figure 2A–FE) over central-south 

Africa, Australia, and a large part of south and east Asia also suggests the a strong interlink between them 

in the coupled mode. A potential interpretation is that precipitation is the first-order control on SSM and 
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ET in the region (i.e., water-limited ET). It also can be interpreted as a result from positive feedback 

between precipitation, SSM, and ET in such regions, as reported by Yang et al. (2018). This is consistent 460 

with the results of Yang et al. (2018), who have reported the positive feedback of SSM–precipitation and 

the positive correlation of SSM–ET and ET–precipitation in such transient zones (i.e., a climate that is 

neither extremely dry nor extremely wet). 

However, there seem to be other secondary factors need to that should be considered regarding 

land-atmosphere feedback and their influence on coupled precipitation and ETthe hydrometeorological 465 

regime (i.e., energy-limited or water-limited). In particular, ET is not controlled solely by precipitation 

but also by radiation (Cheruy et al., 2020), and temperature determines the potential ET (Dirmeyer, 2001; 

Nasonova et al., 2011). The complex response of ET to precipitation presented  in the present study 

suggests the importance of those factors.: in the coupled simulation, the positive precipitation bias in the 

Congo Basin (Figure 2C) created a positive ET bias (Figure 2E) in a straightforward manner. By contrast 470 

For example, there may be a negative feedback in the Amazon and the maritime continent between 

precipitation and ET because these areas are strongly energy-limited (Seneviratne et al., 2010; McVicar 

et al., 2012) in comparison to the Congo. In the maritime continent, positive precipitation bias meant more 

cloud coverage than reality, which decreased the available energy and ET. OppositelyIn contrast, the 

negative precipitation bias in the Amazon meant less cloud coverage, larger available energy, and larger 475 

ET than in reality. 

Although such feedback explains the overestimated ET in the Congo and the Amazon in the 

coupled simulation, it does not explain the underestimated ET there in the forced simulation. The A 

pPotential explanations arereason for it iscould be excessive water stress on ET, insufficient soil water 

holding capacity, underestimated precipitation or radiation in WFDEI, and/or an overestimation of ET by 480 

the Jung product, in the regions of high precipitation in the forced mode, although that is not clear in the 

coupled mode because of the positive P bias, which could cancel the negative ET bias. In addition, 

cConversely, too weak water stress in dry areas (either for transpiration or soil evaporation) can also 

explain the negative correlation between the forced-mode ET bias and the precipitation (Table 4). A 

solution wcould be to activate a resistance to soil evaporation, increasing with the top soil dryness (Cheruy 485 
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et al., 2020). Such contrasting results between the forced and coupled modes imply the importance of 

model evaluation under both modes to isolate the potential error sources. 

Compared with the forced mode, the positively biased precipitation simulated by the coupled 

mode may positively bias the albedo, particularly in the mountainous areas (high slope class in Figure 8C–

E) via considerable snow cover. This probably arose from incomplete atmospheric simulation of the local 490 

climate (Cheruy et al., 2020) such as an updrift along a mountain slope. Coarse spatial resolution of the 

atmospheric simulation in the coupled mode can also make it difficult to represent the impact of 

mountainous topography on local climate (Decharme and Douville, 2006). Theoretically, the 

overestimation of albedo should decrease the available energy at the surface, thereby decreasing ET and 

surface temperature. The slight negative bias of ET in the Himalayas (Figure 2FE) despite the positive 495 

bias of precipitation (Figure 2BC) can be explained by the decrease in available energy due to the 

increased albedo (Figure 2JI). Such an ice–albedo interaction in the ORCHIDEE-LMDZ coupled mode 

has also been reported over the boreal region (Wang, T. et al., 2015; particularly pronounced in spring 

temperature over Eastern Siberia). Taking the ice–albedo feedback into consideration with the secondary 

factors (i.e., radiation and temperature) that affect ET, the link between precipitation and ET in the 500 

coupled mode is rather complex in the mountainous and boreal regions. Moreover, the deficit of available 

energy may reduce photosynthesis thus vegetation growth, causing a peaky underestimation of LAI in the 

Himalayas in the coupled mode (Figure 2H2G), which is not observed in the forced mode (Figure 2GF). 

Part of the positive biases in normalized SSM in the Eastern Siberia and polar region (Figure 2AC, 

BD) may be attributed to freezing/snowmelt and related vegetation phenology, as excessively large 505 

or .fast Ssnowmelt that is considerable and/or very fast occurs in the spring in ORCHIDEE (Figure 5B, 

G)., leading to overestimated SSM. However, there is likely to another control factors, are likely involved 

in SSM overestimation, such as wetlands, permafrost, and albedo. The negative albedo bias found in the 

boreal zone (Figure 2I, J) in spite of the positive snowfall bias (Figure 2A, B) can also be explained by 

the excessive snowmelt. This Uunderestimation of albedo in many boreal zones areas, also noted in 510 

(Cheruy et al., (2020), was expected to lead to overestimated ET, but it did not lead to an obvious ET bias 

because of the underestimated LAI (Figure 2GF, GH). Given the spectral features of land cover (Petty, 

2006), the NIR albedo is related largely to an abundance of vegetation, i.e., LAI. Therefore, uncertainty 
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in snow and LAI leads to uncertainty in the surface albedo, which further propagates uncertainty in the 

energy balance and water cycles. Such a complicated relationship should be treated in the special tuning 515 

of ORCHIDEE for high latitudes (Druel et al., 2017; Guimberteau et al., 2018). In addition to high- 

latitude regions, vegetation seasonality in the temperate zones seemed uncertain. In the temperate forests, 

the model is likely to simulate spring green-up that is considerable and/or very fast (Figure 5C), which 

causes an overestimated NIR albedo and discrepancies in LAI and albedo seasonality. 

Regardless of the origin (i.e., satellite, reanalysis, or in situ), observations inevitably contain 520 

inherent uncertainty, which leads to uncertainty in the model assessment. SSM retrieval over substantially 

high/low vegetation, tropical/arid regions, and highly heterogeneous and high-roughness regions remains 

challenging (Ma et al., 2019). Therefore, some part of the low SSM correlation in arid/tropical regions 

(Figure 3A, B) can be attributed to uncertainties in the satellite products in addition to an inherent feature 

of CC. Snow cover and RFI (Oliva et al., 2012) may also cause uncertainties in satellite-based SSM 525 

estimation, although we attempted to remove such uncertain pixels by means of a preliminary quality 

check. Using multiple data sources (e.g., the Soil Moisture Active Passive (SMAP) product ([Ma et al., 

2019; Al-Yaari et al., 2019bEntekhabi et al., 2010])) as reference for model evaluation (Eyring et al., 

2016b) is a promising way to address such uncertainties. A brief attempt with SMOS-IC product 

(Fernandez-Moran et al., 2017) was shown in Supplementary Fig. S86. Inconsistency between the model-530 

simulated SSM depth (up to 10 cm) and the penetration depth of satellite sensors (several centimeters) 

may also cause uncertainties in the assessment, although using normalized SSM instead of absolute SSM 

is likely to mitigate the effect to some extent. 

The satellite-based LAI product (Zhu et al., 2013) may be affected by the saturation issue of 

optical satellite data (i.e., MODIS) in regions with high LAI. The snow albedo of the MODIS product 535 

(MCD43) has a slightly larger uncertainty (RMSE ≈ 0.07) (Stroeve et al., 2005; Stroeve et al., 2013) than 

that of the snow-free daily mean albedo (RMSE = 0.034) (Wang, D. et al., 2015). However, this does not 

alter our conclusion about the ORCHIDEE albedo uncertainty in the snow region, but some of the 

uncertainty might be attributed to the error in satellite observation. 

We depended largely on satellite-derived data for the SSM, LAI, and albedo evaluations. By 540 

contrast, we used a FLUXNET-based product (Jung et al., 2019) for the ET evaluation, which has 
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potential uncertainties arising from (i) the statistical upscaling process (model tree ensemble: Jung et al., 

2009), (ii) the input data required in machine-learning prediction, and (iii) the heterogeneous distribution 

of ground stations. Because the latter potential issue is particularly important for hardly accessible regions 

such as tropical and mountainous areas, progress in the data coverage of the FLUXNET network is 545 

desirable. Although ET products derived from satellite data (Miralles et al., 2011; Zhang et al., 2010; 

Zeng et al., 2014) can also be used, unlike the other variables (SSM, LAI, and albedo), the retrieval of ET 

is not done directly from the satellite observations but depends largely on the process-oriented models. 

Therefore, in addition to the uncertainties in the satellite observations themselves, such products have 

uncertainties that arise from ancillary data (e.g., atmospheric conditions, land cover) required in the model, 550 

as well as from imperfections in the model structure/parameterization (preliminary comparison among 

the different data sources can be found in Supplementary Fig. S97).. 

The difference between the forced ORCHIDEE precipitation (WFDEI) and GPCC (Figure 2A) 

probably comes from undercatch correction: based on Legates and Willmott (1990) for GPCC, and on 

Adam and Lettenmeier (2003) for WFDEI. Schneider et al. (2014) acknowledge that for the GPCC 555 

product, “the biggest uncertainty issue is the correction of the systematic gauge-measuring error (general 

undercatch of the true precipitation)”, but this is very likely true for all precipitation products. 

Note that the present study is based on a specific LSM (i.e., ORCHIDEE 2.0), atmospheric model 

(i.e., LMDZ6A), and forcing data (WFDEI). Future work should include addressing the uncertainties that 

arise from the LMDZ model structure/parameterization, as well as the resolution in the numerical 560 

simulation (Hourdin et al., 2013). Uncertainties that arise from the atmospheric model have been analyzed 

for some evaporation and SSM by Cheruy et al. (2020). For China, WEDFI-based simulations have 

performed better than Princeton Global meteorological Forcing and Climatic Research Unit-National 

Center for Environmental Prediction with ORCHIDEE (Yin et al., 2018). However, because varying the 

forcing data has a comparable impact to varying the LSM in the forced simulation (Guo et al., 2006), the 565 

uncertainty in selecting the forcing data should also be kept in mind. Other future work should be factor 

analysis against other hydrometeorological parameters such as radiation, temperature, and precipitation 

frequency (Qian et al., 2006; Yin et al., 2018). We confirmed the selection of study period did not make 
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substantial difference in the result (Table S1) in terms of global mean; however, it should be also checked 

in the regional scale in future. 570 

5 Conclusions 

This paper has presented an in-depth evaluation of fiveour interlinked essential climate variables (namely 

surface soil moisture, evapotranspiration, leaf area index, and albedo, and precipitation) simulated by 

ORCHIDEE land surface model under different simulation modes (either forcing by WFDEI or coupled 

with LMDZ). Statistical evaluation was conducted using various reference-data sources (ESA CCI, 575 

upscaled FLUXNET, GIMSS 3g, MODIS products, and GPCC), and factor analysis was conducted 

against various landscape factors (namely plant functional type, leaf area index, irrigation, precipitation, 

slope, snow water equivalent, and evapotranspiration). Although ORCHIDEE consistently represented 

the spatiotemporal patterns of each essential climate variable in general, some issues were found relating 

to water cycles and their different consequences between the forced and coupled simulations. Errors 580 

relating to freezing/snowmelt, artificial water input such as irrigation, and precipitation bias propagated 

through surface–atmosphere coupling in the coupled mode. The factor analysis revealed a strong link 

between irrigation and precipitation (that further affected surface soil moisture, evapotranspiration, and 

leaf area index, particularly in the coupled mode) and a relatively complex link between precipitation and 

evapotranspiration that reflected the hydrometeorological regime of the region (energy-limited or water-585 

limited) and the snow-albedo feedback in mountainous and boreal regions. In addition, the description of 

vegetation and snow seasonality seemed to be an issue in ORCHIDEE. Considerable Excessive and/or 

very too fast green-up in temperate forest may lead an overestimation of leaf area index and near infrared 

albedo. Considerable Excessive and/or very too fast snowmelt in spring in the boreal region may result 

in the underestimation of albedo in such regions, which can affect energy balance and water cycles. The 590 

different results between the forced and coupled modes stress the importance of model evaluation under 

both modes to determine each potential error source in model simulation. 
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platform, by both anonymous ftp and http/opendap protocols at: 

ftp.climserv.ipsl.polytechnique.fr/Data4papers/; 
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provides the previous version (version 4.4 was used in this study) upon request. 

- The evapotranspiration product by Jung et al. (2019). https://www.bgc-

jena.mpg.de/geodb/projects/FileDetails.php (FLUXCOM data portal, on CC4.0 BY license). 615 
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The original version used in this study (Zhu et al., 2013) can be obtained on request at 

http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html. 

- The MODIS albedo product (MCD43C3). https://lpdaac.usgs.gov/products/mcd43c3v006/. 
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- The latest version of GPCC (version 7). https://psl.noaa.gov/data/gridded/data.gpcc.html. The version 620 

used in this study (version 6, 0.5-deg) is available at 

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata_v6_doi_download.html. 

- Global Map of Irrigation Areas (GMIA; Sibert, 2013). http://www.fao.org/aquastat/en/geospatial-

information/global-maps-irrigated-areas/latest-version/. 

- ETOPO5. https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML. 625 
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et al., 2020). Tag 2.0 is based on revision 4783, with updates regarding the number and format of output 630 

variables to comply the CMIP6 requirements, and a few very minor bug corrections regarding the carbon 

cycle. The code of revision 4783 can be obtained upon request to the corresponding author. 
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Table 1. Overview of the selected reference datasets and period of analysis. The last column gives the percent 

of land pixels in the maps of Figs. 2 and 3 with observed values. Smaller amount of SSM data is available 

than the others as a result of relatively strict quality control. For ET and LAI, no data were available in 

extremely arid regions. 

 975 

Variable Reference product Evaluation 

period 

Observed fraction of land area 

(%) 

SSM ESA CCI v4.4 (Liu et al., 2012) 1993-–1999 44.1 

ET Jung et al. (2019) 1987-–2009 89.3 

LAI LAI3g (Zhu et al., 2013) 1987-–2009 87.8 

Precipitation GPCC (Schneider et al., 2014) 1987-–2009 98.5 

Albedo MODIS (Qu et al., 2014) 2003-–2009 87.4 

 

 

 

Table 2. Correspondence between classification levels and values for each factor. 

Factor Reference data How classified Fraction 

of land 

area (%) 

PFT ORCHIDEE-defined 

plant functional types 

class 1: bare soil is dominant  

class 2: tropical broadleaf evergreen forest is dominant 

class 3: tropical broadleaf raingreen forest is dominant 

class 4: temperate needleleaf evergreen forest is dominant 

class 5: temperate broadleaf evergreen forest is dominant 

class 6: temperate broadleaf summergreen forest is dominant 

class 7: boreal needleleaf evergreen forest is dominant 

class 8: boreal broadleaf summergreen forest is dominant 

class 9: boreal needleleaf summergreen forest is dominant 

class 10: temperate C3 grasses are dominant 

class 11: C4 grasses are dominant 

class 12: C3 crops are dominant 

class 13: C4 crops are dominant 

15.4 

6.9 

3.2 

2.0 

3.4 

3.6 

8.6 

6.5 

8.6 

6.6 

8.8 
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class 14: tropical C3 grasses are dominant 

class 15: boreal C3 grasses are dominant 

9.2 

2.1 

2.7 

12.4 

LAI Zhu et al. (2013) class 1 (low LAI):      0 – 1.0     m2/m2 

class 2 (middle LAI): 1.0 – 3.0  m2/m2 

class 3 (high LAI):     3.0 –        m2/m2 

41.9 

37.1 

8.7 

ET Jung et al. (2019)  class 1: less than 1 mm/d 

class 2: 1–2 mm/d 

class 3: 2–3 mm/d 

class 4: more than 3 mm/d 

45.8 

23.6 

13.0 

6.9 

Precipitation GPCC, Schneider et al. 

(2014) 

class 1 (extremely dry): less than 1 mm/d 

class 2 (dry): 1 to 2 mm/d 

class 3 (moderate): 2 to 4 mm/d 

class 4 (wet): 4 to 7 mm/d 

class 5 (extremely wet): more than 7 mm/d   

41.0 

24.1 

17.2 

11.0 

5.3 

SWE ORCHIDEE-

simulated SWE 

class 1: 0 mm 

class 2: 0–16 mm 

class 3: 16–32 mm 

class 4: 32–48 mm 

class 5: more than 48 mm 

33.3 

33.6 

8.7 

9.5 

14.8 

Irrigated area Siebert et al. (2010) class 1: 0% 

class 2: 0–5% 

class 3: 5–10% 

class 4: 10–20% 

class 5: 20–50% 

class 6: 50–100% 

56.6 

34.7 

3.6 

2.6 

1.9 

0.5 
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Slope ETOPO51 (Amante & 

Eakins, 2009NOAA, 

1988) 

class 1 (flat): 0-–0.5- degree 

class 2 (middle): 0.5–2.0 degree 

class 3 (steep): 2.0–- degree 

3.0 

28.1 

67.4 
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Table 3. Land averages of the evaluation criteria (bias, RMSE, and correlation coefficient CC) for 

the selected variables and reference data sets. The same bias sign on average over land for all 

variables wasere observed between forced and coupled simulations. Positive systematic bias were 

observed for LAI, and large uncertainty (i.e., RMSE) was observed for SSM and ET. ET shows the 985 

best correlation coefficient. Overall, coupled simulation tends to behave more realistically, despite 

overestimation of precipitation.  

  Forced Coupled 

Bias Precipitation (mm/d) 0.112 0.186 

SSM  (normalized) −-0.072 −-0.062 

ET (mm/d) −-0.231 −-0.133 

LAI  (-) 0.325 0.220 

Albedo (-) −-0.000 0.009 

RMSE Precipitation (mm/d) 1.057 1.680 

SSM  (normalized) 0.546 0.560 

ET (mm/d) 0.513 0.540 

LAI  (-) 0.586 0.554 

Albedo (-) 0.048 0.047 

CC Precipitation (mm/d) 0.790 0.605 

SSM  (normalized) 0.581 0.551 

ET (mm/d) 0.744 0.692 

LAI  (-) 0.328 0.340 

Albedo (-) 0.395 0.426 
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 990 

Table 4. Spatial correlation coefficients (SCC) between biases (in forced and coupled modes) and 

potential explanatory factors. PFT was excluded in the Table because it is nominal scale. 

Statistically insignificant SCCs appear in italic. SSM tended to be underestimated in high P, SSM, 

ET, LAI regions for both forced and coupled modes. Between forced and coupled ET, opposite 

association with P, ET, and LAI was observed. LAI in both modes were positively biased in high P, 995 

ET, SSM region (probably corresponding to the tropical region). Albedo and coupled P were 

strongly associated with slope. Irrigation is likely to bias SSM and ET negatively, and the effect was 

more enhanced in the coupled mode. 

 

 Biases of forced simulations 

Factors P SSM-CCI ET LAI Albedo 

P 0.054 −-0.203 −-0.168 0.375 0.283 

ET 0.064 −-0.163 −-0.277 0.357 0.344 

LAI 0.068 −-0.083 −-0.127 0.263 0.275 

SWE 0.096 0.024 −-0.103 −-0.090 0.181 

Irrigated fraction −0.060 −-0.066 −-0.170 0.012 0.059 

Slope −0.027 −-0.068 −-0.010 0.027 0.023 

 Biases of coupled simulations 

Factors P SSM-CCI ET LAI Albedo 

P −-0.108 −-0.234 0.200 0.258 0.130 

ET 0.006 −-0.164 0.163 0.245 0.139 

LAI −-0.004 −-0.121 0.264 0.092 0.103 

SWE 0.034 −-0.009 −-0.134 −-0.060 0.073 

Irrigated fraction −-0.071 −-0.118 −-0.213 −-0.012 0.030 

Slope 0.267 0.085 −-0.022 −-0.031 0.249 

 1000 
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Table S1. Pluri-annual land averages (excluding Greenland and Antarctica) of the simulated 1005 

variables over the different periods used for evaluation. The chosen period does not markedly 

influence the observed mean, and thus the bias. 

 Forced Coupled 

 1987 -–

2009 

1993 -–

1999 

2003 -–

2009 

1987 -–

2009 

1993 -–

1999 

2003 -–

2009 

Precipitation 

(mm/d) 
2.099 2.094 

2.129 2.295 2.313 2.298 

SSM (m3/m3) 0.163 0.164 0.162 0.194 0.193 0.192 

ET (mm/d) 1.074 1.072 1.077 1.182 1.180 1.189 

LAI  (-) 1.555 1.550 1.571 1.470 1.457 1.492 

Albedo (-) 0.212 0.211 0.210 0.222 0.221 0.220 

 

 

 1010 
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Figure 1: Spatial patterns of pluri-annual mean reference data used for validation (marked with a +) and/or factor analysis (marked 

as a x)temporally averaged reference data used for factorial analysis: (A+) SSM from ESA CCI; (B+x) ET product of Jung et al. 1015 
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(2019); (C+x) (A) GIMMS LAI3g; (D+) MODIS NIR albedo; (E+) MODIS visible albedo; (F+x) GPCC precipitation data; (Gx) 

dominant plant functional type used in ORCHIDEE (see Table 2 for the class definition); (Hx) fractional area equipped with 

irrigation; (Ix)(B) sSlope derived from ETOPO51; (C) fractional area equipped with irrigation; (JxD) snow water equivalent derived 

from the forced-mode ORCHIDEE; (E) GPCC precipitation data (F) ET product provided by Jung et al; and (G) plant functional 

type used in ORCHIDEE. 1020 
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Figure 2: Pluri-annualTemporally-averaged average spatial patterns of bias (i.e., simulated values minus observed values) for the 

five evaluated variables, simulated in forced mode (left) and coupled mode (right): (A, B): Precipitation bias against GPCC; (C, D): 1025 
SSM bias against CCI-SSM, in normalized VWC during period 1 (1993–1999); (E, F):  ET bias against upscaled FLUXNET data; 

(H, H): LAI bias against LAI3g data; (I, J): total-albedo bias against MODIS albedo product. Grey areas are statistically 

insignificant pixels.  

Temporally-averaged spatial patterns of bias (i.e., simulated values minus observed values) for the fiveour variables (SSM, ET, LAI, 

and albedo, and precipitation) and for the coupled precipitation. (A), (B): Precipitation bias between simulation and GPCC for 1030 
forced and coupled modes, respectively. (CA), (DB): SSM bias between simulation and CCI-SSM in normalized VWC during 

period 1 (1993–1999) for forced and coupled mode, respectively. (C): that between simulation and SMOS-IC during period 2 (2011–

2014) for coupled mode. (C): precipitation bias between coupled simulation and GPCC. (ED), (GF), (IH): ET, LAI, total-albedo 

biases between simulated and observed values for forced mode, respectively. (FE), (HG), (JI): those for coupled mode. Reference 

observations correspond to ET: upscaled FLUXNET data, LAI: LAI3g data, and albedo: MODIS albedo product. Grey areas are 1035 
statistically insignificant pixels.  
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Figure 3: Spatial patterns of correlation coefficient along time series (with monthly time steps) per pixel, for SSM and albedo. (A), 1040 
(B): correlation coefficient between simulated SSM and CCI-SSM in normalized VWC for forced and coupled mode, respectively. 

(C), (D): correlation coefficient between simulated and observed (MODIS) albedo in NIR band for forced and coupled mode, 

respectively. (E), (F): those in visible band. WhiteGray areas are null pixels that were excluded by the quality control, and greengrey 

areas are statistically not significant pixels. 

  1045 
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Figure 4: Comparison of seasonal patterns among reference (CCI-SSM) and simulations (forced and coupled) for each latitude zone. 

Dashed black line is the fraction of available pixels to all land pixels over each zone. Depending on the snow mask, the number of 

available pixels varied along the season in high latitude regions. To avoid misleading interpretation by the small number of samples 

with unreliable SSM reference, periods of less pixel availability (<30%) are greyed out. 1050 
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Figure 5: Monthly climatological Ttime series of global and zonal mean albedo. The left column shows the NIR band (A: global 

average; B–E: zonal average for each 30° in latitude), while the right column shows the visible band (the vertical arrangement is the 1055 
same as that for NIR). 
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Figure 6: Boxplots of mean biases (simulated minus observed values) of SSM, ET, LAI (forced/coupled), and precipitation (coupled 1060 
only) against each class of irrigation and precipitation. The upper limit, middle line, and lower limit of the boxes correspond 25-, 50- 

and 75- percentile values, respectively. The upper and lower limits of whiskers are maximum and minimum values, respectively. 

The diamond indicates mean value of the class. (A), (B): SSM bias; (C), (D): ET bias; (E), (F): LAI bias; (G), (H): coupled 
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precipitation bias vs. irrigation and precipitation classes, respectively. Blue and pink boxes correspond to forced and coupled mode, 

respectively. The dashed lines indicate pixel availability (i.e., ratio of sampled pixels to all global land pixels) for each class. The 1065 
horizontal black line shows zero. Each class of landscape factors (i.e., x-axis) is defined in Table 1. 
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Figure 7: Boxplots of mean biases (simulated minus observed values) of ET, LAI, NIR/visible albedo (forced/coupled), and 1070 
precipitation (coupled only) against each class of PFT and LAI. (A), (B): ET bias; (C), (D): LAI bias; (E), (F): NIR -albedo bias; (G), 

(H): visible -albedo bias; (I), (J): coupled precipitation bias vs. PFT and LAI classes, respectively. Legends and axes are the same as 

in Figure 6, and each class of landscape factors (i.e., x-axis) is defined in Table 1. 
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Figure 8: Boxplots of mean biases (simulated minus observed values) against each class of ET, slope, and SWE. (A), (B): ET and 

LAI bias vs. ET class; (C), (D), (E): NIR albedo, visible albedo, and coupled precipitation bias vs. slope class; (F), (G): NIR- and 

visible- albedo bias against SWE class, respectively. Legends and axes are the same as in Figure 6, and each class of landscape factors 

(i.e., x-axis) is defined in Table 1. 1080 
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Figure S1: Pluri-annual average of surface soil moisture (SSM) in the forced and coupled mode (top row), and in the reference data 1085 

(bottom row).Comparison of spatial patterns between simulations (forced and coupled) and observations. In addition to CCI-SSM, 

another observation data source (SMOS-IC [Fernandez-Moran et al., 2017] version 1.05; not shown in the main text) was used just 

to check difference in reference data selection. All available temporal time series data (forced: 1979–2009, coupled: 1985–2014, CCI-

SSM: 1978–2018, SMOS-IC: 2010–2017) were averaged to create these maps (i.e., not separated into subperiods). The unit is SSM 

volumetric water content (VWC; m3/m3). Greay indicates null values that were excluded in the quality control process.  1090 
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Figure S2: Pluri-annualTemporally averaged of evapotranspiration (ET) simulated in forced and coupled mode, and that of 

reference data. In addition to product by Jung et al. (2011), three other data sources (Miralles et al., 2011; Zhang et al., 2010; Zeng 1095 

et al., 2014) were checked (not shown in the main text). To take temporal average during the common duration of all reference 
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data (1987–2006), the averaged period was slightly different from the ET study duration (1987–2009) in the main text.They were 

temporally averaged during the common duration of all reference data (1987-2006). 
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Figure S3: Pluri-annual Temporally averaged of LAI simulated in (A) forced mode and (B) coupled mode,. and (C) Tthe reference 

LAI (Zhu et al., 2013) for the study period (1987–2009). can be found in Fig. 1A. 
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Figure S4: Pluri-annual Temporally averaged of albedo simulation in forced and coupled modes, and MODIS observation (Qu et 

al., 2014) during the study period (2003–2009), for both near infrared (NIR) and visible (VIS) spectral domains. 

 

 1110 

Figure S5: Pluri-annual average of precipitation in (A) forced mode and (B) coupled mode, and (C) the reference precipitation 

(GPCC product) during the study period (1987–2009). 
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Figure S6: Pluri-annual mean relative differences between forced and coupled modes for normalized SSM, ET, LAI, albedo, and 1115 

precipitation, in % of the forced value. All data were temporally averaged for each study period (defined in Table 1). 

 

 

Figure S75: Time series of globally averaged SSM of forced and coupled simulations, and observations. In addition to CCI-SSM, 

another observation data source (SMOS-IC [Fernandez-Moran et al., 2017]; not shown in the main text) was used just to check 1120 

difference in reference data selection. (A) Time series of quality-controlled data before co-masking and normalization. Dashed black 

line shows ratio of available pixels to all land pixels (%), which strongly affected CCI-SSM values. (B) Time series after co-masking 

and normalization during subperiod 1 (1993–2001999), including CCI-SSM and forced and coupled simulations. (C) That during 

subperiod 2 (2011–2014), including SMOS-IC and coupled simulation. 
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Figure S86: Different appearance in factor analysis when using different reference data (CCI-SSM vs SMOS-IC). Blue and pink 

boxes correspond to the mean bias of forced and coupled mode against CCI-SSM, respectively, and green boxes corresponds to the 

mean bias of coupled mode against SMOS-IC. The dashed and solid lines indicate pixel availability (i.e., ratio of sampled pixels to 

all global land pixels) for each class in CCI-SSM and SMOS-IC data, respectively. Irrigation class is defined based on the fractional 1130 

coverage of irrigated area: class1 (0%), class2 (0–-0.1%), class3 (0.1–-1%), class4 (1–-5%), class5 (5–-10%), class6 (10–-20%), class7 

(20–-35%), class8 (35–-50%), class9 (50–-75%), and class10 (75-–100%). Precipitation class definition is the same as Table 2. Because 

of the different values and data coverages (particularly Amazon and Congo) between CCI-SSM and SMOS-IC, irrigation factor 

analysis (A) using SMOS-IC emphasized the negative bias of SSM in the coupled simulation in comparison to CCI. Precipitation 
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factor analysis (B) emphasized the difference between the reference data that were used (CCI or SMOS), especially in the areas with 1135 

extremely high precipitation (classes 4 and 5). 
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Figure S97: Mean bias, correlation coefficient, and RMSE maps derived from different reference data during 1987–2006. From the 

top row, Jung et al. (2011), Miralles et al. (2011), Zhang et al. (2010), Zeng et al. (2014), and the ensemble mean of those four data 1140 

were used as reference. From the left column, mean bias of forced simulation, that of coupled simulation, correlation coefficient of 

forced simulation with each reference, that of coupled simulation, RMSE of forced simulation, and that of coupled simulation were 

shown. Jung et al. (2011) product has similar bias pattern as the four-product ensemble, and relatively less RMSE.  
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