
Responses to Review Comments on HESS-2020-43 

We are thankful to the three anonymous reviewers for their comments and suggestions. We 

have addressed the comments point by point in the revision. In the text below, comments are 

repeated verbatim and the corresponding responses are in blue. In addition, we have made 

substantial improvements to the manuscript based on the comments and suggestions.  

---------------------------------------------------------------------------------------------------------- 

Anonymous Referee #1: 

It is of importance for the scientific community to improve the retrieval accuracy of satellite 

precipitation estimates over complex terrains. This study proposed a flexible two-step approach to 

reduce the systematic errors of currently mainstream satellite precipitation products in the 

northeastern Tibetan Plateau. Evaluation results show that this approach effectively reduce the errors 

and biases of satellite retrievals. Overall, the paper is rich in content and technically sound. It can 

offer insightful references for both satellite precipitation produces and data users, especially for 

improving the retrieval algorithm over mountain regions. I consider it is clearly written and 

informative, and it should be of interest to a significant subset of HESS readers. Thus, I recommend 

it be accepted for publication, with just a few minor revisions.  

Response: We thank this reviewer for the supportive comment.  

First, I wonder why the new approach can effectively reduce the biases but not change the CC values. 

In the text, the authors should explain this point in more details.  

Response: As bias correction is performed for each SPE in the first stage, the blended SPE has a 

low bias compared with the original SPE. We agree that the CC index does not improve significantly 

compared to the RMSE and NMAE values for the blended SPE. The CC between two data sets is a 

measure of how well they are related. In Stage 1, the mean parameter in the Student’s t distribution 

is expressed as a linear regression of the original SPE. A linear assumption in the proposed model 

might fail to expect significant difference in the correlation. Thus, the RMSE and NMAE indices 

are also adopted to evaluate the performance of the proposed blending approach. We have given 

more explanations in the revised manuscript as suggested by this reviewer (Lines 190-192).     

Second, the study area is limited within a squared rectangle. In practice, it is difficult to present the 

application potentials of new approach using such relatively small region as study domain (only like 

a case study). The gauge numbers are still not enough for validation. At least, the authors should 

discuss this in the section of conclusion. 

Response: We thank this reviewer for the important comments. Perhaps we might not describe them 

very clearly in the original manuscript. We have rephrased the statements in the revised manuscript 

as pointed out by this reviewer. Please allow us to give an additional explanation. The experiment 

is selected in the northeastern Tibetan Plateau in terms of the area at around 5.8 x 105 km2. To verify 

the performance of the new method, the original, bias-corrected and blended SPE are intercompared 



at the random validation grid cells in the survey region (Lines 180-207). The time series of daily 

rainfall estimates and rainfall accumulations in terms of the original and blended SPE is further 

added at a selected validation location in the warm season of 2014 (Fig. 6; Lines 210-215). To 

mitigate the impact of validation locations, 10 randomly test is performed for the selection of 

validation grids (Lines 216-229). Also, a heavy rainfall event that occurred on September 22, 2014 

is examined to quantify its performance in the extreme rainfall scenario (Lines 244-266). The two-

step blending (TSB) method is also compared with the existing fusion algorithms (e.g., Bayesian 

model averaging (BMA) and One-outlier removed (OOR)) at the validation grids (Table 6; Lines 

268-275). More details can be found in the revised manuscript. 

Last but not at least, this manuscript needs to be further polish before publication.   

Response: Polish as suggested. 

 

Anonymous Referee #2: 

This manuscript describes a two-step methodology to combine multiple satellite precipitation 

products to produce a blended daily precipitation estimate. The process involves first bias correcting 

the individual satellite QPE products relative surface rain gauges. Then, a Bayesian weighting is 

applied to blend the various QPE datasets into a single product. The approach is demonstrated on a 

small area in the northeastern part of the Tibetan Plateau over the 2014 warm season, as well as an 

individual heavy rain case. Overall the manuscript needs to be checked for correct grammar and 

usage, and the data and methods sections could be lengthened a bit to make things clearer and 

therefore reproducible (some specific suggestions for this below). Generally, with a few tweaks to 

the writing I feel this is publishable with minor revisions. 

Response: We thank this reviewer for the great comments. The manuscript is carefully checked to 

avoid grammar and usage typos. The data and methods sections have been rephrased in the revised 

manuscript as required by this reviewer (Lines 68-174).  

Specific Comments: 

The manuscript would be much easier to follow if consistent terminology were used to refer to 

original SPE, bias corrected SPE, and blended SPE throughout. 

Response: Revise as suggested. 

Lines 75-80: Additional information about the data used is needed: Please specify the versions of 

IMERG and CMORPH you are using, and whether the IMERG is the near real time early, near real 

time late, or research/final runs. It is also interesting that you chose to use TMPA, which is no longer 

being produced and is generally very similar to IMERG. Additionally, IMERG, CMORPH, and 

TRMM-3B42 all have daily products available - why did you choose to use the 3-h products and 

(presumably) accumulate to daily? Finally, what method did you use to resample the IMERG? 

Response: The CMORPH V1.0 research products and the Level 3 IMERG V03 final run products 



are used in this study. We agree that TMPA is similar to IMERG, but the satellite retrieval algorithm 

between the two products are different. Considered that TMPA 3B42V7 shows a good performance 

in the TP, it is selected as an individual in this blending process. It is known that the daily scale of 

SPE is accumulated from the 3-h (TMPA, CMORPH) or 30-min (IMERG), we admit that we can 

directly use the daily scale instead of accumulation again from the 3-h products as suggested. The 

nearest neighbor interpolation is used to resampling the IMERG data. We have clarified these issues 

in the revised manuscript as pointed out by this reviewer (Lines 76-81). 

Line 85: If you are using CMORPH V1.0, it also corrects using GPCP. 

Response: Corrected as suggested. 

Line 116: This equation would be easier to read if separated into 3 lines. 

Response: Separated as suggested. 

Line 162-170: Some discussion of the effects of comparing point data to somewhat low resolution 

gridded data is needed. 

Response: We have rephrased this statement in the revised manuscript as suggested by this reviewer 

(Lines 86-88; Lines 106-107; Lines 279-284).  

Line 182-183: It seems that the scatter is reduced for the blended product, but it has induced a high 

bias for low rain days and a low bias on heavy rain days. It’s difficult to see if the bias is improved 

compared to the original SPE products. 

Response: We thank this reviewer for the comment. Yes, the scatter is reduced for the blended SPE. 

We perform an additional comparison at the validation locations based on various rainfall intensities 

in Fig. 5 in the revision. Based on the TSB method, the blended SPE have been effectively dropped 

towards GR at the validation sites (Fig. 5b), especially for the rain intensity values less than 15 

mm/d (Fig. 5c). Also, there is an overestimation for the original SPE but an underestimation for the 

blended SPE as the daily rainfall is more than 15 mm, partly because the BC process might over-

correct the original SPE on the heavy rainfall in this case. Overall, this TSB method has its ability 

to exert benefits from SPE in terms of higher performances and mitigate poor impacts from the ones 

with lower quality. We have also rephrased this statement in the revised manuscript as pointed out 

by this reviewer (Lines 200-207). 

 



Figure 5: (a) The Box-Whisker plots of relative weights of the bias-corrected SPE in Stage 2; (b) 

Scatter plots between GR and various SPE (original and blended) at the validation grids in the 

warm season of 2014; (c) The PDF of daily rainfall in terms of the GR, original and blended SPE 

with various intensities at the validation grids in the warm season of 2014. 

Line 213: I disagree with this statement. PRECDR is clearly very different from the others, and to 

this point in the manuscript has shown very litter value to be kept in consideration, and I think it is 

worth acknowledging this, then using the case study to point out that PRECDR can in fact be 

informative and on a case by case basis. 

Response: We fully agree with this reviewer for the comments. We have added the statements in 

the revised manuscript as pointed by this reviewer (Lines 205-207).   

 

Anonymous Referee #3: 

The manuscript by Ma et al. Presents a very interesting study on blending multiple satellite estimates 

to obtain a better precipitation estimates, especially over region with complex terrain. The analysis 

is systematic and results support the improvement in precipitation estimates due to two-stage 

blending approach. During my read, on several occasion I kept searching for necessary details. 

Unless those details are provided, it is hard to fully evaluate the merit of this work. Therefore I 

would suggest major revision of the current version of the manuscript.  

Response: We thank this reviewer for the critical comments. More details of the TSB approach have 

been added in the revised manuscript as pointed out by this reviewer (Lines 96-174).  

Authors may want to improve the manuscript along the following lines: 

[1] Please provide full details of bias adjustment and data merging stages. With help of some 

example dataset, Authors need to describe how Equations [1], [2a] and [2b] adjust the bias. Similarly 

please demonstrate with some dataset how weight parameters were obtained from Equation [3]. 

Response: We thank this reviewer for the important comment. In the revised Method section, the 

process of bias adjustment and weight parameter estimation are explicitly described. The full details 

of bias adjustment and data merging stages are provided in the revised manuscript as suggested by 

this reviewer (Lines 96-174).  

[2] Please include plots justifying why Student’s t distribution was selected. I am sure at different 

training sites, different distributions (Lognormal, Gamma, etc.) may show better performance. 

Response: We fully agree with this reviewer that at different training sites, different distributions 

(Lognormal, Gamma, etc.) may show better performance. Given various SPE at different training 

sites, the specific probabilistic function is not limited to a certain distribution. For demonstration 

purpose, we herein apply the Student’s t distribution, with its mean parameter expressed as a linear 

regression of the original SPE and terrain feature in this case. The goodness-of-fit of the Student’s 

t distribution for the bias between GR and SPE is examined graphically by using a quantile-quantile 



plot at the training grids (Fig. 3). It is found that all of them are close to the diagonal red line. It 

indicates that the selection of Student’s t distribution is basically acceptable. We have also rephrased 

this statement in the revised manuscript (Lines 114-119).   

 

Figure 3. Quantile-quantile plots at training grid cells for the bias between GR and SPE, where 

(a) to (d) shows PERCDR, 3B42V7, CMORPH, and IMERG, respectively. 

[3] Please explain how the information from gridded data (Satellite estimates) was transferred to 

point locations (training and validation) sites. Did Authors apply some downscaling approach? 

Bringing information from 25km grid to a point in a complex topographical region is challenging. 

Response: We fully agree that it is challenging to bring information from 25 km grid to a point in a 

complex terrain region. Perhaps we didn’t describe it very clearly in the original manuscript. The 

downscaling approach is not applied in this study. To ensure the same resolution among the original 

SPE, the IMERG data are resampled from 0.10° to 0.25° using the nearest neighbor interpolation to 

eliminate the scale difference. The rain gauge network is spatially interpolated with a 0.25° x 0.25° 

resolution in the region of interest on each rainy day using a bilinear interpolation approach. The 34 

grid cells with the gauge sites are assumed as ground references (GR) in the blending process. We 

admit that there is a scale gap between SPE and gauge observations. We have clarified the statements 

and add some discussions in the revised manuscript as pointed out by this reviewer (Lines 79-88).  

[4] In equation [1], normalized elevation is used as a covariate. If it is not included, how it will affect 

the result. Can you quantify it? Was that included just because you are dealing with TP? In the 

discussions (Section 5), Authors mention about the importance of including other covariates related 

to precipitation generation mechanism. 

Response: We are thankful to this reviewer for the comment. We quantify the impact of elevation 

covariate on the bias-corrected and blended SPE performances as pointed out by this reviewer (Table 

7). It is found that the consideration of elevation feature performs slightly better skill compared with 



the model without terrain in this case study. We would like to admit that it is an initial exploration 

partly because we are dealing with the TP. We have rephrased the concerns in the revised manuscript 

as pointed out by this reviewer (Lines 279-284). 

Table 7. Statistical error indices (i.e., RMSE, NMAE, and CC) of the bias-corrected and blended 

SPE before (No Terrain) and after (Terrain) the consideration of terrain information at the 

validated grid locations in the warm season of 2014 over the NETP. 

Product Type RMSE (mm/d) NMAE (%) CC 

BC-PER 

No Terrain 5.03 58.9 0.416 

Terrain 5.02 58.7 0.418 

BC-V7 

No Terrain 5.08 58.0 0.403 

Terrain 5.06 57.5 0.410 

BC-CMO 

No Terrain 4.83 55.0 0.493 

Terrain 4.81 54.6 0.497 

BC-IME 

No Terrain 4.58 51.4 0.568 

Terrain 4.56 50.9 0.572 

Blended SPE 

No Terrain 4.36 49.7 0.603 

Terrain 4.34 49.2 0.606 

[5] As mentioned in Section 2, the data of only warm period from May to September 2014 has been 

used in this study. Since all the satellite data are available for several years, can Authors perform 

similar analysis for few years and validate their approach? 

Response: We thank the reviewer for this suggestion. Please allow us to explain that this study aims 

to develop a newly TSB algorithm on the multi-satellite precipitation data fusion in a certain time 

in regions of interest. Given that the larger challenge in the TP is to provide more accurate rainfall 

in a spatial domain, we are trying to overcome the shortage of limited rain gauge network based on 

the available SPE with spatial advantage using the TSB method in the NETP as a demonstration 

purpose. We agree that the satellite data are available for several years, but the exploration of long-

term periods for the TSB method is another critical issue, e.g., the consideration of time impact on 

the fusion result.  

Generally, the model performance of this new approach has been demonstrated based on various 

aspects in the revised manuscript. Please allow us to repeat them below: To verify the performance 

of the new method, the original, bias-corrected and blended SPE are intercompared at the random 

validation grid cells in the survey region (Lines 180-207). The time series of daily rainfall estimates 

and rainfall accumulations in terms of the original and blended SPE is further added at a selected 

validation location in the warm season of 2014 (Fig. 6; Lines 210-215). To mitigate the impact of 

validation locations, 10 randomly test is performed for the selection of validation grids (Lines 216-



229). Also, a heavy rainfall event that occurred on September 22, 2014 is examined to quantify its 

performance in the extreme rainfall scenario (Lines 244-266). The TSB method is also compared 

with the existing fusion algorithms (i.e., BMA and OOR) at the validation grids (Table 6; Lines 268-

275). We thus consider that the evaluation analysis for long-term period and extended regions (e.g., 

TP) will be performed in a future study.  

[6] Since similar approaches have been developed previously (as mentioned at the end of second 

paragraph of page 2, Authors should compare the results with the existing approach. The only unique 

feature of the current approach is that it provides predictive uncertainty. 

Response: We thank the reviewer for this great suggestion. It is very important to formally quantify 

the predictive uncertainty in the Bayesian analysis, which is one of the unique features for the TSB 

method. In the revised manuscript, the TSB approach is compared with two existing fusion approach, 

i.e., BMA and OOR. The statistical summary of data comparison among the three fusion approaches 

at the validated locations are shown below. The TSB approach performs the best skill as compared 

with the other two fusion methods. We have added this comparison in the revised manuscript as 

kindly suggested by this reviewer (Lines 268-275). 

  Table 6. Statistical error indices (i.e., RMSE, NMAE, and CC) of three blending approach (i.e., 

OOR, BMA, and TSB) at the validated grid locations in the warm season of 2014 over the NETP. 

Method RMSE (mm/d) NMAE (%) CC 

OOR 5.63 59.2 0.547 

BMA 5.44 57.6 0.595 

TSB 4.34 49.2 0.606 

[7] The results presented in Figures 3 and 4 homogenizes many things. In Figure 3, are you 

presenting the average value over all the validation sites? I am sure results will differ significantly 

if you look into individual sites. Also time series plots would show more features than the bar plot. 

The results from blended is similar to many adjusted SPE, then can it be concluded that there is no 

need to blend. Simply apply the stage 1, bias adjustment, and select the best SPE. 

Response: We are thankful to the reviewer for these comments. Yes, Figure 3 presents the statistical 

error summary over all the validation grids. We agree that there are more features if looking into 

individual sites than overall evaluation of the validated sites. The time series plot of daily rainfall 

estimates and rainfall accumulations of GR, original and blended SPE at a validated grid cell with 

a rain gauge labeled as ID 56173 is shown in Figure 6 as a demonstration example in the revised 

manuscript. This rain gauge, which is located at (32.8° N, 102.55°E, 3484 m), has the maximum 

rainfall record in the warm season of 2014 in the NETP. Visual analysis shows that the blended SPE 

provides reasonable rainfall and has a better skill in terms of RMSE at 4.95 mm/d compared with 

the original SPE including PERCDR (10.71), 3B42V7 (9.76), CMORPH (8.0), and IMERG (10.49), 

respectively.   



 

Figure 6. Time series of daily rainfall estimates and rainfall accumulations at a selected 

validation grid with the maximum rainfall record in the warm season of 2014: (a) daily rainfall 

estimates, and (b) rainfall accumulations.   

This reviewer also raises a question that why not be careful at the first place in selecting a good set 

of SPE, or simply apply the first stage of bias correction and then select the best SPE as the final 

product. To address this issue, we investigate the error differences among the best-performed SPE, 

i.e., BC-IME, and blended SPE before and after the removing of the worst-performed bias-corrected 

SPE, i.e., BC-PER, for 10 random verified tests in the warm season of 2014 (Fig. 13). It shows that 

it is beneficial to involve the Stage 2 in the TSB method because the blended SPE performs better 

skill than BC-IME in the Stage 1 process. The primary reason is that the BW model is designed to 

integrate various types of bias-corrected SPE, which is limited in the BC model. Also, both blended 

SPE in Figure 13 show similar performances of the RMSE, NMAE, and CC indices. It implies that 

the TSB approach has an advantage of not impacted by the poor quality individuals (e.g., BC-PER), 

partly because the BW model can reallocate the contribution of the bias-corrected SPE based on 

their corresponding bias characteristics.  

We have also rephrased the expressions in the revised manuscript as pointed out by this reviewer 

(Lines 200-215; Lines 286-295). 



 

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-

corrected SPE (i.e., BC-IME, black) and blended SPE before (red) and after (blue) the removing 

of the worst-performed BC-PER for 10 random tests in the warm season of 2014 in the NETP. 

[8] In Figure 4, Authors conclude that the blended data have been dropped towards the gauge 

references but please look at the precipitation with higher values. It appears that red dots have 

narrow spread for the lower values but SPE is over estimating the values. 

Response: We are thankful to the reviewer for the important comment. We also notice that there is 

an overestimation for the original SPE compared to GR, and the blended SPE shows different spread 

at various rainfall intensities. To address this issue, we perform an additional analysis of probability 

density function of daily rainfall with various intensities at the validated locations blow (Fig. 5c). 

There is an overestimation for the original SPE but an underestimation for the blended SPE as the 

daily rainfall is more than 15 mm, partly because the BC process might over-correct the original 

SPE on the heavy rainfall in this case. We have rephrase this statement in the revised manuscript as 

pointed out by this reviewer (Lines 200-205).   



 

Figure 5: (a) The Box-Whisker plots of relative weights of the bias-corrected SPE in Stage 2; (b) 

Scatter plots between GR and various SPE (original and blended) at the validation grids in the 

warm season of 2014; (c) The PDF of daily rainfall in terms of the GR, original and blended SPE 

with various intensities at the validation grids in the warm season of 2014. 

[9] Authors claim that the two-stage approach has advantage of not getting impacted by the poor 

quality SPE. Based on Figure 4a, it can be argued that why to include those SPE which has very 

low weight. Please justify. Furthermore, Figure 6 shows improvement ratio, of course the SPE with 

very low weight will show high value here. Why not be careful at the first place in selecting a set of 

SPE? 

Response: We thank this reviewer for the critical comments. It is well known that the SPE are 

obtained from different satellite retrieval algorithms, and each of them can provide various rainfall 

information. The over-performed SPE would provide more information, and the poor-performed 

ones give less value. It is thus necessary to integrate all kinds of SPE so as to reduce the predictive 

uncertainty in the domain. The proposed TSB approach has an advantage of integrating various SPE 

information and not impacted by the poor quality of SPE, partly because the BW model in Stage 2 

can reallocate the contribution of the SPE based on their corresponding bias characteristics.  

To address this issue, we also investigate the statistical error difference among the best-performed 

bias-corrected SPE (i.e., BC-IME), and blended SPE before and after the removing of the worst-

performed bias-corrected SPE (i.e., BC-PER) in this case, for 10 random verified tests in the warm 

season of 2014 in the NETP (Fig. 13). It is found that the blended SPE performs better skill than the 

simply bias correction with BC-IME, and both blended SPE products show similar performances of 

the RMSE, NMAE, and CC indices. It proves that it is beneficial to involve the Stage 2 process in 

the TSB method.  

We have rephrased the related expressions in the revised manuscript as pointed out by this reviewer 

(Lines 286-295). 



 

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-

corrected SPE (i.e., BC-IME, black) and blended SPE before (red) and after (blue) the removing 

of the worst-performed BC-PER for 10 random tests in the warm season of 2014 in the NETP. 

[10] Authors talk about CC for a rainfall event (Sept 22, 2014)? Given that the analysis is performed 

on daily data, how do you obtain CC? 

Response: There are 27 rain gauge sites in total that has a rainfall record on September 22, 2014 in 

the regions of interest. The CC index is calculated based on the data sets from the 27 grid cells. 

[11] Title says ‘A flexible two-stage approach...’ In the second paragraph of Section 6, Authors talk 

about what is the flexibility here. The statement is very general that it is capable of involving a group 

of multi-SPE. Is that so unique? Please look into it and accordingly modify the title. 

Response: We thank this reviewer for the important comment. The word of “flexible” is removed 

in the title. We have replaced the title with “A two-stage approach for blending multiple satellite 

precipitation estimates and rain gauge networks: An experiment in the northeastern Tibetan Plateau” 

in the revised manuscript. 

[12] Figure 8a is quite different from Figures 7a to 7d. By blending, higher values disappeared from 

the map except in Southwest corner. Please explain. 



Response: Thank you for this specific comment. Figure 8a (i.e., Fig. 10a in the revised manuscript) 

is the spatial map of the blended result which is weight summation of the original SPE from Figures. 

7a to 7d. There is an overestimation for most of the original SPE in the NETP in this experiment, 

the bias of the blended SPE is reduced based on the TSB approach. Thus, higher values disappear 

from the map except in southwest corner. Because daily mean rainfall is the highest in southwest 

corner for each SPE, higher value exists after the blending process. We have explained this issue in 

the revised manuscript as pointed out by this reviewer (Lines 238-242).   

[13] The blending product will be extremely beneficial for the areas where there is no or very few 

rain gauges (specially in mountain area). However the study area was carefully selected in such a 

way that the rain gauge intensity is high. Can the results be extrapolated from the training and 

validations sites to get the improved blended gridded product, the way Authors have done in Figure 

8? If yes, then there must be some guideline how many minimum training sites do I need to apply 

this two-stage approach in other complex regions. 

Response: We are thankful to this reviewer for the comment. As pointed out by this reviewer, it is 

helpful to give some guideline that how many training sites are needed to apply the TSB approach 

in a region with complex terrain and limited GR. The sensitivity analysis of the number of training 

grid cells on the performance of blended SPE at the validated sites is explored in Figure 14. As the 

number of training sites is increasing, there is a decreasing trend for the RMSE and NMAE values, 

but a slight increasing trend for the CC value. Except for an anomaly with No. 23, the performance 

of the blended SPE becomes similar as the number of training sites increases to 21 in this case. Also, 

it is noted that if more useful information is provided from the involved SPE and rain gauges, it is 

more beneficial for the blended gridded product in the region of interest. We have rephrased this 

issue in the revised manuscript as pointed out by this reviewer (Lines 299-308).    

 

Figure 14. Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the 

validated grid locations in terms of different number of training sites in the warm season of 2014 

in the NETP. 

[14] The manuscript should be thoroughly checked for grammar and usages. 

Response: Thoroughly checked as suggested. 
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Abstract. Substantial biases exist in the Satellite satellite Precipitation precipitation Eestimates (SPE) over complex terrain 15 

regions and it has always been a challenge to quantify and correct such biases. The combination of multiple SPE and rain 

ground gauge observations observations would be beneficial to improve the gridded precipitation estimates. In this study, a 

flexible two-stepage blending (TSB) approach is proposed, which by firstlyly reducesing the systematic errors of each SPE 

using rain gauge observations as referencesbased on a Bayesian correction model, and then mergesing the improved multi-

bias-corrected SPE with a Bayesian weighting model. In the 1st first stage, the gauge-based references observations are 20 

assumed as a generalized regression function of SPE and terrain feature. In the 2nd second stage, the SPE weights are calculated 

based on the associated performances relative to gauge referencesground references. TThise proposed blending TSB method 

has the ability to exert benefits from multi-the bias-corrected SPE in terms of higher performance, and mitigate negative 

impacts from the ones with lower quality. In addition, Bayesian analysis is applied in the two phases by specifying the prior 

distributions on the model parameters, which enables to produce the posterior ensembles associated with their predictive 25 

uncertainties. The performance of the two-step blendingTSB approach method is assessed evaluated using with independent 

rain gauge observations validation grids during in the warm season of 2014 in the northeastern Tibetan Plateau. Results show 

that the blended multi-SPE is significantly improved compared to the original individualsSPE, especially during in the heavy 

rainfall events. This study can also be expanded as a data fusion framework in the development of high-quality precipitation 

products in high-cold any regions of interest characterized by complex terrain. 30 

Formatted: Superscript
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1 Introduction 

High-quality precipitation data is fundamental to understand the regional and global hydrological processes. However, it is 

still difficult to acquire accurate precipitation information in the mountainous regions, e.g., Tibetan Plateau (TP), due to limited 

ground sensors (Ma et al., 2015). The satellite sensors canare capable of providinge precipitation estimates at a large scale 

(Hou et al., 2014), but performances of available satellite products vary among different retrieval methods and climat ice areas 35 

(Yong et al., 2015; Prat and Nelson, 2015; Ma et al., 2016). Thus, it is suggested to incorporate precipitation estimates from 

multiple sources into a fusion procedure with a fully consideration of the strength of individual members and associated 

uncertainty. 

 

Precipitation data fusion was initially reported by merging radar-gauge rainfall in the mid-1980s (Krajewski, 1987). The Global 40 

Precipitation Climatology Project (GPCP) was an earlier attempt for satellite-gauge data fusion, which adopted a mean bias 

correction method and an inverse-error-variance weighting approach to develop a monthly, 0.25°  global precipitation data 

(Huffman et al., 1997). Another popular dataset, the Climate Prediction Center Merged Analysis of Precipitation (CMAP), 

included global monthly precipitation with a 2.5° x 2.5° spatial resolution for a 17-year period by merging gauges, satellites 

and reanalysis data using the maximum likelihood estimation method (Xie and Arkin, 1997). Since then, several blending 45 

approaches have been developed to generate gridded rainfall product with higher quality by merging gauge, radar and satellite 

observations (e.g., Li et al., 2015; Beck et al., 2017; Xie and Xiong, 2011; Yang et al., 2017; Baez-Villanueva et al., 2020). 

Overall, those fusion methods follow a general concept by eliminating biases in satellite/radar-based data and then merging 

the bias-corrected satellite/radar estimates with point-wise gauge observations. However, these efforts might be insufficient 

for quantifying the predicted data uncertainty. Some blended estimates are also partially polluted by the poorly performed 50 

individuals (Tang et al., 2018).  

 

Thus, tThis paper develops a new blending approach that enhances the quantitative modelling of individual error structures, 

prevents potential negative impacts from lower-quality members, and enables an explicit description of the model’s predictive 

uncertainty. In addition, a Bayesian concept for accurate rainfall estimateion is proposed based on these conditionsassumptions. 55 

The Bayesian analysis has the advantage of a statistically post-processing idea that could yield a predictive distribution with 

quantitative uncertainty (Renard, 2011). For instance, a Bayesian kriging approach, which assumes a Gaussian process forof 

precipitation at any location and considers the elevation a covariate, is developed for merging monthly satellite and gauge 

precipitation data (Verdin et al., 2015). A dynamic Bayesian model averaging (BMA) method is applied for satellite 

precipitation data merging across the TP (Ma et al., 2018a). Given the flexible distribution of multiple sources of precipitation 60 
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biases in regions with complex terrain (Derin et al., 2019), continuous efforts should be takenare required to exert the potential 

merit of Bayesian approach on this critical issue. 

 

In this paper, a two-stage blending (TSB) approach is described for blending combining multiple Ssatellite Pprecipitation 

Eestimates (multi-SPE) and point-based rain gauge observations. The initial experiment is performed during in the warm 65 

season of 2014 in the northeastern TP (NETP), where a denser network of rain gauges is available compared to other regions 

of TP. The proposed two-stage blending approach is also expected to help with the exploration of multi-source/scale 

precipitation data merging fusion in other regions with complex terrain but available SPE.  

 

The remainder of this paper is organized below: Section 2 gives a describesption of the experiment including the study region 70 

and precipitation data sourceets. Section 33 details the proposed two-stage blendingTSB approach. Section 2 gives a brief 

introduction of the study area and precipitation data sources. Section 3 details the proposed two-stage blending approach. 

Results and discussions are presented in Sections 4 and 5, respectively. The primary summary and future work findings are 

provided summarized in Section 6. 

2 Study area and dataset 75 

The study domain is located in the upper Yellow River basin of NETPnortheastern TP (Fig. 1). As shown in the 90-m digital 

elevation data, the elevation ranges from 785 m in the northeast to 6252 m in the southeast. The total annual precipitation i s 

around 500 mm and the annual mean temperature is 0.7°C (Cuo et al., 2013). To avoid snowfall contamination on the rain 

gauge observation in the cold season, the warm period from May 1, to September 30 in 2014 is selected as afor demonstration 

purpose.  80 

 

Four mainstream SPE are used, including Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) - Climate Data Records (PERCDR) (Ashouri et al., 2015), Tropical Rainfall Measuring Mission 

(TRMM) Multi-satellite Precipitation Analysis 3B42 Vversion 7 (3B42V7) (Huffman et al., 2007) , Climate Prediction Center 

(CPC) Morphing technique for the bias-corrected research product (CMORPH) version 1.0 (CMORPH) (Joyce et al., 2004), 85 

and the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission V03 Level 3 (IMERG) 

version 05 Level 3 final run product  (IMERG) (Huffman et al., 2018). The basic information of SPE is shown in Table 1. As 

the the IMERG data has a spatial resolution of 0.10° x 0.10°, resolution, and other SPE have a spatial resolution of 0.25° x 



4 

 

0.25°. To eliminate the scale difference, Tthe IMERG data areis resampled from 0.10° to 0.25° using the nearest neighbour 

interpolation method to eliminate the scale difference.  90 

 

A ground network including 34 rain gauges are used in this study (Fig. 1). The rain gauge data are carefully checked to ensure 

its creditability (Shen and Xiong, 2016). All of them are independent from the Global Precipitation Climatology Center 

(GPCC) stations, which are used for bias adjustmentcorrection of the TRMM/GPM-era data (e.g., 3B42V7 and IMERG), and 

CMORPH (Huffman et al., 2007; Hou et al., 2014; Joyce et al., 2004). The rain gauge data are spatially interpolated with a 95 

0.25° x 0.25° resolution in the study region of interest for each rainy day using a bilinear interpolation approach. The 34 grid 

cells with the gauge sites are assumed as ground references (GR) in the blending process. In addition, the the ground cellGR 

network isare randomly classified into two parts: the black grids are used for training the model, and the red gridsones are used 

are for model verification (Fig. 1) (Fig.1). In order to clarifyclarify the TSB method, the selection of calibrationtraining 

gridcells is randomly repeated 10 times for the the groundGR network, and the remaining ones are used for model validation. 100 

Additionally, Meanwhile, the TSB algorithmmethod is applied on a heavy rainfall event that occurred on SepSeptember 22, 

2014 in the survey area to quantify its performance in extreme rainfall scenario. Local recycling plays as a premier role for the 

moisture sources of rainfall extremes in the NETP (Ma et al., 2020a). The SepSeptember 22 rain case is a typical storm that 

can explain the local heavy rainfall patterns in the warm season. The performance of tThe TSB approach is furtheralso 

compared with thetwo existing existing DBMAfusion algorithmmethods, i.e., BMA and One-outlier removed (OOR), which 105 

iswere previously developed by Ma et al. (2018a) and applied for long-term SPE data fusion in the TP (Ma et al., 2018; Shen 

et al., 2014b). 

3 The TSB algorithm 

3.1 Overview 

This algorithm aims at developing a multi-source data merging framework in the region of interest to provide the best-available 110 

gridded precipitation product with rain gauge observationsGR and SPE in the region of interest. Let 𝑅(𝑠, 𝑡) denote near-surface 

precipitation at the gaugeGR cell s and the tth day. The original SPE and bias-corrected SPE at the same grid and time are 

defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡)  and (𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡) ), at the same grid and timerespectively. For 

simplicity, they are respectively replaced by 𝑅, (𝑌1, 𝑌2,…, 𝑌𝑝), and (𝑌1
′, 𝑌2

′,…,𝑌𝑝
′), respectively. The subscript p implies the 

number of SPE in terms of its value at 4 in this application, whereand PERCDR, 3B42V7, CMORPH and IMERG refer to 115 

𝑌1, 𝑌2, 𝑌3, 𝑌4, respectively.  
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The diagram of the TSB algorithmmethod is shown in Figure 2. Stepage 1 is designed to mitigate the bias of the original SPE 

based on the GR at the training sites with a Bayesian correction (BC) procedure, where the assumption of probabilistic 

distribution for GR conditional on each SPE is not limited to Gaussian. Given complex terrain and 0.25° grid resolution, the 120 

topography is consideredadded as a covariate in the BC process. In the 2ndsecond  stepage, a Bayesian weight (BW) model is 

developused to merge the bias-corrected SPE. The BW model has the ability tocan exert benefits from bias-adjustcorrected 

SPE with high performance and reduce poor impacts from the ones with lower quality. It also produces blended SPE with 

predictive uncertainty. The details of the TSB algorithm are described in Sections 23.2 and 23.3, respectively. 

 125 

3.2 Stepage 1: bBias correction 

In this stepage, we focusperform on conditional modelling of GR on each of the original SPE, i.e., on the probabilistic 

distribution 𝑓(𝑅) at the training sets to improve the accuracy of the original SPE accuracy. With regard to the conditional 

distribution of GR, aA flexible assumption (e.g., Lognormal, Gaussian, or Student’s t distribution) for bias characteristics 

between GR and SPE is proposed. Given various SPE at different training sites, the specific probabilistic function is not limited 130 

to a certain distribution. For demonstration purposes, we apply the Student’s t distribution, with its mean parameter expressed 

as a linear regression of the original SPE. Also, Tthe goodness-of-fit of the Student’s t distribution for the bias between GR 

and SPE at the training grid cells is examined graphically by using a quantile-quantile plot at the training sets (Fig. 3),. It is 

found that where they are close to the diagonal red line. A Student’s t distribution is thus adopted with its mean parameter 

expressed as a linear regression of SPE. It is  135 

 

We parameteriszed the Student’s t distribution asas follows: 

𝑅~𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝜈𝑖, 𝜇𝑖 , σ𝑖)                                                                               (1) 

𝜇𝑖 = α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍                                                                             (2) 

where 𝜈𝑖  is known as degree of freedom, 𝜇𝑖  and σ𝑖  stand for sample mean and variance, respectively; the parameter 𝜇𝑖  is 140 

correlated with the intensity value of the ith SPE (𝑌𝑖) and associated terrain feature (e.g., elevation) (Z). To avoidignore the 

scale factordata anomaly,, the normalized elevation feature ranging from 0 to 1 is used as the terrain feature in the regression 

model of Eq. (2). is normalized and its value ranges from 0 to 1 after the normalization. Also, 𝛉 = {𝜈𝑖, α𝑖 , β𝑖 , γ𝑖 , σ𝑖}  isis 

summarized as a the parameter set,s which enables to write the likelihood function or probability density function (PDF) from 

Eqs. (1) and (2) conditional on 𝛉 and 𝑌𝑖 as: 145 
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𝑓(𝑅|𝛉, 𝑌𝑖) =
Γ((𝜈𝑖+1)/2)

Γ(𝜈𝑖/2)
 

1

√𝜈𝑖𝜋 σ𝑖
(1 +

1

𝜈𝑖
(
𝑅−(α𝑖+β𝑖∗𝑌𝑖+γ𝑖∗𝑍)

σ𝑖
)2)−(𝜈𝑖+1)/2                                (3) 

According to the Bayes’s theorem (Gelman et al., 2013), the posterior distribution of parameter set 𝛉 given GR and SPE data, 

and the prior distribution of parameters 𝑓(𝛉) can be expressed as: 

𝑓(𝛉|R, 𝑌𝑖) ∝ 𝑓(𝑅|𝛉, 𝑌𝑖)𝑓(𝛉)                                                                     (4) 

The estimation of the posterior distribution 𝑓(𝛉|R, 𝑌𝑖) in Eq. (4) is challenging as its dimension grows with the number of 150 

parameters (Renard, 2011). Here, However, tthe Markov Chain Monte Carlo (MCMC) technique complied in the Stan 

programming language can beis used to address this issue (Gelman et al., 2013). ConsiderGivened that the assumption of the 

weakly informative priors ensures the Bayesian inference in an appropriate range (Ma et al., 2020b), the priors of 𝑓(𝛉) are 

initialized as uniform distribution with α𝑖, β𝑖 , γ𝑖  at real numbers in Eq. (5), and with 𝜈𝑖 , σ𝑖  at a lower-bound zero of real 

numbers in Eq. (6).  155 

α𝑖 , β𝑖 , γ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−∞,+∞)                                                                (5) 

𝜈𝑖 , σ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,+∞)                                                                    (6) 

Based on the estimated parameter set 𝛉 above, the next step is to calculate each of the bias-corrected SPE 𝑅∗ at any new site 

of the domain at the same period,. whichIt can can be quantitatively simulated from its posterior predictive distribution in Eq. 

(7) using the associated original SPE 𝑌𝑖
∗, and training data 𝑅, 𝑌𝑖: 160 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = ∫𝑓(𝑅∗, 𝛉|𝑌𝑖

∗, 𝑅, 𝑌𝑖) 𝑑𝛉                                                           (7)  

Following the rule of joint probabilistic distributions, the right term inside the integral of Eq. (7) is written as: 

𝑓(𝑅∗, 𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = 𝑓(𝑅∗|𝑌𝑖

∗, 𝑅, 𝑌𝑖 , 𝛉)𝑓(𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖)                                               (8) 

Given that 𝑌𝑖
∗ is independent with 𝑅 and 𝑌𝑖 , the first term of the right side in Eq. (8) is transformed as: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖 , 𝛉) = 𝑓(𝑅∗|𝑌𝑖

∗, 𝛉)                                                                 (9) 165 

Since the parameters 𝛉 are dependent upon the training data 𝑅, 𝑌𝑖 , the second term of the right side in Eq. (8) is expressed as: 

𝑓(𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = 𝑓(𝛉|𝑅, 𝑌𝑖)                                                                    (10) 

Therefore, the posterior predictive distribution of 𝑅∗ in Eq. (7) is written below: 
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𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = ∫ 𝑓(𝑅∗|𝑌𝑖

∗, 𝛉)𝑓(𝛉|𝑅, 𝑌𝑖) 𝑑𝛉                                                  (11) 

Since there is no general way to calculate the associated integral in Eq. (11), it is performed again using the MCMC iterations. 170 

A numerical algorithm is suggested below: 𝑛𝑠𝑖𝑚 is assumed as the replicate of the post-convergence MCMC samples, and the 

predicted samples for 𝑅∗ in Eq. (11) are iterated (i = 1, …, 𝑛𝑠𝑖𝑚) as follows:  

1) Calculate the model parameters 𝛉 from Eqs. (1) to (6); 

2) Compute the mean parameter 𝜇𝑖
∗ from the regression model of Eq. (2), i.e., 𝜇𝑖

∗ = α𝑖 + β𝑖 ∗ 𝑌𝑖
∗ + γ𝑖 ∗ 𝑍

∗; 

3) Generate the derived quantity from the posterior distribution of 𝑅∗ in Eq. (11). 175 

 

3.3 Stepage 2: Data merging 

On the basis of In Stepage 1 in Section 3.2, the median value of the posterior samples is adaptused as the bias-corrected SPE. 

Here, we redefine the bias-corrected SPE as 𝑌𝑖
′(𝑖 = 1,2, … , 𝑝), respectively. In this part, it aims to merge the bias-adjusted 

SPE at each grid cell in the domain. The formulas of blending the bias-corrected SPE are shown below: 180 

𝐵 = ∑ 𝑌𝑖
′𝑝

𝑖=1 ∗ 𝑤𝑖 +  𝜀                                                                         (12) 

∑ 𝑤𝑖
𝑝
𝑖=1 = 1                                                                             (13) 

𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)                  (14) 

𝑤𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1, … , 𝑝                                                      (15) 

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,+∞)                                                                   (16) 185 

where B is the blended SPE; 𝑤𝑖  (i=1,2,…,p) stands for the relative weight of the ith bias-corrected SPE; 𝜀 is the residual error. 

Ideally, the blended SPE at the training site s and time t should beshould be close to GR, i.e., R(s, t). Thereby, the model 

parameters 𝛅, including 𝑤𝑖(𝑖 = 1,2, . . 𝑝) and 𝜎 are able towill be estimated based on the GR and bias-corrected SPE at the 

training sites under a Bayesian analysis. With regard to the conditional distribution of blended SPE on the bias-corrected SPE, 

we propose a Gaussian distribution for the residual error modelling. The corresponding PDF is written as follows: 190 

  𝑓(𝐵|𝛅) =
1

√2𝜋𝜎
exp (−

1

2
(
𝐵−∑ 𝑌𝑖

′𝑝
𝑖=1 ∗𝑤𝑖

𝜎
)2)                                                     (17) 
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The calculation process of 𝛅 is similar withto the parameter estimation described in Stepage 1.  After the parameters 𝛅 are 

estimated, similar to Eqs. (7) to (11), the blended SPE at any site and time t can be derived with the bias-corrected SPE and 

corresponding weights using the MCMC iterations. Finally, we can obtain spatial patterns of blended SPE and rain gauge 

networks in terms of the median, standard deviation (SD) and associated credible intervals (e.g., 5% and 95% quantiles) in the 195 

regions of interest. 

 

2 Study area and dataset 

The selected study domain is located in the upper Yellow River basin of northeastern TP (Fig. 1). As shown in the 90-m digital 

elevation data, the elevation ranges from 785 m in the northeast to 6252 m in the southeast. The total annual precipitation i s 200 

around 500 mm and the mean annual air temperature is 0.7°C (Cuo et al., 2013). To avoid snowfall contamination in the cold 

season, the warm period from May 1st, to September 30th in 2014 is selected in this demonstration study.  

 

Four popular SPE are used, including Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) - Climate Data Records (PERCDR) (Ashouri et al., 2015), Tropical Rainfall Measuring Mission 205 

(TRMM) Multi-satellite Precipitation Analysis 3B42 Version 7 (3B42V7) (Huffman et al., 2007) , Climate Prediction Center 

(CPC) Morphing technique for the bias-corrected product (CMORPH) (Joyce et al., 2004), and the Integrated Multi-satellitE 

Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) (Huffman et al., 2018) (Table 1). Since IMERG 

data has a spatial resolution of 0.10° x 0.10°, and other SPE (i.e., PERCDR, 3B42V7 and CMORPH) have a spatial resolution 

of 0.25° x 0.25°. The IMERG data are resampled from 0.10° to 0.25° so as to match the other individuals before performing 210 

the two-stage blending.  

 

A ground rain gauge network including 34 stations are used in this study (Fig. 1). The gauge data are carefully checked to 

ensure its creditability (Shen and Xiong, 2016). All of them are independent from the Global Precipitation Climatology Center 

(GPCC) stations, which are used for bias adjustment of the TRMM/GPM-era data, such as 3B42V7 and IMERG (Huffman et 215 

al., 2007; Hou et al., 2014). In addition, the gauge network is randomly classified into two parts: the black dots are used for 

training the model, and the remaining ones are for model verification. In order to demonstrate the reliability of the proposed 

two-stage blending approach, the selection of training sites is randomly repeated for 10 times to further examine the blending 

performance. In addition, the proposed blending algorithm is applied on a heavy rainfall case of Sep 22, 2014 in the NETP, to 

quantify the performance during heavy rainfall scenario. Local recycling performs as a premier role for the moisture sources 220 
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of rainfall extremes in the NETP (Ma et al., 2020). This case is a typical storm that could stand for the local heavy rainfall 

patterns to a large extent during the warm season. 

3 A two-stage blending algorithm 

3.1 Overview 

This algorithm aims at developing a multi-source data merging framework so as to provide the best-available precipitation 225 

product in any region of interest. Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at gauge site s and the tth day in a year. The 

original and bias-adjusted multi-SPE at the same location and time are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡)  and 

(𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡) ), respectively.  For simplicity, they are accordingly replaced by 𝑅 , (𝑌1 ,  𝑌2 ,…,  𝑌𝑝 ), and 

(𝑌1
′ , 𝑌2

′,…,𝑌𝑝
′). Noted that the value of p equals to 4 in this study, where PERCDR, 3B42V7, CMORPH and IMERG refers to 

𝑌1, 𝑌2, 𝑌3, 𝑌4, respectively. 230 

 

The diagram of the proposed two-stage blending approach is shown in Figure 2. Stage 1 is designed to correct the systematic 

errors of individual SPE using point-based rain gauge observations (training sites) as ground references, where the assumptions 

of various probabilistic distribution for gauge references conditional on each SPE are not limited to Gaussian prototype. The  

impact of topography is also considered. In the 2nd step, a Bayesian weight model is applied to blend the improved multi-SPE. 235 

It has the ability to exert benefits from multi-SPE of higher performance and mitigate negative impacts from the ones with 

lower quality. It is expected to produce posterior blended results associated with their predictive uncertainties in the survey 

region.  

 

The details of the two-stage blending algorithm are described in Sections 3.2 and 3.3, respectively. 240 

3.2 Stage 1: Bias adjustment 

A generalized regression function between gauge references, individual SPE, and terrain features is proposed in the 1st stage. 

Because the bias of SPE generally follows a skew Normal distribution, it is important to fit an appropriate function.  In this 

paper, a Student’s t distribution is assumed for modelling of gauge observations conditional on the individual SPE. It is written 

as: 245 

𝑅|𝑌𝑖  ~𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝜈𝑖, α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍, σ𝑖), α𝑖, β𝑖 , γ𝑖 ∈ 𝑅, 𝜈𝑖 , σ𝑖 ∈ 𝑅+                                (1) 
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where 𝛉 = {𝜈𝑖 , α𝑖, β𝑖 , γ𝑖 , σ𝑖}  are model parameter sets in order to adjust the ith SPE. (α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍) represents the 

sample mean and Z is the associated collection of covariates (e.g., topography). More specifically, the normalized elevation is 

used as a covariate in this experiment. These parameters are real numbers and 𝜈𝑖, σ𝑖  are positive. It should be noted that some 

other distributions (e.g., Lognormal, Normal) are also examined but there are no obvious improvements in terms of the bias-250 

adjusted result compared to Student’s t distribution for this test. 

It should be noted that some other distributions (e.g., Lognormal, Normal) are also examined but there are no obvious 

improvements in terms of the bias-adjusted result compared to Student’s t distribution for this test. 

 

Based on the gauge observations and multi-SPE at the training sites, model parameters for each SPE could be estimated within 255 

a Bayesian analysis using the Markov Chain Monte Carlo (MCMC) technique (Gelman et al., 2013). Next, it is to calculate 

each of the bias-adjusted SPE at any new site (𝑠′) of the domain at the same period. The conditional distribution of bias-

adjusted SPE at any new site is mathematically defined as: 

𝑓(𝑅𝑠′|𝑌𝑖) = ∫ 𝑓(𝑅𝑠′ , 𝛉|𝑌𝑖) 𝑑𝛉                                                                            (2a)  

= ∫ 𝑓(𝑅𝑠′|𝛉)𝑓(𝛉|𝑌𝑖) 𝑑𝛉                                                                    (2b) 260 

where the posterior distribution of 𝑅𝑠′|𝑌𝑖 from Eq. 2 can be simulated numerically based on the calculated parameter samples 

𝛉 at the training sites using the MCMC samplings. We further assume N as the size of post-convergence MCMC samples. The 

above process is repeated N times and produces a predictive posterior distribution at any new site 𝑠′ and time t. 

3.3 Stage 2: Data merging 

On the basis of Stage 1, this part is designed to blend the updated multi-SPE at each grid cell of the domain. With regard to 265 

the individual SPE, the median value of the posterior samples from Stage 1 is assumed as the new SPE. Here, we redefine the 

bias-adjusted multi-SPE as 𝑌𝑖
′(𝑖 = 1,2, … , 𝑝), respectively.  

 

The formulas of blending the bias-adjusted multi-SPE are shown below: 

𝐵 = ∑ 𝑌𝑖
′𝑝

𝑖=1 ∗ 𝑤𝑖 +  𝜀, 𝑤𝑖 ∈ 𝑅(0,1), 𝜀 ∈ 𝑅+                                                                 (3) 270 

∑ 𝑤𝑖
𝑝
𝑖=1 = 1                                                                                             (4) 
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where B means the blended result; 𝑤𝑖  (i=1,2,…,p) stands for the relative weight of the ith SPE, respectively, and their values 

range from 0 to 1; 𝜀 is the residual error,  whose value is positive real number. Ideally, the blended multi-SPE, i.e., B, at the 

training site s and time t should be close to gauge references R(s, t). Thereby, the weight parameters, including 𝑤𝑖(𝑖 = 1,2, . . 𝑝) 

and 𝜀 are able to be estimated at the training sites based on gauge observations and new multi-SPE within a Bayesian analysis 275 

using the MCMC technique. 

 

As the weight parameters are successfully derived above, similar to Eq. 4, the blended result at any new sites at time t are 

calculated based on the retrieved new multi-SPE and corresponding optimal weights. Finally, we can obtain spatial patterns of 

blended multi-SPE and point-based rain gauge observations in terms of the median, standard deviation (SD) and associated 280 

confidence intervals (e.g., 5% and 95% quantiles) in regions of interest. 

4 Results 

To assess the performance of the proposed two-stage blendingTSB method, several statistical error indices including Rroot 

Mmean Ssquare Eerrors (RMSE), nNormalized Mmean Aabsolute Eerrors (NMAE), and the Pearson’s Ccorrelation 

Ccoefficients (CC) are used in this study. The specific formulas of these metrics can be found in  the literature (e.g., Chen et 285 

al., (2019 among others).  

 

4.1 Evaluation of the original, Bbias-corrected, and blended adjustment of multi-SPE at the validationed grids 

Compared to the the gauge referencesGR, the original multi-SPE including (i.e., PERCDR, 3B42V7, CMORPH and IMERG) 

show significant large biases at the independent validation grid sites cellsgrids over in the NETP during the warm season of 290 

2014 (Table 2). Their statistical error metrics including RMSE, NMAE, and CC range from 6.59-8.07 mm/d, 63.2-83.5%, and 

0.403-0.5768, in terms of RMSE, NMAE, and CC, respectively. 3B42V7 performs has the worst skill with the highest RMSE 

of 8.07 mm/d and the highest NMAE at of 83.5%, and the lowest CC of 0.403. IMERG shows the best performance in terms 

of the lowest NMAE atof 63.2% and highest CC at 0.5768 among the four SPE., which presents its superiority compared with 

the other SPE in the survey area. It seems that the satellite retrievals need to be further clarified with regard to the mainstream 295 

SPE in the NETP.  

 

After the bias Based on the BC modeladjustment of each SPE, the updated multi-bias-corrected SPE (i.e., BC-PER, BC-V7, 

BC-CMO and BC-IME) show great improvement have better agreements with GR in data qualityat the validation grids in the 
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experiment. during this experiment (Fig. 3).These changes result in better agreement of SPE with rain gauge measurements at 300 

the validated sites in the NETP. BothTheir RMSE scores range fromof the corrected multi-SPE  4.56 to 5.06 mm/d, and 

correspondingly decrease by 27~37.3%, and their NMAE scores vary from 50.9 to 58.7%, and decline by 19.1 to 31.1%., 

respectively, As compared with the original multi-SPE,. the updated ones decrease by 27~37.3% and 19.1~31.1% with respect 

to RMSE and NMAE, respectively. MoreoverMeanwhile, their CC indexvalues of four SPE varyrange from 0.4210 to 0.5768 

after bias adjustment (Table 2), which slightly increases as compared to the original SPE. Considering that the linear 305 

assumption of mean parameter in the Student’s t distribution at Stage 1 might fail to expect significant difference in the 

correlation, the CC value does not improve effectively for the bias-corrected SPE. After Stage 2, the blended SPE is closer to 

the GR in terms of RMSE, NMAE and CC at 4.34 mm/h, 49.2%, and 0.606, respectively, compared with both the original and 

bias-corrected SPE at the validation grid cells (Fig. 4). It is also found that 3B42V7 improves the most in terms of its RMSE 

decreasing from 8.07 mm to 5.06 mm using the step 1’s method. Basically, it implies that the proposed bias-adjusted algorithm 310 

occurred in phase 1 is very effective for reducing systematic errors of four involved SPE in the warm season of 2014 in the 

NETP. 

4.2 Blending multi-SPE and independent validation 

To test the performance of the proposed two-step blending approach, the blended multi-SPE at the validation sites are further 

examined. As shown in Figure 3, the fusion result is closer to the ground reference in terms of RMSE, NMAE and CC, 315 

compared to the individual SPE. The RMSE and NMAE indices values of the mergingblended dataSPE decrease by 

34.1~65.4% and 27.1~41.1%, respectively, compared to the individual SPE, while and the CC index value increases by 

6.7~50.4%, accordingly, compared with the original SPE (Table 2). As Ccompared to with the bias-corrected multi-SPE, the 

performance of the blended datathe blended SPE increases by 5.1~14.2%, 3.3~16.2%, and 5.9~47.8% in terms of RMSE, 

NMAE and CC, respectively. That is to say,It is found that the merged blended precipitationSPE in the warm season of 2014 320 

at the validated sites of NETP exhibits higher quality at the validation grids afterafter Stage 2, due to the ensemble contribution 

of the bias-corrected SPE with their relative weights at 0.019, 0.052, 0.289, and 0.640, respectively. The BC-IME and BC-

PER have the highest and lowest weights, respectively, and the contributions of BC-V7 and BC-CMO on the blended SPE 

rank between BC-IME and BC-PER (Fig. 5a). Based on the TSB approach, tmerging the bias-corrected multi-SPE using the 

optimal relative weights shown in Figure 4a. The blended dataSPE has been effectively dropped towards the the gauge 325 

referencesGR atat the  the validation grids (Fig. 5b), especially for the rain intensity values less than 15 mm/d (Fig. 5c), which 

is evidenced from the scatterplots in terms of red dots in Figure 4b. Also, there is an overestimation in the original SPE but an 

underestimation in the blended SPE as the daily rainfall is more than 15 mm, partly because the BC process might over-correct 

the original SPE on the heavy rainfall. Overall, this TSB method has its ability to exert benefits from SPE in terms of higher 

performances and mitigate poor impacts from the ones with lower quality. Meanwhile, BC-PER seems to be clearly very 330 
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different from the others (Fig. 5a), and to this point in the study has shown little value to be kept in consideration in the merging 

process. However, it is worth noting that PERCDR can in fact be informative and on a case by case basis. 

 

The results presented in Figures 4 and 5 are an average assessment of the TSB algorithm at all the validation grids, which can 

possibly homogenize some individual feature. The time series plot of daily rainfall estimates and rainfall accumulations of the 335 

GR, original and blended SPE at a validation grid with a rain gauge labeled as ID 56173 is shown in Figure 6 as a demonstration 

example. This rain gauge, which is located at (32.8° N, 102.55°E, 3484 m), has the maximum rainfall record in the warm 

season of 2014 in the NETP. Visual analysis of Figure 6 shows that the blended SPE provides reasonable rainfall compared to 

the original SPE. Also, the blended SPE has a better skill in terms of RMSE at 4.95 mm/d compared with the original SPE 

including PERCDR (10.71), 3B42V7 (9.76), CMORPH (8.0), and IMERG (10.49), respectively.  340 

 These improvements prove the significant superiority of the two-step blending method on reducing the systematic errors of 

the original multi-SPE and supplying higher daily precipitation in the warm season of 2014 over the NETP.   

 

The best-performed merging result is due to the ensemble contributions of the bias-corrected multi-SPE. The optimally relative 

weights are 0.019, 0.052, 0.289, and 0.640 with respect to PERCDR, 3B42V7, CMORPH and IMERG, respectively. It shows 345 

that the bias-adjusted IMERG and PERCDR contributes the highest and lowest weights, respectively, in this blending process, 

and the contributions of the other SPE rank between IMERG and PERCDR accordingly. As the bias-adjusted IMERG shows 

the best performance among all the individuals, it proves that higher informative SPE shows more positive impact on the 

blended result under this two-step fusion approach. It is further concluded that this blending method has its ability to exert 

benefits from multi-SPE in terms of higher performance and mitigate poor impacts from the ones with lower quality. 350 

4.3 Time series of original, bias-corrected, and blended SPE   

 

4.3 42 Model clarification with random validation sitegrids 

Figures 57 and 8 shows the statistics of  evaluation scores of RMSE, NMAE, and CC for the original multi-SPE and blended 

estimates at the validation gridsites s with 10 random split of the gauge stationslocations. For each test, 7 gauge grid sites are 355 

randomly selected from the 34 grid sitecells and used for model verification, and the remaining 27 gauge sitesgrid sites are 

used are used for training the model fitting.        
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As for the blended resultSPE, it performs similar skill scores at the the independent validation grids foramong the 10 random 

tests., but It also shows better skillsperformance in terms of RMSE, NMAE, and CC, at which are 4.34~5.57 mm/h, 360 

49.2~61.7%, and 0.492~0.6765, respectively, compared to with the raw multi-original SPE at each random experimenttest 

(Fig. 7). Statistically, the averaged mean values of RMSE, NMAE and CC for the blended data SPE are 4.98 mm/h, 54.9% 

and 0.60597, respectively while four(Table 3). The averaged improvement ratios of RMSE for the blended dataSPE are 35.1%, 

33.7%, 19.6% and 32.1% compared to the PERCDR, 3B42V7, CMORPH and IMERG, respectively (Table 4)., and Ssimilar 

performance is seen from the NMAE scores, where with their the mean average improvement ratios are of 29.8%, 30.1%, 365 

17.0% and 21.3%, respectively (Table 4) for the four SPE. The 10 random tests clarify that the blended SPE has a higher 

accuracy of gridded precipitation which receives different credits from various SPE on an event basis. 

As seen in Figure 6, the blended result shows a significant improvement over the original multi-SPE in the survey area, 

especially for PERCDR and 3B42V7. It is concluded that the biases of multi-SPE could be significantly reduced as the impacts 

of bias functions are well considered in the proposed two-step blending algorithm. 370 

 

4.5 Model comparison with the existing fusion algorithm 

 

 

4.43 Model application in spatial domain 375 

It is important to explore the Bayesian ensembles at any unknown site in the study domain. Each SPE can capture the spatial 

pattern of daily mean precipitation in the warm season, but might fail in the representation of precipitation amount in the NETP 

(Fig. 9), partly because of the satellite retrieval bias in complex terrain and limited GR network. ThereforeHere, the two-step 

blendingTSB approach is applied in four spatially distributed SPE (i.e., PERCDR, 3B42V7, CMORPH, IMERG) from Figures 

7a to 7d to obtain the blended estimates SPE in terms ofof daily mean precipitation inin the warm season of 2014 for over the 380 

whole study domaindomain (not only at the gauge stations).  

 

There is an overestimation for most of the original SPE, and the bias of the blended SPE is reduced based on the TSB approach. 

Spatial maps of the merging predictions and the associated predictive uncertainties including SD, 5% and 95% quantiles are 

shown along with the gauge observations (Figure 8). 385 

 

Formatted: Normal
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All of the multi-SPE have the ability in capturing the spatial patterns of daily mean precipitation during the warm season, but 

might fail in the representation of precipitation amounts in the NETP (Figure 7), likely because of the satellite retrieval biases 

in complex terrain and limited ground validation network. The spatial patterns of blended multi-SPE are shown in Figure 8a, 

whichIt is found that the blended SPE shows a better performance in terms of magnitude and distribution in the study area 390 

(Fig. 10a). Higher values disappear from the map except in southwest corner. The possible reason is that daily mean rainfall 

is the highest in southwest corner for each SPE, and higher value still exists after the TSB process. Meanwhile, the predictive 

uncertainties including SD, 5% and 95% quantiles are displayed from Figures 10b to 10d in order to illustrate the fusion 

variance. 

 395 

 has a similar spatial pattern with a higher precipitation amounts in the southwest compared with the individual SPE. Based on 

the proposed blending approach, the fusion estimate performs a higher adjustment compared to the original SPE. It is expected 

to show a better performance in terms of magnitude and distribution in the study area. Moreover, the predictive uncertainties 

are displayed from Figures 8b to 8d so as to illustrate the blending variance. In total, this study confirms the priority of exploring 

daily precipitation in spatial at higher accuracy and quantifying the associated uncertainty in the study domain. 400 

4.54 Model performance during a heavy rainfall case 

Accurate precipitation on extreme weather is very important for flood hazard mitigation. Here, wWe investigate the utility of 

this two-step blending TSB approach on a heavy rainfall case of SepSeptember 22, 2014 in over the NETP (Fig. 9a11a). The 

relative weights of BC-PER, BC-V7, BC-CMO, and BC-IME for the blended data are 0.464, 0.123, 0.112 and 0.301, 

respectively, during on this particular heavy rainfall event (Fig. 911b). 405 

 

Table 54 reports the evaluation statistics reflecting the blended model performance during this heavy rainfall case, where the 

RMSE, NMAE and CC valuesindices of the individual original SPE range from 6.28~10.48 mm/d, 40.6~59.5%, and 

0.6986~0.820, respectively. Overall, As compared to the individualoriginal SPEs, the merged product has lower RMSE of 

4.13 mm/d, and lower NMAE of 27.4%, and higher CC of 0.850, respectively. In other words, the RMSE and NMAE values 410 

of the blended result SPE decrease by 34.2~60.6% and 32.5~53.9%, respectively, while and the CC index correspondingly 

increases by 3.4~23.9% on this heavy rainfall case compared to the original SPE. The two-step blending approach has a great 

influence on the performance of SPE in terms of rainfall extremes in the warm season of the NETP.  
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The blended model performance is further explored at three gauge sites cells (i.e., IDs 56171, 56152, 56182) with the top three 415 

daily rainfall records in terms of daily rainfall amounts on SepSeptember 22, 2014 (Fig. 911a). Figure 120 shows the 

Probabilistic Density Function (PDF) curves of blended samples of at the above three grid sites during in this rainfall caseevent. 

It aims to demonstrates the blended performance on quantifying the predictive uncertainty on rainfall extremes in the survey 

region at each grid. At ID 56171, the estimated rainfall derived from PERCDR, 3B42V7, CMORPH and IMERGthe original 

SPE are 19.8 mm (PERCDR), 35.3 mm (3B42V7), 26 mm (CMORPH), and 40.2 mm (IMERG), respectively. 3B42V7 and 420 

IMERG shows an overestimation, while PERCDR and CMORPH underperform the daily rainfall at the corresponding pixel 

(Fig. 10a12a). Based on the two-step blending TSB methods, the median and SD values of the merging estimates are 24.1 

mm/d, and 4.4 mm/d, respectively. At IDs 56152 and 56182, the median/SD values of blended multi-SPE are 24.3/5.0 mm/d 

and 21.9/4.5 mm/d, respectively., and they As learned from Figures 10b and 10c, the medians of the blended result at IDs 

56152 and 56182 are very close to the gauge observationsGR with the daily amounts of in terms of 24.6 mm, and 23.1 mm, 425 

respectively (Figs. 12b and 12c). It shows that These analyses reveal that this the proposed two-step fusionTSB algorithm 

method can not only quantify its predictive uncertainty, but also improve the daily rainfall amount even on rainfall 

extremesprovides a posterior inference and quantifies its predictive uncertainties on the heavy rainfall events. It is confirmed 

that the proposed two-step blending method is able to improve the daily precipitation amounts even during rainfall extremes 

in the NETP. 430 

 

4.5 Model comparison with other fusion methods 

To assess the performance of the proposed TSB algorithm, it is beneficial to compare the TSB result with the existing fusion 

approach. Herein, we compare it with the BMA and OOR methods at the validation grids of NETP (red pixels in Figure 1) in 

the warm season of 2014 and their statistical error summary is shown in Table 6. It is found that the TSB method performs 435 

better skill with the RMSE, NMAE and CC values of 4.34 mm/d, 49.2%, and 0.606, respectively, compare with the other two 

fusion methods. OOR shows the worst performance in terms of RMSE, NMAE, and CC at 5.63 mm/d, 59.2%, and 0.547, 

respectively. As learned from model comparison among the three methods in this case, the TSB method has an advantage for 

combining the SPE and reducing the bias of the individuals.      

5 Discussion 440 

This study proposes a flexible two-step blending algorithm for merging multi-satellite and rain gauge precipitation data at 

daily scale, aiming to provide a more accurate precipitation datasets in regions with complex terrain. In spite of the superior 

performance of the TSB algorithm, some issues still need to be considered in the practical applications: 
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Because of limited knowledge on the influences of complex terrain and local climate on the rainfall patterns in the study area, 445 

the elevation feature is merely considered considered in the first stage. Table 7 quantifies the impact of elevation covariate on 

the bias-corrected and blended SPE performances at the validation grids. It is found that the inclusion of elevation feature 

provides slightly better skill compared with the results without terrain information in this experiment. Considering that  It is 

noted that ddeep convective systems occurring near the mountainous area have an effect on the precipitation cloud (Houze, 

2012), which should bemore attempts are required to improve in fututhe orographic adjustment of individual precipitation in 450 

the TP in future.  

 

The fusion application is based on four mainstream SPE, and it is found that BC-IME and BC-PER show the best and worst 

performances among the bias-corrected SPE. It raises a question that why not simply apply the first stage of bias correction 

and then select the best-performed bias-corrected SPE as the final product. To address this issue, we investigate the statistical 455 

error differences among the BC-IME and blended SPE before and after the removing of BC-PER for 10 random verified tests 

in the warm season of 2014 in the NETP (Figure 13). It shows that it is beneficial to involve the Stage 2 in the TSB method 

because the blended SPE performs better skill than the best-performed bias-corrected SPE (i.e., BC-IME) in the Stage 1 

process. The primary reason is that the BW model is designed to integrate various types of bias-corrected SPE, which is limited 

in the BC model. Also, both blended SPE in Figure 13 show similar performances of the RMSE, NMAE, and CC indices. It 460 

implies that the TSB approach has an advantage of not impacted by the poor quality individuals (e.g., BC-PER), partly because 

the BW model can reallocate the contribution of the bias-corrected SPE based on their corresponding bias characteristics.  

 

In addition, as calculating the blended result at any new sites, the model parameters derived from the training grid sites are 

assumed to be applicable in the whole domain. Since the domain of this study is not very large and we have a relatively dense 465 

rain gaugeGR network in the survey region, the current assumption seems to beis acceptable according to the performance of 

the blended dataSPE. However , It is helpful to give some guideline on how many training sites are needed to apply the TSB 

approach in a region with complex terrain and limited GR. The sensitivity analysis of the number of training grid cells on the 

performance of blended SPE at the validation grids is explored in Figure 14. As the number of training sites is increasing, there 

is a decreasing trend for the RMSE and NMAE values, but a slight increasing trend for the CC value. Except for an anomaly 470 

with the No. 23, it seems that the performance of the blended SPE becomes similar as the number of training sites increases to 

21. We admit that the more information from the ground observations, it would be more beneficial for the blended gridded 

product in the region of interest. iIt is noted that, if extended to the TP or global scale, the extension of model parameters and 
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training sites should be carefully considered. For instance, there are few gauges installed in the western and central TP (Ma et 

al., 2015), it might be a potential risk to directly apply this fusion algorithm for these regions.  475 

 

The goal aim of this study is not to model rainfall process in a target domain, but to propose an idea to extract valuable 

information from available multi-satellite sourcesSPE and provide more reliable gridded precipitation in high-cold regions 

with complex topographyterrain. Considering its spatiotemporal differences and the existence of many zero-value records, 

rainfall is extremely difficult to observe and predict (Yong et al., 2015; Bartsotas et al., 2018). With regard to the probability 480 

of rainfall occurrence, a zero-inflated model, which is coherent with the empirical distribution of rainfall amount data, is 

expected to further improve the proposed two-step fusionTSB algorithm. In additionAlso, hourly or even instantaneous 

precipitation intensity is extremely vital for flood prediction, which should should bebe specifically considered designed when 

when extending this fusion framework in the next step.    

6 Summary and prospects 485 

This study proposes a two-step blendingTSB algorithm for multi-SPE data fusion. A preliminary experiment is conducted over 

in the NETP using four mainstream mainstream SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) to demonstrate the 

performance of this fusion TSB approach, including PERCDR, 3B42V7, CMORPH, and IMERG. Primary conclusions are 

summarized below: 

 490 

(1) This blending TSB algorithm has two stages and involves the BC and BW models. It is found that this blended method is 

designed with high flexibility, which is capable of involving a group of multi-SPE with their biases that may following different 

probabilistic distributionsPDF curves conditional on ground references. In additionMeanwhile, it provides a convenient way 

to compare quantify the merging fusion performance and further quantify the associated fusion uncertainty.  

 495 

(2) The experimentcase studies shows that the merged blended SPEprecipitation has better skill scores compared with to the 

individual original SPE at the independent validation siteslocations. The 10 random verification tests also confirms the 

superiority of thee proposed two-step blendingTSB algorithm. The performance of this fusion algorithm method is further 

demonstrated usingfor  the a heavy rainfall event. In addition, the TSB method outperforms another two fusion methods (i.e., 

BMA and OOR). 500 
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(3) The experiment application proves that this algorithm can allocate the contribution of individual SPE on the blended 

prediction result because it is capable of ingesting useful information from uneven individuals and alleviating potential 

negative impacts from the poorly performing members.   505 

 

Overall, this work provides an opportunity for blending merging multi-SPE productsin high-cold region with complex terrain. 

It is expected to promote the development of higher quality precipitation product in the remotely high-cold regions with widely 

available satellite precipitation retrievals. The exploration of model reliability evaluation analysis of this two-step blending 

TSB algorithmmethod  for long-term period and extended regions (e.g., TP) at larger scale (e.g., the TP) and in terms of higher 510 

temporal resolution (e.g., hourly) will be performed should be pursued in aa future future studystudy. 
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 605 

Figure and Table Captions 

Table 1: Basic information of the original multi-SPE used in this study. 

Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-adjustcorrected, and blended 

multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at the validation gridsites of NETP in the warm season of 2014. 

Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended multi-SPE (i.e., PERCDR, 610 

3B42V7, CMORPH, and IMERG) at 10 random verified tests in the warm season of 2014 over the NETP. 

Table 4: Summary of the mMean improvement ratios of statistical error indices of the blended multi-SPE, in terms of RMSE, 

NMAE and CC as compared towith the original SPEPERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests 

in the warm season of 2014 over the NETP. 

Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended multi-SPE (i.e., 615 

PERCDR, 3B42V7, CMORPH, and IMERG)  during a heavy rainfall event over the NETP on SepSeptember 22, 2014. 

Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of three fusion methods (i.e., OOR, BMA, 

and TSB) at the validated grid cells of NETP in the warm season of 2014. 

Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 

without consideration of terrain feature as a covariate in the TSB method at the validation grids of NETP in the warm season 620 

of 2014. 

 

Figure 1: Spatial map of the topography and ground referencesGR network used in the study, where 27 black cells are used 

for model calibration and 7 red cells are for model verification. 

Figure 2: The diagram of the proposed TSB algorithm. 625 

Figure 3: Quantile-quantile plots at training sets for the bias between GR and SPE, where (a) to (d) shows PERCDR, 3B42V7, 

CMORPH, and IMERG, respectively.  
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Figure 1: Overview of the topography and gauge observation network used in the study, where 27 gauges (black dots) are 

used for training and 7 (red dots) are used for independent verification. 630 

Figure 2: The diagram of the proposed two-step blending algorithm. 

Figure 34: Intercomparisons of statistical error indices for the original, bias-adjusted,corrected, and blended multi-SPE at the 

validation grids during in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 

Figure 45: (a) The Box-Whisker plots of relative weights of the bias-correctadjusted multi-SPE in Stage 2; (i.e., PERCDR, 

3B42V7, CMORPH and IMERG) in the stage 2 process; (b) Scatter plots between GR and various SPEintercomparison of the 635 

(original and blended) multi-SPE at the validation grids during in the warm season of 2014; (c) The PDF of daily rainfall in 

terms of the GR, original and blended SPE with various intensities at the validation grids in the warm season of 2014. 

Figure 6: Time series of daily rainfall estimates and rainfall accumulations at a selected validation grid with the maximum 

rainfall record in the warm season of 2014: (a) daily rainfall estimates, and (b) rainfall accumulations.    

. 640 

Figure 57: Statistical error indices of the original and blended multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) 

for 10 random tests during in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 

Figure 68: The Box-Whisker plots of improvement ratios of statistics for the blended multi-SPE compared withto the original 

SPE, including PERCDR, 3B42V7, CMORPH, and IMERG for 10 random tests during in the warm season of 2014: (a) RMSE, 

(b) NMAE, and (c) CC. 645 

Figure 79: Spatial patterns of the daily mean precipitation derived fromin terms of the original multi-SPE during in the warm 

season of 2014: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 

Figure 810: Spatial patterns of the blended multi-SPE in terms of (a) median, (b) standard deviationSD, (c) 5% and (d) 95% 

quantiles of daily mean precipitation during in the warm season of 2014. 

Figure 911: (a) Spatial pattern of gauge-based measurements during a heavy rainfall case over the NETP on SepSeptember 650 

22, 2014 over the NETP, where the site IDs 56171, 56152 and 56182 report the top three daily rainfall amounts of 30.4 mm, 

24.6 mm and 23.1 mm, respectively; (b) the corresponding Box-Whisker plots of relative weights of the bias-adjusted 

multiindividual- SPE (i.e., PERCDR, 3B42V7, CMORPH and IMERG) in the stage Stage 2 process. 

Figure 102: The PDF curves of blended samples SPE and the corresponding median value at three gauge sites during a heavy 

rainfall case on SepSeptember 22, 2014: (a) ID 56171, (b) ID 56152, and (c) ID 56182. The individual original SPE and GR 655 
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including PERCDR, 3B42V7, CMORPH, and IMERG as well as gauge based measurement at each pixel are also indicated in 

each subthe figure. 

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER for 10 random verified tests in 

the warm season of 2014 in the NETP. 660 

Figure 14: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in terms 

of different number of training sites in the warm season of 2014 in the NETP. 
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Table 1: Basic information of multithe original- SPE used in this study. 665 

 

 

  

Short name Full name 

and details 

Temporal 

resolution 

Spatial  

resolution 

Input data Retrieval 

algorithm 

References 

 

PERCDR Precipitation 

Estimation from 

Remotely Sensed 

Information using 

Artificial Neural 

Networks 

(PERSIANN) 

Climate Data 

Record (CDR) 

 

Daily 0.25° x 0.25° 

 

 

 

 

2014.5-

2014.9 

 

 

 

 

Adaptive artificial 

neural network 

 

 

 

Ashouri et al., 

2015 

 

 

 

 

3B42V7 TRMM Multi-

satellite 

Precipitation 

Analysis (TMPA) 

3B42 Version 7 

3 hourly 0.25° x 0.25° 

 

 

 

2014.5-

2014.9 

 

 

GPCC monthly 

gauge observation 

to correct this bias 

of 3B42RT 

 

Huffman et al., 

2007 

 

CMORPH Climate Prediction 

Center (CPC) 

MORPHing 

technique for bias-

corrected product 

version 1.0 

 

3 hourly 0.25° x 0.25° 

 

2014.5-

2014.9 

 

Morphing 

technique 

 

 

Joyce et al., 

2004 

 

 

IMERG Integrated Multi-

satellitE Retrievals 

for the Global 

Precipitation 

Measurement 

(GPM) mission V03  

Level 3 final run 

product  

0.5 hourly 0.10° x 0.10° 2014.5-

2014.9 

2014 version of 

the Goddard 

profiling 

algorithm  

Huffman et al., 

2018 
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Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) of the original, bias-adjuscorrected, and blended 

multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at the validation gridsites of NETP in the warm season of 2014.  670 

TypeProduct RMSE (mm/d) NMAE (%) CC 

PERCDR 

Original 
7.36 74.6 0.4216 

3B42V7Original 8.07 83.5 0.403 

CMORPH 

Original 
6.59 67.5 0.493 

IMERG Original 7.18 63.2 0.5768 

AdjustedBC-

PER 
5.02 58.7 0.4218 

AdjustedBC-V7 5.06 57.5 0.410 

AdjustedBC-

CMO 
4.81 54.6 0.50497 

AdjustedBC-

IME 
4.56 50.9 0.572 

Blended SPE 4.34 49.2 0.606 

Blended multi-SPE 4.34 49.2 0.61 
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Table 3: Summary of the mean values of RMSE, NMAE and CC for the original and blended multi-SPE  (i.e., PERCDR, 

3B42V7, CMORPH, and IMERG) at 10 random verified tests in the warm season of 2014 overin the NETP. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 7.72 78.5 0.378 

3B42V7 7.57 78.9 0.433 

CMORPH 6.21 66.3 0.513 

IMERG 7.37 70.0 0.572 

Blended SPE 4.98 54.9 0.597 

 675 
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Table 4: Summary of the mMean improvement ratios of statisticsal error indices of the blended multi-SPE, in terms of RMSE, 

NMAE, and CC including RMSE, NMAE and CC as compared towith the original SPEPERCDR, 3B42V7, CMORPH, and 

IMERG at 10 random verified tests in the warm season of 2014 over the NETP. 

 Index PERCDR 3B42V7 CMORPH IMERG 

Improvement 

Ratio (%) 

RMSE (mm/d) 35.1 33.7 19.6 32.1 

NMAE (%) 29.8 30.1 17.0 21.3 

CC 61.3 38.2 17.5 4.3 

 680 
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Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for the original and blended multi-SPE (i.e., 

PERCDR, 3B42V7, CMORPH, and IMERG) during a heavy rainfall event over the NETP on SepSeptember 22, 2014. 

Product RMSE (mm/d) NMAE (%) CC 

PERCDR 6.28 40.6 0.822 

3B42V7 10.12 59.5 0.686 

CMORPH 6.80 45.6 0.734 

IMERG 10.48 53.3 0.805 

Blended SPE 4.13 27.4 0.850 
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Table 6: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for three fusion methods (i.e., OOR, BMA, and 

TSB) at the validation grids of NETP in the warm season of 2014. 

Method RMSE (mm/d) NMAE (%) CC 

OOR 5.63 59.2 0.547 

BMA 5.44 57.6 0.595 

TSB 4.34 49.2 0.606 
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Table 7 Summary of statistical error indices (i.e., RMSE, NMAE, and CC) for bias-corrected and blended SPE with and 690 

without consideration of terrain feature as a covariate in the TSB method at the validation grids of NETP in the warm season 

of 2014. 

Product Type RMSE (mm/d) NMAE (%) CC 

BC-PER 
No Terrain 5.03 58.9 0.416 

Terrain 5.02 58.7 0.418 

BC-V7 
No Terrain 5.08 58.0 0.403 

Terrain 5.06 57.5 0.410 

BC-CMO 
No Terrain 4.83 55.0 0.493 

Terrain 4.81 54.6 0.497 

BC-IME 
No Terrain 4.58 51.4 0.568 

Terrain 4.56 50.9 0.572 

Blended SPE 
No Terrain 4.36 49.7 0.603 

Terrain 4.34 49.2 0.606 
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 695 

 

Multi-

SPEMethod 
RMSE (mm/d) NMAE (%) CC 

OOR 5.63 59.2 0.547 

BMA 5.44 57.6 0.595 

TSB 4.34 49.2 0.606 
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700 

 

Figure 1: Spatial map of the topography and ground referencesGR network used in the study, where 27 black cells are used 

for model calibration and 7 red cells are for model verification.  
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Figure 2: The diagram of the proposed TSB algorithm. 
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Figure 3: Quantile-quantile plots at the training sets for the bias between GR and SPE, where (a) to (d) shows PERCDR, 

3B42V7, CMORPH, and IMERG, respectively.  
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Figure 1: Overview of the topography and gauge observation network used in the study, where 27 gauges (black dots) are 715 

used for training and 7 (red dots) are used for independent verification. 
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Figure 2: The diagram of the proposed two-step SPE blending algorithm. 

  720 

PERCDR

(  )

3B42V7

(  )

CMORPH

(  )

IMERG

(  )

Bias 

Adjustment

Adj-PER

(  
′ )

Adj-V7
(  

′ )
Adj-CMO

(  
′ )

Adj-IME
(  

′ )

Bayesian 

Data Merging

Blended multi-SPE distribution
(Median, 5% and 95% Quantiles, etc.)

Ground 

references

(R)

Multiple Satellite Precipitation Estimates (multi-SPE)

Bias-adjusted multi-SPE

Optimal Weight 

Calculation 

Topography

(Z)

Step 1

Ground 

references

(R)

MCMC

Sampling

MCMC

Sampling

Step 2

Formatted: Justified

Formatted: Left, Line spacing:  single



40 

 

 

Figure 34: Intercomparison of statistical error indices for the original, bias-adjustedcorrected, and blended multi-SPE at the 

validation grids during in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 
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  725 

 

Figure 45: (a) The Box-Whisker plots of relative weights of the the bias-adjustcorrected multi-SPE (i.e., PERCDR, 3B42V7, 

CMORPH and IMERG) in the s Stage 2 process; (b) intercomparison Scatter plots between GRof the and various original and 

blended multi-SPE (original and blended) at the validation grids during in the warm season of 2014.; (c) The PDF of daily 

rainfall in terms of the GR, original and blended SPE with various intensities at the validation grids in the warm season of 730 

2014.  
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Figure 6: Time series of daily rainfall estimates and rainfall accumulations at a selected validation grid with the maximum 

rainfall record in the warm season of 2014: (a) daily rainfall estimates, and (b) rainfall accumulations.    

  735 
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Figure 57: Statistical error indices of the original and blended multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) 

for 10 random tests during in the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 
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 740 

Figure 68: The Box-Whisker plots of improvement ratios of statistics for the blended multi-SPE compared to with the original 

SPE, including PERCDR, 3B42V7, CMORPH, and IMERG for 10 random tests during in the warm season of 2014: (a) RMSE, 

(b) NMAE, and (c) CC. 
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 745 

Figure 79: Spatial patterns of the daily mean precipitation derived fromin terms of the original multi-SPE during in the warm 

season of 2014: (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 
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Figure 108: Spatial patterns of the blended multi-SPE in terms of (a) median, (b) standard deviationSD, (c) 5% and (d) 95% 750 

quantiles of daily mean precipitation duringin the warm season of 2014. 
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Figure 911: (a) Spatial pattern of gauge-based measurements during during a heavy rainfall case over the NETP onon 

SepSeptember 22, 2014 over the NETP, where the site IDs 56171, 56152 and 56182 report the top three daily rainfall amounts 755 

of 30.4 mm, 24.6 mm and 23.1 mm, respectively; (b) the corresponding Box-Whisker plots of relative weights of the individual 

SPE of the bias-adjusted multi-SPE (i.e., PERCDR, 3B42V7, CMORPH and IMERG) in the stage Stage 2 process. 
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Figure 1012: The PDF curves of blended samples SPE and the corresponding median value at three gauge sites sites during a 760 

heavy rainfall case on SepSeptember 22, 2014: (a) ID 56171, (b) ID 56152, and (c) ID 56182. The individual original SPE 

including PERCDR, 3B42V7, CMORPH, and IMERG as well asand gauge based measurementGR at each pixel are also 

indicated in theeach subfigure. 
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 765 

Figure 13: Statistical error indices (i.e., RMSE, NMAE, and CC) of the best-performed bias-corrected SPE (i.e., BC-IME, 

black) and blended SPE before (red) and after (blue) removing the worst-performed BC-PER for 10 random verified tests in 

the warm season of 2014 in the NETP. 
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 770 

Figure 14: Statistical error indices (i.e., RMSE, NMAE, and CC) of the blended SPE at the validation grid locations in terms 

of different number of training sites in the warm season of 2014 in the NETP. 


