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We thank this anonymous referee for the comments. We have addressed the comments point-by-point in 

the revision. In the text below, comments are repeated verbatim and the corresponding responses are in 

blue. Also, we have made necessary improvements to the manuscript. 

 

Reviewer comments: 

 

1. Authors have modified the manuscript with most of my comments. Although my request to 

demonstrate the estimation of model parameters is still pending. This can be easily done in an 

appendix or supplementary material. Instead, Authors have elaborated on the steps involved in 

parameter estimation which was very much required.  

 

Reply: We thank the reviewer for the comments. It is noted that the estimation of model parameters is 

described in Section 3.1. In our model, the calculation of likelihood is straightforward based on the 

equations described in Section 3.1, and parameter estimation can be easily achieved using any classical 

MCMC methods. This is really not an issue compared with the development of the two-stage blending 

approach. Because we want to fully express the proposed two-stage blending approach in the Section 

3 Methodology part, we didn’t separately extract the material of parameter estimation in an appendix 

or supplementary material in the manuscript. 

 

2. Since Authors have now made it clear that the precipitation estimate follows a gamma distribution 

(Eq 1 in the revised manuscript), isn't it important then to describe how the same (gamma) can be 

used in BMA without converting it to a normal distribution? Don't we need a Box-cox or log-sinh 

transformation to transform the data before applying BMS? Please clarify. 

 

Reply: The BMA method used in this study is referred from Ma et al (2018)-JGR, where the training 

data are preprocessed using the Box-Cox transformation prior the BMA approach to ensure its Gaussian 

distribution in the merging process. Here, the purpose is to compare the proposed two-stage blending 

method with the existing BMA method, but not to revise the existing BMA method. It is interesting to 

examine the performance of the same (gamma) distribution in BMA without converting it to a normal 

distribution. However, it is out of the scope in this study. We have added this perspective in Section 

4.4. In terms of whether we need a Box-cox or log-sinh transformation to transform the data before 

applying BMA, this depends on whether the proposed distribution can fit the data or not. Usually, a 

Gaussian distribution is suitable for the data after making Box-cox or log-sinh transformation, because 

the skewness of the data is reduced. However, an asymmetric distribution may not be suitable for the 

data after making Box-cox or log-sinh transformation. Here, because the gamma distribution shows a 

satisfying PP plots for the training data in this study, it is not necessary to perform a Box-Cox or log-

sinh transformation to reduce the skewness of the data before applying BMA.  

 

Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z., and Liu, R.: 

Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian 

model averaging scheme over the Tibetan Plateau, J. Geophys. Res.-Atmos., 123, 814–834, 2018. 
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Abstract. Substantial biases exist in the satellite precipitation estimates (SPE) over complex terrain regions and it has always 15 

been a challenge to quantify and correct such biases. The combination of multiple SPE and rain gauge observations would be 

beneficial to improve the gridded precipitation estimates. In this study, a two-stage blending (TSB) approach is proposed, 

which firstly reduces the systematic errors of original SPE based on a Bayesian correction model, and then merges the bias-

corrected SPE with a Bayesian weighting model. In the first stage, the gauge-based observations are assumed as a generalized 

regression function of SPE and terrain feature. In the second stage, the relative weights of bias-corrected SPE are calculated 20 

based on the associated performances with ground references. The proposed TSB method has the ability to exert benefits from 

the bias-corrected SPE in terms of higher performance, and mitigate negative impacts from the ones with lower quality. In 

addition, Bayesian analysis is applied in the two phases by specifying the prior distributions on model parameters, which 

enables to produce the posterior ensembles associated with their predictive uncertainties. The performance of the proposed 

TSB method is evaluated with independent validation data in the warm season of 2010-2014 in the northeastern Tibetan 25 

Plateau. Results show that the blended SPE is greatly improved compared to the original SPE, even in the heavy rainfall event. 

This study can be expanded as a data fusion framework in the development of high-quality precipitation products in any regions 

of interest. 

1 Introduction 

High-quality precipitation data is fundamental to understand the regional and global hydrological processes. However, it is 30 

still difficult to acquire accurate precipitation information in the mountainous regions, e.g., Tibetan Plateau (TP), due to limited 



2 

 

ground sensors (Ma et al., 2015). The satellite sensors can provide precipitation estimates at a large scale (Hou et al., 2014), 

but performances of available satellite products vary among different retrieval methods and climate areas (Yong et al., 2015; 

Prat and Nelson, 2015; Ma et al., 2016). Thus, it is suggested to incorporate precipitation estimates from multiple sources into 

a fusion procedure with a full consideration of the strength of individual members and associated uncertainty. 35 

 

Precipitation data fusion was initially reported by merging radar-gauge rainfall in the mid-1980s (Krajewski, 1987). The Global 

Precipitation Climatology Project (GPCP) was an earlier attempt for satellite-gauge data fusion, which adopted a mean bias 

correction method and an inverse-error-variance weighting approach to develop a monthly, 0.25° global precipitation dataset 

(Huffman et al., 1997). Another popular dataset, the Climate Prediction Center Merged Analysis of Precipitation (CMAP), 40 

included global monthly precipitation with a 2.5° x 2.5° spatial resolution for a 17-year period by merging gauges, satellites 

and reanalysis data using the maximum likelihood estimation method (Xie and Arkin, 1997). Since then, several blending 

approaches have been developed to generate gridded rainfall product with higher quality by merging gauge, radar and satellite 

observations (e.g., Li et al., 2015; Beck et al., 2017; Xie and Xiong, 2011; Yang et al., 2017; Baez-Villanueva et al., 2020). 

Overall, those fusion methods follow a general concept by eliminating biases in satellite/radar-based data and then merging 45 

the bias-corrected satellite/radar estimates with point-wise gauge observations. However, these efforts might be insufficient 

for quantifying the predicted data uncertainty. Some blended estimates are also partially polluted by the poorly performed 

individuals (Tang et al., 2018).  

 

This paper develops a new data fusion method that enhances the quantitative modelling of individual error structures, prevents 50 

potential negative impacts from lower-quality members, and enables an explicit description of model’s predictive uncertainty. 

In addition, a Bayesian concept for accurate rainfall estimation is proposed based on these assumptions. The Bayesian analysis 

has the advantage of a statistically post-processing idea that could yield a predictive distribution with quantitative uncertainty 

(Renard, 2011; Shrestha et al., 2015). For example, a Bayesian kriging approach, which assumes a Gaussian process of 

precipitation at any location and considers the elevation a covariate, is developed for merging monthly satellite and gauge 55 

precipitation data (Verdin et al., 2015). A dynamic Bayesian model averaging (BMA) method, which shows better skill scores 

than the existing One-outlier removed (OOR) method, is applied for satellite precipitation data fusion across the TP (Ma et al., 

2018; Shen et al., 2014). Given the challenges of quantifying precipitation biases in regions with complex terrain (Derin et al., 

2019), continuous efforts are required to exert the potential merit of Bayesian analysis on this critical issue. 

 60 



3 

 

In this study, a two-stage blending (TSB) approach is proposed for merging multiple satellite precipitation estimates (SPE) 

and ground observations. The experiment is performed in the warm season (from May to September) during 2010-2014 in the 

northeastern TP (NETP), where a relatively denser network of rain gauges is available compared to other regions of TP. The 

TSB method is expected to help with the exploration of multi-source/scale precipitation data fusion in regions with complex 

terrain.  65 

 

The remainder of this paper is organized below: Section 2 describes the experiment including the study region and precipitation 

data. Section 3 details the methodology, including the TSB approach, and two existing fusion methods (i.e., BMA and OOR). 

Results and discussions are presented in Sections 4 and 5, respectively. The primary findings are summarized in Section 6. 

2 Study area and data 70 

The study domain is located in the upper Yellow River basin of NETP (Fig. 1). As shown in the 90-m digital elevation data, 

the altitude ranges from 785 m in the northeast to 6252 m in the southeast. The total annual precipitation is around 500 mm 

and the annual mean temperature is 0.7°C (Cuo et al., 2013). To avoid snowfall contamination on the gauge observation in the 

cold season, satellite and ground precipitation data from the warm season (May to September) of 2010 to 2014 are collected 

for the case study. 75 

 

Four mainstream SPE are used, including Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks - Climate Data Records (PERCDR) (Ashouri et al., 2015), Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA) 3B42 version 7 (3B42V7) (Huffman et al., 2007), National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Centre (CPC)   Morphing Technique Global Precipitation Analyses Version 1 80 

(CMORPH) (Xie et al., 2017), and the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) 

mission V06 Level 3 final run product (IMERG) (Huffman et al., 2018). The basic information of SPE is shown in Table 1. 

The IMERG has a 0.10° x 0.10° resolution, and other SPE have a spatial resolution of 0.25° x 0.25°. To eliminate the scale 

difference in the fusion process, the IMERG is resampled from 0.10° to 0.25° using the nearest neighbour interpolation method 

in advance.  85 

 

The China Gauge-based Daily Precipitation Analysis (CGDPA) is used as the ground precipitation sources. It is developed 

based on a rain gauge network of 2400 gauge stations inover Mainland China using a climatology-based optimal interpolation 

and topographic correction algorithms (Shen and Xiong, 2014). The 34 grid cells with the gauge sites in the regions of interest 
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are assumed as ground references (GR), and all of the grid cells are independent from the Global Precipitation Climatology 90 

Center (GPCC) stations, which are used for bias correction of the TRMM/GPM-era data (e.g., 3B42V7 and IMERG), and 

CMORPH (Huffman et al., 2007; Hou et al., 2014; Xie et al., 2017).  

3 Methodology 

3.1 TSB  

The diagram of the TSB method is shown in Figure 2. Stage 1 is designed to reduce the bias of the original SPE based on the 95 

GR at the training sites with a Bayesian correction (BC) procedure. In Stage 2, a Bayesian weighting (WS) model is used to 

merge the bias-corrected SPE. 

 

3.1.1 Bias correction 

(a) Model structure 100 

Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at the GR cell s and the tth day. The original SPE and bias-corrected SPE of 

PERCDR, 3B42V7, CMORPH and IMERG at the GR cell s and the tth day are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡) and 

(𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡)), respectively. For simplification purpose and without losing generality, these data at a particular 

GR cell and day will be denoted by 𝑅, (𝑌1, 𝑌2, 𝑌3, 𝑌4), and (𝑌1
′, 𝑌2

′, 𝑌3
′, 𝑌4

′). While for all GR cells and days, they will be denoted 

in bold R, (𝒀𝟏, 𝒀𝟐, 𝒀𝟑, 𝒀𝟒), and (𝒀𝟏
′ , 𝒀𝟐

′ , 𝒀𝟑
′ ,𝒀𝟒

′ ).  105 

 

In Stage 1, we perform a conditional modelling of GR on each SPE, i.e., the probabilistic distribution 𝑓(𝑅) to improve the 

accuracy of the original SPE. Given that an appropriate assumption of 𝑓(𝑅) is necessary, the goodness-of-fit of the Lognormal, 

Gaussian, and Gamma distribution for the GR is examined graphically by using a probability-probability (PP) plot at the 

training sets (Fig. 3). It is found that the usage of a Gamma distribution is more reliable as the associated PP plot is closer to 110 

the diagonal line than the others. For each satellite product, the Gamma distribution is parameterized as follows: 

𝑅~𝐺𝑎𝑚𝑚𝑎 (𝛼𝑖 ,
𝛼𝑖

𝜇𝑖
)                                                                               (1) 

where 𝑖 is the number of satellite product. 𝛼𝑖, 𝜇𝑖 and 
𝛼𝑖

𝜇𝑖
 are the shape, mean and rate parameters of the Gamma distribution, 

respectively. Let the ith SPE 𝑌𝑖 and the associated terrain feature Z be covariates related to the GR, the mean 𝜇𝑖 in Eq. (1) can 

be described with generalized linear regression of covariates 𝑌𝑖 and Z, which is written as follows: 115 
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log (𝜇𝑖) = δ𝑖 + β𝑖 ∗ log (𝑌𝑖) + γ𝑖 ∗ 𝑍                                                         (2) 

where 𝑍, ranging from 0 to 1, is the normalized elevation feature of each site. 𝛉𝒊 = {α𝑖 , δ𝑖, β𝑖 , γ𝑖} (𝑖 = 1, … , 4) is summarized 

as a parameter set and will be estimated in Bayesian framework. In the following, 𝒁 will be denoted as the collection of the 

normalized elevation feature for all training data. 

 120 

According to the Bayes’ theorem, the posterior probability density function (PDF) of parameter set 𝛉𝒊 is expressed as: 

𝑓(𝛉𝒊|𝐑, 𝒀𝒊, 𝒁) ∝ 𝑓(𝑹|𝛉𝒊, 𝒀𝒊, 𝒁)𝑓(𝛉𝒊)                                                           (3) 

where 𝑓(𝛉𝒊) is the prior distribution and implies parameter information other than GR and SPE data, and 𝑓(𝑹|𝛉𝒊, 𝒀𝒊, 𝒁) is the 

likelihood function that defines the conditional probability of GR on the SPE and elevation. The priors of 𝑓(𝛉𝒊) are initialized 

as Cauchy distribution with 𝛼𝑖 in terms of its location at zero and scale as σ𝛼𝑖
in Eq. (4), and Gaussian distribution with δ𝑖, β𝑖 , γ𝑖  125 

in terms of its mean at zero and standard deviation (SD) at σδ𝑖
 σβ𝑖

 σγ𝑖
 in Eqs. (5) - (7), respectively. 

𝛼𝑖~𝐶𝑎𝑢𝑐ℎ𝑦(0, σ𝛼𝑖
)                  (4) 

δ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σδ𝑖
)                                                                 (5) 

β𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σβ𝑖
)                                                                 (6) 

γ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σγ𝑖
)                                                                 (7) 130 

Given that the assumption of the weakly informative priors ensures the Bayesian inference in an appropriate range (Ma et al., 

2020b), the hyper-priors of σ𝛼𝑖
, σδ𝑖

, σβ𝑖
, σγ𝑖

 are specified as 2, 10, 10, 10, respectively.  

 

(b) Parameter estimation 

The estimation of the posterior distribution 𝑓(𝛉𝒊|𝐑, 𝒀𝒊, 𝒁) in Eq. (3) becomes difficult as its dimension grows with the number 135 

of parameters (Renard, 2011; Ma and Chandrasekar, 2020). Robertson et al. (2013) obtained the maximum a posteriori (MAP) 

solution for the model parameters using a stepwise method. Here, the Markov Chain Monte Carlo (MCMC) technique with its 

sampling algorithm as the No-U-Turn Sampler (NUTS) variant of Hamiltonian Monte Carlo in the Stan program is performed 

to address this issue (Gelman et al., 2013). The sampling records of model parameters are obtained based on the training data 

in the warm season of 2014 in the NETP. Since we only have four parameters in this model, the MCMC converges very 140 
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quickly. Thus, we run a chain of length 2000, removing the first 1000 iterations as the warm-up period and retaining the second 

1000 iterations. The parameter samples of these 1000 iterations are the samples of the posterior distribution 𝑓(𝛉𝒊|𝐑, 𝒀𝒊, 𝒁). 

 

(c) Bayesian inference 

Based on the posterior distribution of parameter set 𝛉𝒊 of each SPE, calculating the bias-corrected SPE 𝑅∗ at new site is of 145 

interest. It can be quantitatively simulated from its posterior distribution in Eq. (8) using the associated SPE 𝑌𝑖
∗, normalized 

elevation 𝑍𝑖
∗ and training data 𝑹, 𝒀𝒊, Z: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁) = ∫ 𝑓(𝑅∗, 𝛉𝒊|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝒊, 𝒁) 𝑑𝛉𝒊                                           (8)  

Following the rule of joint probabilistic distributions, the right term inside the integral of Eq. (8) can be written as: 

𝑓(𝑅∗, 𝛉𝒊|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝒊, 𝒁) = 𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁, 𝛉𝒊)𝑓(𝛉𝒊|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁)                              (9) 150 

Given that the new bias-corrected SPE 𝑅∗ is independent to the training data, the first term of the right side in Eq. (9) is 

transformed as: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁, 𝛉𝒊) = 𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝛉𝒊)                                                     (10) 

Since the parameters 𝛉𝒊 are only dependent upon the training data 𝑹, 𝒀𝒊, 𝒁, the second term of the right side in Eq. (9) is 

expressed as: 155 

𝑓(𝛉𝒊|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁) = 𝑓(𝛉𝒊|𝑹, 𝒀𝒊, 𝒁)                                                                    (11) 

Therefore, the predictive PDF of 𝑅∗ in Eq. (8) is written below: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁) = ∫ 𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝛉𝒊)𝑓(𝛉𝒊|𝑹, 𝒀𝒊, 𝒁) 𝑑𝛉𝒊                                                  (12) 

 

Since there is no general way to calculate the associated integral in Eq. (12), the prediction is performed using the MCMC 160 

iterated samplings (Renard, 2011). As for each SPE, a numerical algorithm is suggested below, where 𝑛𝑠𝑖𝑚 stands for the 

replicate of the post-convergence MCMC samples and is set as 1000 in the case study. Thus, the predicted samples for 𝑅∗ in 

Eq. (12) are iterated (k = 1:𝑛𝑠𝑖𝑚) as follows:  
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1) For the 𝑖𝑡ℎ satellite product, randomly select a parameter sample 𝛉𝒊={α𝑖 , δ𝑖 , β𝑖 , γ𝑖} from the MCMC samples; 

2) Generate a value 𝑅𝑘
∗  from a 𝐺𝑎𝑚𝑚𝑎 (𝛼𝑖 ,

𝛼𝑖

𝜇𝑖
∗), where log (𝜇𝑖

∗) = δ𝑖 + β𝑖 ∗ 𝑌𝑖
∗ + γ𝑖 ∗ 𝑍∗; 165 

Repeating step 1 and 2 for 𝑛𝑠𝑖𝑚 times, the samples 𝑅𝑘
∗  (k = 1:𝑛𝑠𝑖𝑚) are regarded as the realizations of the distribution of the 

bias-corrected SPE associated to the satellite estimation 𝑌𝑖
∗ and normalized elevation 𝑍∗. The mean value of the samples 𝑅𝑘

∗ , 

denoted by 𝑌𝑖
′, is regarded as the bias-corrected SPE and the associated credible intervals (e.g., 2.5% and 97.5% quantiles) is 

used for predictive uncertainty. 

 170 

3.1.2 Data merging 

Ideally, the blended SPE (B) should be close to GR, i.e., R. Given the Gamma distribution of GR in Step 1, the blended SPE 

can be parameterized below: 

𝐵~𝐺𝑎𝑚𝑚𝑎 (𝛼𝐵 ,
𝛼𝐵

𝜇𝐵
)                                                                               (13) 

where 𝛼𝐵 , 𝜇𝐵 and 
𝛼𝐵

𝜇𝐵
 are the shape, mean and rate parameters, respectively. In this step, the bias-corrected SPE of 4 satellites 175 

are merged with weight parameters 𝑤𝑖(𝑖 = 1, . . . , 4), and 𝜀 is the residual error. The data fusion of bias-corrected SPE specified 

in the log scale is defined as follows: 

log (𝜇𝐵) = ∑ log (𝑌𝑖
′)4

𝑖=1 ∗ 𝑤𝑖 +  𝜀                                                                (14) 

∑ 𝑤𝑖
4
𝑖=1 = 1            (15) 

𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜀)                          (16) 180 

Thereby, all parameters including 𝛼𝐵 , 𝑤𝑖(𝑖 = 1,2, . .4) and 𝜎𝜀 can be estimated from the GR and bias-corrected SPE at the 

training sites. The estimation process in a Bayesian framework is similar to that described in the Stage 1. After all parameters 

are estimated, as similar to the Bayesian inference in Stage 1, the blended SPE at any site and time can be derived with the 

bias-corrected SPE and corresponding weights using the MCMC iterations.  

 185 
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3.2 Comparison model 

 3.2.1 BMA 

The BMA method is a statistical algorithm that merges predictive ensembles based on the individual SPE at the training period 

in regions of interest. Here, the BMA result refers to the ensemble SPE. Based on the law of total probability, the conditional 

probability of the BMA data on the individual SPE is expressed as: 190 

 𝑓(𝐵𝑀𝐴|𝑌1, … , 𝑌𝑝) = ∑ 𝑓(𝐵𝑀𝐴|𝑌𝑖)
𝑝
𝑖=1 ∙ 𝑤𝑖               (17) 

where 𝑓(𝐵𝑀𝐴|𝑌𝑖) is the predictive PDF given by the individual SPE 𝑌𝑖 and 𝑤𝑖  is the corresponding weight. The log-likelihood 

function 𝑙 is applied to calculate the BMA parameter set 𝛝, which is written as: 

𝑙(𝛝) = log (∑ 𝑤𝑖
𝑝
𝑖=1 × 𝑓(𝐵𝑀𝐴|𝑌𝑖))                          (18) 

It is assumed that 𝑓(𝐵𝑀𝐴|𝑌𝑖) follows a Gaussian distribution with its parameters as 𝜃𝑖, and BMA is ideally close to GR at any 195 

site and time. Eq. (18) is written as: 

𝑙(𝛝) = log (∑ 𝑤𝑖
𝑝
𝑖=1 × g(𝐺𝑅|𝜃𝑖))                               (19) 

where g(∙) stands for Gaussian distribution, and 𝛝 = {𝑤𝑖 , 𝜃𝑖 , 𝑖 = 1, … , 𝑝}. The optimal BMA parameters 𝛝 are calculated by 

maximizing the log likelihood function using the expectation–maximization algorithm. Before executing the BMA method, 

both GR and SPE data are pre-processed using the Box-Cox transformation to ensure that 𝑓(𝐵𝑀𝐴|𝑌𝑖) (𝑖 = 1, . . . ,4) is close to 200 

Gaussian distribution. As the BMA weights, 𝑤𝑖 , 𝑖 = 1, . . . ,4 are obtained, the BMA data is calculated by weighted sum of the 

original SPE at any site and time. More details of the BMA method can be found in Ma et al. (2018). 

 

3.2.2 OOR  

The OOR method is defined as the arithmetic mean of the individual SPE by removing the feature with the largest offset. It is 205 

written as:  

𝑂𝑂𝑅 =
1

𝑝−1
∑ 𝑌𝑖

𝑝−1
𝑖=1            (20) 

where 𝑌𝑖 is the individual SPE, 𝑝 is the number of SPE. The original SPE with the largest offset among the satellite products 

is removed and the average of the remaining SPE is regarded as the OOR result. 
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3.3 Error analysis 210 

To assess the performance of the proposed TSB method, several statistical error indices including root mean square errors 

(RMSE), normalized mean absolute errors (NMAE), and the Pearson’s correlation coefficients (CC) are used in this study. 

The specific formulas of these metrics can be found below:  

𝑅𝑀𝑆𝐸 = √< (𝑆𝑖𝑚 − 𝑂𝑏𝑠)2 >      (21) 

𝑁𝑀𝐴𝐸 =
<|𝑆𝑖𝑚−𝑂𝑏𝑠|>

<𝑂𝑏𝑠>
× 100%     (22) 215 

𝐶𝐶 =
∑[(𝑆𝑖𝑚−<𝑆𝑖𝑚>)(𝑂𝑏𝑠−<𝑂𝑏𝑠>)]

√∑(𝑆𝑖𝑚−<𝑆𝑖𝑚>)2√∑(𝑂𝑏𝑠−<𝑂𝑏𝑠>)2
    (23) 

where Sim and Obs stand for the simulated and observed data, respectively; the angle brackets stand for sample average.  

4 Results 

In the experiment, model parameters are calibrated on the daily precipitation of warm season in 2014, where GR data at the 

27 black grids in Figure 1 are randomly selected for training the model. The model validation is performed under two scenarios: 220 

Scenario 1 will validate the model in space based on the data of the same period in validation stations (i.e., the 7 red grids in 

Figure 1), and Scenario 2 will validate the model in time based on the data of warm season from 2010 to 2013 at the same 27 

black grids in Figure 1. In addition, we consider a 10-fold cross validation in space by randomly selecting 7 sites for model 

validation, and the data of the remaining 27 sites as the training set. The performance of TSB approach is further compared 

with BMA and OOR in the two scenarios. 225 

4.1 Parameter estimates 

Figures 4 and 5 show the posterior distribution curves of the posterior parameters in Stage 1 and 2, respectively. As for each 

parameter in the bias-corrected process, the individual SPE including PERCDR, 3B42V7, CMORPH and IMERG shows 

similar pattern (Figs. 4a to 4d). It shows that the bias structures of the original SPE have similar characteristics. For all SPE, 

the distribution mass of parameter β𝑖 are all on the right side of zero, which implies that a systematic bias exists for all satellite 230 

products. When looking at the effects of elevation, the posterior distribution of parameter γ𝑖  for PERCDR, 3B42V7 and 

CMORPH (Figs. 4a, 4b and 4c) have value zero in the middle range of the distribution, which implies that elevation may have 

little impacts on these three satellite products. While for IMERG in Fig. 4d, the distribution mass of parameter γ𝑖 is mostly on 

the right side of zero, which implies a clear effect of elevation on this satellite product. In the data fusion step (Fig. 5), IMERG 

has the highest weight and PERCDR has the lowest weight among the four bias-corrected SPE. Moreover, 3B42V7 and 235 
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PERCDR have similar contribution on the blended result. Basically, Bayesian analysis is able to simulate the parameter 

uncertainty as compared with the traditionally statistical methods.  

 

4.2 Model validation under two scenarios 

Table 2 presents the summary of the statistical error indices including RMSE, NMAE and CC of the original (i.e., PERCDR, 240 

3B42V7, CMORPH and IMERG), bias-corrected (i.e., BC-PER, BC-V7, BC-CMO and BC-IME) and blended SPE under two 

scenarios in the NETP. The sub-section 4.2.1 and 4.2.2 show the performance of the model validation under Scenario 1 and 2, 

respectively. 

4.2.1 Scenario 1 

The original SPE show large biases with the RMSE, NMAE, and CC indices ranging from 6.25-8.56 mm/d, 60.6-80.3%, and 245 

0.382-0.556, respectively. 3B42V7 has the worst skill with the highest RMSE of 8.56 mm/d, the highest NMAE of 80.3% and 

the second lowest CC of 0.383. CMORPH shows the best performance with the lowest RMSE of 6.25 mm/d, the lowest NMAE 

of 60.6% and the highest CC of 0.556, which presents its superiority compared with the other original SPE in the NETP. Based 

on the BC model, all the bias-corrected SPE have better agreements with GR compared with the original SPE. Their RMSE 

scores range from 5.43 to 6 mm/d, and decrease by 13~31.8%, and their NMAE scores vary from 56.0 to 63.5%, and decline 250 

by 7.1 to 23.5%, respectively. Meanwhile, their CC values range from 0.346 to 0.533 after bias correction. With the BW model, 

the blended SPE is closer to GR in terms of RMSE, NMAE and CC at 5.36 mm/h, 54.6%, and 0.57, respectively, compared 

with both the original and bias-corrected SPE. The RMSE and NMAE values of the blended SPE decrease by 14.3~37.4% and 

10~32%, respectively, and the CC value increases by 2.4~49.2%, accordingly, compared to the original SPE. In addition, the 

RMSE, NMAE and CC of the blended SPE increases by 1.4~10.8%, 2.5~14.1%, and 6.8~64.8%, respectively, compared with 255 

the bias-corrected SPE. It proves that the blended SPE exhibits higher quality after Stage 2, due to the ensemble contribution 

of the bias-corrected SPE. The relative weight of BC-PER, BC-V7, BC-CMO and BC-IME is 0.02, 0.038, 0.295, and 0.647, 

respectively. The BC-IME and BC-PER have the highest and lowest weights, respectively, and the BC-V7 and BC-CMO rank 

between BC-IME and BC-PER (Fig. 6a). As for the original SPE, it is found that there is an overestimation when the rainfall 

is less than 7.6 mm/d, and an underestimation when the rainfall is more than 7.6 mm/d. Based on the proposed TSB approach, 260 

the blended SPE is closer towards the GR (Figs. 6b and 6c). Meanwhile, BC-PER seems to be clearly different from the other 

bias-corrected SPE, and to this point in the study has shown little value to be kept in consideration in the merging process. 

However, it is worth noting that PERCDR can in fact be informative and on a case by case basis. 

4.2.2 Scenario 2 
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The proposed TSB approach is also validated in Scenario 2, where the blended SPE shows better performance in terms of its 265 

RMSE, NMAE and CC at 6.37 mm/h, 56.7% and 0.513, respectively, compared with both the original and bias-corrected SPE. 

It shows that the original SPE including PERCDR, 3B42V7, CMORPH and IMERG have high RMSE and NMAE scores in 

terms of 7.20~9.19 mm/h and 61.9~79.3%, respectively, and low CC values in terms of 0.261~0.493. After the bias correction, 

the four satellite products have increased their performance with lower error indices than the original SPE. The RMSE indices 

of the bias-corrected SPE vary from 6.41 to 7.03 mm/h, and the corresponding NMAE and CC indices are from 57.7% to 270 

64.5%, and from 0.253 to 0.48, respectively. Based on the data fusion process, the error indices of the blended SPE including 

RMSE, NMAE and CC are 6.37 mm/h, 56.7% and 0.513, respectively. It is found that the RMSE and NMAE values of the 

blended SPE decreased by 11.5~30.7% and 8.4~28.5%, respectively, and the CC value increases by 4.1~96.6% compared with 

the original SPE.  

As learned from the two validated scenarios, it proves that the TSB approach has the potential in improving the satellite rainfall 275 

accuracy, and it has its ability to exert benefits from SPE in terms of higher performances and mitigate poor impacts from the 

ones with lower quality.  

 

4.3 Cross-validation  

Figures 7 and 8 show the statistics of evaluation scores of RMSE, NMAE, and CC for the original SPE and blended estimates 280 

at the validation grids with 10 random split of the gauge locations in the warm season of 2014. For each test, 7 grid sites are 

randomly selected from the 34 grid cells and used for model verification, and the remaining 27 grid sites are used for training 

the model.  

 

As for the blended SPE, it performs similar scores at the validation grids among the 10-fold random samples. The blended 285 

SPE shows better skill compared with the original SPE at each test in terms of RMSE, NMAE, and CC (Fig. 7). Statistically, 

the mean values of RMSE, NMAE and CC for the blended SPE are 5.75 mm/h, 57.1% and 0.551, respectively (Table 3). The 

averaged improvement ratios of RMSE for the blended SPE are 27.6%, 25%, 10.6% and 13% compared to the PERCDR, 

3B42V7, CMORPH and IMERG, respectively, and similar performance is seen from NMAE with the average improvement 

ratios of 24.5%, 22.3%, 7.8% and 7.3%, respectively (Table 4). In summary, the 10-fold cross validation further verified that 290 

the blended SPE has a higher accuracy of gridded precipitation than the original satellite products. 
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4.4 Model comparison with BMA and OOR 

To assess the performance of the proposed TSB approach, it is beneficial to compare the TSB result with the existing fusion 

approach. In this study, the BMA approach makes use of four original satellite data and the corresponding GR data at the 27 295 

black grids shown in Figure 1 in the warm season of 2014 to estimate the optimal BMA weights. In Scenario 1, the BMA data 

are calculated based on the BMA weights and the original SPE from the 7 red grids in the warm season of 2014, and the OOR 

data are calculated based on the OOR method using the original SPE data from the 7 red grids in the warm season of 2014. In 

Scenario 2, the BMA data are calculated based on the BMA weights and the original SPE from the 27 black grids in the warm 

season from 2010 to 2013, and the OOR result are calculated based on the OOR method and the original SPE data from the 27 300 

black grids in the warm season from 2010 to 2013. Herein, we compare the blended SPE with both of the BMA and OOR 

predictions in two scenarios and their statistical error summary is shown in Table 5.  

 

In Scenario 1, the TSB method performs better skill scores with the RMSE, NMAE and CC values of 5.36 mm/d, 54.6%, and 

0.57, respectively, as compare with the BMA and OOR approaches. In addition, OOR shows the worst performance in terms 305 

of RMSE, NMAE, and CC at 6.22 mm/d, 59.7%, and 0.537, respectively. BMA shows better skill than OOR but worse skill 

than TSB, in terms of the RMSE, NMAE and CC values at 5.78 mm/d, 56.6% and 0.562, respectively. In Scenario 2, similar 

performance is found for the TSB approach, where it has lower RMSE (6.37 mm/d) and NMAE (56.7%) and higher CC (0.513) 

than both the OOR and BMA results. Basically, as compared with the two existing fusion algorithms (BMA and OOR) in the 

two validated scenarios, it confirms that the TSB method has an advantage for combining the original SPE and reducing the 310 

bias of the satellite precipitation retrievals. It is noted that the daily precipitation estimates follow a gamma distribution (Eq.1) 

in this study, in future work it would be interesting to examine whether the gamma distribution can be used in the BMA 

algorithm without converting it to a Gaussian distribution.    

 

4.5 Model performance on a heavy rainfall case  315 

Local recycling plays as a premier role for the moisture sources of rainfall extremes in the NETP (Ma et al., 2020a). The 

September 22, 2014 rain event is a storm that would represent the local heavy rainfall pattern in the warm season. Considering 

that accurate precipitation estimate on extreme weather is very important for flood hazard mitigation, we investigate the utility 

of the proposed TSB approach on this heavy rainfall event to quantify its performance in extreme rainfall case (Fig. 9a). The 

relative weights of BC-PER, BC-V7, BC-CMO, and BC-IME for the blended SPEdata  are 0.264, 0.14, 0.191 and 0.405, 320 

respectively, on this particular heavy rainfall event (Fig. 9b). It is found that the IMERG data has the biggest contribution and 

the 3B42V7 and CMORPH data have nearly similar contribution for the blended SPE. 
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Table 6 reports the evaluation statistics reflecting the blended performance on this heavy rainfall case. It shows that the RMSE, 

NMAE and CC values of the original SPE range from 8.18~9.24 mm/d, 47~52.8%, and 0.642~0.85, respectively. As 325 

Ccompared to the original SPE, the blended SPE has lower RMSE of 5.23 mm/d, and lower NMAE of 31.5%, and higher CC 

of 0.837, respectively. The RMSE and NMAE values of the blended SPE decrease by 36.1~43.4% and 33~40.3%, respectively. 

The performance of the TSB approach is further explored at three gauge cells (i.e., IDs 56171, 56173, 56067) with the top 

three daily rainfall records on September 22, 2014. Figure 10 shows the PDF curves of blended samples at the above three grid 

sites in this rainfall case. It demonstrates that the blended SPE has the advantage in quantifying the predictive uncertainty on 330 

rainfall extremes at each site. For example, at ID 56171, the estimated rainfall estimates that are derived from the original SPE 

are 19.8 mm (PERCDR), 35.3 mm (3B42V7), 26 mm (CMORPH), and 21.2 mm (IMERG), respectively. 3B42V7 shows an 

overestimation, while PERCDR, CMORPH and IMERG underperform the daily rainfall at the corresponding pixel (Fig.  10a). 

Based on the proposed TSB approach, the mean value of the merging estimates are 28 mm/d. At IDs 56173 and 56067, the 

mean values of the blended SPE are 26.2 and 19.7 mm/d, respectively, and they are close to GR with the daily amounts atof 335 

30.9 and 28.7 mm, respectively (Figs. 10b and 10c). Overall, these analyses reveal that the proposed TSB algorithm could not 

only quantify its predictive uncertainty, but also improve the daily rainfall amount even under rainfall heavyextreme rainfall 

conditionss.  

 

4.6 Model application in a spatial domain  340 

It is important to explore the Bayesian ensembles at unknown sites in the domain. As learned from Figures. 11, it seems that 

each of the original SPE can capture the spatial pattern of daily mean precipitation in the warm season, but might fail in the 

representation of precipitation amount, partly because of the satellite retrieval bias in complex terrain and limited GR network. 

Thus, the TSB method is further applied in the region of interest to demonstrate its performance on daily precipitation in the 

warm season of 2010-2014 in the NETP. It is found that the blended SPE shows high precipitation in the southwest and low 345 

precipitation in the northwest, as well as moderate precipitation in the eastern region. In addition, as compared with the original 

SPE, higher values disappear from the spatial map except in southwest corner for the blended SPE. The possible reason is that 

daily mean rainfall is the highest in southwest corner for most SPE, and larger value exists after the TSB approach. Meanwhile, 

the predictive Bayesian uncertainties including lower (2.5%) and upper (97.5%) quantiles are displayed from Figureures. 12b 

to 12c to illustrate the blending variation in this application. 350 
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5 Discussion 

In spite of the superior performance of the TSB algorithm, some issues still need to be considered in the practical applications: 

 

Because of limited knowledge on the influences of complex terrain and local climate on the rainfall patterns in the study area, 355 

the elevation feature is considered in the first stage. Table 7 quantifies the impact of elevation covariate on the bias-corrected 

and blended SPE performances in Scenario 1 in the warm season of 2014 in the NETP. It is found that the inclusion of elevation 

feature provides slightly better skill compared with the results without terrain information in this experiment. Considering that 

deep convective systems occurring near the mountainous area have an effect on the precipitation cloud (Houze, 2012), more 

attempts are required to improve the orographic precipitation in the TP in future.  360 

 

The data fusion application is based on four mainstream SPE, and BC-IME and BC-PER show the best and worst performances 

among the bias-corrected SPE in Stage 1. It raises a question that why not simply apply the first stage of bias correction and 

then select the best-performed bias-corrected SPE as the final product. To address this issue, we investigate the statistical error 

differences among the BC-IME and blended SPE before and after the removing of BC-PER for 10-fold cross validation in the 365 

warm season of 2014 in the NETP (Fig.ure 13). It is beneficial to involve the Stage 2 in the TSB method because the blended 

SPE performs better skill than the best-performed bias-corrected SPE (i.e., BC-IME) in Stage 1. The primary reason is that the 

BW model is designed to integrate various types of bias-corrected SPE, which is limited in the BC model. In addition, both 

the blended SPE with and without the consideration of PERCDR show similar performances of the RMSE, NMAE, and CC 

indices (Fig.gure 13). It implies that the TSB approach has an advantage of not impacted by the poor quality individuals (e.g., 370 

BC-PER), partly because the BW model can reallocate the contribution of the bias-corrected SPE based on their corresponding 

bias characteristics.  

 

In addition, as calculating the blended result at any new sites, the model parameters derived from the training grid sites are 

assumed to be applicable in the whole domain. Since we have a relatively dense GR network in the survey region, the current 375 

assumption is acceptable according to the performance of the blended SPE. It is helpful to give some guideline on how many 

training sites are needed to apply the TSB approach in a region with complex terrain and limited GR. The sensitivity analysis 

of the number of training grid cells on the performance of blended SPE at the validation grids is explored in Figure 14. As the 

number of training sites is increasing, there is a decreasing trend for the RMSE and NMAE values, but a slight increasing trend 

for the CC value. It seems that the performance of the blended SPE becomes similar as the number of training sites increases 380 

to 21. We admit that the more information from the ground observations, it would be more beneficial for the blended gridded 



15 

 

product in the region of interest. It is noted that, if extended to the TP or global scale, the extension of model parameters and 

training sites should be carefully considered. For instance, there are few gauges installed in the western and central TP (Ma et 

al., 2015), it might be a potential risk to directly apply this fusion algorithm for these regions.  

 385 

The aim of this study is not to model rainfall process in a target domain, but to propose an idea to extract valuable information 

from available SPE and provide more reliable gridded precipitation in high-cold region with complex terrain. Considering its 

spatiotemporal differences and the existence of many zero-value records, rainfall is extremely difficult to observe and predict 

(Yong et al., 2015; Bartsotas et al., 2018). With regard to the probability of rainfall occurrence, a zero-inflated model, which 

is coherent with the empirical distribution of rainfall amount, is expected to improve the proposed TSB algorithm. Also, hourly 390 

or even instantaneous precipitation intensity is extremely vital for flood prediction, which should be specifically designed 

when extending this fusion framework in the next step.    

6 Summary and prospects 

This study proposes a TSB algorithm for multi-SPE data fusion. A preliminary experiment is conducted in the NETP using 

four mainstream SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) to demonstrate the performance of this TSB approach. 395 

Primary conclusions are summarized below: 

 

(1) This TSB algorithm has two stages and involves the BC and BW models. It is found that this blended method is capable 

of involving a group of original SPE. Meanwhile, it provides a convenient way to quantify the fusion performance and the 

associated uncertainty.  400 

 

(2) The experiment shows that the blended SPE has better skill scores compared to the original SPE in the two validated 

scenarios. The 10-fold cross validation in Scenario 1 further confirms the superiority of the TSB algorithm. In addition, it is 

found that the TSB method outperforms another two existing fusion methods (i.e., BMA and OOR) in the two scenarios. The 

performance of this fusion method is also demonstrated under a heavy rainfall event in the region of interest.  405 

 

(3) The application proves that this algorithm can allocate the contribution of individual SPE on the blended result because it 

is capable of ingesting useful information from uneven individuals and alleviating potential negative impacts from the poorly 

performing members.   
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 410 

Overall, this work provides an opportunity for merging SPE in high-cold region with complex terrain. The evaluation analysis 

of this TSB method for extended regions (e.g., TP) in terms of higher temporal resolution (e.g., hourly) will be performed in a 

future study. 
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Figure and Table Captions 

Table 1: Basic information of the original SPE used in this study. 

Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-corrected, and blended SPE 

in two scenarios in the NETP. 

Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended SPE at 10 random verified tests 515 

in the warm season of 2014 in the NETP. 

Table 4: Mean improvement ratios of statistical error indices of the blended SPE, in terms of RMSE, NMAE and CC compared 

with the original SPE at 10 random verified tests in the warm season of 2014 in the NETP. 

Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for three fusion methods (i.e., OOR, BMA, and 

TSB) in the two scenarios in the NETP. 520 

Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended SPE during a heavy 

rainfall event of September 22, 2014 in the NETP. 

Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 

without consideration of terrain feature as a covariate in the TSB method in Scenario 1 in the NETP. 

Figure 1: Spatial map of the topography and GR network used in the study, where 27 black cells are used for model calibration 525 

and 7 red cells are for model verification. 

Figure 2: The diagram of the proposed TSB algorithm. 

Figure 3: (a) The histogram density plot and (b) the corresponding Probability-Probability plot of GR at the training grids in 

the warm season of 2014 in the NETP, where the red, blue and green lines shows the fitted Gamma, Lognormal and Gaussian 

distribution, respectively. 530 

Figure 4: The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, (c) CMORPH and (d) IMERG 

in the bias correction process, i.e., Stage 1. 

 Figure 5: The PDF curves of posterior parameter sets in the data fusion process, i.e., Stage 2. 
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Figure 6: (a) The Box-Whisker plots of relative weights for the bias-corrected SPE, (b) the scatter plots between GR and the 535 

original SPE and (c) the PDF of daily rainfall for the GR, original and blended SPE with various rain intensities in Scenario 1 

in the NETP. 

Figure 7: Statistical error indices of the original and blended SPE at 10 random verified tests in the warm season of 2014 in 

the NETP: (a) RMSE, (b) NMAE and (c) CC. 

Figure 8: The Box-Whisker plots of improvement ratios of statistics for the blended SPE compared with the original SPE, 540 

including PERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests in the warm season of 2014 in the NETP: 

(a) RMSE, (b) NMAE and (c) CC. 

Figure 9: (a) Spatial pattern of gauge-based measurements during a heavy rainfall case of September 22, 2014 in the NETP, 

where the site IDs 56171, 56173 and 56067 report the top three daily rainfall amounts of 32.3 mm, 30.9 mm and 28.7 mm, 

respectively; (b) the corresponding Box-Whisker plots of relative weights of the bias-corrected SPE in the data fusion process. 545 

Figure 10: The PDF curves of blended SPE samples and the corresponding mean value at three gauge-based grids on a heavy 

rainfall case of September 22, 2014: (a) ID 56171, (b) ID 56173 and (c) ID 56067. The original SPE and GR at each pixel are 

also indicated in each subfigure. 

Figure 11: Spatial patterns of the daily mean precipitation in terms of the original SPE in the warm season of 2010 to 2014 in 

the NETP: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 550 

Figure 12: Spatial patterns of the blended SPE in terms of (a) mean, (b) lower quantile (2.5%) and (c) upper quantile (97.5%) 

of daily mean precipitation in the warm season of 2010 to 2014 in the NETP. 

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER at 10 random verified tests in the 

warm season of 2014 in the NETP. 555 

Figure 14: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in terms 

of different number of training sites in the warm season of 2014 in the NETP.  
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Table 1: Basic information of the original SPE used in this study. 

 

  560 

Short name Full name 

and details 

Temporal 

resolution 

Spatial  

resolution 

Input data Retrieval 

algorithm 

References 

 

PERCDR Precipitation 

Estimation from 

Remotely Sensed 

Information using 

Artificial Neural 

Networks 

(PERSIANN) 

Climate Data 

Record (CDR) 

Daily 0.25° x 0.25° 

 

 

 

 

Warm 

season 

from 2010 

to 2014 

 

 

 

 

Adaptive artificial 

neural network 

 

 

 

Ashouri et al., 

2015 

 

 

 

 

3B42V7 TRMM Multi-

satellite 

Precipitation 

Analysis (TMPA) 

3B42 Version 7 

Daily 0.25° x 0.25° 

 

Warm 

season 

from 2010 

to 2014 

 

GPCC monthly 

gauge observation 

to correct this bias 

of 3B42RT 

Huffman et al., 

2007 

 

CMORPH NOAA Climate 

Prediction Centre 

(CPC)  Morphing 

Technique 

(CMORPH) Global 

Precipitation 

Estimates Version 1 

Daily 0.25° x 0.25° 

 

Warm 

season 

from 2010 

to 2014 

 

Morphing 

technique 

 

 

Xie et al., 2017 

 

 

IMERG Integrated Multi-

satellitE Retrievals 

for the Global 

Precipitation 

Measurement 

(GPM) mission V06  

Level 3 final run 

product  

Daily 0.10° x 0.10° Warm 

season 

from 2010 

to 2014 

2017 version of 

the Goddard 

profiling 

algorithm  

Huffman et al., 

2018 
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Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-corrected and blended SPE 

in two scenarios in the NETP.  

Scenarios Product RMSE (mm/d) NMAE (%) CC 

Scenario 1 

PERCDR  7.15 70.2 0.382 

3B42V7 8.56 80.3 0.383 

CMORPH  6.25 60.6 0.556 

IMERG  6.60 62.9 0.506 

BC-PER 6.00 63.5 0.346 

BC-V7 5.83 61.4 0.408 

BC-CMO 5.43 56.3 0.533 

BC-IME 5.44 56.0 0.530 

 Blended SPE 5.36 54.6 0.570 

Scenario 2 

PERCDR  9.19 79.3 0.261 

3B42V7 8.38 71.3 0.403 

CMORPH  7.20 61.9 0.493 

IMERG  7.64 65.1 0.462 

BC-PER 7.03 64.5 0.253 

BC-V7 6.69 61.3 0.395 

BC-CMO 6.41 58.2 0.480 

BC-IME 6.44 57.7 0.470 

 Blended SPE 6.37 56.7 0.513 
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Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended SPE at 10 random verified tests 565 

in the warm season of 2014 in the NETP. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 7.96 75.9 0.330 

3B42V7 7.72 73.8 0.424 

CMORPH 6.59 63.1 0.520 

IMERG 6.78 62.7 0.518 

Blended SPE 5.75 57.1 0.551 
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Table 4: Mean improvement ratios of statistical error indices of the blended SPE, in terms of RMSE, NMAE, and CC compared 

with the original SPE at 10 random verified tests in the warm season of 2014 in the NETP. 

 Index PERCDR 3B42V7 CMORPH IMERG 

Improvement 

Ratio (%) 

RMSE (mm/d) 27.6 25.0 10.6 13.0 

NMAE (%) 24.5 22.3 7.8 7.3 

CC 71.1 39.8 11.1 10.7 

  570 
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Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for three fusion methods (i.e., OOR, BMA, and 

TSB) in the two scenarios in the NETP. 

Scenarios Method RMSE (mm/d) NMAE (%) CC 

Scenario 1 

OOR 6.22 59.7 0.537 

BMA 5.78 56.6 0.562 

TSB 5.36 54.6 0.570 

Scenario 2 

OOR 7.04 59.9 0.498 

BMA 6.79 58.8 0.500 

TSB 6.37 56.7 0.513 
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Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended SPE during a heavy 575 

rainfall event of September 22, 2014 in the NETP. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 8.18 47.0 0.850 

3B42V7 9.24 52.8 0.683 

CMORPH 8.27 48.5 0.734 

IMERG 8.63 49.1 0.642 

Blended SPE 5.23 31.5 0.837 
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Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 

without consideration of terrain feature as a covariate in the TSB method in Scenario 1 in the NETP. 580 

Product Type RMSE (mm/d) NMAE (%) CC 

BC-PER 
No Terrain 5.98 63.3 0.361 

Terrain 6.00 63.5 0.346 

BC-V7 
No Terrain 5.83 61.5 0.409 

Terrain 5.83 61.4 0.408 

BC-CMO 
No Terrain 5.48 56.9 0.520 

Terrain 5.43 56.3 0.533 

BC-IME 
No Terrain 5.48 56.3 0.519 

Terrain 5.44 56.0 0.530 

Blended SPE 
No Terrain 5.41 55.0 0.557 

Terrain 5.36 54.6 0.570 
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Figure 1: Spatial map of the topography and GR network used in the study, where 27 black cells are used for model calibration 

and 7 red cells are for model verification.  585 
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Figure 2: The diagram of the proposed TSB algorithm. 
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 590 

Figure 3: (a) The histogram density plot and (b) the corresponding Probability-Probability plot of GR at the training grids in 

the warm season of 2014 in the NETP, where the red, blue and green lines shows the fitted Gamma, Lognormal and Gaussian 

distribution, respectively.  



32 

 

 

Figure 4: The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, (c) CMORPH and (d) IMERG 595 

in the bias correction process of Stage 1.  
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Figure 5: The PDF curves of posterior parameter sets in the data fusion process of Stage 2. 
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 600 

Figure 6: (a) The Box-Whisker plots of relative weights for the bias-corrected SPE, (b) the scatter plots between GR and the 

original SPE and (c) the PDF of daily rainfall for the GR, original and blended SPE with various rain intensities in Scenario 1 

in the NETP.  
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Figure 7: Statistical error indices of the original and blended SPE at 10 random verified tests in the warm season of 2014 in 605 

the NETP: (a) RMSE, (b) NMAE and (c) CC. 
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Figure 8: The Box-Whisker plots of improvement ratios of statistics for the blended SPE compared with the original SPE, 

including PERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests in the warm season of 2014 in the NETP: 610 

(a) RMSE, (b) NMAE and (c) CC. 
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Figure 9: (a) Spatial pattern of gauge-based measurements during a heavy rainfall case of September 22, 2014 in the NETP, 

where the site IDs 56171, 56173 and 56067 report the top three daily rainfall amounts of 32.3 mm, 30.9 mm and 28.7 mm, 

respectively; (b) the corresponding Box-Whisker plots of relative weights of the bias-corrected SPE in the data fusion process. 615 
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Figure 10: The PDF curves of blended SPE samples and the corresponding mean value at three gauge-based grids on a heavy 

rainfall case of September 22, 2014: (a) ID 56171, (b) ID 56173 and (c) ID 56067. The original SPE and GR at each pixel are 

also indicated in each subfigure. 620 
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Figure 11: Spatial patterns of the daily mean precipitation in terms of the original SPE in the warm season of 2010 to 2014 in 

the NETP: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 
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Figure 12: Spatial patterns of the blended SPE in terms of (a) mean, (b) lower quantile (2.5%) and (c) upper quantile (97.5%) 

of daily mean precipitation in the warm season of 2010 to 2014 in the NETP. 
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 630 

Figure 13: Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER at 10 random verified tests in the 

warm season of 2014 in the NETP. 
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 635 

Figure 14: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in terms 

of different number of training sites in the warm season of 2014 in the NETP. 
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