
Responses to Review Comments on HESS-2020-43-R1 
 
 
       We thank the anonymous referee #3 for the comments and suggestions. We have addressed 

the comments point-by-point in the revision. In the text below, comments are repeated verbatim 

and the corresponding responses are in blue. Also, we have made substantial improvements to the 

manuscript based on the comments and suggestions, and the label lines in brackets below are based 

on the clean version of the revised manuscript. 

 

Anonymous Referee #3 

 
Authors have included some of my comments in the revised version of the manuscript. However, 

it is clear that Authors are resisting to look at some of the comments which actually raise serious 

objections on the efficacy of the proposed two-steps blending approach and consequently the 

validation of results. In the previous version also, I had commented that details were not provided 

on many critical aspects. Authors have admitted the limitations of the previous version of the 

manuscript. Now in the revised version, they have somehow tried to satisfy my comments by 

adding more analysis but again the presented details in the methodology are hardly sufficient. In 

summary, I feel resistant from Authors to perform any further investigation about their approach, 

analysis with more years of data and provide more details on the parameter estimation using a 

dataset. In my view, the revised manuscript tries to demonstrate a potential approach with lack of 

in-depth analysis. I would recommend major revision.  

Response: We appreciate the reviewer for the critical comments. In this revision, the approach is 

further investigated and clarified as required by this reviewer. Also, we perform more years of data 

in the warm season of 2010 to 2014 for model validation and provides more details of parameter 

estimation. Detailed information can be found in the following point-by-point responses and the 

revised manuscript. 

 

Authors may want to work on my following comments:  

[1] Section 3.2 says “The goodness-of-fit of the Student’s t distribution for the bias between GR 

and SPE is examined graphically by using a quantile-quantile plot at the training sets (Fig. 3). It is 

found that they are close to the diagonal red line.” Please look at Figure 3, the distribution is 



completely skewed. Blue dots are hardly lying on the diagonal red line. If the distribution is not 

properly set, then the parameter estimation and results will have errors.  

Response: We thank the reviewer for the important comment. We have fixed the mistake in the 

revised version. Student distribution is a symmetric distribution, which is therefore not suitable for 

skewed data. To find a suitable distribution, we tested several distributions including Lognormal, 

Gaussian (just for comparison) and Gamma distribution. It is found that a Gamma distribution is 

more appropriate as its Probability-Probability (PP) plots are closer to the diagonal black line for 

the training data in the warm season of 2014 in the northeast Tibetan Plateau (Figure 3). In the 

revision, a Gamma distribution is replaced in the first stage. We have also rephrased the related 

expression in the revised manuscript as pointed out by this reviewer (Lines 107-111).  

 
Figure 3: (a) The histogram density plot and (b) the corresponding Probability-Probability plot 

of GR at the training grids in the warm season of 2014 in the NETP, where the red, blue and 

green lines shows the fitted Gamma, Lognormal and Gaussian distribution, respectively.. 

 

Regarding the estimation of parameters, please look at Robertson et al. 2013, ‘Post-processing 

rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting’ 

where MCMC approach of estimating parameters were changed to MAP approach based on the 

available length of data. Also please look at the parameter estimation section in Shrestha et al. 

2015, 'Improving Precipitation Forecasts by Generating Ensembles through Postprocessing.' This 

is one of the reasons why I had requested Authors to explain the steps to estimate parameters using 

(a) (b)



some example dataset. It seems that Authors are hesitating to present this in the manuscript. Instead, 

Authors have added few more equations in the methodology section to make it appear more 

descriptive.  

Response: We appreciate for the reviewer’s suggestion, especially the two papers. We have added 

the two references in the revised manuscript. We also agree that accurate parameter information is 

fundamental for model inference as pointed out by this reviewer. 

 

In the revised manuscript, the Markov Chain Monte Carlo (MCMC) technique with its sampling 

algorithm as the No-U-Turn Sampler (NUTS) variant of Hamiltonian Monte Carlo in the Stan 

program is performed to address this issue. The sampling records of model parameters are obtained 

based on the training data in the warm season of 2014 in the NETP. Since we only have four 

parameters in this model, the MCMC converges very quickly. Thus, we run a chain of length 2000, 

removing the first 1000 iterations as the warm-up period and retaining the second 1000 iterations. 

The parameter samples of these 1000 iterations are the samples of the posterior distribution 

𝑓𝑓(𝛉𝛉𝒊𝒊|𝐑𝐑,𝒀𝒀𝒊𝒊,𝒁𝒁). The prediction of bias-corrected SPE in Stage 1 is performed using the MCMC 

iterated samplings. As for each SPE, a numerical algorithm is suggested based on the replicate of 

the post-convergence MCMC samples. The mean value of the MCMC samples 𝑅𝑅𝑘𝑘∗ , denoted by 𝑌𝑌𝑖𝑖′, 

is regarded as the bias-corrected SPE and the associated credible intervals (e.g., 2.5% and 97.5% 

quantiles) is used for predictive uncertainty. In Step 2, the estimation process in a Bayesian 

framework is similar to that described in Stage 1. After all parameters are estimated, as similar to 

the Bayesian inference in Stage 1, the blended SPE at any site and time can be derived with the 

bias-corrected SPE and corresponding weights using the MCMC iterations. 

 

In the revised manuscript, the TSB model structure, parameter estimation and Bayesian inference 

are reorganized in “Section 3.1 TSB” of the “Methodology” part (Lines 94-185). In addition, the 

parameter estimates are analyzed in “Section 4.1 Parameter estimates” of the “Result” part (Lines 

226-237), where Figures 4 and 5 shown below are the PDF curves of posterior parameter sets in 

the bias-correction and data merging stages. 



 
Figure 4: The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, 

(c) CMORPH and (d) IMERG in the bias correction process of Stage 1. 

 
Figure 5: The PDF curves of posterior parameter sets in the data fusion process of Stage 2. 

 

[2] In response to my comments, now in Section 2, it is mentioned that “The rain gauge data are 

spatially interpolated with a 0.25° x 0.25° resolution in the study region for each rainy day using 



a bilinear interpolation approach. The 34 grid cells with the gauge sites are assumed as ground 

references (GR) in the blending process.” This poses a serious limitation on the analysis. Given 

the complexity of the region, a simple bilinear interpolation approach is hard to justify. Look at 

figure 1, the elevation changes from 785 to 6252. The rain gauges stations are also far from each 

other, they are not dense. 

Response: We thank the reviewer for this critical comment. We admit that the rain gauge stations 

are not very dense in the study area, but a denser ground network is not available in the short time. 

To address this significant concern, the China Gauge-based Daily Precipitation Analysis (CGDPA) 

at 0.25° and daily resolutions is replaced as the source of ground information in this study. The 

CGDPA is developed with a dense gauge network including 2400 rain gauges in mainland China 

using a climatology-based optimal interpolation and topographic correction algorithms (Shen and 

Xiong, 2014). The 34 grid cells with the gauge sites are assumed as ground references (GR) in the 

blending process. We have also rephrased the relevant statement in the revised manuscript (Lines 

86-92).   

Shen, Y. and Xiong, A.: Validation and comparison of a new gauge-based precipitation analysis 

over mainland China. Int. J. Climatol., 36, 252-265, 2016. 

[3] In response to my comments, Authors wrote that “This study aims to develop a newly TSB 

algorithm on the multi-satellite precipitation data fusion in a certain time in regions of interest. 

Given that the larger challenge in the TP is to provide more accurate rainfall in a spatial domain, 

we are trying to overcome the shortage of limited rain gauge network based on the available SPE 

with spatial advantage using the TSB method in the NETP as a demonstration purpose. We agree 

that the satellite data are available for several years, but the exploration of long-term periods for 

the TSB method is another critical issue, e.g., the consideration of time impact on the fusion result.” 

This response is hardly justified because Authors can repeat the validation for other years, 

especially when datasets are online available. Without this, I would have low confidence in most 

of the discussion in the result section. 

Response: In the revision, the model performance is also validated with other years (2010-2013) 

as required by this reviewer. To address the reviewer’s concern, model validation is performed 

under two scenarios: Scenario 1 will validate the model in space based on the data of the same 

period in validation stations (i.e., the 7 red grids in Figure 1), and Scenario 2 will validate the 

model in time based on the data of warm season from 2010 to 2013 at the same 27 black grids in 



Figure 1. In addition, we consider a 10-fold cross validation in space by randomly selecting 7 sites 

for model validation, and the data of the remaining 27 sites as the training set. The performance of 

TSB approach is further compared with BMA and OOR in the two scenarios. 

 

The model justification of the TSB approach are rephrased in the “Section 4.2 Model validation 

under two scenarios”, “Section 4.3 Cross-validation”, “Section 4.4 Model comparison with BMA 

and OOR”. Herein, Table 2 shows the summary of statistical error indices (i.e., RMSE, NMAE, 

and CC) of the original SPE (PERCDR,3B42V7, CMORPH and IMERG), bias-corrected SPE 

(BC-PER, BC-V7, BC-CMO and BC-IME), and blended SPE under two scenarios. More details 

can be found in Lines 239-311 in the revised manuscript. 

Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-

corrected and blended SPE in two scenarios in the NETP. 

Scenarios Product RMSE (mm/d) NMAE (%) CC 

Scenario 1 

PERCDR  7.15 70.2 0.382 

3B42V7 8.56 80.3 0.383 

CMORPH  6.25 60.6 0.556 

IMERG  6.60 62.9 0.506 

BC-PER 6.00 63.5 0.346 

BC-V7 5.83 61.4 0.408 

BC-CMO 5.43 56.3 0.533 

BC-IME 5.44 56.0 0.530 

 Blended SPE 5.36 54.6 0.570 

 

 

 

 

Scenario 2 

PERCDR  9.19 79.3 0.261 

3B42V7 8.38 71.3 0.403 

CMORPH  7.20 61.9 0.493 

IMERG  7.64 65.1 0.462 

BC-PER 7.03 64.5 0.253 

BC-V7 6.69 61.3 0.395 

BC-CMO 6.41 58.2 0.480 

BC-IME 6.44 57.7 0.470 

 Blended SPE 6.37 56.7 0.513 



 [4] Authors have tried to satisfy my comments by adding a small section on comparing the 

proposed approach with existing BMA and OOR approaches. There are no details on BMA and 

OOR. It is entirely left up to the readers to figure out all these from previous literature.  

I am repeatedly asking for details because the research topic which Authors are trying to address 

in this manuscript is extremely challenging. If the selection of distribution, parameter estimation 

etc. have known drawbacks then demonstrating better values of RMSE, MAE and CC does not 

prove the efficacy of the TSB approach. 

Response: We are thankful for this kind suggestion. The method details of BMA and ORR have 

been added in the “Sections 3.2 Comparison Model” in the revised manuscript as requested by this 

reviewer (Lines 186-209). In this study, the BMA approach makes use of four original satellite 

data and the corresponding GR data at the 27 black grids shown in Figure 1 in the warm season of 

2014 to estimate the optimal BMA weights. In Scenario 1, the BMA data are calculated based on 

the BMA weights and the original SPE from the 7 red grids in the warm season of 2014, and the 

OOR data are calculated based on the OOR method using the original SPE data from the 7 red 

grids in the warm season of 2014. In Scenario 2, the BMA data are calculated based on the BMA 

weights and the original SPE from the 27 black grids in the warm season from 2010 to 2013, and 

the OOR result are calculated based on the OOR method and the original SPE data from the 27 

black grids in the warm season from 2010 to 2013.  

 

The description of BMA and OOR is repeated below: 

“3.2 Comparison Model 

3.2.1 BMA  

The BMA method is a statistical algorithm that merges predictive ensembles based on the 

individual SPE at the training period in regions of interest. Here, the BMA result refers to the 

ensemble SPE. Based on the law of total probability, the conditional probability of the BMA data 

on the individual SPE is expressed as: 

𝑓𝑓�𝐵𝐵𝐵𝐵𝐵𝐵�𝑌𝑌1, … ,𝑌𝑌𝑝𝑝� = ∑ 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵|𝑌𝑌𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 ∙ 𝑤𝑤𝑖𝑖    (17) 

where 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵|𝑌𝑌𝑖𝑖) is the predictive PDF given by the individual SPE 𝑌𝑌𝑖𝑖 and 𝑤𝑤𝑖𝑖 is the 

corresponding weight. The log-likelihood function 𝑙𝑙 is applied to calculate the BMA parameter 

set 𝝑𝝑, which is written as: 

𝑙𝑙(𝝑𝝑) = 𝑙𝑙𝑙𝑙𝑙𝑙 �∑ 𝑤𝑤𝑖𝑖
𝑝𝑝
𝑖𝑖=1 × 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵|𝑌𝑌𝑖𝑖)�                                 (18) 



It is assumed that 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵|𝑌𝑌𝑖𝑖) follows a Gaussian distribution with its parameters as 𝜃𝜃𝑖𝑖, and 

BMA is ideally close to GR at any site and time. Eq. (18) is written as: 

𝑙𝑙(𝝑𝝑) = 𝑙𝑙𝑙𝑙𝑙𝑙 (∑ 𝑤𝑤𝑖𝑖
𝑝𝑝
𝑖𝑖=1 × 𝑔𝑔(𝐺𝐺𝐺𝐺|𝜃𝜃𝑖𝑖))               (19) 

where 𝑔𝑔(∙) stands for Gaussian distribution, and 𝝑𝝑 = {𝑤𝑤𝑖𝑖,𝜃𝜃𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑝𝑝}. The optimal BMA 

parameters 𝝑𝝑 are calculated by maximizing the log likelihood function using the expectation–

maximization algorithm. In this study, the training period is set as the warm season of 2014 in 

the NETP. Before the execution of the BMA method, both GR and SPE data are pre-processed 

using the Box-Cox transformation to ensure 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵|𝑌𝑌𝑖𝑖) close to Gaussian distribution. As the 

BMA weights, 𝑤𝑤𝑖𝑖, 𝑖𝑖 = 1, . . . ,4 are obtained, the BMA data is calculated by weighted sum of the 

original SPE at any site and time. More details of the BMA method can be learned from Ma et 

al. (2018). 

3.2.2 OOR  

The OOR method is defined as the arithmetic mean of the individual SPE by removing the 

feature with the largest offset. It is written as:  

𝑂𝑂𝑂𝑂𝑂𝑂 = 1
𝑝𝑝−1

∑ 𝑌𝑌𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1                 (20) 

where 𝑌𝑌𝑖𝑖 is the individual SPE, 𝑝𝑝 is the number of SPE. In this experiment, the original SPE with 

the largest offset among the individuals is removed and the average of the remaining SPE is 

regarded as the OOR result in the regions of interest.” 
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Abstract. Substantial biases exist in the satellite precipitation estimates (SPE) over complex terrain regions and it has always 15 

been a challenge to quantify and correct such biases. The combination of multiple SPE and rain gauge observations would be 

beneficial to improve the gridded precipitation estimates. In this study, a two-stage blending (TSB) approach is proposed, 

which firstly reduces the systematic errors of each original SPE based on a Bayesian correction model, and then merges the 

bias-corrected SPE with a Bayesian Bayesian weighting model. In the first stage, the gauge-based observations are assumed 

as a generalized regression function of SPE and terrain feature. In the second stage, the relativeSPE weights of bias-corrected 20 

SPE are calculated based on the associated performances relative towith ground references. The proposed TSB method has the 

ability to exert benefits from the bias-corrected SPE in terms of higher performance, and mitigate negative impacts from the 

ones with lower quality. In addition, Bayesian analysis analysis is applied in the two phases by specifying the prior distributions 

on model parameters, which enables to produce the posterior ensembles associated with their predictive uncertainties. The 

performance of the proposed TSB method is evaluated with independent validation validation gridsdata in the warm season of 25 

2010-2014 4 in the northeastern Tibetan Plateau. Results show that the blended SPE is significantly greatly improved compared 

to the original SPE, especially even in the heavy rainfall events. . This study can also be expanded as a data fusion framework 

in the development of high-quality precipitation products in any regions of interest. 

1 Introduction 

High-quality precipitation data is fundamental to understand the regional and global hydrological processes. However, it is 30 

still difficult to acquire accurate precipitation information in the mountainous regions, e.g., Tibetan Plateau (TP), due to limited 
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ground sensors (Ma et al., 2015). The satellite sensors can provide precipitation estimates at a large scale (Hou et al., 2014), 

but performances of available satellite products vary among different retrieval methods and climate areas (Yong et al., 2015; 

Prat and Nelson, 2015; Ma et al., 2016). Thus, it is suggested to incorporate precipitation estimates from multiple sources into 

a fusion procedure with a full consideration of the strength of individual members and associated uncertainty. 35 

 

Precipitation data fusion was initially reported by merging radar-gauge rainfall in the mid-1980s (Krajewski, 1987). The Global 

Precipitation Climatology Project (GPCP) was an earlier attempt for satellite-gauge data fusion, which adopted a mean bias 

correction method and an inverse-error-variance weighting approach to develop a monthly, 0.25° global precipitation data 

(Huffman et al., 1997). Another popular dataset, the Climate Prediction Center Merged Analysis of Precipitation (CMAP), 40 

included global monthly precipitation with a 2.5° x 2.5° spatial resolution for a 17-year period by merging gauges, satellites 

and reanalysis data using the maximum likelihood estimation method (Xie and Arkin, 1997). Since then, several blending 

approaches have been developed to generate gridded rainfall product with higher quality by merging gauge, radar and satellite 

observations (e.g., Li et al., 2015; Beck et al., 2017; Xie and Xiong, 2011; Yang et al., 2017; Baez-Villanueva et al., 2020). 

Overall, those fusion methods follow a general concept by eliminating biases in satellite/radar-based data and then merging 45 

the bias-corrected satellite/radar estimates with point-wise gauge observations. However, these efforts might be insufficient 

for quantifying the predicted data uncertainty. Some blended estimates are also partially polluted by the poorly performed 

individuals (Tang et al., 2018).  

 

This paper develops a new blending data fusion approach method that enhances the quantitative modelling of individual error 50 

structures, prevents potential negative impacts from lower-quality members, and enables an explicit description of the model’s 

predictive uncertainty. In addition, a Bayesian concept for accurate rainfall estimation is proposed based on these assumptions. 

The Bayesian analysis has the advantage of a statistically post-processing idea that could yield a predictive distribution with 

quantitative uncertainty (Renard, 2011; Shrestha et al., 2015). For instanceexample, a Bayesian kriging approach, which 

assumes a Gaussian process of precipitation at any location and considers the elevation a covariate, is developed for merging 55 

monthly satellite and gauge precipitation data (Verdin et al., 2015). A dynamic Bayesian model averaging (BMA) method , 

which shows better skill scores than the existing One-outlier removed (OOR) method, is applied for satellite precipitation data 

merging fusion across the TP (Ma et al., 2018; Shen et al., 2014). Given the flexible distribution of challenges of multiple 

sources of quantifying precipitation biases in regions with complex terrain (Derin et al., 2019), continuous efforts are required 

to exert the potential merit of Bayesian approach analysis on this critical issue. 60 
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In this paperstudy, a two-stage blending (TSB) approach is described proposed for combining merging multiple satellite 

precipitation estimates (SPE) and point-based rain gaugeground observations. The experiment is performed in the warm season 

(from May to September) of during 2010-2014 in the northeastern TP (NETP), where a relatively denser network of rain 

gauges is available compared to other regions of TP. The proposed TSB approach method is expected to help with the 65 

exploration of multi-source/scale precipitation data fusion in other regions with complex terrain.  

 

The remainder of this paper is organized below: Section 2 describes the experiment including the study region and precipitation 

data sets. Section 3 details the methodology, including the proposed TSB approach, and two existing fusion methods (i.e., 

BMA and OOR). Results and discussions are presented in Sections 4 and 5, respectively. The primary findings are summarized 70 

in Section 6. 

2 Study area and dataset 

The study domain is located in the upper Yellow River basin of NETP (Fig. 1). As shown in the 90-m digital elevation data, 

the elevation altitude ranges from 785 m in the northeast to 6252 m in the southeast. The total annual precipitation is around 

500 mm and the annual mean temperature is 0.7°C (Cuo et al., 2013). To avoid snowfall contamination on the gauge 75 

observation in the cold season, satellite and ground precipitation data from the warm season (May to September) of 2010 to 

2014 are collected for the case study.To avoid snowfall contamination on the rain gauge observation in the cold season, the 

warm period from May 1 to September 30 in 2014 is selected for demonstration purpose.  

 

Four mainstream SPE are used, including Precipitation Estimation from Remotely Sensed Information using Artificial Neural 80 

Networks - Climate Data Records (PERCDR) (Ashouri et al., 2015), Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA) 3B42 version 7 (3B42V7) (Huffman et al., 2007) , National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Centre (CPC)  Morphing Technique Global Precipitation Analyses Climate 

Prediction Center (CPC) Morphing technique for the bias-corrected research product version 1.0 (CMORPH) Version 1 

(CMORPH) (Xie et al., 2017Joyce et al., 2004), and the Integrated Multi-satellitE Retrievals for the Global Precipitation 85 

Measurement (GPM) mission V03 V06 Level 3 final run product (IMERG) (Huffman et al., 2018). The basic information of 

SPE is shown in Table 1. As thThe IMERG has a 0.10° x 0.10° resolution, and other SPE have a spatial resolution of 0.25° x 

0.25°. To eliminate the scale difference in the fusion process, the IMERG is resampled from 0.10° to 0.25° using the nearest 

neighbour interpolation method in advance.  

 90 
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The China Gauge-based Daily Precipitation Analysis (CGDPA) is used as the ground precipitation sources. It is developed 

based on a rain gauge network of 2400 gauge stations over Mainland China using a climatology-based optimal interpolation 

and topographic correction algorithms (Shen and Xiong, 2014). The 34 grid cells with the gauge sites in the regions of interest 

are assumed as ground references (GR), andA ground network including 34 rain gauges are used in this study. The gauge data 

are carefully checked to ensure its creditability (Shen and Xiong, 2016). Aall of of them the grid cells are independent from 95 

the Global Precipitation Climatology Center (GPCC) stations, which are used for bias correction of the TRMM/GPM-era data 

(e.g., 3B42V7 and IMERG), and CMORPH (Huffman et al., 2007; Hou et al., 2014; Joyce et al., 2004Xie et al., 2017).  

The rain gauge data are spatially interpolated with a 0.25° x 0.25° resolution in the study region for each rainy day using a 

bilinear interpolation approach. The 34 grid cells with the gauge sites are assumed as ground references (GR) in the blending 

process. In addition, the GR are randomly classified into two parts: the black grids are used for training the model, and the red 100 

ones are used for model verification (Fig. 1). In order to clarify the TSB method, the selection of training cells is randomly 

repeated 10 times for the GR, and the remaining ones are used for model validation. Meanwhile, the TSB method is applied 

on a heavy rainfall event that occurred on September 22, 2014 to quantify its performance in extreme rainfall scenario. Local 

recycling plays as a premier role for the moisture sources of rainfall extremes in the NETP (Ma et al., 2020a). The September 

22 rain case is a typical storm that can explain the local heavy rainfall patterns in the warm season. Meanwhile, the TSB 105 

method is applied on a heavy rainfall event that occurred on September 22, 2014 to quantify its performance in extreme rainfall 

scenario. The TSB approach is also compared with two existing fusion methods, i.e., BMA and One-outlier removed (OOR), 

which were previously applied for SPE data fusion in the TP (Ma et al., 2018; Shen et al., 2014). 

3 Methodology 

3.1 The TSB algorithm 110 

3.1 Overview 

This algorithm aims at developing a multi-source data merging framework to provide the best-available gridded precipitation 

product with GR and SPE in the region of interest. Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at the GR cell s and the tth day. 

The original SPE and bias-corrected SPE are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡) and (𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡)) at the 

same grid and time. For simplicity, they are respectively replaced by 𝑅, (𝑌1, 𝑌2,…, 𝑌𝑝), and (𝑌1
′, 𝑌2

′,…,𝑌𝑝
′). The subscript p 115 

implies the number of SPE, and PERCDR, 3B42V7, CMORPH and IMERG refer to 𝑌1, 𝑌2, 𝑌3, 𝑌4, respectively.  
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The diagram of the TSB method is shown in Figure 2. Stage 1 is designed to reduce the bias of the original SPE based on the 

GR at the training sites with a Bayesian correction (BC) procedure. In Stage 2, a Bayesian weighting (WS) model is used to 

merge the bias-corrected SPE. 120 

 

3.1.1 Bias correction 

(a) Model structure 

Stage 1 is designed to mitigate the bias of the original SPE based on the GR at the training sites with a Bayesian correction 

(BC) procedure, where the assumption of probabilistic distribution for GR conditional on each SPE is not limited to Gaussian. 125 

Given complex terrain and 0.25° grid resolution, the topography is added as a covariate in the BC process. In the second stage, 

a Bayesian weight (BW) model is used to merge the bias-corrected SPE. Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at the 

GR cell s and the tth day. The original SPE and bias-corrected SPE of PERCDR, 3B42V7, CMORPH and IMERG at the GR 

cell s and the tth day are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡)  and (𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡) ), respectively. For 

simplification purpose and without losing generality, these data at a particular GR cell and day will be denoted by 𝑅, (𝑌1, 𝑌2, 130 

𝑌3 , 𝑌4 ), and (𝑌1
′, 𝑌2

′ , 𝑌3
′ , 𝑌4

′ ). While for all GR cells and days, they will be denoted in bold R, (𝒀𝟏, 𝒀𝟐, 𝒀𝟑 , 𝒀𝟒 ), and 

(𝒀𝟏
′ , 𝒀𝟐

′ , 𝒀𝟑
′ ,𝒀𝟒

′ ). The BW model can exert benefits from bias-corrected SPE with high performance and reduce poor impacts 

from the ones with lower quality. It also produces blended SPE with predictive uncertainty. The details of the TSB algorithm 

are described in Sections 3.2 and 3.3, respectively. 

 135 

3.2 Stage 1: Bias correction 

 

In this sStage 1, we perform on a conditional modelling of GR on each SPE, i.e., on the probabilistic distribution 𝑓(𝑅) at the 

training sets to improve the accuracy of the original SPE. Given that an appropriate assumption of 𝑓(𝑅) is necessary, A flexible 

assumption (e.g., Lognormal, Gaussian, or Student’s t distribution) for bias characteristics between GR and SPE is proposed. 140 

Given various SPE at different training sites, the specific probabilistic function is not limited to a certain distribution. Tthe 

goodness-of-fit of the Lognormal, Gaussian, and Student’s tGamma distribution for the bias between GR and SPE is examined 

graphically by using a probabilityquantile-quantileprobability (PP) plot at the training sets (Fig. 3). It is found that the usage 

of a Gamma distribution is more reliable as the associated PP plot isthey are closer to the diagonal red line than the others. For 

each satellite product, the Gamma distribution A Student’s t distribution is thus adopted with its mean parameter expressed as 145 

a linear regression of SPE. It is parameterized as follows: 
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𝑅~𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐺𝑎𝑚𝑚𝑎 (𝛼𝜈𝑖 ,
𝛼𝑖

𝜇𝑖
𝜇𝑖 , σ𝑖)                                                                               (1) 

where 𝑖 is the number of satellite product. 𝛼𝑖 , 𝜇𝑖  and 
𝛼𝑖

𝜇𝑖
 are the shape, mean and rate parameters of the Gamma distribution, 

respectively. Let the ith SPE 𝑌𝑖 and the associated terrain feature Z be covariates related to the GR, the mean 𝜇𝑖  in Eq. (1) can 

be described with generalized linear regression of covariates 𝑌𝑖 and Z, which is written as follows: 150 

log (𝜇𝑖) = δα𝑖 + β𝑖 ∗ log (𝑌𝑖) + γ𝑖 ∗ 𝑍                                                                                   (2) 

where 𝑍, where 𝜈𝑖  is known as degree of freedom, 𝜇𝑖  and σ𝑖  stand for sample mean and variance, respectively; the parameter 

𝜇𝑖  is correlated with the intensity value of the ith SPE (𝑌𝑖) and associated terrain feature (Z). To ignore the scale factor, the 

elevation feature in Eq. (2) is normalized and its value rangesing from 0 to 1, is the normalized elevation feature of each site 

after the normalization. 𝛉𝒊𝛉 = {𝜈𝑖 , α𝑖, δ𝑖 , β𝑖 , γ𝑖 , σ𝑖} (𝑖 = 1, … , 4) is summarized as a parameter set, which enables to write the 155 

likelihood function or probability density function (PDF) from Eqs. (1) and (2) conditional on 𝛉 and 𝑌𝑖  as: 

𝑓(𝑅|𝛉, 𝑌𝑖) =
Γ((𝜈𝑖+1)/2)

Γ(𝜈𝑖/2)
 

1

√𝜈𝑖𝜋 σ𝑖
(1 +

1

𝜈𝑖
(

𝑅−(α𝑖+β𝑖∗𝑌𝑖+γ𝑖∗𝑍)

σ𝑖
)2)−(𝜈𝑖+1)/2                                (3) and will be estimated in Bayesian 

framework. In the following, 𝒁 will be denoted as the collection of the normalized elevation feature for all training data. 

 

According to the Bayes’s theorem, the posterior probability density function (PDF)distribution of parameter set 𝛉𝒊𝛉 given GR 160 

and SPE data, and the prior distribution of parameters 𝑓(𝛉) can be is expressed as: 

𝑓(𝛉𝒊𝛉|𝐑, 𝒀𝒊, 𝒁) ∝ 𝑓(𝑹|𝛉𝒊𝛉, 𝒀𝒊, 𝒁)𝑓(𝛉𝒊𝛉)                                                                     (43) 

where 𝑓(𝛉𝒊) is the prior distribution and implies parameter information other than GR and SPE data, and 𝑓(𝑹|𝛉𝒊, 𝒀𝒊, 𝒁) is the 

likelihood function that defines the conditional probability of GR on the SPE and elevation. The priors of 𝑓(𝛉𝒊) are initialized 

as Cauchy distribution with 𝛼𝑖  in terms of its location at zero and scale as σ𝛼𝑖
in Eq. (4), and Gaussian distribution with δ𝑖, β𝑖 , γ𝑖  165 

in terms of its mean at zero and standard deviation (SD) at σδ𝑖
 σβ𝑖

 σγ𝑖
 in Eqs. (5) - (7), respectively. 

𝛼𝑖~𝐶𝑎𝑢𝑐ℎ𝑦(0, σ𝛼𝑖
)                  (4) 

δ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σδ𝑖
)                                                                 (5) 

β𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σβ𝑖
)                                                                 (6) 

γ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, σγ𝑖
)                                                                 (7) 170 
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Given that the assumption of the weakly informative priors ensures the Bayesian inference in an appropriate range (Ma et al., 

2020b), the hyper-priors of σ𝛼𝑖
, σδ𝑖

, σβ𝑖
, σγ𝑖

 are specified as 2, 10, 10, 10, respectively.  

 

(b) Parameter estimation 

The estimation of the posterior distribution 𝑓(𝛉𝒊θ|𝐑, 𝒀𝒊, 𝒁) in Eq. (43) becomes difficultis challenging as its dimension grows 175 

with the number of parameters (Renard, 2011; Ma and Chandrasekar, 2020). Robertson et al. (2013) obtained the maximum a 

posteriori (MAP) solution for the model parameters using a stepwise method. Here, the Markov Chain Monte Carlo (MCMC) 

technique with is used to address this issue (Gelman et al., 2013)its sampling algorithm as the No-U-Turn Sampler (NUTS) 

variant of Hamiltonian Monte Carlo in the Stan program is performed to address this issue (Gelman et al., 2013). The sampling 

records of model parameters are obtained based on the training data in the warm season of 2014 in the NETP. Since we only 180 

have four parameters in this model, the MCMC converges very quickly. Thus, we run a chain of length 2000, removing the 

first 1000 iterations as the warm-up period and retaining the second 1000 iterations. The parameter samples of these 1000 

iterations are the samples of the posterior distribution 𝑓(𝛉𝒊|𝐑, 𝒀𝒊, 𝒁).Figures 3a to 3dPDF in terms of PERCDR, 3B42V7, 

CMORPH and IMERR in this stage. Given that the assumption of the weakly informative priors ensures the Bayesian inference 

in an appropriate range (Ma et al., 2020b), the priors of 𝑓(𝛉) are initialized as uniform distribution with α𝑖, β𝑖 , γ𝑖  at real 185 

numbers in Eq. (5), and with 𝜈𝑖, σ𝑖  at a lower-bound zero of real numbers in Eq. (6).  

α𝑖 , β𝑖 , γ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−∞, +∞)                                                                (5) 

𝜈𝑖 , σ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, +∞)                                                                    (6) 

 

 190 

(c) Bayesian inference 

Based on the estimated posterior distribution of parameter set 𝛉𝒊𝛉 of each SPE, the next step is to calculateing the bias-

corrected SPE 𝑅∗ at  any new site is of interest. IIt can be quantitatively simulated from its posterior distribution in Eq. (78) 

using the associatedoriginal SPE 𝑌𝑖
∗, normalized elevation 𝑍𝑖

∗ and training data 𝑹, 𝒀𝒊, Z: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁) = ∫ 𝑓(𝑅∗, 𝛉𝒊𝛉|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝒊, 𝒁) 𝑑𝛉𝒊𝛉                                                           (78)  195 

Following the rule of joint probabilistic distributions, the right term iinside the integral of Eq. (78) can beis written as: 

𝑓(𝑅∗, 𝛉𝒊𝛉|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝒊, 𝒁) = 𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁, 𝛉𝒊𝛉)𝑓(𝛉𝒊𝛉|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁𝑌𝑖
∗, 𝑅, 𝑌𝑖)                                               (89) 
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Given that the new bias-corrected SPE 𝑅∗ 𝑌𝑖
∗ is independent with 𝑅 and 𝑌𝑖  to the training data, the first term of the right side 

in Eq. (89) is transformed as: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁, 𝛉𝒊𝑌𝑖
∗, 𝑅, 𝑌𝑖 , 𝛉) = 𝑓(𝑅∗|𝑌𝑖

∗, 𝑍𝑖
∗, 𝛉𝒊𝛉)                                                     (            (910) 200 

Since the parameters 𝛉𝒊𝛉 are only dependent upon the training data 𝑹, 𝒀𝒊, 𝒁, the second term of the right side in Eq. (89) is 

expressed as: 

𝑓(𝛉𝒊|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁)(𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = 𝑓(𝛉𝒊𝛉|𝑹, 𝒀𝒊, 𝒁)                                                                    (1011) 

Therefore, the posterior predictive distribution PDF of 𝑅∗ in Eq. (78) is written below: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑍𝑖

∗, 𝑹, 𝒀𝑖 , 𝒁𝑌𝑖
∗, 𝑅, 𝑌𝑖) = ∫ 𝑓(𝑅∗|𝑌𝑖

∗, 𝑍𝑖
∗, 𝛉𝒊𝑌𝑖

∗, 𝛉)𝑓(𝛉𝒊|𝑹, 𝒀𝒊, 𝒁)(𝛉|𝑅, 𝑌𝑖) 𝑑𝛉𝒊𝛉                                                  (1112) 205 

 

Since there is no general way to calculate the associated integral in Eq. (1112), the predictionit is performed again using the 

MCMC iterationsiterated samplings (Renard, 2011). As for each SPE, Aa numerical algorithm is suggested below:, where 

𝑛𝑠𝑖𝑚 is assumed asstands for the replicate of the post-convergence MCMC samples and is set as 1000 in the case study,. Thus, 

and tthe predicted samples for 𝑅∗ in Eq. (1112) are iterated (i k = 1:, …, 𝑛𝑠𝑖𝑚) 𝑛𝑠𝑖𝑚) as follows:  210 

1) For the 𝑖𝑡ℎ satellite product, randomly select a parameter sampleCalculate the model parameters 𝛉𝒊𝛉 ={α𝑖, δ𝑖 , β𝑖 , γ𝑖} from 

the MCMC samples Eqs. (1) to (6); 

2) Compute the mean parameter 𝜇𝑖
∗ from the regression model of Eq. (2), i.e., log 𝜇𝑖

∗ = α𝑖 + β𝑖 ∗ 𝑌𝑖
∗ + γ𝑖 ∗ 𝑍∗; 

32) Generate the derived quantitya value 𝑅𝑘
∗ 𝑅∗ from the posteriora  distribution 𝐺𝑎𝑚𝑚𝑎 (𝛼𝑖 ,

𝛼𝑖

𝜇𝑖
∗)of 𝑅∗ in Eq. (11)., where 

log (𝜇𝑖
∗) = δ𝑖 + β𝑖 ∗ 𝑌𝑖

∗ + γ𝑖 ∗ 𝑍∗; 215 

Repeating step 1 and 2 for 𝑛𝑠𝑖𝑚 times, the samples 𝑅𝑘
∗  (k = 1:𝑛𝑠𝑖𝑚) are regarded as the realizations of the distribution of the 

bias-corrected SPE associated to the satellite estimation 𝑌𝑖
∗ and normalized elevation 𝑍∗. The mean value of the samples 𝑅𝑘

∗ , 

denoted by 𝑌𝑖
′, is regarded as the bias-corrected SPE and the associated credible intervals (e.g., 2.5% and 97.5% quantiles) is 

used for predictive uncertainty. 

 220 
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3.1.3 2 Stage 2: Data merging 

Ideally, the blended SPE (B) should be close to GR, i.e., R. Given the Gamma distribution of GR in Step 1, the blended SPE 

can be parameterized below: In Stage 1, the median value of the posterior samples is used as the bias-corrected SPE. Here, we 

redefine the bias-corrected SPE as 𝑌𝑖
′(𝑖 = 1,2, … , 𝑝). The formulas of blending the bias-corrected SPE are shown below: 

𝐵~𝐺𝑎𝑚𝑚𝑎 (𝛼𝐵 ,
𝛼𝐵

𝜇𝐵
)                                                                               (13) 225 

where 𝛼𝐵 , 𝜇𝐵 and 
𝛼𝐵

𝜇𝐵
 are the shape, mean and rate parameters, respectively. In this step, the bias-corrected SPE of 4 satellites 

are merged with weight parameters 𝑤𝑖(𝑖 = 1, . . . , 4), and 𝜀 is the residual error. The data fusion of bias-corrected SPE specified 

in the log scale is defined as follows: 

 

log (𝜇𝐵𝐵) = ∑ log (𝑌𝑖
′)

𝑝4
𝑖=1 ∗ 𝑤𝑖 +  𝜀                                                                              (1214) 230 

∑ 𝑤𝑖
4
𝑖=1 = 1            (15) 

 

∑ 𝑤𝑖
𝑝
𝑖=1 = 1                                                                             (13) 

𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜀𝜎)                           (1416) 

 235 

𝑤𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1, … , 𝑝                                                      (15) 

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, +∞)                                                                   (16) 

where B is the blended SPE; 𝑤𝑖  (i=1,2,…,p) stands for the relative weight of the ith bias-corrected SPE; 𝜀 is the residual error. 

Ideally, the blended SPE at the training site s and time t should be close to GR, i.e., R(s, t). Thereby, model all parameters 𝛅, 

including 𝛼𝐵 , 𝑤𝑖(𝑖 = 1,2, . . 𝑝4) and 𝜎𝜀𝜎 will can be estimated based onfrom the GR and bias-corrected SPE at the training 240 

sites. With regard to the conditional distribution of blended SPE on the bias-corrected SPE, we propose a Gaussian distribution 

for the residual error modelling. The corresponding PDF is written as follows: 
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  𝑓(𝐵|𝛅) =
1

√2𝜋𝜎
exp (−

1

2
(

𝐵−∑ 𝑌𝑖
′𝑝

𝑖=1 ∗𝑤𝑖

𝜎
)2)                                                     (17) 

The estimation calculation process of 𝛅 in a Bayesian framework is similar to theat  parameter estimation described in Stage 

1the Stage 1. . Figure 5PDFAfter allthe parameters 𝛅 are estimated, as similar to the Bayesian inference in Stage 1, similar to 245 

Eqs. (7) to (11), the blended SPE at any site and time t  can be derived with the bias-corrected SPE and corresponding weights 

using the MCMC iterations.  

Finally, we can obtain spatial patterns of blended SPE in terms of the median, standard deviation (SD) and associated credible 

intervals (e.g., 5% and 95% quantiles) in the regions of interest. 

 250 

3.2 Comparison model 

 3.2.1 BMA 

The BMA method is a statistical algorithm that merges predictive ensembles based on the individual SPE at the training period 

in regions of interest. Here, the BMA result refers to the ensemble SPE. Based on the law of total probability, the conditional 

probability of the BMA data on the individual SPE is expressed as: 255 

 𝑓(𝐵𝑀𝐴|𝑌1, … , 𝑌𝑝) = ∑ 𝑓(𝐵𝑀𝐴|𝑌𝑖)𝑝
𝑖=1 ∙ 𝑤𝑖               (17) 

where 𝑓(𝐵𝑀𝐴|𝑌𝑖) is the predictive PDF given by the individual SPE 𝑌𝑖 and 𝑤𝑖  is the corresponding weight. The log-likelihood 

function 𝑙 is applied to calculate the BMA parameter set 𝛝, which is written as: 

𝑙(𝛝) = log (∑ 𝑤𝑖
𝑝
𝑖=1 × 𝑓(𝐵𝑀𝐴|𝑌𝑖))                          (18) 

It is assumed that 𝑓(𝐵𝑀𝐴|𝑌𝑖) follows a Gaussian distribution with its parameters as 𝜃𝑖, and BMA is ideally close to GR at any 260 

site and time. Eq. (18) is written as: 

log log 𝑙(𝛝) = log (∑ 𝑤𝑖
𝑝
𝑖=1 × g(𝐺𝑅|𝜃𝑖))                               (19) 

where g(∙) stands for Gaussian distribution, and 𝛝 = {𝑤𝑖 , 𝜃𝑖 , 𝑖 = 1, … , 𝑝}. The optimal BMA parameters 𝛝 are calculated by 

maximizing the log likelihood function using the expectation–maximization algorithm. Before executing the BMA method, 

both GR and SPE data are pre-processed using the Box-Cox transformation to ensure that 𝑓(𝐵𝑀𝐴|𝑌𝑖) (𝑖 = 1, . . . ,4) is close to 265 

Gaussian distribution. As the BMA weights, 𝑤𝑖 , 𝑖 = 1, . . . ,4 are obtained, the BMA data is calculated by weighted sum of the 

original SPE at any site and time. More details of the BMA method can be found in Ma et al. (2018). 
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3.2.2 OOR  

The OOR method is defined as the arithmetic mean of the individual SPE by removing the feature with the largest offset. It is 270 

written as:  

𝑂𝑂𝑅 =
1

𝑝−1
∑ 𝑌𝑖

𝑝−1
𝑖=1            (20) 

where 𝑌𝑖 is the individual SPE, 𝑝 is the number of SPE. The original SPE with the largest offset among the satellite products 

is removed and the average of the remaining SPE is regarded as the OOR result. 

3.3 Error analysis 275 

To assess the performance of the proposed TSB method, several statistical error indices including root mean square errors 

(RMSE), normalized mean absolute errors (NMAE), and the Pearson’s correlation coefficients (CC) are used in this study. 

The specific formulas of these metrics can be found in the literature (e.g., Chen et al., 2019 among others)below.:  

𝑅𝑀𝑆𝐸 = √< (𝑆𝑖𝑚 − 𝑂𝑏𝑠)2 >      (21) 

𝑁𝑀𝐴𝐸 =
<|𝑆𝑖𝑚−𝑂𝑏𝑠|>

<𝑂𝑏𝑠>
× 100%     (22) 280 

𝐶𝐶 =
∑[(𝑆𝑖𝑚−<𝑆𝑖𝑚>)(𝑂𝑏𝑠−<𝑂𝑏𝑠>)]

√∑(𝑆𝑖𝑚−<𝑆𝑖𝑚>)2√∑(𝑂𝑏𝑠−<𝑂𝑏𝑠>)2
    (23) 

where Sim and Obs stand for the simulated and observed data, respectively; the angle brackets stand for sample average.  

 

4 Results 

In the experiment, model parameters are calibrated on the daily precipitation of warm season in 2014, where GR data at the 285 

27 black grids in Figure 1 are randomly selected for training the model. The model validation is performed under two scenarios: 

Scenario 1 will validate the model in space based on the data of the same period in validation stations (i.e., the 7 red grids in 

Figure 1), and Scenario 2 will validate the model in time based on the data of warm season from 2010 to 2013 at the same 27 

black grids in Figure 1. In addition, we consider a 10-fold cross validation in space by randomly selecting 7 sites for model 
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validation, and the data of the remaining 27 sites as the training set. The performance of TSB approach is further compared 290 

with BMA and OOR in the two scenarios. 

4.1 Parameter estimates 

Figures 4 and 5a to 4d shows the posterior distribution curves of the posterior parameters in Stage 1 and 2, respectively. As 

for each parameter in the bias-corrected process, the individual SPE including PERCDR, 3B42V7, CMORPH and IMERG 

shows similar PDF pattern (Figs. 4a to 4d). in terms of PERCDR, 3B42V7, CMORPH and IMERR in this step, respectively. 295 

For each parameter, the individual SPE shows similar PDF curve. It showsseems that the bias structures of the original SPE 

have similar characteristics. For all SPE, the distribution mass of parameter β𝑖  are all on the right side of zero, which implies 

that a systematic bias exists for all satellite productsSPE. When looking at the effects of In addition, the elevation, the posterior 

distribution of parameter γ𝑖 for PERCDR, 3B42V7 and CMORPH (Figs. 4a, 4b and 4c) have value zero in the middle range 

of the distribution, which implies that elevation may have little impacts on these three satellite products. While forranges from 300 

-0.5  IMERG in Fig. 4d, the distribution mass of parameter γ𝑖  is mostly on the right side of zero, which implies a clear effect 

of elevation on this satellite product. to 0.5 among the satellite products, where the PDF pattern is similar between 3B42V7 

and IMERG. It implies that the effect of elevation feature on the bias-corrected SPE has similar performance for 3B42V7 and 

IMERG. In the data mergingfusion step (Fig. 5), IMERG has the highest weight and PERCDR has the lowest weight among 

the four bias-corrected SPE. Moreover, 3B42V7 and PERCDR have similar contribution on the blended result (Fig. 5). 305 

Basically, the Bayesian analysis is able to simulate the parameter uncertainty as as compared with the traditionally statistical 

method. Figure 5 displays the PDF curves of the inferred posterior parameters in this step. It can be seen that the IMERG 

product has the highest weight and PERCDR has the lowest weight among the four bias-corrected SPE. 

 

To assess the performance of the proposed TSB method, several statistical error indices including root mean square errors 310 

(RMSE), normalized mean absolute errors (NMAE), and the Pearson’s correlation coefficients (CC) are used in this study. 

The specific formulas of these metrics can be found in the literature (e.g., Chen et al., 2019 among others).  

 

4.1 2 Evaluation of the original, bias-corrected, and blended SPEModel validation under two scenarios 

 315 

Table 2 presents the summary of the statistical error indices including RMSE, NMAE and CC of the original (i.e., PERCDR, 

3B42V7, CMORPH and IMERG), bias-corrected (i.e., BC-PER, BC-V7, BC-CMO and BC-IME) and blended SPE under two 
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scenarios in the NETP. The sub-section 4.2.1 and 4.2.2 shows the performance of the model validation under Scenario 1 and 

2, respectively. 

4.2.1 Scenario 1 320 

 

In Scenario 1,  at the validation grids 

Compared to the GR, Tthe original SPE show large biases at the validation grids in the NETP during the warm season of 2014 

(Table 2). with  Their statistical error metrics includingthe RMSE, NMAE, and CC indices ranginge from 6.5925-8.0756 

mm/d, 630.26-80.3.5%, and 0.40382-0.5568, respectively (Table 2). 3B42V7 has the worst skill with the highest RMSE of 325 

8.0756 mm/d, and the highest NMAE of 80.3.5%, and the second lowest CC of 0.40383. CMORPHIMERG shows the best 

performance in terms ofwith the lowest RMSE of 6.25 mm/d, the lowest NMAE of 63.20.6% and the highest CC atof 0.5568, 

which presents its superiority compared with the other original SPE in the survey areaNETP.  

 

Based on the BC model, all the bias-corrected SPE (i.e., BC-PER, BC-V7, BC-CMO and BC-IME) have better agreements 330 

with GR compared with the original SPE at the validation grids in the experiment. Their RMSE scores range from 4.5.463 to 

5.06 mm/d, and decrease by 2713~371.38%, and their NMAE scores vary from 506.90 to 5863.75%, and decline by 197.11 to 

231.15%, respectively, compared with the original SPE. Meanwhile, their CC values range from 0.34106 to 0.56833 after bias 

adjustmentcorrection (Table 2). Considering Given that the linear assumption of mean parameter in the Student’s tGamma 

distribution at Stage 1in Stage 1 might fail to expect significant difference in the correlation, the CC value does not improve 335 

effectively for the bias-corrected SPE.  

 

After Stage 2With the BW model, the blended SPE is closer to the GR in terms of RMSE, NMAE and CC at 45.346 mm/h, 

4954.26%, and 0.60657, respectively, compared with both the original and bias-corrected SPE at the validation grid cells (Fig. 

4). The RMSE and NMAE values of the blended SPE decrease by 3414.13~6537.4% and 2710.1~41.132%, respectively, and 340 

the CC value increases by 6.72.4~5049.42%, accordingly, compared towith the original SPE (Table 2). In addition,As 

cCompared with the bias-corrected SPE,  the RMSE, NMAE and CC of the blended SPE increases by 51.14~140.28%, 

32.35~164.21%, and 56.98~647.8%, in terms of RMSE, NMAE and CC, respectively, compared with the bias-corrected SPE. 

It is foundproves that the blended SPE exhibits higher quality at the validation grids after Stage 2, due to the ensemble 

contribution of the bias-corrected SPE with their relative weights at 0.0192, 0.05238, 0.2895, and 0.6407, respectively (Fig. 345 

6a).. The BC-IME and BC-PER have the highest and lowest weights, respectively, and the contributions of BC-V7 and BC-

CMO on the blended SPE rank between BC-IME and BC-PER (Fig. 5a). The relative weight of BC-PER, BC-V7, BC-CMO 
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and BC-IME is 0.02, 0.038, 0.295, and 0.647, respectively. The BC-IME and BC-PER have the highest and lowest weights, 

respectively, and the BC-V7 and BC-CMO rank between BC-IME and BC-PER (Fig. 6a). As for the original SPE, it is found 

that there is an overestimation when the rainfall is less than 7.6 mm/d, and an underestimation when the rainfall is more than 350 

7.6 mm/d. Based on the proposed TSB approach, the blended SPE has beenis effectively droppedcloser towards the GR (Figs. 

6b and 6c) at the validation grids (Fig. 5b), especially for the rain intensity values less than 15 mm/d (Fig. 5c). Meanwhile, 

BC-PER seems to be clearly different from the other bias-corrected SPE, and to this point in the study has shown little value 

to be kept in consideration in the merging process. However, it is worth noting that PERCDR can in fact be informative and 

on a case by case basis. 355 

 

4.2.2 Scenario 2 

 Also, there is an overestimation in the original SPE but an underestimation in the blended SPE as the daily rainfall is more 

than 15 mm, partly because the BC process might over-correct the original SPE on the heavy rainfall. Overall, this TSB method 

has its ability to exert benefits from SPE in terms of higher performances and mitigate poor impacts from the ones with lower 360 

quality. Meanwhile, BC-PER seems to be clearly very different from the others, and to this point in the study has shown little 

value to be kept in consideration in the merging process. However, it is worth noting that PERCDR can in fact be informative 

and on a case by case basis. 

The proposed TSB approach is also examinedvalidated in Scenario 2, where the blended SPE shows better performance in 

terms of its RMSE, NMAE and CC at 6.37 mm/h, 56.7% and 0.513, respectively, as compared with both the original and bias-365 

corrected SPE. It shows that the original SPE including PERCDR, 3B42V7, CMORPH and IMERG have high RMSE and 

NMAE scores in terms of 7.20~9.19 mm/h and 61.9~79.3%, respectively, and low CC values in terms of 0.261~0.493. After 

the bias correction, the four satellite products have increased their performance with lower error indices than the original SPE. 

The RMSE indices of the bias-corrected SPE vary from 6.41 to 7.03 mm/h, and the corresponding NMAE and CC indices are 

from 57.7% to 64.5%, and from 0.253 to 0.48, respectively. Based on the data fusion process, the error indices of the blended 370 

SPE including RMSE, NMAE and CC are 6.37 mm/h, 56.7% and 0.513, respectively. It is found that the RMSE and NMAE 

values of the blended SPE decreased by 11.5~30.7% and 8.4~28.5%, respectively, and the CC value increases by 4.1~96.6% 

compared with the original SPE.  

As learned from the two validated scenarios, it proves that 

Overall, the TSB approach has the potential in improving the satellite rainfall accuracy, and it has its ability to exert benefits 375 

from SPE in terms of higher performances and mitigate poor impacts from the ones with lower quality.   
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The results presented in Figures 6 are an average assessment of the TSB algorithm at all the validation grids, which can possibly 

homogenize some individual feature.  

 

4.23 Cross-validation  Model clarification with random validation grids 380 

Figures 7 and 8 show the statistics of evaluation scores of RMSE, NMAE, and CC for the original SPE and blended estimates 

at the validation grids with 10 random split of the gauge locations in the warm season of 2014. For each test, 7 grid sites are 

randomly selected from the 34 grid cells and used for model verification, and the remaining 27 grid sites are used for training 

the model.         

 385 

 

 

As for the blended SPE, it performs similar scores at the validation grids among the 10-fold random testssamples,. butThe 

blended SPE shows better skills compared with the original SPE at each test in terms of RMSE, NMAE, and CC at 4.34~5.57 

mm/h, 49.2~61.7%, and 0.492~0.665, respectively, compared with the original SPE at each test (Fig. 7). Statistically, the mean 390 

values of RMSE, NMAE and CC for the blended SPE are 45.9875 mm/h, 547.91% and 0.55197, respectively (Table 3). The 

averaged improvement ratios of RMSE for the blended SPE are 3527.16%, 3325.7%, 190.6% and 132.1% compared to the 

PERCDR, 3B42V7, CMORPH and IMERG, respectively, and similar performance is seen from NMAE with the average 

improvement ratios of 294.85%, 3022.13%, 17.08% and 217.3%, respectively (Table 4). In summarytotal, tThe 10-fold cross 

validation random tests further clarify verified that the blended SPE has a higher accuracy of gridded precipitation  than the 395 

original satellite productswhich receives different credits from various SPE on an event basis. 

 

4.4 Model comparison with BMA and OOR 

To assess the performance of the proposed TSB approach, it is beneficial to compare the TSB result with the existing fusion 

approach. In this study, the BMA approach makes use of four original satellite data and the corresponding GR data at the 27 400 

black grids shown in Figure 1 in the warm season of 2014 to estimate the optimal BMA weights. In Scenario 1, the BMA data 

are calculated based on the BMA weights and the original SPE from the 7 red grids in the warm season of 2014, and the OOR 

data are calculated based on the OOR method using the original SPE data from the 7 red grids in the warm season of 2014. In 

Scenario 2, the BMA data are calculated based on the BMA weights and the original SPE from the 27 black grids in the warm 
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season from 2010 to 2013, and the OOR result are calculated based on the OOR method and the original SPE data from the 27 405 

black grids in the warm season from 2010 to 2013. Herein, we compare the blended SPE with both of the BMA and OOR 

predictions in two scenarios and their statistical error summary is shown in Table 5.  

 

In Scenario 1, the TSB method performs better skill scores with the RMSE, NMAE and CC values of 5.36 mm/d, 54.6%, and 

0.57, respectively, as compare with the BMA and OOR approaches. In addition, OOR shows the worst performance in terms 410 

of RMSE, NMAE, and CC at 6.22 mm/d, 59.7%, and 0.537, respectively. BMA shows better skill than OOR but worse skill 

than TSB, in terms of the RMSE, NMAE and CC values at 5.78 mm/d, 56.6% and 0.562, respectively. In Scenario 2, similar 

performance is found for the TSB approach, where it has lower RMSE (6.37 mm/d) and NMAE (56.7%) and higher CC (0.513) 

than both the OOR and BMA results. Basically, as compared with the two existing fusion algorithms (BMA and OOR) in the 

two validated scenarios, it confirms that the TSB method has an advantage for combining the original SPE and reducing the 415 

bias of the satellite precipitation retrievals.     

 

4.3 Model application in spatial domain 

It is important to explore the Bayesian ensembles at any unknown site in the study domain. Each SPE can capture the spatial 

pattern of daily mean precipitation in the warm season, but might fail in the representation of precipitation amount in the NETP 420 

(Fig. 9), partly because of the satellite retrieval bias in complex terrain and limited GR network. Here, the TSB approach is 

applied in spatial to obtain the blended SPE in terms of daily mean precipitation in the warm season of 2014 over the whole 

domain.  

 

There is an overestimation for most of the original SPE, and the bias of the blended SPE is reduced based on the TSB approach. 425 

It is found that the blended SPE shows a better performance in terms of magnitude and distribution in the study area (Fig. 10a). 

Higher values disappear from the map except in southwest corner. The possible reason is that daily mean rainfall is the highest 

in southwest corner for each SPE, and higher value still exists after the TSB process. Meanwhile, the predictive uncertainties 

including SD, 5% and 95% quantiles are displayed from Figures 10b to 10d in order to illustrate the fusion variance. 

 430 
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4.4 5 Model performance on a Model performance during a hheavy rainfall case  

Local recycling plays as a premier role for the moisture sources of rainfall extremes in the NETP (Ma et al., 2020a). The 

September 22, 2014 rain event is a storm that would represent the local heavy rainfall pattern in the warm season. Considering 

that Aaccurate precipitation on extreme weather is very important for flood hazard mitigation,. Wwe investigate the utility of 

thise proposed TSB approach on this a heavy rainfall event case of September 22, 2014 over the NETP to quantify its 435 

performance in extreme rainfall case (Fig. 9a). . TThe relative weights of BC-PER, BC-V7, BC-CMO, and BC-IME for the 

blended data are 0.4264, 0.1243, 0.11291 and 0.34015, respectively, on this particular heavy rainfall event (Fig. 9b). It is found 

that the IMERG data has the biggest contribution and the 3B42V7 and CMORPH data have nearly similar contribution for the 

blended SPE.. 

 440 

Table 56 reports the evaluation statistics reflecting the blended model performance during on this heavy rainfall case, where. 

It shows that tthe RMSE, NMAE and CC values of the original SPE range from 68.218~109.4824 mm/d, 470.6~592.58%, and 

0.68426~0.8205, respectively. As compared to the original SPE, the merged productblended SPE has lower RMSE of 45.123 

mm/d, and lower NMAE of 2731.45%, and higherer CC of 0.85037, respectively. In other words, tThe RMSE and NMAE 

values of the blended SPE decrease by 346.21~6043.64% and 32.53~5340.93%, respectively, and the CC index 445 

correspondingly increases by 3.4~23.9% on this heavy rainfall case compared to the original SPE.    

 

The performance of the blended model performanceTSB approach is further explored at three gauge cells (i.e., IDs 56171, 

5615273, 56182067) with the top three daily rainfall records on September 22, 2014 (Fig. 10a). Figure 120 shows the PDF 

curves of blended samples at the above three grid sites in this rainfall case. It demonstrates the blended performance SPE onhas 450 

the advantage in quantifying the predictive uncertainty on rainfall extremes at each gridsite. For example, Aat ID 56171, the 

estimated rainfall derived from the original SPE are 19.8 mm (PERCDR), 35.3 mm (3B42V7), 26 mm (CMORPH), and 4021.2 

mm (IMERG), respectively. 3B42V7 and IMERG shows an overestimation, while PERCDR and, CMORPH and IMERG 

underperform the daily rainfall at the corresponding pixel (Fig. 120a). Based on the TSB methodapproach, the median mean 

and SD values of the merging estimatesmerging estimates are 248.1 mm/d, and 4.4 mm/d, respectively. At IDs 5615273 and 455 

56182067, the median/SDmean values of the blended SPE are 24.3/5.026.2 mm/d and 19.721.9/4.5 mm/d, respectively, and 

they are very close to the GR with the daily amounts of 24.630.9 mm  and 238.17 mm, respectively (Figs. 120b and 102c). 

Overall, Tthese analyses reveal that the proposed TSB method algorithm canould not only quantify its predictive uncertainty, 

but also improve the daily rainfall amount even underon rainfall extremes.  

 460 
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4.4 66 Model application in a Model performance during a hspatial domain  

 

4.3 Model application in spatial domain 

It is important to explore the Bayesian ensembles at any unknown sites in the study domain. As learned from Figs. 11, it seems 

that Eeach of the original SPE can capture the spatial pattern of daily mean precipitation in the warm season, but might fail in 465 

the representation of precipitation amount in the NETP (Fig. 11), partly because of the satellite retrieval bias in complex terrain 

and limited GR network. Thus, the TSB method is further applied in the region of interest to demonstrate its performance on 

daily precipitation in the warm season of 2010-2014 in the NETP. Here, the TSB approach is applied in spatial to obtain the 

blended SPE in terms of daily mean precipitation in the warm season of 2014 over the whole domain.  

 470 

There is an overestimation for most of the original SPE, and the bias of the blended SPE is reduced based on the TSB approach. 

It is found that thethe blended SPE shows high precipitation in the southwest and low precipitation in the northwest, as well 

as moderate precipitation in the eastern region. In addition, as compared with the original SPE, a better performance in terms 

of magnitude and distribution in the study area (Fig. 12a). Hhigher values disappear from the spatial map except in southwest 

corner for the blended SPE. The possible reason is that daily mean rainfall is the highest in southwest corner for eachmost  475 

SPE, and higherlarger value still exists after the TSB processapproach. Meanwhile, the predictive Bayesian uncertainties 

including lower (2.5%) and upper (97.5%) quantiles are displayed from Figures 122b to 122c in order to illustrate the 

fusionblending variationce in this application. 

 

4.5 Model comparison with other fusion methods 480 

To assess the performance of the proposed TSB algorithm, it is beneficial to compare the TSB result with the existing fusion 

approach. Herein, we compare it with the BMA and OOR methods at the validation grids of NETP (red pixels in Figure 1) in 

the warm season of 2014 and their statistical error summary is shown in Table 6. It is found that the TSB method performs 

better skill with the RMSE, NMAE and CC values of 4.34 mm/d, 49.2%, and 0.606, respectively, compare with the other two 

fusion methods. OOR shows the worst performance in terms of RMSE, NMAE, and CC at 5.63 mm/d, 59.2%, and 0.547, 485 

respectively. As learned from model comparison among the three methods in this case, the TSB method has an advantage for 

combining the SPE and reducing the bias of the individuals.     
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5 Discussion 

In spite of the superior performance of the TSB algorithm, some issues still need to be considered in the practical applications: 490 

 

Because of limited knowledge on the influences of complex terrain and local climate on the rainfall patterns in the study area, 

the elevation feature is considered in the first stage. Table 7 quantifies the impact of elevation covariate on the bias-corrected 

and blended SPE performances at the validation gridsin Scenario 1 in the warm season of 2014 in the NETP. It is found that 

the inclusion of elevation feature provides slightly better skill compared with the results without terrain information in this 495 

experiment. Considering that deep convective systems occurring near the mountainous area have an effect on the precipitation 

cloud (Houze, 2012), more attempts are required to improve the orographic precipitation in the TP in future.  

 

The data fusion application is based on four mainstream SPE, and it is found that BC-IME and BC-PER show the best and 

worst performances among the bias-corrected SPE in Stage 1. It raises a question that why not simply apply the first stage of 500 

bias correction and then select the best-performed bias-corrected SPE as the final product. To address this issue, we investigate 

the statistical error differences among the BC-IME and blended SPE before and after the removing of BC-PER for 10-fold 

cross validation random verified tests in the warm season of 2014 in the NETP (Figure 13). It shows that iIt is beneficial to 

involve the Stage 2 in the TSB method because the blended SPE performs better skill than the best-performed bias-corrected 

SPE (i.e., BC-IME) in the Stage 1 processStage 1. The primary reason is that the BW model is designed to integrate various 505 

types of bias-corrected SPE, which is limited in the BC model. AlsoIn addition, both the blended SPE with and without the 

consideration of PERCDR in Figure 13 show similar performances of the RMSE, NMAE, and CC indices (Figure 13). It 

implies that the TSB approach has an advantage of not impacted by the poor quality individuals (e.g., BC-PER), partly because 

the BW model can reallocate the contribution of the bias-corrected SPE based on their corresponding bias characteristics.  

 510 

In addition, as calculating the blended result at any new sites, the model parameters derived from the training grid sites are 

assumed to be applicable in the whole domain. Since we have a relatively dense GR network in the survey region, the current 

assumption is acceptable according to the performance of the blended SPE. It is helpful to give some guideline on how many 

training sites are needed to apply the TSB approach in a region with complex terrain and limited GR. The sensitivity analysis 

of the number of training grid cells on the performance of blended SPE at the validation grids is explored in Figure 14. As the 515 

number of training sites is increasing, there is a decreasing trend for the RMSE and NMAE values, but a slight increasing trend 

for the CC value. Except for an anomaly with the No. 23, iIt seems that the performance of the blended SPE becomes similar 

as the number of training sites increases to 21. We admit that the more information from the ground observations, it would be  
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more beneficial for the blended gridded product in the region of interest. It is noted that, if extended to the TP or global scale, 

the extension of model parameters and training sites should be carefully considered. For instance, there are few gauges installed 520 

in the western and central TP (Ma et al., 2015), it might be a potential risk to directly apply this fusion algorithm for these 

regions.  

 

The aim of this study is not to model rainfall process in a target domain, but to propose an idea to extract valuable information 

from available SPE and provide more reliable gridded precipitation in high-cold region with complex terrain. Considering its 525 

spatiotemporal differences and the existence of many zero-value records, rainfall is extremely difficult to observe and predict 

(Yong et al., 2015; Bartsotas et al., 2018). With regard to the probability of rainfall occurrence, a zero-inflated model, which 

is coherent with the empirical distribution of rainfall amount, is expected to improve the proposed TSB algorithm. Also, hourly 

or even instantaneous precipitation intensity is extremely vital for flood prediction, which should be specifically designed 

when extending this fusion framework in the next step.    530 

6 Summary and prospects 

This study proposes a TSB algorithm for multi-SPE data fusion. A preliminary experiment is conducted in the NETP using 

four mainstream SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) to demonstrate the performance of this TSB approach. 

Primary conclusions are summarized below: 

 535 

(1) This TSB algorithm has two stages and involves the BC and BW models. It is found that this blended method is capable 

of involving a group of original SPE with their biases following different PDF curves. Meanwhile, it provides a convenient 

way to quantify the fusion performance and the associated uncertainty.  

 

(2) The experiment shows that the blended SPE has better skill scores compared to the original SPE at the validation locationsin 540 

the two validated scenarios. The 10-fold cross validation random tests in Scenario 1 alsofurther confirms the superiority of the 

TSB algorithm. In addition, it is found that the TSB method outperforms another two existing fusion methods (i.e., BMA and 

OOR) in the two scenarios. The performance of this fusion method is further also demonstrated using under a heavy rainfall 

event in the region of interest. In addition, the TSB method outperforms another two fusion methods (i.e., BMA and OOR). 

 545 
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(3) The application proves that this algorithm can allocate the contribution of individual SPE on the blended result because it 

is capable of ingesting useful information from uneven individuals and alleviating potential negative impacts from the poorly 

performing members.   

 

Overall, this work provides an opportunity for merging SPE in high-cold region with complex terrain. The evaluation analysis 550 

of this TSB method for long-term period and extended regions (e.g., TP) in terms of higher temporal resolution (e.g., hourly) 

will be performed in a future study. 
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Figure and Table Captions 

Table 1: Basic information of the original SPE used in this study. 

Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-corrected, and blended SPE 660 

in two scenarios in the NETP. 

Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended SPE at 10 random verified tests 

in the warm season of 2014 over in the NETP. 

Table 4: Mean improvement ratios of statistical error indices of the blended SPE, in terms of RMSE, NMAE and CC compared 

with the original SPE at 10 random verified tests in the warm season of 2014 over in the NETP. 665 

Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for three fusion methods (i.e., OOR, BMA, and 

TSB) in the two scenarios in the NETP. 

Table 56: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended SPE during a 

heavy rainfall event of over the NETP on September 22, 2014 in the NETP. 

Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of three fusion methods (i.e., OOR, BMA, 670 

and TSB) at the validated grid cells of NETP in the warm season of 2014. 

Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 

without consideration of terrain feature as a covariate in the TSB method in Scenario 1 in the NETPat the validation grids of 

NETP in the warm season of 2014. 

Figure 1: Spatial map of the topography and GR network used in the study, where 27 black cells are used for model calibration 675 

and 7 red cells are for model verification. 

Figure 2: The diagram of the proposed TSB algorithm. 

Figure 3: (a) The histogram density plot and (b) the corresponding Probability-Probability plot of GR at the training grids in 

the warm season of 2014 in the NETP, where the red, blue and green lines shows the fitted Gamma, Lognormal and Gaussian 

distribution, respectively. 680 

Figure 4: The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, (c) CMORPH and (d) IMERG 

in the bias correction process, i.e., Stage 1. 
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Quantile-quantile plots at training sets for the bias between GR and SPE, where (a) to (d) shows PERCDR, 3B42V7, 

CMORPH, and IMERG, respectively. Figure 5: The PDF curves of posterior parameter sets in the data fusion process, i.e., 

Stage 2. 685 

 

Figure 4: Intercomparisons of statistical error indices for the original, bias-corrected, and blended SPE at the validation grids 

in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 

Figure 56: (a) The Box-Whisker plots of relative weights for the bias-corrected SPE, (b) the scatter plots between GR and the 

original SPE and (c) the PDF of daily rainfall for the GR, original and blended SPE with various rain intensities in Scenario 1 690 

in the NETP.(a) The Box-Whisker plots of relative weights of the bias-corrected SPE in Stage 2; (b) Scatter plots between GR 

and various SPE (original and blended) at the validation grids in the warm season of 2014; (c) The PDF of daily rainfall in 

terms of the GR, original and blended SPE with various intensities at the validation grids in the warm season of 2014. 

Figure 6: Time series of daily rainfall estimates and rainfall accumulations at a selected validation grid with the maximum 

rainfall record in the warm season of 2014: (a) daily rainfall estimates, and (b) rainfall accumulations.    695 

Figure 7: Statistical error indices of the original and blended SPE at 10 random verified tests for 10 random tests in the warm 

season of 2014 in the NETP: (a) RMSE, (b) NMAE, and (c) CC. 

Figure 8: The Box-Whisker plots of improvement ratios of statistics for the blended SPE compared with the original SPE, 

including PERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests for 10 random tests in the warm season of 

2014 in the NETP: (a) RMSE, (b) NMAE, and (c) CC. 700 

Figure 9: Spatial patterns of the daily mean precipitation in terms of the original SPE in the warm season of 2014: (a) 

PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 

Figure 10: Spatial patterns of the blended SPE in terms of (a) median, (b) SD, (c) 5% and (d) 95% quantiles of daily mean 

precipitation in the warm season of 2014. 

Figure 119: (a) Spatial pattern of gauge-based measurements during a heavy rainfall case over the NETP onof September 22, 705 

2014 in the NETP, where the site IDs 56171, 56173 and 56067 report the top three daily rainfall amounts of 32.3 mm, 30.9 

mm and 28.7 mm56152 and 56182 report the top three daily rainfall amounts of 30.4 mm, 24.6 mm and 23.1 mm, respectively; 

(b) the corresponding Box-Whisker plots of relative weights of the individual bias-corrected SPE in the Stage 2data fusion 

process. 
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Figure 120: The PDF curves of blended SPE samples and the corresponding median value at three gauge-based sitgrides 710 

duringon a heavy rainfall case onof September 22, 2014: (a) ID 56171, (b) ID 5615273, and (c) ID 56182067. The original 

SPE and GR at each pixel are also indicated in each subfigure. 

Figure 11: Spatial patterns of the daily mean precipitation in terms of the original SPE in the warm season of 2010 to 2014 in 

the NETP: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 

Figure 12: Spatial patterns of the blended SPE in terms of (a) mean, (b) lower quantile (2.5%) and (c) upper quantile (97.5%) 715 

of daily mean precipitation in the warm season of 2010 to 2014 in the NETP. 

 

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER at 10 random verified tests for 

10 random verified tests in the warm season of 2014 in the NETP. 720 

Figure 14: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in terms 

of different number of training sites in the warm season of 2014 in the NETP.  
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Table 1: Basic information of the original SPE used in this study. 

 

 725 

Short name Full name 

and details 

Temporal 

resolution 

Spatial  

resolution 

Input data Retrieval 

algorithm 

References 

 

PERCDR Precipitation 

Estimation from 

Remotely Sensed 

Information using 

Artificial Neural 

Networks 

(PERSIANN) 

Climate Data 

Record (CDR) 

Daily 0.25° x 0.25° 

 

 

 

 

Warm 

season from 

2014.50- to 

2014.9 

 

 

 

 

Adaptive 

artificial neural 

network 

 

 

 

Ashouri et al., 

2015 

 

 

 

 

3B42V7 TRMM Multi-

satellite 

Precipitation 

Analysis (TMPA) 

3B42 Version 7 

3 

hourlyDaily 

0.25° x 0.25° 

 

Warm 

season from 

2010 to 

2014 

2014.5-

2014.9 

GPCC monthly 

gauge 

observation to 

correct this bias 

of 3B42RT 

Huffman et al., 

2007 

 

CMORPH NOAA Climate 

Prediction Centre 

(CPC) Climate 

Prediction Center 

(CPC) 

MorphORPHing 

tTechnique 

(CMORPH) for 

bias-corrected 

product version 

1.0Global 

Precipitation 

Estimates Version 1 

3 

hourlyDaily 

0.25° x 0.25° 

 

Warm 

season from 

2010 to 

2014 

2014.5-

2014.9 

 

Morphing 

technique 

 

 

XieJoyce et al., 

200417 

 

 

IMERG Integrated Multi-

satellitE Retrievals 

for the Global 

Precipitation 

Measurement 

(GPM) mission 

V036  Level 3 final 

run product  

0.5 

hourlyDaily 

0.10° x 0.10° Warm 

season from 

20102014.5- 

to 2014.9 

20147 version of 

the Goddard 

profiling 

algorithm  

Huffman et al., 

2018 
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Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-corrected, bias-corrected,  and 

blended SPE at the validation grids of NETP in the warm season of 2014in two scenarios in the NETP.  

Scenarios Product RMSE (mm/d) NMAE (%) CC 

Scenario 1 

PERCDR  7.3615 740.62 
0.416

382 

3B42V7 8.0756 830.53 
0.403

83 

CMORPH  6.5925 670.56 
0.493

556 

IMERG  76.1860 632.29 
0.560

86 

BC-PER 6.00 63.5 0.346 

BC-V7 5.83 61.4 0.408 

BC-CMO 5.43 56.3 0.533 

BC-IME 5.44 56.0 0.530 

 BC-PER 5.02 58.7 0.418 

 BC-V7 5.06 57.5 0.410 

 BC-CMO 4.81 54.6 0.497 

 BC-IME 4.56 50.9 0.572 

 
Blended SPE 45.3436 4954.26 

0.606

570 

Scenario 2 

PERCDR  9.19 79.3 0.261 

3B42V7 8.38 71.3 0.403 

CMORPH  7.20 61.9 0.493 

IMERG  7.64 65.1 0.462 

BC-PER 7.03 64.5 0.253 

BC-V7 6.69 61.3 0.395 

BC-CMO 6.41 58.2 0.480 
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BC-IME 6.44 57.7 0.470 

 Blended SPE 6.37 56.7 0.513 
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Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended SPE at 10 random verified tests 

in the warm season of 2014 in the NETP. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 7.7296 78.5.9 0.37830 

3B42V7 7.5772 73.8.9 0.433424 

CMORPH 6.2159 66.3.1 0.51320 

IMERG 76.378 7062.7.0 0.57218 

Blended SPE 45.9875 547.91 0.59751 

  735 
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Table 4: Mean improvement ratios of statistical error indices of the blended SPE, in terms of RMSE, NMAE, and CC compared 

with the original SPE at 10 random verified tests in the warm season of 2014 over in the NETP. 

 Index PERCDR 3B42V7 CMORPH IMERG 

Improvement 

Ratio (%) 

RMSE (mm/d) 3527.16 3325.70 190.6 132.10 

NMAE (%) 294.85 3022.13 17.08 217.3 

CC 6171.31 39.8.2 171.51 410.37 
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Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended SPE during a heavy 

rainfall event over the NETP on September 22, 2014. 740 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 6.28 40.6 0.822 

3B42V7 10.12 59.5 0.686 

CMORPH 6.80 45.6 0.734 

IMERG 10.48 53.3 0.805 

Blended SPE 4.13 27.4 0.850 
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Table 65: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for three fusion methods (i.e., OOR, BMA, and 

TSB) at the validation grids of NETP in the warm season of 2014in the two scenarios in the NETP. 

Scenarios 
Method 

RMSE 

(mm/d) 

NMAE 

(%) 
CC 

Scenario 1 

OOR 56.6322 59.27 0.54737 

BMA 5.4478 576.66 0.59562 

TSB 45.346 4954.26 0.606570 

Scenario 2 

OOR 7.04 59.9 0.498 

BMA 6.79 58.8 0.500 

TSB 6.37 56.7 0.513 

 745 
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Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended SPE during a heavy 

rainfall event of September 22, 2014 in the NETP. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 8.18 47.0 0.850 

3B42V7 9.24 52.8 0.683 

CMORPH 8.27 48.5 0.734 

IMERG 8.63 49.1 0.642 

Blended SPE 5.23 31.5 0.837 
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Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 

without consideration of terrain feature as a covariate in the TSB method at the validation grids of NETPin Scenario 1 in the 

warm season of 2014in the NETP. 

Product Type RMSE (mm/d) NMAE (%) CC 

BC-PER 
No Terrain 55.0398 5863.3.9 0.416361 

Terrain 56.0200 5863.75 0.34186 

BC-V7 
No Terrain 5.083 5861.05 0.4039 

Terrain 5.0683 5761.54 0.4108 

BC-CMO 
No Terrain 45.8348 556.09 0.493520 

Terrain 45.8143 54.6.3 0.497533 

BC-IME 
No Terrain 4.5.48 516.43 0.56819 

Terrain 45.5644 506.90 0.57230 

Blended SPE 
No Terrain 45.3641 4955.70 0.603557 

Terrain 45.3436 549.26 0.606570 

 755 
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Figure 1: Spatial map of the topography and GR network used in the study, where 27 black cells are used for model calibration 

and 7 red cells are for model verification.  
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Figure 2: The diagram of the proposed TSB algorithm. 
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 765 

Figure 3: (a) The histogram density plot and (b) the corresponding Probability-Probability plot of GR at the training grids in 

the warm season of 2014 in the NETP, Quantile-quantile plots at the training sets for the bias between GR and SPE, where (a) 

to (d)the red, blue and green lines shows PERCDR, 3B42V7, CMORPH, and IMERGthe fitted Gamma, Lognormal and 

Gaussian distribution, respectively.  
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 770 

Figure 4: The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, (c) CMORPH and (d) IMERG 

in the bias correction process of Stage 1.  
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Figure 5: The PDF curves of posterior parameter sets in the data fusion process of Stage 2. 

775 
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Figure 4: Intercomparison of statistical error indices for the original, bias-corrected, and blended SPE at the validation grids 

in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 

  

Formatted: Centered, Line spacing:  single



47 

 

 780 

Figure 6: (a) The Box-Whisker plots of relative weights for the bias-corrected SPE, (b) the scatter plots between GR and the 

original SPE and (c) the PDF of daily rainfall for the GR, original and blended SPE with various rain intensities in Scenario 1 

in the NETP.  
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 785 

Figure 7: Statistical error indices of the original and blended SPE at 10 random verified tests for 10 random tests in the warm 

season of 2014 in the NETP: (a) RMSE, (b) NMAE, and (c) CC. 
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 790 

Figure 8: The Box-Whisker plots of improvement ratios of statistics for the blended SPE compared with the original SPE, 

including PERCDR, 3B42V7, CMORPH, and IMERG for 10 random tests at 10 random verified tests in the warm season of 

2014 in the NETP: (a) RMSE, (b) NMAE, and (c) CC. 
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795 

 

Figure 119: (a) Spatial pattern of gauge-based measurements during a heavy rainfall case over the NETP on of September 22, 

2014 in the NETP, where the site IDs 56171, 5615723 and 56182067 report the top three daily rainfall amounts of 302.43 mm, 

2430.69 mm and 238.17 mm, respectively; (b) the corresponding Box-Whisker plots of relative weights ofof the individual 

bias-corrected SPE in the Stage 2data fusion process. 800 
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Figure 120: The PDF curves of blended SPE samples and the corresponding median mean value at three gauge-based sites 

grids during on a heavy rainfall case on of September 22, 2014: (a) ID 56171, (b) ID 5615256173, and (c) ID 5618256067. 805 

The original SPE and GR at each pixel are also indicated in each subfigure. 
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Figure 11: Spatial patterns of the daily mean precipitation in terms of the original SPE in the warm season of 2010 to 2014 in 

the NETP: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 810 
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Figure 12: Spatial patterns of the blended SPE in terms of (a) mean, (b) lower quantile (2.5%) and (c) uUpper quantile (97.5%) 

of daily mean precipitation in the warm season of 2010 to 2014 in the NETP. 
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Figure 1313: Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER at 10 random verified tests for 820 

10 random verified tests in the warm season of 2014 in the NETP. 
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Figure 1414: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in 825 

terms of different number of training sites in the warm season of 2014 in the NETP. 
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