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\title{Resampling and ensemble techniques for improving ANN-based high 1 

streamflowflow forecast accuracy} 2 

 3 

\begin{abstract} 4 

Data-driven flow forecasting models, such as Artificial Neural Networks (ANNs), are 5 

increasingly usedfeatured in research for their potential use in operational riverine flood 6 

warning systems. However, flowthe distributions of observed flow data are highly 7 

imbalanced, resulting in poor prediction accuracy on high flows, both in terms of amplitude 8 

and timing error. Resampling and ensemble techniques have shown to improve model 9 

performance ofon imbalanced datasets such as streamflow.. However, the efficacy of these 10 

methods (individually or combined) has not been explicitly evaluated for improving high 11 

flow forecasts. In this research, we systematically evaluate and compare three resampling 12 

methods: random undersampling (RUS), random oversampling (ROS), and synthetic 13 

minority oversampling technique for regression (SMOTER;); and four ensemble techniques: 14 

randomised weights and biases, baggingBagging, adaptive boosting (AdaBoost), least squares 15 

boosting (LSBoost); on their ability to improve high flowstage prediction accuracy using 16 

ANNs. TheThese methods are implemented both independently and in combined, hybrid 17 

techniques. While some of these combinations have been explored in, where the broader 18 

machine learning literature, thisresampling methods are embedded within the ensemble 19 

methods. This systematic approach for embedding resampling methods are novel 20 

contributions. This research contains many of presents the first instances of these algorithms 21 

to address the imbalance problem inherent in flood andanalysis of the effects of combining 22 

these methods on high flow forecasting models. Specifically, the implementation of ROS, 23 

and new approaches for SMOTER, LSBoost, and SMOTER-AdaBoost are presented in this 24 

researchstage prediction accuracy. Data from two Canadian watersheds (the Bow River in 25 

Alberta, and the Don River in Ontario), representing distinct hydrological systems, are used 26 

as the basis for the comparison of the methods. The models are evaluated on overall 27 

performance, and on typical and high flows.stage subsets. The results of this research indicate 28 

that resampling produces marginal improvements to high flowstage prediction accuracy, 29 

whereas ensemble methods produce more substantial improvements, with or without a 30 

resampling method. Compared to simple ANN flow forecast models, the use of ensemble 31 

methods is recommended to reduce the amplitude and timing error in highly imbalanced flow 32 

datasets.resampling. Many of the techniques used produced an asymmetric trade-off between 33 

typical and high stage performance; reduction of high stage error resulted in 34 
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disproportionately larger error on typical stage. The methods proposed in this study highlight 35 

the diversity-in-learning concept and help support for future studies on adapting ensemble 36 

algorithms for resampling. This research contains many of the first instances of such methods 37 

for flow forecasting and moreover, their efficacy to address the imbalance problem and 38 

heteroscedasticity, which are commonly observed in high flow and flood forecasting models.  39 

 40 

\end{abstract} 41 

  42 
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\section{Introduction}\label{sec:intro} 43 

Data-driven models such as artificial neural networks (ANNs) have been widely and 44 

successfully used over the last three decades for flowhydrological forecasting applications 45 

\citep{Govindaraju2000c,Abrahart2012,Dawson2001}. However, some studies have noted 46 

that these models can exhibit poor performance during high flow (or stage) hydrological 47 

events \citep{Sudheer2003,Abrahart2007, DeVos2009}, with poor performance manifesting 48 

as late predictions (i.e., timing error), under-predictions, or both. For flow forecasting 49 

applications such as riverine flood warning systems, the accuracy of high flowstage 50 

predictions are more important than forthat of typical flowsstage. One cause of poor model 51 

accuracy on high flowsstage is the scarcity of representative sample observations available 52 

with which to train such models. \citep{Moniz2017a}. This is because flowstage data 53 

typically exhibits a strong positive skew, referred to as an imbalanced domain; thus, there 54 

may only be a small number of flood observations within decades of samples. Consequently, 55 

objective functions that are traditionally used for training ANNs (e.g., mean squared error,  56 

(MSE,), sum of squared error,  (SSE,), etc.), that equally consider all samples, are biased 57 

towards values that occur most frequently \citep{Pisa2019} and reflected by poor model 58 

performance on high flows.flow or stage observations \citep{Pisa2019}. \citet{Sudheer2003} 59 

also point out that such objective functions are not optimal for non-normally distributed data. 60 

This problem is exacerbated when such metrics are also used to assess model performance; 61 

regrettably, such metrics are the most widely used in water resources applications 62 

\citep{Maier2010}. As a result, studies that assess models using traditional performance 63 

metrics risk overlooking deficiencies in high flowstage performance.  64 

 65 

Real-time data-driven flow forecasting models frequently use antecedent input variables (also 66 

referred to as autoregressive inputs) for predictions. Several studies have attributed poor 67 

model prediction on high flowsstage to model over-reliance on antecedent input variables 68 

\citep{Snieder2020, Abrahart2007, DeVos2009, Tongal2018}. Consequently, the model 69 

predictions are similar to the most recent antecedent conditions, sometimes described as a 70 

lagged prediction \citep{Tongal2018}. In other words, the real-time observed flowstage at the 71 

target gauge is used as the predicted value for a given lead time. This issue is closely linked 72 

to the imbalanced domain problem as frequent flowsfrequently occurring stage values 73 

typically exhibit low temporal variability compared to infrequent, high stage values; this 74 

phenomenon is further described in Sect. \ref{sec:ei}. 75 

 76 
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Improving the accuracy of high stage or flow forecasts has been the focus of many studies. 77 

Several studies have examined the use of preprocessing techniques to improve model 78 

performance. \citet{Sudheer2003} propose using a Wilson-Hilferty transformation to change 79 

the skewed distribution of highly skewed flowstage data. The study found that transforming 80 

the target data reduces annual peak flow error produced by ANN-based daily flow forecasting 81 

models. \citet{Wang2006} evaluate three strategies for categorising streamflow samples, 82 

based on a fixed value flow threshold, unsupervised clustering, and periodicity; separate 83 

ANN models are trained to predict each flow category and combined to form a final 84 

prediction. The periodicity-based ANN, which detects periodicity from the autocorrelation 85 

function of the target variable, is found to perform the best out of the three schemes 86 

considered. \citet{Fleming2015} address the issue of poor high flow performance by 87 

isolating a subset of daily high flows by thresholding based on a fixed value. By doing so, 88 

traditional objective functions (e.g., MSE) become less influenced by the imbalance of the 89 

training dataset. ANN-based ensembles trained on high flows are found to perform well, 90 

though the improvements to high flow accuracy are not directly quantified, as the high flow 91 

ensemble is not compared directly to a counterpart trained using the full training dataset. 92 

 93 

An alternative approach to improving high flow forecast accuracy has been to characterise 94 

model error as having amplitude and temporal components \citep{Seibert2016}. 95 

\citet{Abrahart2007} use a specialised learning technique in which models are optimised 96 

based on a combination of root mean square error (RMSE) and a timing error correction 97 

factor, which is found to improve model timing for short lead-times, but have little impact on 98 

higher lead times. \citet{DeVos2009} use a similar approach, in which models that exhibit a 99 

timing error are penalised during calibration. The technique is found to generally reduce 100 

timing error at the expense of amplitude error.  101 

 102 

Finally, there is considerable evidence that ensemble-based and resampling techniques to 103 

improve prediction accuracy onof infrequent samples such as high flows \citep{Galar2011}. 104 

Ensemble methods, such as bootstrap aggregating (Bagging) and boosting, are known for 105 

their ability to improve model generalisation. Such methods are widely used in classification 106 

studies and are increasingly being adapted for regression tasks \citep{Moniz2017}. However, 107 

ensemble methods alone do not directly address the imbalance problem, as they typically do 108 

not explicitly consider the distribution of the target dataset. Thus, ensemble methods are often 109 

combined with preprocessing strategies to address the imbalance problem \citep{Galar2011}. 110 
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Resampling, which is typically used as a common preprocessing technique thatmethod, can 111 

be used to create more uniformly distributed target dataset or generate synthetic data with 112 

which to train models \citep{Moniz2017a}. Resampling also promotes diversity-in-learning 113 

when embedded in ensemble algorithms (rather than used as a preprocessing strategy). 114 

Examples of such combinations appear in machine learning literature, but are typically 115 

developed for ad hoc applications \citep{Galar2011}.  116 

 117 

However, the efficacy of these methods (a combination of resampling strategies with 118 

ensemble methods) has not been systematically investigated for flow forecasting applications, 119 

and they have. While previous studies have provided comparisons of ensemble methods, 120 

none have explicitly studied their effects on high flow prediction accuracy, which has only 121 

received little attention within the context of the imbalance problem. Thus,  in general. 122 

Additionally, previous research uses resampling as a preprocessing technique, whereas in this 123 

research, threeresampling is embedded within the ensembles to promote diversity-in-learning. 124 

Thus, the main objective of this research is to develop a systematised framework for 125 

combining several different resampling and ensemble techniques with the aim to improve 126 

high flow forecasts using ANNs. Three resampling techniques: random undersampling 127 

(RUS), random oversampling (ROS), and synthetic minority oversampling technique for 128 

regression (SMOTER) and four ensemble techniquesalgorithms: randomised weights and 129 

biases (RWB), Bagging, adaptive boosting for regression (AdaBoost), and least-squares 130 

boosting (LSBoost) arewill be investigated for improvingto address the issues related to high 131 

flow forecasts using ANNs. Moreover, this research evaluates each, i.e., the imbalanced 132 

domain problem and heteroscedasticity. Each combination of the aforementionedthese 133 

methods will be explicitly evaluated on their ability to improve model performance on high 134 

stage (infrequent) data subsets along with the typical (frequent) data subsets. Such a 135 

framework and comparison, to address the imbalanced domain, has not been presented in 136 

existing literature. Lastly, while only selected resampling and ensemble techniques,  are 137 

presented, many of which has not yet been explored forare the first instances of their use for 138 

high flow forecasting applications. A review of applications of each, this proposed 139 

framework may easily be expanded to resampling method and ensemble techniques 140 

usedstrategies beyond those included in this research are presented in Sect. 141 

\ref{sec:resample} and Sect. \ref{sec:ensbl}, respectively..  142 

 143 
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The analysis is performed for two Canadian watersheds with contrasting characteristics, but 144 

both prone to riverine floods: the Bow River watershed (in Alberta), and the Don River 145 

watershed (in Ontario). 146 

 147 

The remainder of the manuscript is organised as follows: the base ANN models for the two 148 

watersheds are described  first, in in Sect. \ref{sec:ei},} we present the baseline ANN flow 149 

forecast models, which are used as the individual learners for the ensembles, for two 150 

Canadian watersheds, followed by a performance analysis of these models to highlight the 151 

imbalance domain problem. and illustrates the heteroscedasticity of baseline model residuals. 152 

The two watersheds, with differing hydrological characteristics, but both prone to riverine 153 

floods, are the Bow River watershed (in Alberta), and the Don River watershed (in Ontario). 154 

Sect. \ref{sec:methods} describes provides a review and applications andof each resampling 155 

method and ensemble technique, followed by a description of the implementation of each 156 

resampling and ensemble methodapproach in this research, and model evaluation methods. 157 

Lastly, Sect. \ref{sec:results} includes the results and discussion from the two case studies. 158 

 159 

  160 
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\section{Early investigations}\label{sec:ei} 161 

The following section provides descriptions for the two watersheds under study. The 162 

parametrisation of the single ANN models to predict flowstage in each watershed (referred to 163 

as the base modelsindividual learners) is described. The output of the base modelsindividual 164 

learners are used to exemplify the inability of these ANNs to accurately predict high 165 

flowsstage (from both an amplitude and temporal error perspective) and to illustrate the 166 

imbalance problem. 167 

 168 

\subsection{Study area}\label{sec:studyarea} 169 

The Bow and Don Rivers are featured as case studies in this research to evaluate methods for 170 

improving the accuracy of high stage data-driven forecasts. The Bow River, illustrated in Fig. 171 

\ref{fig:map} (a), begins in the Canadian Rockies mountain range and flows eastward 172 

through the City of Calgary, where it is joined by the Elbow River. The Bow River's flow 173 

regime is dominated by glacial and snowmelt processes which produce annual seasonality. 174 

The Bow River watershed has an area of approximately $\mathrm{${7,700 km^2}$ upstream 175 

of the target flow gaugestage monitoring station in Calgary and consists of predominantly 176 

natural and agricultural land cover. The City of Calgary has experienced several major floods 177 

(recently in 2005 and 2013) and improvements to flow forecasting models have been 178 

identified as a key strategy for mitigating flood damage \cite{Khan2018}. 179 

 180 

The Don River, illustrated in Fig. \ref{fig:map} (b), begins in the Oak Ridges Moraine and 181 

winds through the Greater Toronto Area until it meets Lake Ontario in downtown Toronto. 182 

The $\mathrm{${360 km^2}$ Don River watershed is heavily urbanised which results in the 183 

high flowsstage seen in the River to be attributable to the direct runoff following intense 184 

rainfall events. Its urbanised landscape has also contributed to periodic historical flooding 185 

\citep{trca_donfloodproj}. Persistent severe flooding (recently in 2005 and 2013) have 186 

motivated calls for further mitigation strategies such as improved flow forecast models and 187 

early warning systems \citep{Nirupama2014}. 188 

 189 

Data from November to April and November to December were removed from the Bow and 190 

Don River datasets, prior to any analysis; these periods are associated with ice conditions. 191 

The histograms in Figure \ref{fig:ei1} illustrate the highly imbalanced domains of the target 192 

flowstage for both rivers. A high flowstage threshold ($\mathrm{\(${\Theta_{HFHS}}$) is 193 

defined, which is used to distinguish between typical and high flows. Flowstage. Stage values 194 
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greater than the threshold are referred to as high flows ($\mathrm{stage (${q_{HFHS}}$) 195 

while flowsstage below the threshold, as typical flows ($\mathrm{stage (${q_{TFTS}}$). 196 

Target flowstage statistics for the Bow and Don Rivers are provided for the complete 197 

flowstage distribution, as well as the $\mathrm{${q_{TFTS}}$ and 198 

$\mathrm{${q_{HFHS}}$ subsets, in Table \ref{tbl:flowstats}. 199 

 200 

The utilisationuse of a fixed threshold for distinguishing between common (frequent) and rare 201 

(infrequent) samples is used both in flow forecasting 202 

\citep{Crochemore2015,Razali2020,Fleming2015} and in more general machine learning 203 

studies that are focused on the imbalance problem \citep{Moniz2017a}. In this research, the 204 

high flowstage threshold is simply and arbitrarily taken as the 80th percentile value of the 205 

observed flowstage. The threshold value is ideally derived from the physical characteristics 206 

of the river (i.e., the stage at which water exceeds the bank or the water level associated with 207 

a givenspecified return period); unfortunately this site-specific information is not readily 208 

available for the subject watersheds. An important consideration to make while selecting a 209 

$\mathrm{\${\Theta_{HFHS}}$ value is that it produces a sufficient number of high 210 

flowstage samples; too few samples risks overfitting and poor generalisation. The distinction 211 

between typical and high flowsstage is used in some of the resampling techniques in Sect. 212 

\ref{sec:resample} and for assessing model performance in Sect. \ref{sec:eval}. 213 

 214 

\subsection{Base modelIndividual learner description}\label{sec:baseline} 215 

The base models, also known as theindividual learner (sometimes called the base model, or 216 

base learner,) for both systems use upstream hydro-meteorological inputs (water levelstage, 217 

precipitation, and temperature) to predict the downstream water levelstage (the target 218 

variable). The multi-layer perception (MLP) ANN is used as the base modelindividual learner 219 

for this study and the selected model hyperparameters are summarised in Table 220 

\ref{tbl:base}. The MLP-ANN was chosen as the base modelindividual learner because it is 221 

the most commonly used machine learning architecture for predicting water resources 222 

variables in river systems \citep{Maier2010}. The base modelindividual learner can be used 223 

for discrete value prediction or as a member of an ensemble, in which a collection of models 224 

are trained and combined to generate predictions. Each ANN has a hidden layer of 10 225 

neurons; a grid-search of different hidden layer sizes indicated that larger numbers of hidden 226 

neurons have little impact on the ANN performance. Thus, to prevent needlessly increasing 227 

model complexity, a small hidden layer is favoured. The number of training epochs is 228 
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determined using early-stopping (also called stop-training), which is performed by dividing 229 

the calibration data into training and validation subsets; training data is used to tune the ANN 230 

weights and biases whereas the validation performance is used to determine when to stop 231 

training  \citep{Anctil2004a}. For this study, the optimum number of epochs is assumed if 232 

the error on the validation set increases for 5 consecutive epochs. Early-stopping is a 233 

common technique for achieving generalisation and preventing overfitting 234 

\citep{Anctil2004a}. Of the available data for each watershed, 60\% is used for training, 235 

20\% for validation, and 20\% for testing (the independent dataset). K-fold cross-validation 236 

(KFCV) is used to evaluate different continuous partitions of training and testing data, and is 237 

explained in greater detail in Sect. \ref{sec:kfcv}. The Levenberg–Marquardt algorithm was 238 

used to train the base models.individual learners, because of its speed of convergence and 239 

reliability \citep{Lauzon2006, Maier2000, Tongal2018}. The full set of input and target 240 

variables used for both catchments are summarised in Table \ref{tbl:iv}. For both rivers, the 241 

input variables are used to forecast the target variable 4 timesteps in advance, i.e., for the 242 

Bow River, the model forecasts 24 hours in the future, whereas for the Don River, the model 243 

forecasts 4 hours in the future. Some of the input variables used in the Bow River model, 244 

including minthe minimum, mean, and maxmaximum statistics, are calculated by coarsening 245 

hourly data to a 6-hour timestep. Several lagged copies of each input variable are used, which 246 

is common practice for ANN-based flowhydrological forecasting models 247 

\citep{Snieder2020,Abbot2014c,Fernando2009,Banjac2015}. For example, to forecast 248 

$x_{t}$ by 4 timesteps, $x_{t-4}$, $x_{t-5}$, $x_{t-6}$, etc. may be used as an input 249 

variables, as these variables are recorded automatically, in real-time. 250 

 251 

The Partial Correlation (PC) input variable selection (IVS) algorithm is used to to determine 252 

the most suitable inputs for each model from the larger candidate set 253 

\citep{He2011,Sharma2000}. Previous research for the Don and Bow Rivers found that PC is 254 

generally capable of removing non-useful inputs in both systems, achieving reduced 255 

computational demand and improved model performance \citep{Snieder2020}. The 256 

simplicity and computational efficiency of the PC algorithm method makes it an appealing 257 

IVS algorithm for this application. The 25 most useful inputs amongst all the candidates 258 

listed in Table \ref{tbl:iv}, determined by the PC algorithm, are used in the models for each 259 

watershed. A complete list of selected inputs is shown in Appendix \ref{app:a}. 260 

 261 
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The Bow and Don River base modelsindividual learners produce coefficients of Nash-262 

Sutcliffe efficiency (CE) greater than 0.95 and 0.75, respectively. These scores are widely 263 

considered by hydrologists to indicate good performance \citep{Crochemore2015}. However, 264 

closer investigation of the model performance reveals that high flowsstage samples 265 

consistently exhibit considerable error. Such is plainly visible when comparing the observed 266 

hydrographs with the base modelindividual learner predictions, as shown in Figs. 267 

\ref{fig:ei_ts_bow} and \ref{fig:ei_ts_don}, for the Bow and Don Rivers, respectively. 268 

Plotting the base modelindividual learner residuals against the observed flowstage, as in Fig. 269 

\ref{fig:ei2} (a and b) illustrates how the variance of the residuals about the expected mean of 270 

0 increases with the increasing flowstage magnitude; \citet{Fleming2015} also describe the 271 

heteroscedastic nature of flow prediction models. This region of high flowsstage also exhibits 272 

amplitude errors in the excess of 1 meter, casting doubt on the suitability of these models for 273 

flood forecasting applications. In Fig. \ref{fig:ei2} (b and c) the normalised inverse 274 

frequency of each sample point is plotted against the flowstage gradient, illustrating how the 275 

most frequent flowstage values typically have a low gradient with respect to the forecast lead 276 

time, given by ($\mathrm{(${q_{t + L} - q_{t})/ L}$. Note that the inverse frequency is 277 

determined using 100 histogram bins. Thus, when such a relationship exists, it is unsurprising 278 

that model output predictions are similar to the most recent autoregressive input variable. 279 

Previous work that analysed trained ANN models for both subject watersheds demonstrates 280 

how the most recent autoregressive input variable is the most important variable for accurate 281 

flowstage predictions \citep{Snieder2020}. 282 

 283 

Without accounting for the imbalanced nature of flowstage data, data-driven models are 284 

prone to inadequate performance similar to that of the base modelsindividual learners 285 

described above. Consequently, such models may not be suitable for flood related 286 

applications such as early flood warning systems. The following section describes, and 287 

reviews resampling and ensemble methods, which are proposed as solutions to the imbalance 288 

problem, which manifests as poor performance on high stage samples, relative to typical 289 

stage. 290 

 291 

  292 
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\section{Review and description of methods for handling imbalanced target 293 

datasets}\label{sec:methods} 294 

Many strategies have been proposed for handling imbalanced domains, which can be broadly 295 

categorised into three approaches: specialised preprocessing, learning methods, and 296 

combined methods \citep{Haixiang2017, Moniz2019}. According to a comprehensive review 297 

of imbalanced learning strategies \citep{Haixiang2017} resampling and ensemble methods 298 

are among the most popular techniques employed. \citep{Haixiang2017}. Specifically, a 299 

review of 527 papers on imbalanced classification \citep{Haixiang2017} found that a 300 

resampling technique was used 156 times. \citep{Haixiang2017}. From the same review, 218 301 

of the 527 papers used an ensemble technique such as Bagging or boosting. Many of the 302 

studies reviewed used combinations of available techniques and often propose novel hybrid 303 

approaches that incorporate elements from several algorithms. Since it is impractical to 304 

compare every unique algorithm that has been developed for handling imbalanceimbalanced 305 

data, the scope of this research adheres to relatively basic techniques and combinations of 306 

resampling and ensemble methods. The following sections describe the resampling and 307 

ensemble methods used in this research. The review attempts to adhere to hydrological 308 

studies that featuringfeature each of the methods, however, when this is not always possible, 309 

examples from other fields are presented. 310 

 311 

First, it is important to distinguish between the data imbalance addressed in this study and 312 

cost-sensitive imbalance. Imbalance in datasets can be characterised as a combination of two 313 

factors: imbalanced distributions of samples across the target domain and imbalanced user 314 

interest across the domain. Target domain imbalance is related solely to the native 315 

distribution of samples while cost-sensitivity occurs when costs vary across the target 316 

domain. While both types of imbalance are relevant to the flow forecasting application of this 317 

research, cost-sensitive methods are complex and typically involve developing a relationship 318 

between misprediction and tangible costs, for example, property damage \citep{Toth2016}. 319 

Cost-sensitive learning is outside the scope of this research, which is focused on reducing 320 

high flowstage errors due to the imbalanced nature of the target flowstage data. 321 

 322 

\subsection{Resampling techniques}\label{sec:resample} 323 

Resampling is widely used in machine learning to create subsets of the total available data 324 

with which to train models. Resampling is conducted for two purposestypically used as a data 325 

preprocessing technique \citep{Brown2005, Moniz2017a}. However, in thisour research: 326 
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ensemble methods (discussed in Sect. \ref{sec:ensbl}) use repeated, resampling is embedded 327 

in the ensemble algorithms, as to generatepromote diversity among ensemble members 328 

\citep{Brown2005} and as a preprocessing technique to change the training data distribution 329 

to influence model performance acrossamongst the target domain \citep{Moniz2017a}. 330 

individual learners. This following sectionssection discusses the useexamples of resampling 331 

as a , whether used for preprocessing technique.or used within the learning algorithm. 332 

Pseudocode for each resampling method is provided in Appendix \ref{app:b}. 333 

 334 

\subsubsection{Random undersampling}  335 

RUS is performed by subsampling a number of frequent cases equal to the number of 336 

infrequent cases, such that there are an even amount in each category and achievingachieve a 337 

more balanced distribution compared to the original set. As a result, all of the rare cases are 338 

used for training, while only a fraction of the normal cases are used. RUS is intuitive for 339 

classification problems; for two-class classification, the majority class is undersampled such 340 

that the number of samples drawn from each class is equal to the number of samples in the 341 

minority class \citep{Yap2014}. However, RUS is less straightforward for regression, as it 342 

requires continuous data first to be categorised, as to allow for an even number of samples to 343 

be drawn from each category. Categories must be selected appropriately such that they are 344 

continuous across the target domain and each category contains a sufficient number of 345 

samples to allow for diversity in the resampled dataset \citep{Galar2013}. Undersampling is 346 

scarcely used in flowhydrological forecasting applications, despite seeing widespread use in 347 

classification studies. \citet{Ruhana2014} demonstrate an application of fuzzy-based RUS 348 

for categorical flood risk support vector machine (SVM) based classification, which is 349 

motivated by the imbalanced nature of flood data. RUS is found to outperform both ROS and 350 

synthetic minority oversampling technique (SMOTE) on average across 5 locations. 351 

 352 

In this research, $\mathrm{${N}$ available flowstage samples are categorised into 353 

$\mathrm{${N_{TFTS}}$ typical stage and $\mathrm{${N_{HFHS}}$ high flows 354 

basedstage based on the threshold $\mathrm{\${\Theta_{HFHS}}$. The undersampling 355 

scheme draws $\mathrm{${N_{HFHS}}$ with replacement from each of the subsets, such 356 

that there are an equal number of each flow category. RUS can be performed with or without 357 

replacement; the former provides greater diversity when resampling is repeated several times, 358 

and is thus this approach is selected for the present research. 359 

 360 
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\subsubsection{Random oversampling}  361 

ROS simply consists of oversampling rare samples, thus modifying the training sample 362 

distribution through duplication \citecitep{Yap2014}. ROS is procedurally similar to RUS, 363 

also aiming to achieve a common number of frequent and infrequent samples. Instead of 364 

subsampling the typical flowsstage, high flowsstage values are resampled with replacement 365 

so that the number of samples matches that of the typical flowstage set. The duplication of 366 

high flowsstage samples in the training dataset increases their relative contribution to the 367 

model's objective function during calibration. Compared to undersampling, oversampling is 368 

advantaged such that more samples in the majority class are utilised. The drawbacks of this 369 

approach are that there is an increased computational cost. There are few examples of ROS 370 

applications in water resources literature; studies tend to favour SMOTE, which is discussed 371 

in the following section. \citet{Saffarpour2015} use oversampling to address the class 372 

imbalance of binary flood data; surprisingly, oversampling was found to decrease 373 

classification accuracy compared to the raw training dataset. Recently, \citet{Zhaowei2020} 374 

applied oversampling for vehicle traffic flow, as a response to the imbalance of the training 375 

data.  376 

 377 

For ROS, as with RUS, $\mathrm{${N}$ available flowstage samples are categorised into 378 

$\mathrm{${N_{TFTS}}$ typical stage and $\mathrm{${N_{HFHS}}$ high flows 379 

basedstage samples based on the threshold $\mathrm{\${\Theta_{HFHS}}$. The 380 

oversampling scheme draws $\mathrm{${N_{TFTS}}$ with replacement from each of the 381 

subsets, such that there are an equal number of each flow category. ROS is distinguished 382 

from RUS in that it produces a larger sample set that inevitably contains duplicated of high 383 

flowstage values. 384 

 385 

\subsubsection{Synthetic minority oversampling technique for 386 

regression}\label{sec:smote} 387 

SMOTER is a variation of the SMOTE classification resampling technique introduced by 388 

\citep{Chawla2002} that bypasses excessive duplication of samples by generating synthetic 389 

samples, which unlike duplication, createcreates diversity within the ensembles. SMOTE is 390 

widely considered as an improvement over simple ROS as the increased diversity help 391 

preventprevents overfitting \citep{Ruhana2014}. For a given sample, SMOTE generates 392 

synthetic samples by randomly selecting one of k nearest points, determined using k-nearest 393 

neighbours (KNN), and sampling a value at a linear distance between the two neighbouring 394 
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points. The original SMOTE algorithm was developed for classification tasks; 395 

\citet{Torgo2013} developed the SMOTER variation, which is an adaptation of SMOTE for 396 

regression. SMOTER uses a fixed threshold to distinguish between 'rare' and 'normal' points. 397 

In addition to oversampling synthetic data, SMOTER also randomly undersamples normal 398 

values, to achieve the desired ratio between rare and normal samples. The use of SMOTE in 399 

the development of models that predict stream flowriver stage is only being recently 400 

attempted. \citet{Atieh2016} use two methods for generalisation: Dropout and SMOTER; 401 

these were applied to ANN models that predicted the flow duration curves for ungauged 402 

basins. They found that SMOTER reduced the number of outlier predictions, whereas both 403 

approaches resulted in the improved performance of the ANN models. \citet{Wu2020} used 404 

SMOTE resampling in combination with AdaBoosted sparse Bayesian models. The 405 

combination of these methods resulted in improved model accuracy compared to previous 406 

studies using the same dataset. \citet{Razali2020} used SMOTE with various Bayesian 407 

network and machine learning techniques, including decision trees, KNN and SVM. Each 408 

technique is applied to a highlyan imbalanced classified flood dataset (flood flow and non-409 

flood flow categories); the SMOTE decision tree model achieved the highest classification 410 

accuracy. SMOTE decision trees have also been applied for estimating the pollutant removal 411 

efficiency of bioretention cells.  \citet{Wang2019} found that decision trees developed with 412 

SMOTE had the highest accuracy for predicting pollutant removal rates; the authors attribute 413 

the success of SMOTE to its ability to prevent the majority class from dominating the fitting 414 

process. \citet{SufiKarimi2019} employ SMOTER resampling for stormwater flow 415 

prediction models. Their motivation for resampling is flow dataset imbalance and data 416 

sparsity. Several configurations are considered with varying degrees of oversampled 417 

synthetic and undersampled data. The findings of the study indicate that increasing the 418 

oversampling rate tends to improve model performance compared to the non-resampled 419 

model, while increasing the undersampling rate produces a marginal improvement. 420 

Collectively, these applications of SMOTE affirm its suitability for mitigating the imbalance 421 

problem in the flowflood forecasting models featured in this research. 422 

 423 

SMOTER is adapted in this research following the method described by \citep{Torgo2013}. 424 

One change in this adaptation is that rare cases are determined using the 425 

$\mathrm{\${\theta_{HFHS}}$ value, instead of a relevancy function. Similarly, only high 426 

values as considered as 'rare', instead of considering both low and high values as rare, as in 427 
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the original algorithm. Oversampling and undersampling are performed at rates of 400\% and 428 

0\% respectively, as to obtain an equivalent number of normal and rare cases. 429 

 430 

 \subsection{Ensemble-based techniques}\label{sec:ensbl} 431 

Ensembles are collections of models (called individual learners), each with diverse error 432 

distributions.variations to the individual learner model type or to the training procedure 433 

\citep{Alobaidi2019}. It is well established that ensemble-based methods improve model 434 

stability and generalisability \citep{Alobaidi2019,Brown2005}. Recent advances in ensemble 435 

learning have emphasised the importance of diversity-in-learning \citep{Alobaidi2019}. 436 

Diversity in ensembles is achievedcan be generated both implicitly and explicitly through a 437 

variety of methods, includingsome of which include varying the initial set of model 438 

parameters, varying the model topology, varying the training algorithm, and varying the 439 

training data \citep{Sharkey1996, Brown2005}. Ensembles are typically combined to form 440 

discrete predictions \citep{Sharkey1996,Shu2004} or used to estimate the uncertainty 441 

attributable to the The largest source of ensemble diversity citep{Tiwari2010,Abrahart2012}. 442 

Modelin the ensembles are defined in a variety of ways within water resources literature. The 443 

term ensembleunder study is widely used to describe a collection of numerical 444 

modelsattributable with varying the training data, which have divergent predictions caused by 445 

uncertain initial conditions. Numerical weather predictions are a common application of such 446 

ensembles \citep{Leutbecher2008}. Ensemble Streamflow Prediction (ESP) refers to 447 

streamflow prediction as a counterpart to dynamic hydrological prediction, ESP models are 448 

based on historical dataoccurs both in the various resampling methods described above and 449 

typically used when dynamic hydrological data is unavailable 450 

\citep{Harrigan2018,Tanguy2017}. Finally, within machine learning literature, ensembles of 451 

learners simply refers to any collection of data-driven models 452 

\cite{Valentini2002,Dietterich2000}. While these definitions are not mutually exclusive, the 453 

latter definition of the ensemble isin some cases, the one used throughoutensemble 454 

algorithms. Only homogeneous ensembles are used in this research.The predictions of 455 

multiple ensemble members may or may not be combined. In the latter case, multiple 456 

predictions can be used to form a spread of predictions. Ensembles members are most 457 

commonly combinedwork, thus no diversity is obtained through simple averaging, though 458 

more complex combiners are sometimes used \citep{Shu2004,Zaier2010}.varying the model 459 

topology or training algorithm \citep{Zhang2018a, Alobaidi2019}. Ensemble predictions are 460 

combined to form a single discrete prediction. Ensembles that are combined to produce 461 
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discrete predictions have been proven to outperform single models by reducing model bias 462 

and variance, thus improving overall model generalisability \citep{Brown2005}. This has 463 

lead to their widespread application in hydrological modelling 464 

\citep{Abrahart2012}.,Sharkey1996,Shu2004, Alobaidi2019}. This has contributed to their 465 

widespread application in hydrological modelling \citep{Abrahart2012}. In some cases, 466 

ensembles are not combined, and the collection of predictions are used to estimate the 467 

uncertainty associated with the diversity between ensemble members 468 

\citep{Tiwari2010,Abrahart2012}. While this approach has obvious advantages, it is not 469 

possible for all types of ensembles, such as the boosting methods, which are also used in this 470 

research. Thus, this research combines ensembles to aid comparison across the different 471 

resampling and ensemble methods used. 472 

 473 

There are many distinct methods for creating ensemble methods. The purpose of this paper is 474 

not to review all ensemble algorithms, but rather to compare four ensemble methods that 475 

commonly appear in literature: randomised weights and biases, baggingBagging, adaptive 476 

boosting, and gradient boosting. A fourth method, randomised weights and biases, which 477 

does not qualify as an ensemble technique due to the absence of repeated resampling, is also 478 

included in the ensemble comparison because of its widespread use. While several studies 479 

have provided comparisons of ensemble methods, none of these studies have explicitly 480 

studied their effects on high flowstage prediction, nor their combination with resampling 481 

strategies, which is common in applications outside of flow forecasting. 482 

 483 

Methods that aim to improve generalisability have shown promise in achieving improved 484 

prediction on high flowsstage, which may be scarcely represented in training data. However, 485 

to the knowledge of the authors, no research has explicitly evaluated the efficacy of 486 

ensemble-based methods for improving high flowstage accuracy.  Applications of ensemble 487 

methods for improving performance of imbalanced target variables have been thoroughly 488 

studied in classification literature. Several classification studies have demonstrated how 489 

ensemble techniques can improve prediction accuracy for imbalanced classes 490 

\citep{Galar2011,Lopez2013, Diez-Pastor2015, Diez-Pastor2015a, Baszczynski2015}. Such 491 

methods are increasingly being adapted for regression problems 492 

\citep{Moniz2017,Moniz2017a},, which is typically achieved by projecting continuous data 493 

into a classification dataset \citep{Moniz2017,Moniz2017a,Solomatine2004b}. Pseudocode 494 
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for each of the ensemble algorithms used in this research is provided in Appendix 495 

\ref{app:b}. 496 

 497 

\subsubsection{Randomised weights and biases} 498 

Randomised While not technically a form of ensemble learning, repeatedly randomising the 499 

weights and biases of ANNs is one of the simplest ensemble-basedand most common 500 

methods. for achieving diversity among a collection of models, thus, it acts as a good 501 

comparison point for the proceeding ensemble methods \citep{Brown2005}. In this method, 502 

ensemble members are only distinguished by the randomisation of the initial parameter 503 

values (i.e., the initial weights and biases for ANNs in this research) used for training. For 504 

this method, an ensemble of ANNs is trained, each member having a different randomised set 505 

of initial weights and biases. Thus when trained, each ensemble member may converge to 506 

different final weight and bias values. Ensemble members are combined through averaging. 507 

This technique is often used, largely to alleviate variability in training outcomes and 508 

uncertainty associated with the initial weight and bias parameterisation 509 

\citep{Shu2004,DeVos2005,Fleming2015,Barzegar2019}. Despite its simplicity, this method 510 

has been demonstrated to produce considerable improvements in performance when 511 

compared to a single ANN model, even outperforming more complex ensemble methods 512 

\citep{Shu2004}. The weights and biases of each ANN are initialised using the default 513 

initialisation function in MATLAB and an ensemble size of 20 is used. 514 

 515 

\subsubsection{Bagging} 516 

Bagging is a widely used ensemble method first introduced in \citep{Breiman1996}. Bagging 517 

employs the bootstrap resampling method, which consists of sampling with replacement, to 518 

generate subsets of data on which to train ensemble members. The ensemble members are 519 

combined through simple averaging to form discrete predictions. Bagging is a proven 520 

ensemble method in flood prediction studies and has been widely applied and refined for, 521 

both spatial and temporal prediction, since its introduction by \citet{Breiman1996}. 522 

\citet{Chapi2017} use Bagging with Logistic Model Trees (LMT) as the baseindividual 523 

learners to predict spatial flood susceptibility. The Bagging ensemble is found to outperform 524 

standalone LMTs, in addition to logistic regression and Bayesian logistic regression. For a 525 

similar flood susceptibility prediction application, \citet{Chen2019} use Bagging with 526 

Reduced Error Pruning Trees (REPTree) as the bassbase learners. The Bagged models are 527 

compared to Random Subspace ensembles; both ensemble methods perform better than the 528 
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standalone REPTree models, with the Random Subspace model slightly outperforming the 529 

Bagged ensemble. \citet{Anctil2004a} compared five generalisation techniques in the 530 

development of neural network modelsANNs for flow forecasting. They combined 531 

baggingBagging, boosting and stacking with stop training and Bayesian regularisation, 532 

making a total of nine model configurations. They found that stacking, baggingBagging, and 533 

boosting all resulted in improved model performance, ultimately recommending the use of 534 

the last two in conjunction with either stop training or Bayesian regularisation. 535 

\citet{Ouarda2009} compared stacking and baggingBagging ANN models against parametric 536 

regression for estimating low flow quantile for summer and winter seasons and found higher 537 

performance in ANN models (single and ensemble) compared to traditional regression 538 

models \citep{Ouarda2009}. \citet{Cannon2002} applied baggingBagging to MLP-ANN 539 

models for predicting flow and found that baggingBagging helped create the best performing 540 

ensemble neural networkANN. \citet{Shu2004} evaluated six approaches for creating ANN 541 

ensembles for regional flood frequency flood analysis, including baggingBagging combined 542 

with either simple averaging or stacking; baggingBagging resulted in higher performance 543 

compared to the basic ensemble method. In a later study, \citet{Shu2007} used 544 

baggingBagging and simple averaging to create ANN ensembles for estimating regional 545 

flood quantiles at ungauged sites. Implementing Bagging is uncomplicated, a description of 546 

the algorithm is described in its original appearance \citep{Breiman1996}. This research uses 547 

a Bagging ensemble of 20 members. 548 

 549 

\subsubsection{Adaptive boosting for regression} 550 

The AdaBoost algorithm was originally developed by \citet{Freund1996a} for classification 551 

problems. The algorithm has undergone widespread adaptation and its popularity has lead to 552 

the development of many subvariationsvariations, which typically introduce improvements in 553 

performance, efficiency, and expanded for regression problems. This study uses the 554 

AdaBoost.RT variation \citep{Solomatine2004b,Shrestha2006}. Broadly put, the AdaBoost 555 

algorithm begins by training an initial model. The following model in the ensemble is trained 556 

using a resampled or reweighted training set, based on the residual error of the previous 557 

model. This process is typically repeated until the desired ensemble size is achieved or a 558 

stopping criterion is met. Predictions are obtained by weighted combination of the ensemble 559 

members, where model weights are a function of their overall error. 560 

 561 
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Similar to Bagging, there are many examples of AdaBoost applications for flowhydrological 562 

prediction. \citet{Solomatine2004b} compared various forms of AdaBoost against 563 

baggingBagging in models predicting river flows and found AdaBoost.RT to outperform 564 

baggingBagging. In a later study, the same authors compared the performance of AdaBoosted 565 

M5 tree models against ANN models for various applications, including predicting river 566 

flows in a catchment; they found higher performance in models that used the AdaBoost.RT 567 

algorithm compared to single ANNs \citep{Shrestha2006}. \citet{Liu2014a} used 568 

AdaBoost.RT for calibrating process-based rainfall-runoff models, and found improved 569 

performance over the single model predictions. \citet{Wu2020} compared boosted ensembles 570 

against Bagged ensembles for predicting hourly streamflow and found the combination of 571 

AdaBoost (using resampling) and Bayesian model averaging gave the highest performance. 572 

 573 

The variant of AdaBoost in this research follows the  algorithm, AdaBoost.RT proposed by  574 

\citep{Solomatine2004b,Shrestha2006}. This algorithm has three hyperparameters. The 575 

relative error threshold parameter is selected as the 80th percentile of the residuals of the 576 

baseindividual learner and 20 ensemble members are trained. AdaBoost can be performed 577 

using either resampling or reweighting \citep{Shrestha2006}; resampling is used in this 578 

research as it has been found to typically outperform reweighting \citep{Seiffert2008}. 579 

Recently, several studies have independently proposed a modification to the original 580 

AdaBoost.RT algorithm by adaptively calculating the relative error threshold value for each 581 

new ensemble member \citep{Wang2019a,Li2020}. This modification to the algorithm was 582 

generally found to be detrimental to the performance of the models in the present research, 583 

thus, the static error threshold described in the original algorithm description was used 584 

\citep{Solomatine2004b}. 585 

 586 

\subsubsection{Least squares boosting} 587 

LSBoost is a variant of gradient boosting, which is an algorithm that involves training an 588 

initial model, followed by a sequence of models that are each trained to predict the residuals 589 

of the previous model in the sequence. This is in contrast to the AdaBoost method, which 590 

uses the model residuals to inform a weighted sampling scheme for subsequent models. The 591 

prediction at a given training iteration is calculated by the weighted summation of the already 592 

trained model(s) from the previous iterations. For LSBoost weighting is determined by a 593 

least-squares loss function; other variants of gradient boosting use a different loss function 594 

\citep{Friedman2000}. 595 



20 
 

 596 

Gradient boosting algorithms have previously been used to improve efficiency and accuracy 597 

for flowhydrological forecasting applications. \citet{Ni2020} use the gradient boosting 598 

variant XGBoost, which uses Desision Trees (DTs) as the baseindividual learners, in 599 

combination with a Gaussian Mixture Model (GMM) for streamflow forecasting. The GMM 600 

is used to cluster streamflow data, and an XGBoost ensemble is fit to each cluster. Clustering 601 

streamflow data into distinct subsets for training is sometimes used as an old concept 602 

\citep{Wang2006}. It has a similar objectivealternative to resampling methods employed in 603 

this research; its purpose is similar to that of resampling, which is to change the training 604 

sample distribution. \citep{Wang2006}. The combination of XGBoost and GMM is found to 605 

outperform standalone SVM models. \citet{Erdal2013} developed gradient boosted 606 

regression trees and ANNs for predicting daily streamflow and found gradient boosted ANNs 607 

to have higher performance than the regression tree counterparts. \citet{Worland2018} use 608 

gradient boosted regression trees to predict annual minimum 7-day streamflow at 224 609 

unregulated sites; performance is found to be competitive with several other types of data-610 

driven models. \citet{Zhang2019} use the Online XGBoost gradient boosting algorithm for 611 

regression tree models to simulate streamflow and found that it outperformed many other 612 

data-driven and lumped hydrological models. \citet{Papacharalampous2019} use gradient 613 

boosting with regression trees and linear models, which are compared against several other 614 

model types for physically-based hydrological model quantile regression post-processing. 615 

Neither of the gradient boosting models outperform the other regression models and a 616 

uniformly weighted ensemble of all other model types typically outperforms any individual 617 

model type. These examples of gradient boosting affirm its capability for improving 618 

performance compared to the single model comparison as well as other machine learning 619 

models. However, none of these studies use gradient boosting with ANNs as the 620 

baseindividual learner. Moreover, these studies do not examine the effects of gradient 621 

boosting on model behaviour within the context of the imbalance problem. Therefore, we use 622 

LSBoost to study its efficacy for improving high flowstage performance. 623 

 624 

The implementation of LSBoost in this research is unchanged from the original algorithm 625 

\citep{Friedman2000}. The algorithm has two hyperparameters; the learning rate which 626 

scales the contribution of each new model and the number of boosts. A learning rate of 1 is 627 

used and the number an ensemble size of 20 is used. 628 

 629 
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\subsection{Hybrid methods} 630 

The resampling and training strategies reviewed above can be combined to further improve 631 

model performance on imbalanced data; numerous algorithms have been proposed in 632 

literature that embed resampling schemes in ensemble learning methods. \citet{Galar2011} 633 

describes a taxonomy and presents a comprehensive comparison of such algorithms for 634 

classification problems. Many of these algorithms effectively present minor improvements or 635 

refinements to popular approaches. Alternative to implementing every single unique 636 

algorithm for training ensembles, this studythe present research proposes employing a 637 

systematic approach to combine preprocessing resampling and ensemble training algorithms, 638 

in a modular fashion; such combinations are referred to as 'hybrid methods'. Hybrid methods 639 

hope to achieve the benefits of both standalone methods: improved performance on high 640 

flowsstage while maintaining good generalisability. Thus, in this research, every permutation 641 

of resampling (RUS, ROS, and SMOTER) and ensemble methods (RWB, Bagging, 642 

AdaBoost, and LSBoost) is evaluated in this research, resulting in twelve unique hybrid 643 

methods. For resampling combinations with RWB ensembles, the resampling is performed 644 

once, thus, diversity is only obtained from the initialisation of the ANN. This combination is 645 

equivalent to evaluating each resampling technique individually, to provide a basis for 646 

comparison with resampling repeated for each ensemble member, as used in the other 647 

ensemble-based configurations. For combinations of resampling with Bagging, AdaBoost, 648 

and LSBoost, the resampling procedure is performed for training each new ensemble 649 

member. One non-intuitive hybrid case is the combination of SMOTER with AdaBoost, 650 

because the synthetically generated samples do not have predetermined error weights. A 651 

previous study has recommended assigning the initial weight value to synthetic samples 652 

\citep{Diez-Pastor2015a}. However, this research proposes instead that synthetic sample 653 

weights are calculated in the same manner as the synthetic samples, i. (e.g., based on the 654 

randomly interpolated point between a sample and a random  neighbouring point.). Thus, if 655 

two samples with relatively high weights are used to generate a synthetic sample, the new 656 

sample will have a similar weight. 657 

 658 

The hyperparameters for each of the resampling and ensemble method employed in this study 659 

are listed in Table \ref{tbl:methods_hp}. Every ensemble uses the ANN described in Sect. 660 

\ref{sec:baseline} as the baseindividual learner. The hyperparameters of the baseindividual 661 

learner are kept the same throughout all of the ensemble methods to allow for a fair 662 
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comparison \citep{Shu2004} (excluding of course the number of epochs, which is 663 

determined through validation stop-training). 664 

 665 

\subsection{Model implementation and evaluation}\label{sec:eval} 666 

All aspects of this work are implemented in MATLAB 2020a. The Neural Network Toolbox 667 

was used to train the basebaseline ANN models. The resampling and ensemble algorithms 668 

used in this research were programmed by the authors and available upon request.; the 669 

pseudocode for each method is available in Appendix \ref{app:b}. 670 

 671 

\subsubsection{Performance assessment}\label{sec:perf} 672 

The challenges of training models on imbalanced datasets outlined in Sect. \ref{sec:intro} 673 

and evaluating model performance are one and the same: many traditional performance 674 

metrics (e.g., MSE, $CE,$, etc.) are biased towards the most frequent flowsstage values and 675 

the metrics are insensitive to changes in high flowstage accuracy. In fact, despite their 676 

widespread use, these metrics are criticised in literature. For example, ANN models for 677 

sunspot prediction produced a lower RMSE (equivalent to $CE$ when used on datasets with 678 

the same observed mean) compared to conventional models, however were found to have no 679 

predictive value \citep{Abrahart2007}. Similarly, $CE$ values may be misleadingly 680 

favourable if there is significant observed seasonality \citep{Ehret2011}. $CE$ is also 681 

associated with the underestimation of large peak flows, volume balance errors, and 682 

undersized variability \citep{Gupta2009, Ehret2011}. \citet{Zhan2019} suggest that $CE$ is 683 

sensitive to peak flows due to the square term. This assertion is correct while comparing two 684 

samples, however, when datasets are imbalanced, the errors of typical flowsstage overwhelm 685 

those of high flowsstage. \citet{Ehret2011} evaluate the relationship between phase error and 686 

RMSE using triangular hydrographs; their study shows how RMSE is highly sensitive to 687 

minor phase errors, however, when a hydrograph has a phase and amplitude error RMSE is 688 

much more sensitive to overpredictions compared to underpredictions.  689 

 690 

The coefficient of efficiency (CE), commonly known as the Nash-Sutcliffe efficiency, is 691 

given by the following formula: 692 

\begin{equation}\label{eqn:ce} 693 

    \mathrm{{CE = 1-\frac{\sum(q(t) - \hat{q}(t))^2}{\sum(q(t) - \bar{q})^2}}} 694 

\end{equation} 695 
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where $\mathrm{${q}$ is the observed flow, $\mathrm{\stage, ${\hat{q}}$ is the predicted 696 

flowstage, and $\mathrm{\${\bar{q}}$ is the mean observed flowstage. 697 

 698 

The persistence index (PI) is a measure similar to $CE,$, but instead of normalising the sum 699 

of squared error of a model based on the observed variance, it is normalised based on the sum 700 

of squared error between the target variable and itself, lagged by the lead time of the forecast 701 

model (referred to as the naive model). Thus, the $CE$ and $PI$ range from an optimum 702 

value of 1 to -$\infty$, with values of 0 corresponding to models that are indistinguishable 703 

from the observed mean and naive models, respectively. The Since both models use 704 

antecedent input variables with lag times equal to the forecast length, $PI$ is a useful 705 

indicator for over-reliance on this input variable, which has been associated with peak stage 706 

timing error \citep{DeVos2009}. Furthermore, the $PI$ measure overcomes some of the 707 

weaknesses of $CE,$, such as a misleadingly high value for seasonal watersheds. Moreover, 708 

$PI$ is effective in identifying when models become over-reliant on autoregressive inputs, as 709 

the model predictions will resemble those of the naive model. $PI$ is given by the following 710 

formula: 711 

\begin{equation}\label{eqn:pi} 712 

    \mathrm{{PI = 1-\frac{\sum(q(t) - \hat{q}(t))^2}{\sum(q(t) - q(t-L))^2}}} 713 

\end{equation} 714 

 715 

where $\mathrm{${L}$ is the lead time of the forecast. 716 

 717 

In order to quantify changes in model performance on high flowsstage, both the $CE$ and 718 

$PI$ measures are calculated for typical flows ($\mathrm{TFstage (${TS}$) and high flows 719 

($\mathrm{HFstage (${HS}$) \citep{Crochemore2015}. The resampling methods are 720 

expected to improve the high flow stage $CE$ at the expense of $CE$ for typical flowsstage, 721 

while ensemble methods are expected to produce an outright improvement in model 722 

generalisation, reflected by reduced loss in performance between the calibration and test data 723 

partitions. Thus, the objective of these experimentsthis research is to find model 724 

configurations with improved performance on high flowsstage while maintaining strong 725 

performance overall. $\mathrm{TF${TS}$ and $\mathrm{HF${HS}$ performance metrics 726 

are calculated based only on the respective observed flowsstage. For example, the $CE$ for 727 

high flowsstage is calculated by: 728 

\begin{equation}\label{eqn:cehf} 729 
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    \mathrm{{CE_{HFHS} = 1-\frac{\sum(q_{HFHS}(t) - 730 

\hat{q}_{HFHS}(t))^2}{\sum(q_{HFHS}(t) - \bar{q}_{HFHS})^2}}} 731 

\end{equation} 732 

 733 

where $\mathrm{${q_{HFHS}}$ is given by: 734 

\begin{equation}\label{eqn:hf} 735 

    \mathrm{{q_{HFHS} = q \mid q \geq \theta_{HFHS}}} 736 

\end{equation} 737 

 738 

The performance for $\mathrm{${CE_{TF}}$, $\mathrm{TS}}$, ${PI_{HFHS}}$, and 739 

$\mathrm{${PI_{TFTS}}$ are calculated in the same manner, substituting 740 

$\mathrm{${q_{TFTS}(t)}$ for $\mathrm{${q_{HFHS}(t)}$ in Eq. \ref{eqn:hf} for 741 

$\mathrm{HF${HS}$ calculations, and using Eq. \ref{eqn:pi} in place of Eq. \ref{eqn:ce} 742 

for $PI$ calculations. 743 

 744 

\subsubsection{K-fold cross-validation}\label{sec:kfcv} 745 

The entire available dataset is used for both training and testing by the use of KFCV, a widely 746 

used cross-validation method \citep{Hastie2009, Bennett2013, Solomatine2008a, 747 

Snieder2020}. Ten folds are used in total; eight folds for calibration and two for testing. Of 748 

the eight calibration folds, six are used for training while two are used for early-stopping. 749 

When performance is reported as a single value, it refers to the mean model performance of 750 

the respective partition across K-folds. It is important to distinguish between the application 751 

of KFCV for evaluation (as used in this research) as opposed to using KFCV for producing 752 

ensembles, in which an ensemble of models is trained based on a KFCV data partitioning 753 

scheme \citep{Duncan2014}. 754 

 755 

  756 
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\section{Results}\label{sec:results} 757 

This section provides a comparison of the performance of each of the methods described 758 

throughout Sect. \ref{sec:methods} applied to the Bow and Don River watersheds, which are 759 

described in Sect. \ref{sec:studyarea}. Changes to model performance are typically discussed 760 

relative to the base modelindividual learner (see Sect. \ref{sec:baseline}), unless explicit 761 

comparisons are specified. First, the results of a grid-search analysis of ensemble size is 762 

provided. Next, general overview and comparison of the results are presented, followed by 763 

detailed comparison of the resampling and ensemble methods. Finally, the effects that 764 

varying the ${HS}$ threshold and ensemble size have on resampling and high stage 765 

performance are evaluated for the Bagging and SMOTER-Bagging models. 766 

 767 

Fig. \ref{fig:ensbl_size} illustrates the change in test performance as the ensemble size 768 

increases from 2 to 100 for each river. This grid-search is performed only for the base 769 

ensemble methods (RWB, Bagging, AdaBoost, and LSBoost) without any resampling. The 770 

Bow River results indicates that AdaBoost and LSBoost tend to favour a small ensemble size 771 

(2-15 members), whereas the generalisation of RWB and Bagging improves with a larger size 772 

(>20 members). The performance of LSBoost rapidly deteriorates as the ensemble size 773 

grows, likely as the effects of overfitting become more pronounced. Similar results are 774 

obtained for the Don, except that RWB, Bagging, and AdaBoost all improve with larger 775 

ensemble size, while LSBoost performs worse than all other ensembles, even for small 776 

ensemble sizes. Similar to the Bow, a larger ensemble size (>20 members) produces 777 

favourable MSE. 778 

 779 

Figs. \ref{fig:perf_bp_bow} and \ref{fig:perf_bp_don} show the $CE$ and $PI$ box-whisker 780 

plots for the Bow and Don Rivers, respectively. These figures show the performance of the 781 

test dataset, across the K-folds, for each resampling, ensemble, and hybrid technique, as well 782 

as the base model.individual learner. The performance metrics are calculated for the entire 783 

dataset, the HF$HS$ values, and the TF$TS$ values. Models with a larger range have more 784 

variable performance when evaluated across different subsets of the available data.  785 

 786 

The average performance for each resampling, ensemble, and hybrid methods for the Bow 787 

and Don River models are shown in Tables \ref{tbl:perf_bow} and \ref{tbl:perf_don}, 788 

respectively, which list the $CE$ and $PI$ for the entire dataset, as well as the TF$TS$ and 789 

the HF$HS$ datasets. The ensemble results for each KFCV fold were combined using a 790 
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simple arithmetic average. The results have been separated into different categories: each 791 

section starts with the ensemble technique (either RWB, Bagging, AdaBoost, or LSBoost), 792 

followed by the three hybrid variations (RUS-, ROS-, or SMOTER-). The calibration 793 

(training and validation) performance is indicated in parentheses and italics, followed by the 794 

test performance. Comparing both the calibration and test performance is useful since it 795 

provides a sense of overfitting, hence, generalisation. For example, an improvement in 796 

calibration performance and decrease in test performance suggests that the model has been 797 

overfitted. In contrast, improvements to both partitions indicates favourable model 798 

generalisation. The best performing model (based on testing performance) have been 799 

highlighted in bold text for each performance metric, $CE$ and $PI,$, for both watersheds.  800 

 801 

Based on the $CE$ values in Figs. \ref{fig:perf_bp_bow} - \ref{fig:perf_bp_don} and Tables 802 

\ref{tbl:perf_bow} - \ref{tbl:perf_don}, the majority of the Bow and Don River models 803 

achieve "acceptable" prediction accuracy (as defined by \citet{Mosavi2018}).  804 

Values of $\mathrm{${CE_{TFTS}}$ and $\mathrm{${CE_{HFHS}}$ are both lower than 805 

the $CE,$, which is to be expected as the flowstage variance of each subset is lower than that 806 

of the entirethe set of flows.all stage values. For the Bow River models, the $CE$ and 807 

$\mathrm{${CE_{TFTS}}$ values are consistently higher than the 808 

$\mathrm{${CE_{HFHS}}$; this is attributable to the high seasonality of the watershed 809 

producing a misleadingly high value for $CE$ due to the high variance of flowsstage 810 

throughout the year, as discussed in Sect. \ref{sec:perf}. The $\mathrm{${CE_{HFHS}}$ 811 

values also have higher variability compared to the overall $CE$ and 812 

$\mathrm{${CE_{TFTS}}$, as shown in Fig. \ref{fig:perf_bp_bow}a. In contrast, for the 813 

Don River models, the difference in $CE, $\mathrm{$, ${CE_{TFTS}}$, and 814 

$\mathrm{${CE_{HFHS}}$ is less pronounced; whereas the $CE$ (for the entire dataset) is 815 

typically higher, as expected, than both the $\mathrm{${CE_{TFTS}}$ and 816 

$\mathrm{${CE_{HFHS}}$, the difference between $\mathrm{${CE_{TFTS}}$ and 817 

$\mathrm{${CE_{HFHS}}$ is low, as demonstrated in the mean and range of the box-818 

whisker plots in Fig. \ref{fig:perf_bp_don}a. Unlike the Bow River, the Don River does not 819 

exhibit notable seasonality, resulting in smaller difference between the HF$HS$ and 820 

TF.$TS$. 821 

 822 

Values of $PI$ are typically lower than for $CE$ for both watersheds. The Bow River models 823 

obtain $PI$ values centred around 0 (see Fig. \ref{fig:perf_bp_bow}b), indicating that only 824 
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some of the model configurations perform with greater accuracy than the naive model, 825 

meaning that a timing error exists. The box-whisker plots of each ensemble method do not 826 

show a clear trend (with respect to the mean value or range) when comparing the $PI, 827 

$\mathrm{$, ${PI_{TFTS}}$, and $\mathrm{${PI_{HFHS}}$: the mean values and range 828 

are similar for all variants tested.  829 

 830 

The Don River models have positive $PI$ values of approximately 0.6, indicating a lower 831 

reliance on autoregressive input variables, when compared to the Bow River. And in contrast 832 

to the Bow River, there is a notable difference between the $PI$ metrics: the 833 

$\mathrm{${PI_{TFTS}}$ has a lower mean value and higher variance (see Fig. 834 

\ref{fig:perf_bp_don}b) than the $PI$ (for the entire dataset) and the 835 

$\mathrm{${PI_{HFHS}}$. These lower $\mathrm{${PI_{TFTS}}$ are due to the low 836 

variability (steadiness) of the Don River $\mathrm{${TFs}$ (see Fig. \ref{fig:ei_ts_don}), 837 

and thus, the sum of squared error between the naive model and observed flowsstage is also 838 

low, reducing the $PI$ value. The low value of $\mathrm{${PI_{TFTS}}$ is attributed to the 839 

quality of the naive model, not the inaccuracy of the ANN counterpart. Note that 840 

$\mathrm{${PI_{HFHS}}$ are typically slightly higher than the overall PI: during high 841 

flowsstage, there is greater variability, thus the naive model is less accurate, resulting in a 842 

higher $PI$ score.  843 

 844 

\subsection{Comparison of resampling and ensemble methods} 845 

This section provide a more detailed comparison of performance across the different 846 

resampling and ensemble methods. As expected, all three resampling methods (RUS, 847 

ROS,and SMOTER) typically increase HF$HS$ performance, often at the expense of 848 

TF$TS$ performance. Based on results shown in Table \ref{tbl:perf_bow}, the SMOTER- 849 

variations provide the highest performance for HF$HS$ for the Bow River. SMOTER-RWB 850 

$\mathrm{${CE_{HFHS}}$ is 0.72, an increase from 0.617 of the base modelindividual 851 

learner, whereas the SMOTER-Bagging $\mathrm{${PI_{HFHS}}$ is 0.144, compared to -852 

0.175 for the base model.individual learner. These indicators suggest that the HF$HS$ 853 

prediction accuracy has improved slightly using these SMOTER- variations. The results 854 

shown in Table \ref{tbl:perf_don} for the Don River indicate that the best improvements for 855 

HF$HS$ prediction accuracy is provided by the RUS-Bagging method: the 856 

$\mathrm{${CE_{HFHS}}$ is 0.585 (an increase from 0.511 of the base modelindividual 857 

learner), and the $\mathrm{${PI_{HFHS}}$ is 0.668 (an increase from 0.61 of the base 858 
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model).individual learner). While both these metrics shownshow an improvement in HF$HS$ 859 

prediction accuracy for the Don River, the improvements are relatively smallersmall 860 

compared to the Bow River performance.  improvement for the Bow River. ROS often 861 

exhibits poorer performance than SMOTER and RUS. Previous research has noted the 862 

tendency for ROS-based models to overfit, due to the high number of duplicate samples 863 

\citep{Yap2014}. RUS, despite using considerable less training data for each individual 864 

learner, is not as prone to overfitting as ROS. The RUS-Bagging models consistently 865 

outperform the RUS-RWB models; this may be due to the repeated resampling, thus RUS-866 

Bagging uses much more of the original training samples, while RUS-RWB only uses 20\% 867 

of the original data. 868 

  869 

Figures \ref{fig:rsmpl_ensbl_bow} and \ref{fig:rsmpl_ensbl_don} show absolute changes in 870 

CE and PI relative to the base model for the Bow and Don Rivers, respectively, for the entire 871 

dataset, the TF and the HF. Performance is colourised in a 2D matrix to facilitate 872 

comparisons in performance between each resampling methods across ensemble types and 873 

vice versa.  874 

 875 

Figures \ref{fig:rsmpl_ensbl_bow} and \ref{fig:rsmpl_ensbl_don} show absolute changes in 876 

$CE$ and $PI$ relative to the individual learner for the Bow and Don Rivers, respectively, 877 

for the entire dataset, the $TS$ and the $HS$. Performance is colourised in a 2D matrix to 878 

facilitate comparisons in performance between each resampling methods across ensemble 879 

types and vice versa. From these figures, it is apparent that SMOTER generally produces the 880 

largest improvements in HF$HS$ performance, for both $CE$ and $PI,$, and for both 881 

watersheds. The SMOTER methods are also generally the least detrimental to TF$TS$ 882 

performance for both watersheds, as compared to ROS and RUS. Notably, SMOTER is the 883 

only resampling method whose performance does not decrease when used in combination 884 

with LSBoost. However, the change in performance due to SMOTER is marginal compared 885 

to the models without resampling. For the Bow River, the largest improvements between the 886 

best models with no resampling and the best models with resampling for 887 

$\mathrm{${CE_{HFHS}}$ and $\mathrm{${PI_{HFHS}}$ are 0.001 and 0.016, 888 

respectively. For the Don River, the same improvements are 0.004 and 0.005, respectively. 889 

The remaining resampling methods (RUS and ROS) also generally tend to improve HF$HS$ 890 

performance across the ensemble techniques; however this improvement is not consistent, as 891 

is the case with SMOTER, and the decrease is TF$TS$ performance is also higher. Thus, 892 
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while SMOTER provides consistent improvements over the non-resampling methods for 893 

$CE$ and $PI$ (entire, TF,$TS$, and HF),$HS$), RUS and ROS only provide minor 894 

improvements to HF$HS$ performance.   895 

 896 

When looking at the resampling methods, the RWB ensembles exhibit competitive 897 

performance compared to the other ensemble methods., despite their lower diversity. These 898 

ensembles represent a considerable improvement over the base modelindividual learner and 899 

often achieve higher performance compared to the other, more complex ensemble methods, 900 

as shown in Tables \ref{tbl:perf_bow} and \ref{tbl:perf_don}. This suggests that using RWB 901 

(a relatively simply ensemble method) is useful for improving $CE$ and $PI$ performance 902 

(for all flows)entire, $TS$, and $HS$) as compared to the single, base model.individual 903 

learner. For the Bow River, the RWB ensembles improve the $PI$ for each case (PI, 904 

$\mathrm{${PI_{TFTS}}$, and $\mathrm{${PI_{HFHS}}$), whereas only improving 905 

$\mathrm{${CE_{HFHS}}$. For the Don River models, a notable increase in performance is 906 

seen for both $CE and PI (entire$ and HF$PI$ (entire and $HS$ datasets); however, when 907 

combined with the resampling techniques (RUS, ROS, and SMOTER), the TF$TS$ 908 

performance metrics exhibit poorer performance. 909 

 910 

The Bagging ensembles also perform well, typically outperforming the RWB counterparts, 911 

and following the same trends described above. This is likely due to their repeated 912 

resampling, which achieves greater ensemble diversity compared to the RWB models, for 913 

which resampling only occurs once. This result is consistent with a previous comparison of 914 

Bagging and boosting \citep{Shu2004}. Like RWB and Bagging, AdaBoost improves model 915 

performance compared to the base modelindividual learner, but is typically slightly poorer 916 

compared to RWB and Bagging, and has higher variability in terms of improvement to model 917 

performance across all model types and both watersheds. The RWB, Bagging, and Adaboost 918 

models consistently improve TF$TS$ and HF$HS$ performance compared to the base 919 

modelindividual learner regardless of whether they are combined with a resampling strategy. 920 

Thus, using such ensembles is highly recommended for improved model performance across 921 

all flows. 922 

 923 

The LSBoost models have the poorest HF$HS$ performance out of all the ensemble methods 924 

studied. This is consistent across all resampling methods and both watersheds. In contrast, the 925 

change in performance for $\mathrm{${CE_{TFTS}}$ and $\mathrm{${PI_{TFTS}}$ is 926 
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less detrimental when using LSBoost, suggesting that this method is not well-suited to 927 

improve HF$HS$ performance. The LSBoost models are slightly overfitted, despite utilising 928 

the stop-training for calibrating the ANN ensemble members. This is indicated by the 929 

degradation in performance between the calibration and test dataset, a change which is larger 930 

than that seen in the other ensemble models. This is most noticeable for the RUS-LSBoost 931 

models for both the Bow and the Don Rivers, which are more prone to overfitting compared 932 

to other models, due to the smaller number of training samples. The $CE$ decreases from 933 

0.97 to 0.902 for the Bow and 0.835 to 0.715 for the Don River; none of the other models that 934 

use RUS exhibit such a gap between train and test performance.  935 

 936 

The overfitting produced by the boosting methods is consistent with previous research, which 937 

finds that boosting is sometimes prone to overfitting on real-world datasets 938 

\citep{Vezhnevets2007}. One reason that the improvements made by the boosting methods 939 

(AdaBoost and LSBoost) are not more substantial may be due to the use of ANNs as 940 

baseindividual learners. ANNs typically have more degrees of freedom compared to the 941 

decision trees that are most commonly used as baseindividual learners; thus, the additional 942 

complexity offered by boosting does little to improve model predictions. Additionally, the 943 

boosting methods further increase the effective degrees of freedom of the predictions. 944 

Nevertheless, these methods still tend to improve performance over that of the base model 945 

caseindividual learner. Ensembles of less complex models such as regression trees are 946 

expected to produce relatively larger improvements when relative to the single model 947 

predictions. 948 

 949 

As discussed in Sect. \ref{sec:studyarea}, a fixed threshold is used to distinguish between 950 

high and typical stage values, which was set to 80\% for the results presented above. Fig. 951 

\ref{fig:hs_gridsearch} shows the effects of the fixed threshold increasing from the 50th to 952 

90th percentile of the stage distribution. These plots show the relative effects of SMOTER-953 

Bagging compared to simple Bagging; these configurations were selected for this comparison 954 

since they both exhibited relatively good, consistent performance. A performance ratio 955 

greater than 1 indicates that the SMOTER-Bagging model has greater error compared to the 956 

Bagging model, 1 indicates that they have the same performance, and less than 1, improved 957 

performance. Error is presented for all stage values as well as the ${TS}$ and ${HS}$ 958 

subsets. The calibration plots illustrate an asymmetric trade-off between ${HS}$ and ${TS}$ 959 

error. For a given ${\theta_{HS}}$ value, the error ratio of the ${TS}$ subset increases more 960 
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than than the decline in ${HS}$ error. More importantly, the improvements in ${HS}$ 961 

performance obtained in calibration are considerably less pronounced in the test dataset, 962 

despite a loss in ${TS}$ performance. 963 

 964 

Fig. \ref{fig:ensbl_smoter} illustrates the effects of varying the ensemble size, thus, number 965 

of resampling repetitions, for the SMOTER-Bagging model, relative to the simple Bagging 966 

model. The plot shows the relative improvement in $HS$ produced by the SMOTER 967 

resampling as the ensemble size increases, reaching a steady value at an ensemble size of 968 

approximately 70 for both the Don and Bow systems. This is larger than that required for the 969 

simple Bagging model to reach steady performance, shown in Fig. \ref{fig:ensbl_size}, 970 

indicating that SMOTER requires more resampling than regular resampling with replacement 971 

(default in Bagging) in order to reach stable performance. Consistent with observations made 972 

from Fig. \ref{fig:hs_gridsearch}, an asymmetric trade-off between typical and high stage 973 

performance is noted, illustrated by disproportionate increase in error on typical stage, 974 

relative to the improvement on high stage. 975 

 976 

\subsection{Limitations and Future work} 977 

A limitation of this study is the lack of a systematic case-by-case hyperparameter 978 

optimisation of the models. The baseindividual learner parameters (e.g. topology, activation 979 

function, etc.) were constant across all ensemble members. Likewise, the ensemble 980 

hyperparameters were not optimised, but simply tuned using an ad-hoc approach. A 981 

systematic approach to hyperparameter optimisation for each model will likely yield 982 

improved model performance. However, hyperparameter optimisation on such a scale would 983 

be very computationally expensive. Similarly, the selection of the HF$HS$ threshold may 984 

affect $\mathrm{${CE_{HFHS}}$ and $\mathrm{${PI_{HFHS}}$ performance, and the 985 

sensitivity of model performance of this threshold should be explored. 986 

 987 

 This studyresearch featured resampling and ensemble methods for improving prediction 988 

accuracy across an imbalanced target dataset, i.e., the high flowsstage. Further to imbalanced 989 

target data, flood forecasting applications commonly have imbalanced cost; for example, 990 

underprediction is typically more costly than overprediction. The use of cost-functions, such 991 

as asymmetric weighting applied to underpredictions and overpredictions, for flood 992 

forecasting has been shown to reduce underprediction of flooding \citep{Toth2016}. Many 993 
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cost-sensitive ensemble techniques (e.g., \citet{Galar2011}) have yet to be explored in the 994 

context of flood forecasting models and should be the focus of future work. 995 

  996 
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\section{Conclusion}\label{sec:conclusion} 997 

This study evaluatedresearch presented the efficacy offirst systematic comparison of the 998 

effects of combined resampling and ensemble techniques for improving the 999 

performanceaccuracy of high flow forecasting models, specifically for high stage (infrequent) 1000 

observations. Methods were applied to two Canadian watersheds, the Bow River in Alberta, 1001 

and the Don River, in Ontario. This research attempts to address the widespread problem of 1002 

poor performance on high flowsstage when using data-driven approaches such as ANNs. 1003 

Improving performance on high flowsstage is essential for model applications such as early 1004 

flood warning systems. Three resampling (RUS, ROS, and SMOTER) and four ensemble 1005 

techniques (RWB, Bagging, AdaBoost, and LSBoost) are implemented as part of ANN flow 1006 

forecasting models, for both watersheds. These methods are implementedassessed 1007 

independently and systematically combined in hybrid approaches, in orderas to assess their 1008 

efficacy for improving high flowstage performance. Contributions include proposing the 1009 

useA major contribution of ROSthis paper is the comprehensive evaluation of these hybrid 1010 

methods, most of which are the first instances in the water resources field, an adapted 1011 

application. While methodologies for SMOTER, and new implementations of LSBoost with 1012 

ANNs, and SMOTER-AdaBoost. Resampling methodsthese combination methods is 1013 

available in existing machine learning literature, our proposed implementation of SMOTER-1014 

AdaBoost is a novel improvement. Results demonstrate that resampling methods, when 1015 

embedded in ensemble algorithms, generally only produces a small improvement in high 1016 

flowstage performance, based on $CE$ and $PI, with$; the SMOTER variation 1017 

providingprovided the most consistent improvements. Ensemble methods produced more 1018 

substantive improvements in modelAn asymmetric trade-off between typical and high stage 1019 

performance, regardless of whether or not it is combined with a resampling method. Simple 1020 

ensemble techniques, such as RWB, demonstrate the utility of ensemble based approaches to 1021 

improving model is observed, in which improved high stage performance andproduced 1022 

disproportionately worse typical flow performance. Such a trade-off should be used as part of 1023 

ANN-based flow forecasting models.carefully considered while implementing these methods. 1024 

Further research on this topic shouldmay explore the combination of cost-sensitive 1025 

approaches with ensemble methods, which would allow for more aggressive penalisation of 1026 

poor accuracy on high flowsstage. 1027 
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Abstract. Data-driven flow forecasting models, such as Artificial Neural Networks (ANNs), are increasingly featured in re-

search for their potential use in operational riverine flood warning systems. However, the distributions of observed flow data

are imbalanced, resulting in poor prediction accuracy on high flows, both in terms of amplitude and timing error. Resampling

and ensemble techniques have shown to improve model performance on imbalanced datasets. However, the efficacy of these

methods (individually or combined) has not been explicitly evaluated for improving high flow forecasts. In this research, we5

systematically evaluate and compare three resampling methods: random undersampling (RUS), random oversampling (ROS),

and synthetic minority oversampling technique for regression (SMOTER); and four ensemble techniques: randomised weights

and biases, Bagging, adaptive boosting (AdaBoost), least squares boosting (LSBoost); on their ability to improve high stage

prediction accuracy using ANNs. These methods are implemented both independently and in combined, hybrid techniques,

where the resampling methods are embedded within the ensemble methods. This systematic approach for embedding resam-10

pling methods are novel contributions. This research presents the first analysis of the effects of combining these methods on

high stage prediction accuracy. Data from two Canadian watersheds (the Bow River in Alberta, and the Don River in Ontario),

representing distinct hydrological systems, are used as the basis for the comparison of the methods. The models are evaluated

on overall performance, and on typical and high stage subsets. The results of this research indicate that resampling produces

marginal improvements to high stage prediction accuracy, whereas ensemble methods produce more substantial improvements,15

with or without resampling. Many of the techniques used produced an asymmetric trade-off between typical and high stage

performance; reduction of high stage error resulted in disproportionately larger error on typical stage. The methods proposed

in this study highlight the diversity-in-learning concept and help support for future studies on adapting ensemble algorithms

for resampling. This research contains many of the first instances of such methods for flow forecasting and moreover, their effi-

cacy to address the imbalance problem and heteroscedasticity, which are commonly observed in high flow and flood forecasting20

models.
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1 Introduction

Data-driven models such as artificial neural networks (ANNs) have been widely and successfully used over the last three

decades for hydrological forecasting applications (Govindaraju, 2000; Abrahart et al., 2012; Dawson and Wilby, 2001). How-25

ever, some studies have noted that these models can exhibit poor performance during high flow (or stage) hydrological events

(Sudheer et al., 2003; Abrahart et al., 2007; de Vos and Rientjes, 2009), with poor performance manifesting as late predictions

(i.e., timing error), under-predictions, or both. For flow forecasting applications such as riverine flood warning systems, the

accuracy of high stage predictions are more important than that of typical stage. One cause of poor model accuracy on high

stage is the scarcity of representative sample observations available with which to train such models (Moniz et al., 2017a). This30

is because stage data typically exhibits a strong positive skew, referred to as an imbalanced domain; thus, there may only be a

small number of flood observations within decades of samples. Consequently, objective functions that are traditionally used for

training ANNs (e.g., mean squared error (MSE), sum of squared error (SSE), etc.), that equally consider all samples, are biased

towards values that occur most frequently and reflected by poor model performance on high flow or stage observations (Pisa

et al., 2019). Sudheer et al. (2003) also point out that such objective functions are not optimal for non-normally distributed data.35

This problem is exacerbated when such metrics are also used to assess model performance; regrettably, such metrics are the

most widely used in water resources applications (Maier et al., 2010). As a result, studies that assess models using traditional

performance metrics risk overlooking deficiencies in high stage performance.

Real-time data-driven flow forecasting models frequently use antecedent input variables (also referred to as autoregressive

inputs) for predictions. Several studies have attributed poor model prediction on high stage to model over-reliance on antecedent40

variables (Snieder et al., 2020; Abrahart et al., 2007; de Vos and Rientjes, 2009; Tongal and Booij, 2018). Consequently, the

model predictions are similar to the most recent antecedent conditions, sometimes described as a lagged prediction (Tongal

and Booij, 2018). In other words, the real-time observed stage at the target gauge is used as the predicted value for a given lead

time. This issue is closely linked to the imbalanced domain problem as frequently occurring stage values typically exhibit low

temporal variability compared to infrequent, high stage values; this phenomenon is further described in Sect. 2.45

Improving the accuracy of high stage or flow forecasts has been the focus of many studies. Several studies have examined

the use of preprocessing techniques to improve model performance. Sudheer et al. (2003) propose using a Wilson-Hilferty

transformation to change the skewed distribution of stage data. The study found that transforming the target data reduces

annual peak flow error produced by ANN-based daily flow forecasting models. Wang et al. (2006) evaluate three strategies

for categorising streamflow samples, based on a fixed value flow threshold, unsupervised clustering, and periodicity; separate50

ANN models are trained to predict each flow category and combined to form a final prediction. The periodicity-based ANN,

which detects periodicity from the autocorrelation function of the target variable, is found to perform the best out of the three

schemes considered. Fleming et al. (2015) address the issue of poor high flow performance by isolating a subset of daily high

flows by thresholding based on a fixed value. By doing so, traditional objective functions (e.g., MSE) become less influenced

by the imbalance of the training dataset. ANN-based ensembles trained on high flows are found to perform well, though55

2



the improvements to high flow accuracy are not directly quantified, as the high flow ensemble is not compared directly to a

counterpart trained using the full training dataset.

An alternative approach to improving high flow forecast accuracy has been to characterise model error as having amplitude

and temporal components (Seibert et al., 2016). Abrahart et al. (2007) use a specialised learning technique in which models are

optimised based on a combination of root mean square error (RMSE) and a timing error correction factor, which is found to60

improve model timing for short lead-times, but have little impact on higher lead times. de Vos and Rientjes (2009) use a similar

approach, in which models that exhibit a timing error are penalised during calibration. The technique is found to generally

reduce timing error at the expense of amplitude error.

Finally, there is considerable evidence that ensemble-based and resampling techniques to improve prediction accuracy of in-

frequent samples (Galar et al., 2012). Ensemble methods, such as bootstrap aggregating (Bagging) and boosting, are known for65

their ability to improve model generalisation. Such methods are widely used in classification studies and are increasingly being

adapted for regression tasks (Moniz et al., 2017b). However, ensemble methods alone do not directly address the imbalance

problem, as they typically do not explicitly consider the distribution of the target dataset. Thus, ensemble methods are often

combined with preprocessing strategies to address the imbalance problem (Galar et al., 2012). Resampling, which is typically

used as a preprocessing method, can be used to create more uniformly distributed target dataset or generate synthetic data with70

which to train models (Moniz et al., 2017a). Resampling also promotes diversity-in-learning when embedded in ensemble al-

gorithms (rather than used as a preprocessing strategy). Examples of such combinations appear in machine learning literature,

but are typically developed for ad hoc applications (Galar et al., 2012).

However, the efficacy of these methods (a combination of resampling strategies with ensemble methods) has not been sys-

tematically investigated for flow forecasting applications. While previous studies have provided comparisons of ensemble75

methods, none have explicitly studied their effects on high flow prediction accuracy, which has only received little attention

within the context of the imbalance problem in general. Additionally, previous research uses resampling as a preprocessing

technique, whereas in this research, resampling is embedded within the ensembles to promote diversity-in-learning. Thus,

the main objective of this research is to develop a systematised framework for combining several different resampling and

ensemble techniques with the aim to improve high flow forecasts using ANNs. Three resampling techniques: random under-80

sampling (RUS), random oversampling (ROS), and synthetic minority oversampling technique for regression (SMOTER) and

four ensemble algorithms: randomised weights and biases (RWB), Bagging, adaptive boosting for regression (AdaBoost), and

least-squares boosting (LSBoost) will be investigated to address the issues related to high flow forecasts, i.e., the imbalanced

domain problem and heteroscedasticity. Each combination of these methods will be explicitly evaluated on their ability to

improve model performance on high stage (infrequent) data subsets along with the typical (frequent) data subsets. Such a85

framework and comparison, to address the imbalanced domain, has not been presented in existing literature. Lastly, while only

selected resampling and ensemble techniques are presented, many of which are the first instances of their use for high flow

forecasting, this proposed framework may easily be expanded to resampling and ensemble strategies beyond those included in

this research.
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The remainder of the manuscript is organised as follows: first, in in Sect. 2 we present the baseline ANN flow forecast90

models, which are used as the individual learners for the ensembles, for two Canadian watersheds, followed by a performance

analysis of these models to highlight the imbalance domain problem and illustrates the heteroscedasticity of baseline model

residuals. The two watersheds, with differing hydrological characteristics, but both prone to riverine floods, are the Bow River

watershed (in Alberta), and the Don River watershed (in Ontario). Sect. 3 provides a review and applications of each resampling

method and ensemble technique, followed by a description of the implementation of each approach in this research, and model95

evaluation methods. Lastly, Sect. 4 includes the results and discussion from the two case studies.

2 Early investigations

The following section provides descriptions for the two watersheds under study. The parametrisation of the single ANN models

to predict stage in each watershed (referred to as the individual learners) is described. The output of the individual learners

are used to exemplify the inability of these ANNs to accurately predict high stage (from both an amplitude and temporal error100

perspective) and to illustrate the imbalance problem.

2.1 Study area

The Bow and Don Rivers are featured as case studies in this research to evaluate methods for improving the accuracy of high

stage data-driven forecasts. The Bow River, illustrated in Fig. 1 (a), begins in the Canadian Rockies mountain range and flows

eastward through the City of Calgary, where it is joined by the Elbow River. The Bow River’s flow regime is dominated by105

glacial and snowmelt processes which produce annual seasonality. The Bow River watershed has an area of approximately

7,700km2 upstream of the target stage monitoring station in Calgary and consists of predominantly natural and agricultural

land cover. The City of Calgary has experienced several major floods (recently in 2005 and 2013) and improvements to flow

forecasting models have been identified as a key strategy for mitigating flood damage Khan et al. (2018).

The Don River, illustrated in Fig. 1 (b), begins in the Oak Ridges Moraine and winds through the Greater Toronto Area110

until it meets Lake Ontario in downtown Toronto. The 360km2 Don River watershed is heavily urbanised which results in the

high stage seen in the River to be attributable to the direct runoff following intense rainfall events. Its urbanised landscape has

also contributed to periodic historical flooding (Toronto and Region Conservation Authority, 2020a). Persistent severe flooding

(recently in 2005 and 2013) have motivated calls for further mitigation strategies such as improved flow forecast models and

early warning systems (Nirupama et al., 2014).115

Data from November to April and November to December were removed from the Bow and Don River datasets, prior to

any analysis; these periods are associated with ice conditions. The histograms in Figure 2 illustrate the imbalanced domains of

the target stage for both rivers. A high stage threshold (ΘHS) is defined, which is used to distinguish between typical and high

stage. Stage values greater than the threshold are referred to as high stage (qHS) while stage below the threshold, as typical

stage (qTS). Target stage statistics for the Bow and Don Rivers are provided for the complete stage distribution, as well as the120

qTS and qHS subsets, in Table 1.
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Figure 1. Bow (a) and Don (b) River basins upstream of Calgary and Toronto, respectively. Surface watercourses and waterbodies are

shown in blue. The target stage monitoring stations are red while upstream hydrometeorological monitoring stations (stage, precipitation,

and temperature) are yellow. Aerial imagery obtained from © Esri (Esri, 2020). Surface water and watershed boundaries obtained from ©

Scholars GeoPortal (DMTI Spatial Inc., 2014a, b, c, 2019) and the © TRCA (Toronto and Region Conservation Authority, 2020b)

Table 1. Target variable statistics for the Bow and Don River watersheds.

River Subset Mean Min. Max. Skew. Var.

[m] [m] [m] [-] [m2]

Bow q 1.28 0.92 3.07 1.18 0.067

qTS 1.18 0.92 1.47 0.21 0.022

qHS 1.69 1.47 3.07 1.85 0.039

Don q 77.62 77.51 79.21 3.78 0.018

qTS 77.58 77.51 77.67 0.59 0.0017

qHS 77.82 77.68 79.21 2.99 0.034
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Figure 2. Histograms of observed stage for the (a) Bow River 6-hour stage and (b) Don River hourly stage. The dashed red line indicates the

fixed threshold used to distinguish between typical and high stage values.

The use of a fixed threshold for distinguishing between common (frequent) and rare (infrequent) samples is used both in

flow forecasting (Crochemore et al., 2015; Razali et al., 2020; Fleming et al., 2015) and in more general machine learning

studies that are focused on the imbalance problem (Moniz et al., 2017a). In this research, the high stage threshold is simply

and arbitrarily taken as the 80th percentile value of the observed stage. The threshold value is ideally derived from the physical125

characteristics of the river (i.e., the stage at which water exceeds the bank or associated with a specified return period); unfor-

tunately this site-specific information is not readily available for the subject watersheds. An important consideration to make

while selecting a ΘHS value is that it produces a sufficient number of high stage samples; too few samples risks overfitting and

poor generalisation. The distinction between typical and high stage is used in some of the resampling techniques in Sect. 3.1

and for assessing model performance in Sect. 3.4.130
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Table 2. Individual learner ANN model description used for both watersheds.

Model class Artificial neural network

Architecture Multi-layer perceptron

IVS Partial correlation

Hidden neurons 10

Activation function Tanh (hidden layer), Linear (output layer)

Training algorithm Levenburg-Marquardt backpropagation

Stopping criteria Validation dataset

Table 3. Input variables for the Bow and Don Rivers.

Catchment Variable Station ID Statistics Data source Lag times

Bow River

6-hour timestep

24-hour forecast

Water level 05BB001, 05BH004* Max, min, mean 6-hour Water Survey of Canada 0:11

Precipitation 031093 Cumulative 6-hour City of Calgary 0:11

Temperature 031093 Max, min, mean 6-hour City of Calgary 0:11

Don River

1-hour timestep

4-hour forecast

Water level HY017, HY019*, HY022, HY080, HY093 Hourly TRCA 0:5

Precipitation HY008, HY927 Hourly TRCA 0:11

Temperature 6158355 Hourly Environment Canada 0:5

* indicates target station

2.2 Individual learner description

The individual learner (sometimes called the base model, or base learner) for both systems use upstream hydro-meteorological

inputs (stage, precipitation, and temperature) to predict the downstream stage (the target variable). The multi-layer perception

(MLP) ANN is used as the individual learner for this study and the selected model hyperparameters are summarised in Table 2.

The MLP-ANN was chosen as the individual learner because it is the most commonly used machine learning architecture for135

predicting water resources variables in river systems (Maier et al., 2010). The individual learner can be used for discrete value

prediction or as a member of an ensemble, in which a collection of models are trained and combined to generate predictions.

Each ANN has a hidden layer of 10 neurons; a grid-search of different hidden layer sizes indicated that larger numbers of

hidden neurons have little impact on the ANN performance. Thus, to prevent needlessly increasing model complexity, a small

hidden layer is favoured. The number of training epochs is determined using early-stopping (also called stop-training), which140

is performed by dividing the calibration data into training and validation subsets; training data is used to tune the ANN weights

and biases whereas the validation performance is used to determine when to stop training (Anctil and Lauzon, 2004). For this

study, the optimum number of epochs is assumed if the error on the validation set increases for 5 consecutive epochs. Early-

stopping is a common technique for achieving generalisation and preventing overfitting (Anctil and Lauzon, 2004). Of the

available data for each watershed, 60% is used for training, 20% for validation, and 20% for testing (the independent dataset).145

K-fold cross-validation (KFCV) is used to evaluate different continuous partitions of training and testing data, and is explained

7



Jun Jul Aug Sep
2005   

1

1.5

2

2.5

3
(b)

datetime

w
at

er
 le

ve
l [

m
]

2001 2002 2003 2004 2005 2006 2007 2008 2009

1

1.5

2

2.5

3

(a)

w
at

er
 le

ve
l [

m
] observed

base model
HS

Figure 3. Observed and individual learner stage predictions for the Bow River system for all 10 years of available stage (a) and a 3 month

subset which contains particularly high stage (b), to better distinguish between the two hydrographs. The dashed red line indicates the fixed

threshold used to distinguish between typical and high stage values.

in greater detail in Sect. 3.4.2. The Levenberg–Marquardt algorithm was used to train the individual learners, because of its

speed of convergence and reliability (Lauzon et al., 2006; Maier and Dandy, 2000; Tongal and Booij, 2018). The full set of

input and target variables used for both catchments are summarised in Table 3. For both rivers, the input variables are used to

forecast the target variable 4 timesteps in advance, i.e., for the Bow River, the model forecasts 24 hours in the future, whereas150

for the Don River, the model forecasts 4 hours in the future. Some of the input variables used in the Bow River model, including

the minimum, mean, and maximum statistics, are calculated by coarsening hourly data to a 6-hour timestep. Several lagged

copies of each input variable are used, which is common practice for ANN-based hydrological forecasting models (Snieder

et al., 2020; Abbot and Marohasy, 2014; Fernando et al., 2009; Banjac et al., 2015). For example, to forecast xt by 4 timesteps,

xt−4, xt−5, xt−6, etc. may be used as an input variables, as these variables are recorded automatically, in real-time.155

The Partial Correlation (PC) input variable selection (IVS) algorithm is used to to determine the most suitable inputs for

each model from the larger candidate set (He et al., 2011; Sharma, 2000). Previous research for the Don and Bow Rivers found

that PC is generally capable of removing non-useful inputs in both systems, achieving reduced computational demand and

improved model performance (Snieder et al., 2020). The simplicity and computational efficiency of the PC algorithm method

makes it an appealing IVS algorithm for this application. The 25 most useful inputs amongst all the candidates listed in Table160
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Figure 4. Observed and individual learner stage predictions for the Don River system for all 10 months of available stage (a) and a 14 day

subset which contains particularly high stage (b), to better distinguish the two hydrographs. The dashed red line indicates the fixed threshold

used to distinguish between typical and high stage values.

3, determined by the PC algorithm, are used in the models for each watershed. A complete list of selected inputs is shown in

Appendix A.

The Bow and Don River individual learners produce coefficients of Nash-Sutcliffe efficiency (CE) greater than 0.95 and

0.75, respectively. These scores are widely considered by hydrologists to indicate good performance (Crochemore et al., 2015).

However, closer investigation of the model performance reveals that high stage samples consistently exhibit considerable error.165

Such is plainly visible when comparing the observed hydrographs with the individual learner predictions, as shown in Figs.

3 and 4, for the Bow and Don Rivers, respectively. Plotting the individual learner residuals against the observed stage, as in

Fig. 5 (a and b) illustrates how the variance of the residuals about the expected mean of 0 increases with the increasing stage

magnitude; Fleming et al. (2015) also describe the heteroscedastic nature of flow prediction models. This region of high stage

also exhibits amplitude errors in the excess of 1 meter, casting doubt on the suitability of these models for flood forecasting170

applications. In Fig. 5 (b and c) the normalised inverse frequency of each sample point is plotted against the stage gradient,

illustrating how the most frequent stage values typically have a low gradient with respect to the forecast lead time, given by

(qt+L− qt)/L. Note that the inverse frequency is determined using 100 histogram bins. Thus, when such a relationship exists,

it is unsurprising that model output predictions are similar to the most recent autoregressive input variable. Previous work that
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Figure 5. Baseline model residuals versus observed stage for the Bow (a) and Don (b) River systems. Inverse frequency versus gradient

across 4 time steps for the Bow (c) and Don (d) River target variables. Colouring indicates normalised scatter point density.

analysed trained ANN models for both subject watersheds demonstrates how the most recent autoregressive input variable is175

the most important variable for accurate stage predictions (Snieder et al., 2020).

Without accounting for the imbalanced nature of stage data, data-driven models are prone to inadequate performance similar

to that of the individual learners described above. Consequently, such models may not be suitable for flood related applications

such as early flood warning systems. The following section describes, and reviews resampling and ensemble methods, which

are proposed as solutions to the imbalance problem, which manifests as poor performance on high stage samples, relative to180

typical stage.
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3 Review and description of methods for handling imbalanced target datasets

Many strategies have been proposed for handling imbalanced domains, which can be broadly categorised into three approaches:

specialised preprocessing, learning methods, and combined methods (Haixiang et al., 2017; Moniz et al., 2018). According to

a comprehensive review of imbalanced learning strategies resampling and ensemble methods are among the most popular185

techniques employed (Haixiang et al., 2017). Specifically, a review of 527 papers on imbalanced classification found that

a resampling technique was used 156 times (Haixiang et al., 2017). From the same review, 218 of the 527 papers used an

ensemble technique such as Bagging or boosting. Many of the studies reviewed used combinations of available techniques and

often propose novel hybrid approaches that incorporate elements from several algorithms. Since it is impractical to compare

every unique algorithm that has been developed for handling imbalanced data, the scope of this research adheres to relatively190

basic techniques and combinations of resampling and ensemble methods. The following sections describe the resampling and

ensemble methods used in this research. The review attempts to adhere to hydrological studies that feature each of the methods,

however, when this is not always possible, examples from other fields are presented.

First, it is important to distinguish between the data imbalance addressed in this study and cost-sensitive imbalance. Imbal-

ance in datasets can be characterised as a combination of two factors: imbalanced distributions of samples across the target195

domain and imbalanced user interest across the domain. Target domain imbalance is related solely to the native distribution

of samples while cost-sensitivity occurs when costs vary across the target domain. While both types of imbalance are relevant

to the flow forecasting application of this research, cost-sensitive methods are complex and typically involve developing a

relationship between misprediction and tangible costs, for example, property damage (Toth, 2016). Cost-sensitive learning is

outside the scope of this research, which is focused on reducing high stage errors due to the imbalanced nature of the target200

stage data.

3.1 Resampling techniques

Resampling is widely used in machine learning to create subsets of the total available data with which to train models. Resam-

pling is typically used as a data preprocessing technique (Brown et al., 2005; Moniz et al., 2017a). However, in our research,

resampling is embedded in the ensemble algorithms, as to promote diversity amongst the individual learners. This following205

section discusses examples of resampling, whether used for preprocessing or used within the learning algorithm. Pseudocode

for each resampling method is provided in Appendix B.

3.1.1 Random undersampling

RUS is performed by subsampling a number of frequent cases equal to the number of infrequent cases, such that there are an

even amount in each category and achieve a more balanced distribution compared to the original set. As a result, all of the rare210

cases are used for training, while only a fraction of the normal cases are used. RUS is intuitive for classification problems; for

two-class classification, the majority class is undersampled such that the number of samples drawn from each class is equal

to the number of samples in the minority class (Yap et al., 2014). However, RUS is less straightforward for regression, as it
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requires continuous data first to be categorised, as to allow for an even number of samples to be drawn from each category.

Categories must be selected appropriately such that they are continuous across the target domain and each category contains215

a sufficient number of samples to allow for diversity in the resampled dataset (Galar et al., 2013). Undersampling is scarcely

used in hydrological forecasting applications, despite seeing widespread use in classification studies. Ruhana et al. (2014)

demonstrate an application of fuzzy-based RUS for categorical flood risk support vector machine (SVM) based classification,

which is motivated by the imbalanced nature of flood data. RUS is found to outperform both ROS and synthetic minority

oversampling technique (SMOTE) on average across 5 locations.220

In this research,N available stage samples are categorised intoNTS typical stage andNHS high stage based on the threshold

ΘHS . The undersampling scheme draws NHS with replacement from each of the subsets, such that there are an equal number

of each category. RUS can be performed with or without replacement; the former provides greater diversity when resampling

is repeated several times, and thus this approach is selected for the present research.

3.1.2 Random oversampling225

ROS simply consists of oversampling rare samples, thus modifying the training sample distribution through duplication (Yap

et al., 2014). ROS is procedurally similar to RUS, also aiming to achieve a common number of frequent and infrequent sam-

ples. Instead of subsampling the typical stage, high stage values are resampled with replacement so that the number of samples

matches that of the typical stage set. The duplication of high stage samples in the training dataset increases their relative con-

tribution to the model’s objective function during calibration. Compared to undersampling, oversampling is advantaged such230

that more samples in the majority class are utilised. The drawbacks of this approach are that there is an increased computa-

tional cost. There are few examples of ROS applications in water resources literature; studies tend to favour SMOTE, which

is discussed in the following section. Saffarpour et al. (2015) use oversampling to address the class imbalance of binary flood

data; surprisingly, oversampling was found to decrease classification accuracy compared to the raw training dataset. Recently,

Zhaowei et al. (2020) applied oversampling for vehicle traffic flow, as a response to the imbalance of the training data.235

For ROS, as with RUS,N available stage samples are categorised intoNTS typical stage andNHS high stage samples based

on the threshold ΘHS . The oversampling scheme draws NTS with replacement from each of the subsets, such that there are an

equal number of each category. ROS is distinguished from RUS in that it produces a larger sample set that inevitably contains

duplicated high stage values.

3.1.3 Synthetic minority oversampling technique for regression240

SMOTER is a variation of the SMOTE classification resampling technique introduced by (Chawla et al., 2002) that bypasses

excessive duplication of samples by generating synthetic samples, which unlike duplication, creates diversity within the en-

sembles. SMOTE is widely considered as an improvement over simple ROS as the increased diversity help prevents overfitting

(Ruhana et al., 2014). For a given sample, SMOTE generates synthetic samples by randomly selecting one of k nearest points,

determined using k-nearest neighbours (KNN), and sampling a value at a linear distance between the two neighbouring points.245

The original SMOTE algorithm was developed for classification tasks; Torgo et al. (2013) developed the SMOTER variation,
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which is an adaptation of SMOTE for regression. SMOTER uses a fixed threshold to distinguish between ’rare’ and ’normal’

points. In addition to oversampling synthetic data, SMOTER also randomly undersamples normal values, to achieve the de-

sired ratio between rare and normal samples. The use of SMOTE in the development of models that predict river stage is only

being recently attempted. Atieh et al. (2017) use two methods for generalisation: Dropout and SMOTER; these were applied250

to ANN models that predicted the flow duration curves for ungauged basins. They found that SMOTER reduced the number of

outlier predictions, whereas both approaches resulted in the improved performance of the ANN models. Wu et al. (2020) used

SMOTE resampling in combination with AdaBoosted sparse Bayesian models. The combination of these methods resulted in

improved model accuracy compared to previous studies using the same dataset. Razali et al. (2020) used SMOTE with various

Bayesian network and machine learning techniques, including decision trees, KNN and SVM. Each technique is applied to an255

imbalanced classified flood dataset (flood flow and non-flood flow categories); the SMOTE decision tree model achieved the

highest classification accuracy. SMOTE decision trees have also been applied for estimating the pollutant removal efficiency of

bioretention cells. Wang et al. (2019a) found that decision trees developed with SMOTE had the highest accuracy for predicting

pollutant removal rates; the authors attribute the success of SMOTE to its ability to prevent the majority class from dominating

the fitting process. Sufi Karimi et al. (2019) employ SMOTER resampling for stormwater flow prediction models. Their moti-260

vation for resampling is flow dataset imbalance and data sparsity. Several configurations are considered with varying degrees

of oversampled synthetic and undersampled data. The findings of the study indicate that increasing the oversampling rate tends

to improve model performance compared to the non-resampled model, while increasing the undersampling rate produces a

marginal improvement. Collectively, these applications of SMOTE affirm its suitability for mitigating the imbalance problem

in the flood forecasting models featured in this research.265

SMOTER is adapted in this research following the method described by (Torgo et al., 2013). One change in this adaptation is

that rare cases are determined using the θHS value, instead of a relevancy function. Similarly, only high values as considered as

’rare’, instead of considering both low and high values as rare, as in the original algorithm. Oversampling and undersampling

are performed at rates of 400% and 0% respectively, as to obtain an equivalent number of normal and rare cases.

3.2 Ensemble-based techniques270

Ensembles are collections of models (called individual learners), each with variations to the individual learner model type or

to the training procedure (Alobaidi et al., 2019). It is well established that ensemble-based methods improve model stability

and generalisability (Alobaidi et al., 2019; Brown et al., 2005). Recent advances in ensemble learning have emphasised the

importance of diversity-in-learning (Alobaidi et al., 2019). Diversity can be generated both implicitly and explicitly through

a variety of methods, some of which include varying the initial set of model parameters, varying the model topology, varying275

the training algorithm, and varying the training data (Sharkey, 1996; Brown et al., 2005). The largest source of diversity in

the ensembles under study is attributable with varying the training data, which occurs both in the various resampling methods

described above and the in some cases, the ensemble algorithms. Only homogeneous ensembles are used in this work, thus

no diversity is obtained through varying the model topology or training algorithm (Zhang et al., 2018; Alobaidi et al., 2019).

Ensemble predictions are combined to form a single discrete prediction. Ensembles that are combined to produce discrete280
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predictions have been proven to outperform single models by reducing model bias and variance, thus improving overall model

generalisability (Brown et al., 2005; Sharkey, 1996; Shu and Burn, 2004; Alobaidi et al., 2019). This has contributed to their

widespread application in hydrological modelling (Abrahart et al., 2012). In some cases, ensembles are not combined, and the

collection of predictions are used to estimate the uncertainty associated with the diversity between ensemble members (Tiwari

and Chatterjee, 2010; Abrahart et al., 2012). While this approach has obvious advantages, it is not possible for all types of285

ensembles, such as the boosting methods, which are also used in this research. Thus, this research combines ensembles to aid

comparison across the different resampling and ensemble methods used.

There are many distinct methods for creating ensemble methods. The purpose of this paper is not to review all ensemble

algorithms, but rather to compare four ensemble methods that commonly appear in literature: Bagging, adaptive boosting, and

gradient boosting. A fourth method, randomised weights and biases, which does not qualify as an ensemble technique due to290

the absence of repeated resampling, is also included in the ensemble comparison because of its widespread use. While several

studies have provided comparisons of ensemble methods, none of these studies have explicitly studied their effects on high

stage prediction, nor their combination with resampling strategies, which is common in applications outside of flow forecasting.

Methods that aim to improve generalisability have shown promise in achieving improved prediction on high stage, which

may be scarcely represented in training data. However, to the knowledge of the authors, no research has explicitly evaluated295

the efficacy of ensemble-based methods for improving high stage accuracy. Applications of ensemble methods for improving

performance of imbalanced target variables have been thoroughly studied in classification literature. Several classification

studies have demonstrated how ensemble techniques can improve prediction accuracy for imbalanced classes (Galar et al.,

2012; López et al., 2013; Díez-Pastor et al., 2015b, a; Błaszczyński and Stefanowski, 2015). Such methods are increasingly

being adapted for regression problems, which is typically achieved by projecting continuous data into a classification dataset300

(Moniz et al., 2017b, a; Solomatine and Shrestha, 2004). Pseudocode for each of the ensemble algorithms used in this research

is provided in Appendix B.

3.2.1 Randomised weights and biases

While not technically a form of ensemble learning, repeatedly randomising the weights and biases of ANNs is one of the

simplest and most common methods for achieving diversity among a collection of models, thus, it acts as a good comparison305

point for the proceeding ensemble methods (Brown et al., 2005). In this method, members are only distinguished by the

randomisation of the initial parameter values (i.e., the initial weights and biases for ANNs in this research) used for training.

For this method, an ensemble of ANNs is trained, each member having a different randomised set of initial weights and biases.

Thus when trained, each ensemble member may converge to different final weight and bias values. Ensemble members are

combined through averaging. This technique is often used, largely to alleviate variability in training outcomes and uncertainty310

associated with the initial weight and bias parameterisation (Shu and Burn, 2004; de Vos and Rientjes, 2005; Fleming et al.,

2015; Barzegar et al., 2019). Despite its simplicity, this method has been demonstrated to produce considerable improvements

in performance when compared to a single ANN model, even outperforming more complex ensemble methods (Shu and Burn,
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2004). The weights and biases of each ANN are initialised using the default initialisation function in MATLAB and an ensemble

size of 20 is used.315

3.2.2 Bagging

Bagging is a widely used ensemble method first introduced in (Breiman, 1996). Bagging employs the bootstrap resampling

method, which consists of sampling with replacement, to generate subsets of data on which to train ensemble members.

The ensemble members are combined through simple averaging to form discrete predictions. Bagging is a proven ensemble

method in flood prediction studies and has been widely applied and refined for, both spatial and temporal prediction, since its320

introduction by Breiman (1996). Chapi et al. (2017) use Bagging with Logistic Model Trees (LMT) as the individual learners

to predict spatial flood susceptibility. The Bagging ensemble is found to outperform standalone LMTs, in addition to logistic

regression and Bayesian logistic regression. For a similar flood susceptibility prediction application, Chen et al. (2019) use

Bagging with Reduced Error Pruning Trees (REPTree) as the base learners. The Bagged models are compared to Random

Subspace ensembles; both ensemble methods perform better than the standalone REPTree models, with the Random Subspace325

model slightly outperforming the Bagged ensemble. Anctil and Lauzon (2004) compared five generalisation techniques in the

development of ANNs for flow forecasting. They combined Bagging, boosting and stacking with stop training and Bayesian

regularisation, making a total of nine model configurations. They found that stacking, Bagging, and boosting all resulted in

improved model performance, ultimately recommending the use of the last two in conjunction with either stop training or

Bayesian regularisation. Ouarda and Shu (2009) compared stacking and Bagging ANN models against parametric regression330

for estimating low flow quantile for summer and winter seasons and found higher performance in ANN models (single and

ensemble) compared to traditional regression models (Ouarda and Shu, 2009). Cannon and Whitfield (2002) applied Bagging

to MLP-ANN models for predicting flow and found that Bagging helped create the best performing ensemble ANN. Shu

and Burn (2004) evaluated six approaches for creating ANN ensembles for regional flood frequency flood analysis, including

Bagging combined with either simple averaging or stacking; Bagging resulted in higher performance compared to the basic335

ensemble method. In a later study, Shu and Ouarda (2007) used Bagging and simple averaging to create ANN ensembles for

estimating regional flood quantiles at ungauged sites. Implementing Bagging is uncomplicated, a description of the algorithm

is described in its original appearance (Breiman, 1996). This research uses a Bagging ensemble of 20 members.

3.2.3 Adaptive boosting for regression

The AdaBoost algorithm was originally developed by Freund and Schapire (1996) for classification problems. The algorithm340

has undergone widespread adaptation and its popularity has lead to the development of many variations, which typically

introduce improvements in performance, efficiency, and expanded for regression problems. This study uses the AdaBoost.RT

variation (Solomatine and Shrestha, 2004; Shrestha and Solomatine, 2006). Broadly put, the AdaBoost algorithm begins by

training an initial model. The following model in the ensemble is trained using a resampled or reweighted training set, based

on the residual error of the previous model. This process is typically repeated until the desired ensemble size is achieved or a345
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stopping criterion is met. Predictions are obtained by weighted combination of the ensemble members, where model weights

are a function of their overall error.

Similar to Bagging, there are many examples of AdaBoost applications for hydrological prediction. Solomatine and Shrestha

(2004) compared various forms of AdaBoost against Bagging in models predicting river flows and found AdaBoost.RT to

outperform Bagging. In a later study, the same authors compared the performance of AdaBoosted M5 tree models against350

ANN models for various applications, including predicting river flows in a catchment; they found higher performance in

models that used the AdaBoost.RT algorithm compared to single ANNs (Shrestha and Solomatine, 2006). Liu et al. (2014)

used AdaBoost.RT for calibrating process-based rainfall-runoff models, and found improved performance over the single

model predictions. Wu et al. (2020) compared boosted ensembles against Bagged ensembles for predicting hourly streamflow

and found the combination of AdaBoost (using resampling) and Bayesian model averaging gave the highest performance.355

The variant of AdaBoost in this research follows the algorithm AdaBoost.RT proposed by (Solomatine and Shrestha, 2004;

Shrestha and Solomatine, 2006). This algorithm has three hyperparameters. The relative error threshold parameter is selected as

the 80th percentile of the residuals of the individual learner and 20 ensemble members are trained. AdaBoost can be performed

using either resampling or reweighting (Shrestha and Solomatine, 2006); resampling is used in this research as it has been

found to typically outperform reweighting (Seiffert et al., 2008). Recently, several studies have independently proposed a360

modification to the original AdaBoost.RT algorithm by adaptively calculating the relative error threshold value for each new

ensemble member (Wang et al., 2019b; Li et al., 2020). This modification to the algorithm was generally found to be detrimental

to the performance of the models in the present research, thus, the static error threshold described in the original algorithm

description was used (Solomatine and Shrestha, 2004).

3.2.4 Least squares boosting365

LSBoost is a variant of gradient boosting, which is an algorithm that involves training an initial model, followed by a sequence

of models that are each trained to predict the residuals of the previous model in the sequence. This is in contrast to the AdaBoost

method, which uses the model residuals to inform a weighted sampling scheme for subsequent models. The prediction at a

given training iteration is calculated by the weighted summation of the already trained model(s) from the previous iterations.

For LSBoost weighting is determined by a least-squares loss function; other variants of gradient boosting use a different loss370

function (Friedman, 2000).

Gradient boosting algorithms have previously been used to improve efficiency and accuracy for hydrological forecasting

applications. Ni et al. (2020) use the gradient boosting variant XGBoost, which uses Desision Trees (DTs) as the individual

learners, in combination with a Gaussian Mixture Model (GMM) for streamflow forecasting. The GMM is used to cluster

streamflow data, and an XGBoost ensemble is fit to each cluster. Clustering streamflow data into distinct subsets for training375

is sometimes used as an alternative to resampling; its purpose is similar to that of resampling, which is to change the training

sample distribution (Wang et al., 2006). The combination of XGBoost and GMM is found to outperform standalone SVM

models. Erdal and Karakurt (2013) developed gradient boosted regression trees and ANNs for predicting daily streamflow and

found gradient boosted ANNs to have higher performance than the regression tree counterparts. Worland et al. (2018) use
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gradient boosted regression trees to predict annual minimum 7-day streamflow at 224 unregulated sites; performance is found380

to be competitive with several other types of data-driven models. Zhang et al. (2019) use the Online XGBoost gradient boosting

algorithm for regression tree models to simulate streamflow and found that it outperformed many other data-driven and lumped

hydrological models. Papacharalampous et al. (2019) use gradient boosting with regression trees and linear models, which

are compared against several other model types for physically-based hydrological model quantile regression post-processing.

Neither of the gradient boosting models outperform the other regression models and a uniformly weighted ensemble of all385

other model types typically outperforms any individual model type. These examples of gradient boosting affirm its capability

for improving performance compared to the single model comparison as well as other machine learning models. However,

none of these studies use gradient boosting with ANNs as the individual learner. Moreover, these studies do not examine the

effects of gradient boosting on model behaviour within the context of the imbalance problem. Therefore, we use LSBoost to

study its efficacy for improving high stage performance.390

The implementation of LSBoost in this research is unchanged from the original algorithm (Friedman, 2000). The algorithm

has two hyperparameters; the learning rate which scales the contribution of each new model and the number of boosts. A

learning rate of 1 is used and the number an ensemble size of 20 is used.

3.3 Hybrid methods

The resampling and training strategies reviewed above can be combined to further improve model performance on imbalanced395

data; numerous algorithms have been proposed in literature that embed resampling schemes in ensemble learning methods.

Galar et al. (2012) describes a taxonomy and presents a comprehensive comparison of such algorithms for classification prob-

lems. Many of these algorithms effectively present minor improvements or refinements to popular approaches. Alternative

to implementing every single unique algorithm for training ensembles, the present research proposes employing a system-

atic approach to combine preprocessing resampling and ensemble training algorithms, in a modular fashion; such combina-400

tions are referred to as ’hybrid methods’. Hybrid methods hope to achieve the benefits of both standalone methods: improved

performance on high stage while maintaining good generalisability. Thus, in this research, every permutation of resampling

(RUS, ROS, and SMOTER) and ensemble methods (RWB, Bagging, AdaBoost, and LSBoost) is evaluated, resulting in twelve

unique hybrid methods. For resampling combinations with RWB ensembles, the resampling is performed once, thus, diversity

is only obtained from the initialisation of the ANN. This combination is equivalent to evaluating each resampling technique405

individually, to provide a basis for comparison with resampling repeated for each ensemble member, as used in the other

ensemble-based configurations. For combinations of resampling with Bagging, AdaBoost, and LSBoost, the resampling pro-

cedure is performed for training each new ensemble member. One non-intuitive hybrid case is the combination of SMOTER

with AdaBoost, because the synthetically generated samples do not have predetermined error weights. A previous study has

recommended assigning the initial weight value to synthetic samples (Díez-Pastor et al., 2015a). However, this research pro-410

poses that synthetic sample weights are calculated in the same manner as the synthetic samples (e.g., based on the randomly

interpolated point between a sample and a random neighbouring point). Thus, if two samples with relatively high weights are

used to generate a synthetic sample, the new sample will have a similar weight.
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Table 4. Summary of ensemble methods and hyperparameters.

Type Complete name Short form Hyperparameters

Resampling

Random undersampling RUS Rare case threshold (θHS) = 80th percentile stage

Random oversampling ROS Rare case threshold (θHS) = 80th percentile stage

Synthetic minority

oversampling technique
SMOTER

Rare case threshold (θHS) = 80th percentile stage

Oversampling percentage = 400%

Undersampling percentage = 0%

K-nearest neighbours = 10

Ensemble

Randomized initial weights and biases RWB -

Bootstrap aggregating Bagging Combination weighting: uniform

Adaptive boosting

(for regression using error thresholding)
AdaBoost

Error threshold = 80th percentile of base model error

Resampling/reweighting= resampling

Least squares boosting LSBoost
Learning rate = 1

Combination weight = least squares

The hyperparameters for each of the resampling and ensemble method employed in this study are listed in Table 4. Every

ensemble uses the ANN described in Sect. 2.2 as the individual learner. The hyperparameters of the individual learner are kept415

the same throughout all of the ensemble methods to allow for a fair comparison (Shu and Burn, 2004) (excluding of course the

number of epochs, which is determined through validation stop-training).

3.4 Model implementation and evaluation

All aspects of this work are implemented in MATLAB 2020a. The Neural Network Toolbox was used to train the baseline

ANN models. The resampling and ensemble algorithms used in this research were programmed by the authors and available420

upon request; the pseudocode for each method is available in Appendix B.

3.4.1 Performance assessment

The challenges of training models on imbalanced datasets outlined in Sect. 1 and evaluating model performance are one and

the same: many traditional performance metrics (e.g., MSE, CE, etc.) are biased towards the most frequent stage values and

the metrics are insensitive to changes in high stage accuracy. In fact, despite their widespread use, these metrics are criticised in425

literature. For example, ANN models for sunspot prediction produced a lower RMSE (equivalent to CE when used on datasets

with the same observed mean) compared to conventional models, however were found to have no predictive value (Abrahart

et al., 2007). Similarly, CE values may be misleadingly favourable if there is significant observed seasonality (Ehret and

Zehe, 2011). CE is also associated with the underestimation of peak flows, volume balance errors, and undersized variability
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(Gupta et al., 2009; Ehret and Zehe, 2011). Zhan et al. (2019) suggest that CE is sensitive to peak flows due to the square430

term. This assertion is correct while comparing two samples, however, when datasets are imbalanced, the errors of typical

stage overwhelm those of high stage. Ehret and Zehe (2011) evaluate the relationship between phase error and RMSE using

triangular hydrographs; their study shows how RMSE is highly sensitive to minor phase errors, however, when a hydrograph

has a phase and amplitude error RMSE is much more sensitive to overpredictions compared to underpredictions.

The coefficient of efficiency (CE), commonly known as the Nash-Sutcliffe efficiency, is given by the following formula:435

CE = 1−
∑

(q(t)− q̂(t))2∑
(q(t)− q̄)2

(1)

where q is the observed stage, q̂ is the predicted stage, and q̄ is the mean observed stage.

The persistence index (PI) is a measure similar to CE, but instead of normalising the sum of squared error of a model based

on the observed variance, it is normalised based on the sum of squared error between the target variable and itself, lagged

by the lead time of the forecast model (referred to as the naive model). Thus, the CE and PI range from an optimum value440

of 1 to -∞, with values of 0 corresponding to models that are indistinguishable from the observed mean and naive models,

respectively. Since both models use antecedent input variables with lag times equal to the forecast length, PI is a useful

indicator for over-reliance on this input variable, which has been associated with peak stage timing error (de Vos and Rientjes,

2009). Furthermore, the PI measure overcomes some of the weaknesses of CE, such as a misleadingly high value for seasonal

watersheds. Moreover, PI is effective in identifying when models become over-reliant on autoregressive inputs, as the model445

predictions will resemble those of the naive model. PI is given by the following formula:

PI = 1−
∑

(q(t)− q̂(t))2∑
(q(t)− q(t−L))2

(2)

where L is the lead time of the forecast.

In order to quantify changes in model performance on high stage, both the CE and PI measures are calculated for typical

stage (TS) and high stage (HS) (Crochemore et al., 2015). The resampling methods are expected to improve the high stage450

CE at the expense ofCE for typical stage, while ensemble methods are expected to produce an outright improvement in model

generalisation, reflected by reduced loss in performance between the calibration and test data partitions. Thus, the objective of

this research is to find model configurations with improved performance on high stage while maintaining strong performance

overall. TS and HS performance metrics are calculated based only on the respective observed stage. For example, the CE for

high stage is calculated by:455

CEHS = 1−
∑

(qHS(t)− q̂HS(t))2∑
(qHS(t)− q̄HS)2

(3)

where qHS is given by:

qHS = q | q ≥ θHS (4)

The performance for CETS , PIHS , and PITS are calculated in the same manner, substituting qTS(t) for qHS(t) in Eq. 4

for HS calculations, and using Eq. 2 in place of Eq. 1 for PI calculations.460
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3.4.2 K-fold cross-validation

The entire available dataset is used for both training and testing by the use of KFCV, a widely used cross-validation method

(Hastie et al., 2009; Bennett et al., 2013; Solomatine and Ostfeld, 2008; Snieder et al., 2020). Ten folds are used in total; eight

folds for calibration and two for testing. Of the eight calibration folds, six are used for training while two are used for early-

stopping. When performance is reported as a single value, it refers to the mean model performance of the respective partition465

across K-folds. It is important to distinguish between the application of KFCV for evaluation (as used in this research) as

opposed to using KFCV for producing ensembles, in which an ensemble of models is trained based on a KFCV data partitioning

scheme (Duncan, 2014).

4 Results

This section provides a comparison of the performance of each of the methods described throughout Sect. 3 applied to the470

Bow and Don River watersheds, which are described in Sect. 2.1. Changes to model performance are typically discussed

relative to the individual learner (see Sect. 2.2), unless explicit comparisons are specified. First, the results of a grid-search

analysis of ensemble size is provided. Next, general overview and comparison of the results are presented, followed by detailed

comparison of the resampling and ensemble methods. Finally, the effects that varying theHS threshold and ensemble size have

on resampling and high stage performance are evaluated for the Bagging and SMOTER-Bagging models.475

Fig. 6 illustrates the change in test performance as the ensemble size increases from 2 to 100 for each river. This grid-

search is performed only for the base ensemble methods (RWB, Bagging, AdaBoost, and LSBoost) without any resampling.

The Bow River results indicates that AdaBoost and LSBoost tend to favour a small ensemble size (2-15 members), whereas

the generalisation of RWB and Bagging improves with a larger size (>20 members). The performance of LSBoost rapidly

deteriorates as the ensemble size grows, likely as the effects of overfitting become more pronounced. Similar results are480

obtained for the Don, except that RWB, Bagging, and AdaBoost all improve with larger ensemble size, while LSBoost performs

worse than all other ensembles, even for small ensemble sizes. Similar to the Bow, a larger ensemble size (>20 members)

produces favourable MSE.

Figs. 7 and 8 show the CE and PI box-whisker plots for the Bow and Don Rivers, respectively. These figures show

the performance of the test dataset, across the K-folds, for each resampling, ensemble, and hybrid technique, as well as the485

individual learner. The performance metrics are calculated for the entire dataset, the HS values, and the TS values. Models

with a larger range have more variable performance when evaluated across different subsets of the available data.

The average performance for each resampling, ensemble, and hybrid methods for the Bow and Don River models are shown

in Tables 5 and 6, respectively, which list the CE and PI for the entire dataset, as well as the TS and the HS datasets. The

ensemble results for each KFCV fold were combined using a simple arithmetic average. The results have been separated into490

different categories: each section starts with the ensemble technique (either RWB, Bagging, AdaBoost, or LSBoost), followed

by the three hybrid variations (RUS-, ROS-, or SMOTER-). The calibration (training and validation) performance is indicated

in parentheses and italics, followed by the test performance. Comparing both the calibration and test performance is useful
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Figure 6. Test MSE across ensemble size for RWB (red), Bagging (blue), AdaBoost (yellow), and LSBoost (green) for the Don (a) and

Bow River (b).

since it provides a sense of overfitting, hence, generalisation. For example, an improvement in calibration performance and

decrease in test performance suggests that the model has been overfitted. In contrast, improvements to both partitions indicates495

favourable model generalisation. The best performing model (based on testing performance) have been highlighted in bold text

for each performance metric, CE and PI , for both watersheds.

Based on the CE values in Figs. 7 - 8 and Tables 5 - 6, the majority of the Bow and Don River models achieve "acceptable"

prediction accuracy (as defined by Mosavi et al. (2018)). Values of CETS and CEHS are both lower than the CE, which

is to be expected as the stage variance of each subset is lower than that of the the set of all stage values. For the Bow River500

models, the CE and CETS values are consistently higher than the CEHS ; this is attributable to the high seasonality of the

watershed producing a misleadingly high value for CE due to the high variance of stage throughout the year, as discussed in

Sect. 3.4.1. The CEHS values also have higher variability compared to the overall CE and CETS , as shown in Fig. 7a. In

contrast, for the Don River models, the difference in CE, CETS , and CEHS is less pronounced; whereas the CE (for the

entire dataset) is typically higher, as expected, than both the CETS and CEHS , the difference between CETS and CEHS is505

low, as demonstrated in the mean and range of the box-whisker plots in Fig. 8a. Unlike the Bow River, the Don River does not

exhibit notable seasonality, resulting in smaller difference between the HS and TS.

Values of PI are typically lower than for CE for both watersheds. The Bow River models obtain PI values centred around

0 (see Fig. 7b), indicating that only some of the model configurations perform with greater accuracy than the naive model,

meaning that a timing error exists. The box-whisker plots of each ensemble method do not show a clear trend (with respect to510

the mean value or range) when comparing the PI , PITS , and PIHS : the mean and range are similar for all variants tested.

The Don River models have positive PI values of approximately 0.6, indicating a lower reliance on autoregressive input

variables, when compared to the Bow River. And in contrast to the Bow River, there is a notable difference between the PI

metrics: the PITS has a lower mean value and higher variance (see Fig. 8b) than the PI (for the entire dataset) and the PIHS .
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Figure 7. Overall (blue), typical stage (red), and high stage (yellow) CE (a) and PI (b) for the Bow River models.

These lower PITS are due to the low variability (steadiness) of the Don River TFs (see Fig. 4), and thus, the sum of squared515

error between the naive model and observed stage is also low, reducing the PI value. The low value of PITS is attributed to

the quality of the naive model, not the inaccuracy of the ANN counterpart. Note that PIHS are typically slightly higher than
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Figure 8. Overall (blue), typical stage (red), and high stage (yellow) CE (a) and PI (b) for the Don River models.

the overall PI: during high stage, there is greater variability, thus the naive model is less accurate, resulting in a higher PI

score.
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Table 5. Mean CE and PI scores for all, typical, and high stage for the Bow River ensembles; the highest scores are shown in bold and the

calibration scores are italicised and enclosed by parentheses.

Label CE CETS CEHS PI PITS PIHS

Base model (0.967) 0.954 (0.954) 0.944 (0.829) 0.617 (0.182) -0.166 (0.111) -0.0593 (0.227) -0.175

RWB (0.974) 0.962 (0.96) 0.951 (0.865) 0.718 (0.331) 0.0731 (0.229) 0.0856 (0.392) 0.128

RUS-RWB (0.972) 0.956 (0.954) 0.947 (0.863) 0.68 (0.286) -0.0505 (0.116) -0.013 (0.384) 0.015

ROS-RWB (0.973) 0.957 (0.955) 0.947 (0.87) 0.681 (0.312) -0.0266 (0.125) 0.00468 (0.418) 0.0454

SMOTER-RWB (0.974) 0.963 (0.957) 0.948 (0.871) 0.72 (0.329) 0.0524 (0.176) 0.0168 (0.417) 0.139

Bagging (0.973) 0.961 (0.96) 0.952 (0.86) 0.709 (0.32) 0.0503 (0.234) 0.0886 (0.372) 0.0887

RUS-Bagging (0.972) 0.961 (0.955) 0.945 (0.867) 0.715 (0.298) 0.00346 (0.119) -0.0403 (0.399) 0.116

ROS-Bagging (0.973) 0.959 (0.954) 0.943 (0.873) 0.696 (0.312) -0.0374 (0.111) -0.0851 (0.425) 0.0896

SMOTER-Bagging (0.974) 0.962 (0.957) 0.948 (0.873) 0.719 (0.333) 0.0511 (0.17) 0.018 (0.427) 0.144

AdaBoost (0.974) 0.963 (0.96) 0.95 (0.865) 0.719 (0.327) 0.0465 (0.22) 0.0488 (0.389) 0.112

RUS-AdaBoost (0.972) 0.959 (0.954) 0.942 (0.865) 0.693 (0.288) -0.0642 (0.107) -0.105 (0.39) 0.0509

ROS-AdaBoost (0.972) 0.956 (0.951) 0.942 (0.872) 0.673 (0.291) -0.114 (0.052) -0.109 (0.424) -0.0307

SMOTER-AdaBoost (0.974) 0.962 (0.957) 0.947 (0.872) 0.714 (0.331) 0.0259 (0.166) -0.00642 (0.425) 0.121

LSBoost (0.974) 0.948 (0.958) 0.907 (0.869) 0.666 (0.328) -0.504 (0.189) -0.786 (0.403) -0.104

RUS-LSBoost (0.97) 0.904 (0.952) 0.944 (0.854) 0.364 (0.246) -0.718 (0.0643) -0.0609 (0.35) -0.824

ROS-LSBoost (0.973) 0.929 (0.952) 0.944 (0.875) 0.517 (0.304) -0.425 (0.0638) -0.0757 (0.435) -0.431

SMOTER-LSBoost (0.973) 0.958 (0.954) 0.946 (0.868) 0.684 (0.3) -0.0522 (0.117) -0.0255 (0.401) 0.00239

4.1 Comparison of resampling and ensemble methods520

This section provide a detailed comparison of performance across the different resampling and ensemble methods. As expected,

all three resampling methods (RUS, ROS,and SMOTER) typically increase HS performance, often at the expense of TS

performance. Based on results shown in Table 5, the SMOTER- variations provide the highest performance for HS for the

Bow River. SMOTER-RWB CEHS is 0.72, an increase from 0.617 of the individual learner, whereas the SMOTER-Bagging

PIHS is 0.144, compared to -0.175 for the individual learner. These indicators suggest that the HS prediction accuracy has525

improved slightly using these SMOTER variations. The results shown in Table 6 for the Don River indicate that the best

improvements for HS prediction accuracy is provided by the RUS-Bagging method: the CEHS is 0.585 (an increase from

0.511 of the individual learner), and the PIHS is 0.668 (an increase from 0.61 of the individual learner). While both these

metrics show an improvement in HS prediction accuracy for the Don River, the improvements are relatively small compared

to the performance improvement for the Bow River. ROS often exhibits poorer performance than SMOTER and RUS. Previous530

research has noted the tendency for ROS-based models to overfit, due to the high number of duplicate samples (Yap et al.,

2014). RUS, despite using considerable less training data for each individual learner, is not as prone to overfitting as ROS.
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Table 6. Mean CE and PI scores for all, typical, and high stage for the Don River ensembles; the highest scores are shown in bold and the

calibration scores are italicised and enclosed by parentheses

Label CE CETS CEHS PI PITS PIHS

Base model (0.86) 0.781 (0.782) 0.664 (0.677) 0.511 (0.716) 0.592 (0.0197) -0.213 (0.74) 0.61

RWB (0.873) 0.806 (0.814) 0.755 (0.705) 0.572 (0.744) 0.641 (0.165) 0.0944 (0.763) 0.654

RUS-RWB (0.853) 0.792 (0.638) 0.588 (0.685) 0.555 (0.704) 0.615 (-0.585) -0.63 (0.746) 0.645

ROS-RWB (0.864) 0.799 (0.629) 0.488 (0.715) 0.584 (0.726) 0.624 (-0.632) -0.991 (0.771) 0.665

SMOTER-RWB (0.866) 0.795 (0.642) 0.552 (0.715) 0.57 (0.729) 0.618 (-0.573) -0.749 (0.771) 0.656

Bagging (0.869) 0.808 (0.811) 0.757 (0.696) 0.581 (0.736) 0.65 (0.154) 0.0875 (0.755) 0.663

RUS-Bagging (0.864) 0.805 (0.676) 0.609 (0.706) 0.585 (0.726) 0.638 (-0.433) -0.502 (0.764) 0.668

ROS-Bagging (0.858) 0.795 (0.553) 0.271 (0.716) 0.584 (0.712) 0.618 (-1.14) -1.41 (0.771) 0.665

SMOTER-Bagging (0.865) 0.798 (0.604) 0.526 (0.718) 0.581 (0.729) 0.623 (-0.705) -0.888 (0.774) 0.662

AdaBoost (0.87) 0.803 (0.807) 0.744 (0.698) 0.567 (0.737) 0.637 (0.136) 0.0393 (0.758) 0.651

RUS-AdaBoost (0.857) 0.787 (0.658) 0.53 (0.694) 0.553 (0.712) 0.613 (-0.51) -0.888 (0.754) 0.646

ROS-AdaBoost (0.864) 0.793 (0.604) 0.516 (0.718) 0.575 (0.726) 0.616 (-0.725) -1.07 (0.773) 0.658

SMOTER-AdaBoost (0.867) 0.801 (0.667) 0.578 (0.715) 0.584 (0.732) 0.629 (-0.46) -0.743 (0.771) 0.665

LSBoost (0.869) 0.746 (0.813) 0.741 (0.696) 0.446 (0.736) 0.555 (0.169) 0.0719 (0.755) 0.567

RUS-LSBoost (0.835) 0.715 (0.744) 0.685 (0.625) 0.419 (0.67) 0.513 (-0.128) -0.207 (0.697) 0.548

ROS-LSBoost (0.871) 0.759 (0.761) 0.716 (0.708) 0.472 (0.738) 0.561 (-0.0738) -0.0931 (0.766) 0.579

SMOTER-LSBoost (0.871) 0.787 (0.775) 0.695 (0.707) 0.537 (0.74) 0.599 (0.00723) -0.0914 (0.765) 0.62

The RUS-Bagging models consistently outperform the RUS-RWB models; this may be due to the repeated resampling, thus

RUS-Bagging uses much more of the original training samples, while RUS-RWB only uses 20% of the original data.

Figures 9 and 10 show absolute changes in CE and PI relative to the individual learner for the Bow and Don Rivers,535

respectively, for the entire dataset, the TS and the HS. Performance is colourised in a 2D matrix to facilitate comparisons in

performance between each resampling methods across ensemble types and vice versa. From these figures, it is apparent that

SMOTER generally produces the largest improvements in HS performance, for both CE and PI , and for both watersheds.

The SMOTER methods are also generally the least detrimental to TS performance for both watersheds, as compared to ROS

and RUS. Notably, SMOTER is the only resampling method whose performance does not decrease when used in combination540

with LSBoost. However, the change in performance due to SMOTER is marginal compared to the models without resampling.

For the Bow River, the largest improvements between the best models with no resampling and the best models with resampling

for CEHS and PIHS are 0.001 and 0.016, respectively. For the Don River, the same improvements are 0.004 and 0.005,

respectively. The remaining resampling methods (RUS and ROS) also generally tend to improve HS performance across

the ensemble techniques; however this improvement is not consistent, as is the case with SMOTER, and the decrease is TS545
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Figure 9. Change in (absolute) performance of CE (a), CETS (b), CEHS (c), PI (d), PITS (e), PIHS (f) produced by combinations of

resampling (listed along the x-axis) and ensemble (listed along the y-axis) methods for the Bow River models.
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performance is also higher. Thus, while SMOTER provides consistent improvements over the non-resampling methods for CE

and PI (entire, TS, and HS), RUS and ROS only provide minor improvements to HS performance.

When looking at the resampling methods, the RWB ensembles exhibit competitive performance compared to the other

ensemble methods, despite their lower diversity. These ensembles represent a considerable improvement over the individual

learner and often achieve higher performance compared to the other, more complex ensemble methods, as shown in Tables 5550

and 6. This suggests that using RWB is useful for improving CE and PI performance (for entire, TS, and HS) as compared

to the single, individual learner. For the Bow River, the RWB ensembles improve the PI for each case (PI, PITS , and PIHS),

whereas only improving CEHS . For the Don River models, a notable increase in performance is seen for both CE and PI

(entire and HS datasets); however, when combined with the resampling techniques (RUS, ROS, and SMOTER), the TS

performance metrics exhibit poorer performance.555

The Bagging ensembles also perform well, typically outperforming the RWB counterparts, and following the same trends

described above. This is likely due to their repeated resampling, which achieves greater ensemble diversity compared to the

RWB models, for which resampling only occurs once. This result is consistent with a previous comparison of Bagging and

boosting (Shu and Burn, 2004). Like RWB and Bagging, AdaBoost improves model performance compared to the individual

learner, but is typically slightly poorer compared to RWB and Bagging, and has higher variability in terms of improvement to560

model performance across all model types and both watersheds. The RWB, Bagging, and Adaboost models consistently im-

prove TS and HS performance compared to the individual learner regardless of whether they are combined with a resampling

strategy.

The LSBoost models have the poorestHS performance out of all the ensemble methods studied. This is consistent across all

resampling methods and both watersheds. In contrast, the change in performance for CETS and PITS is less detrimental when565

using LSBoost, suggesting that this method is not well-suited to improve HS performance. The LSBoost models are slightly

overfitted, despite utilising the stop-training for calibrating the ANN ensemble members. This is indicated by the degradation

in performance between the calibration and test dataset, a change which is larger than that seen in the other ensemble models.

This is most noticeable for the RUS-LSBoost models for both the Bow and the Don Rivers, which are more prone to overfitting

compared to other models, due to the smaller number of training samples. The CE decreases from 0.97 to 0.902 for the570

Bow and 0.835 to 0.715 for the Don River; none of the other models that use RUS exhibit such a gap between train and test

performance.

The overfitting produced by the boosting methods is consistent with previous research, which finds that boosting is some-

times prone to overfitting on real-world datasets (Vezhnevets and Barinova, 2007). One reason that the improvements made by

the boosting methods (AdaBoost and LSBoost) are not more substantial may be due to the use of ANNs as individual learners.575

ANNs typically have more degrees of freedom compared to the decision trees that are most commonly used as individual learn-

ers; thus, the additional complexity offered by boosting does little to improve model predictions. Additionally, the boosting

methods further increase the effective degrees of freedom of the predictions. Nevertheless, these methods still tend to improve

performance over that of the individual learner. Ensembles of less complex models such as regression trees are expected to

produce relatively larger improvements when relative to the single model predictions.580
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Figure 11.MSE ratio between Bagging and SMOTER-Bagging models for the Bow River calibration (a), Bow test (c), Don River calibration

(b), and Don test (d) partitions across high stage threshold values ranging from the 50th to 90th percentile stage values.

As discussed in Sect. 2.1, a fixed threshold is used to distinguish between high and typical stage values, which was set

to 80% for the results presented above. Fig. 11 shows the effects of the fixed threshold increasing from the 50th to 90th

percentile of the stage distribution. These plots show the relative effects of SMOTER-Bagging compared to simple Bagging;

these configurations were selected for this comparison since they both exhibited relatively good, consistent performance. A

performance ratio greater than 1 indicates that the SMOTER-Bagging model has greater error compared to the Bagging model,585

1 indicates that they have the same performance, and less than 1, improved performance. Error is presented for all stage values

as well as the TS and HS subsets. The calibration plots illustrate an asymmetric trade-off between HS and TS error. For

a given θHS value, the error ratio of the TS subset increases more than than the decline in HS error. More importantly, the

improvements in HS performance obtained in calibration are considerably less pronounced in the test dataset, despite a loss

in TS performance.590
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Figure 12. Test MSE ratio between Bagging and SMOTER-Bagging models for the Bow (a) and the Don (b) Rivers across ensemble size.

Fig. 12 illustrates the effects of varying the ensemble size, thus, number of resampling repetitions, for the SMOTER-Bagging

model, relative to the simple Bagging model. The plot shows the relative improvement in HS produced by the SMOTER

resampling as the ensemble size increases, reaching a steady value at an ensemble size of approximately 70 for both the Don

and Bow systems. This is larger than that required for the simple Bagging model to reach steady performance, shown in Fig. 6,

indicating that SMOTER requires more resampling than regular resampling with replacement (default in Bagging) in order to595

reach stable performance. Consistent with observations made from Fig. 11, an asymmetric trade-off between typical and high

stage performance is noted, illustrated by disproportionate increase in error on typical stage, relative to the improvement on

high stage.

4.2 Limitations and Future work

A limitation of this study is the lack of a systematic case-by-case hyperparameter optimisation of the models. The individual600

learner parameters (e.g. topology, activation function, etc.) were constant across all ensemble members. Likewise, the ensemble

hyperparameters were not optimised, but simply tuned using an ad-hoc approach. A systematic approach to hyperparameter

optimisation for each model will likely yield improved model performance. However, hyperparameter optimisation on such

a scale would be very computationally expensive. Similarly, the selection of the HS threshold may affect CEHS and PIHS

performance, and the sensitivity of model performance of this threshold should be explored. This research featured resampling605

and ensemble methods for improving prediction accuracy across an imbalanced target dataset, i.e., the high stage. Further

to imbalanced target data, flood forecasting applications commonly have imbalanced cost; for example, underprediction is

typically more costly than overprediction. The use of cost-functions, such as asymmetric weighting applied to underpredictions

and overpredictions, for flood forecasting has been shown to reduce underprediction of flooding (Toth, 2016). Many cost-

sensitive ensemble techniques (e.g., Galar et al. (2012)) have yet to be explored in the context of flood forecasting models and610

should be the focus of future work.
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5 Conclusion

This research presented the first systematic comparison of the effects of combined resampling and ensemble techniques for

improving the accuracy of flow forecasting models, specifically for high stage (infrequent) observations. Methods were applied

to two Canadian watersheds, the Bow River in Alberta, and the Don River, in Ontario. This research attempts to address the615

widespread problem of poor performance on high stage when using data-driven approaches such as ANNs. Improving per-

formance on high stage is essential for model applications such as early flood warning systems. Three resampling and four

ensemble techniques are implemented as part of ANN flow forecasting models, for both watersheds. These methods are as-

sessed independently and systematically combined in hybrid approaches, as to assess their efficacy for improving high stage

performance. A major contribution of this paper is the comprehensive evaluation of these hybrid methods, most of which are620

the first instances in the water resources field. While methodologies for these combination methods is available in existing

machine learning literature, our proposed implementation of SMOTER-AdaBoost is a novel improvement. Results demon-

strate that resampling methods, when embedded in ensemble algorithms, generally only produces a small improvement in high

stage performance, based on CE and PI; the SMOTER variation provided the most consistent improvements. An asymmet-

ric trade-off between typical and high stage performance is observed, in which improved high stage performance produced625

disproportionately worse typical flow performance. Such a trade-off should be carefully considered while implementing these

methods. Further research on this topic may explore the combination of cost-sensitive approaches with ensemble methods,

which would allow for more aggressive penalisation of poor accuracy on high stage.
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Appendix A: Input variable selection results

Table A1. List of 25 most useful inputs identified using the PC IVS algorithm for the Bow and Don River watersheds, selected form the

set of candidate inputs. Input variables are encoded in the following format "station ID"_"variable"_"statistic"_"lagged timesteps". Variable

abbreviations "WL" and "Precip" refer to water level (stage) and precipitation.

rank Bow Don

1 05BH004 WL Mean L4 HY022 WL Mean L4

2 05BB001 WL Max L4 HY008 Precip Sum L4

3 05BB001 WL Min L12 HY019 WL Mean L4

4 05BH004 WL Mean L5 HY008 Precip Sum L5

5 Calgary Temp Max L4 HY027 Precip Sum L4

6 05BB001 WL Max L6 HY017 WL Mean L4

7 05BH004 WL Mean L15 HY022 WL Mean L5

8 Calgary Precip Sum L5 HY008 Precip Sum L8

9 Calgary Temp Min L10 HY027 Precip Sum L6

10 Calgary Precip Sum L11 HY017 WL Mean L5

11 05BH004 WL Max L4 HY027 Precip Sum L5

12 05BH004 WL Min L4 HY008 Precip Sum L10

13 05BH004 WL Max L7 HY019 WL Mean L7

14 Calgary Precip Sum L7 HY080 WL Mean L4

15 05BB001 WL Min L15 HY008 Precip Sum L11

16 05BH004 WL Min L8 HY008 Precip Sum L6

17 Calgary Precip Sum L10 HY080 WL Mean L6

18 05BH004 WL Max L12 HY027 Precip Sum L7

19 Calgary Precip Sum L6 HY022 WL Mean L6

20 05BB001 WL Max L5 HY027 Precip Sum L8

21 Calgary Temp Min L15 HY022 WL Mean L7

22 05BH004 WL Min L6 HY080 WL Mean L5

23 05BH004 WL Mean L6 HY017 WL Mean L6

24 05BH004 WL Max L5 HY080 WL Mean L7

25 05BB001 WL Min L9 HY019 WL Mean L6
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Appendix B: Pseudocode630

Algorithm 1 Random undersampling

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

High stage threshold, θ

STS = S where Y < φTS

SHS = S where Y ≥ φHS

S′TS ← sample(STS ,NHS)

S′HS ← sample(SHS ,NHS)

S′ = S′TS

⋃
S′HS

Algorithm 2 Random oversampling

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

High stage threshold, θ

STS = S where Y < φTS

SHS = S where Y ≥ φHS

S′TS ← sample(STS ,NTS)

S′HS ← sample(SHS ,NTS)

S′ = S′TS

⋃
S′HS

32

Author
Highlight



Algorithm 3 SMOTER

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

High stage threshold, θHS

Ensure:

φHS/(1−φHS) ε Z

Nsynth← φHS/(1−φHS)− 1

STS = S where Y < φTS

SHS = S where Y ≥ φHS

for siεSHS do

nni = kNN(S,k)

for j = 1,2, ...Nsynth do

sj = nni(randi(1,k)) {randomly select one nearest neighbour}

sdiff ,= si− sj
gap= rand(0,1) {randomly select a point between sample and nearest neighbour}

ssynth,i,j = si + sdiff × gap

end for

end for

S′ = S
⋃
Ssynth {merge original and synthetic data}

Algorithm 4 Bagging with resampling

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

Learner, f()

Number of iterations, T

Resampling function, resample()

for t= 1,2, ...T do

S′t,D
′
t← resample(St,Dt)

train f(S′t,D
′
t) {train learner using resampled examples}

end for
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Algorithm 5 AdaBoost.RT with resampling

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

Learner, f()

Number of iterations, T

Resampling function, resample()

Relative error threshold φ

D1(i)← 1
m

for i= 1, ...,m {initialise weights array}

for t= 1,2, ...T do

S′,D′t← resample(S,Dt)

train ft(S
′
t,D

′
t) {train learner using resampled examples and weights}

εt =
∑
Dt(i), i= | (ft(xi)−yi)

yi
|> φ {calculate error rate}

βt = ε2t

Dt+1(i) = Dt(i)
Zt
×

βt, if | (ft(xi)−yi)
yi

| ≤ φ

1, otherwise.
{update weights for next boosting iteration}

Dt+1 = normalise(Dt)

end for

Algorithm 6 LSBoost with resampling

Require:

Set S containing X input features and Y observations, (x1,y1), ...,(xm,ym)

Learner, f()

Number of iterations, T

Resampling function, resample()

Learning rate ν{0< ν ≤ 1

Ŷ0 = Ȳ

for t= 1,2, ...T do

Rt = Y − Ŷt−1

S′← resample(S) {resample input features and residuals}

R′t = Y ′− Ŷ0 +
∑T

t=1 ρtft(X
′) {calculate the residuals corresponding the resampled data}

train ft(X
′,R′t) {train learner to latest residuals}

ρt = argmin
∑

[R̂t− ρRt]
2

Ŷt = Ŷt−1 + νρtft(X)

end for
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Banjac, G., Vašak, M., and Baotić, M.: Adaptable urban water demand prediction system, Water Sup-665

ply, 15, 958–964, https://doi.org/10.2166/ws.2015.048, https://iwaponline.com/ws/article/15/5/958/27516/

Adaptable-urban-water-demand-prediction-system, 2015.

Barzegar, R., Ghasri, M., Qi, Z., Quilty, J., and Adamowski, J.: Using bootstrap ELM and LSSVM models to estimate

river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada, Journal of Hydrology, 577, 123 903,

https://doi.org/10.1016/j.jhydrol.2019.06.075, https://linkinghub.elsevier.com/retrieve/pii/S0022169419306237, 2019.670

Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T., Norton,

J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., and Andreassian, V.: Characterising performance of

environmental models, Environmental Modelling and Software, 40, 1–20, https://doi.org/10.1016/j.envsoft.2012.09.011, http://dx.doi.org/

10.1016/j.envsoft.2012.09.011, 2013.
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