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Topic: More details of the two-stage blending (TSB) approach 

3 The TSB algorithm 

3.1 Overview 

This algorithm aims at developing a multi-source data merging framework to provide the best-available gridded 

precipitation product with GR and SPE in the region of interest. Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at the 10 

GR cell s and the tth day. The original SPE and bias-corrected SPE are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡) and 

(𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡)) at the same grid and time, respectively. For simplicity, they are separately replaced by 

𝑅, (𝑌1, 𝑌2,…, 𝑌𝑝), and (𝑌1
′, 𝑌2

′,…,𝑌𝑝
′). The subscript p implies the number of SPE in terms of its value at 4 in the 

following application, and PERCDR, 3B42V7, CMORPH and IMERG refer to 𝑌1, 𝑌2, 𝑌3, 𝑌4, respectively.  

 15 

The diagram of the TSB method is shown in Figure 2. Stage 1 is designed to mitigate the bias of SPE based on the 

GR at the training sites with a Bayesian correction (BC) procedure, where the assumption of probabilistic distribution 

for GR conditional on each SPE is not limited to Gaussian prototype. Given complex terrain and 0.25° grid resolution, 

the topography is added as a covariate in the BC process. In the 2nd stage, a Bayesian weight (BW) model is used to 

merge the bias-corrected SPE. The BW model can exert benefit from bias-adjusted SPE with high performance and 20 

reduce poor impact from the ones with lower quality. It also produces blended SPE with predictive uncertainties. The 

details of the TSB algorithm are described in Sections 2.2 and 2.3, respectively. 

 

3.2 Stage 1: Bias correction 

In this stage, we perform on conditional modelling of GR on each SPE, i.e., on the probabilistic distribution 𝑓(𝑅) at 25 

the training sets to improve the accuracy of the original SPE. A flexible assumption (e.g., Lognormal, Gaussian, or 

Student’s t distribution) for bias characteristics between GR and SPE is proposed. Given various SPE at different 

training sites, the specific probabilistic function is not limited to a certain distribution. For demonstration purposes, 
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we herein apply the Student’s t distribution, with its mean parameter expressed as a linear regression of the original 

SPE and terrain feature in the case. It is parameterized below: 30 

𝑅~𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝜈𝑖 , 𝜇𝑖 , σ𝑖)                                                                               (1) 

𝜇𝑖 = α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍                                                                             (2) 

where 𝜈𝑖  is known as degree of freedom, 𝜇𝑖 and σ𝑖  stand for sample mean and variance, respectively; the parameter 

𝜇𝑖 is correlated with the intensity value of the ith SPE (𝑌𝑖) and terrain feature (Z). To ignore data anomaly, the elevation 

feature in Eq. (2) is normalized with its value ranging from 0 to 1 in the model application. 𝛉 = {𝜈𝑖 , α𝑖 , β𝑖 , γ𝑖 , σ𝑖}  is 35 

summarized as parameter sets. It further enables to write the likelihood function or probability density function (PDF) 

from Eqs. (1) and (2) conditional on 𝛉 and 𝑌𝑖 as: 

𝑓(𝑅|𝛉, 𝑌𝑖) =
Γ((𝜈𝑖+1)/2)

Γ(𝜈𝑖/2)
 

1

√𝜈𝑖𝜋 σ𝑖
(1 +

1

𝜈𝑖
(

𝑅−(α𝑖+β𝑖∗𝑌𝑖+γ𝑖∗𝑍)

σ𝑖
)2)−(𝜈𝑖+1)/2                                (3) 

According to the Bayes’s theorem (Gelman et al., 2013), the posterior distribution of parameter sets 𝛉 given GR and 

SPE data, and the prior distribution of parameters 𝑓(𝛉) can be expressed as: 40 

𝑓(𝛉|R, 𝑌𝑖) ∝ 𝑓(𝑅|𝛉, 𝑌𝑖)𝑓(𝛉)                                                                     (4) 

The estimation of the posterior distribution 𝑓(𝛉|R, 𝑌𝑖) in Eq. (4) is challenging as its dimension grows with the number 

of parameters (Renard, 2011). Here, the Markov Chain Monte Carlo (MCMC) technique complied in the Stan 

programming language is used to address this issue (Gelman et al., 2013). Given that the assumption of the weakly 

informative priors ensures the Bayesian inferences in an appropriate range (Ma et al., 2020), the priors of 𝑓(𝛉) are 45 

initialized as uniform distribution with α𝑖, β𝑖 , γ𝑖 at real numbers in Eq. (5), and with 𝜈𝑖 , σ𝑖 at a lower-bound zero of 

real numbers in Eq. (6).  

α𝑖 , β𝑖 , γ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−∞, +∞)                                                                (5) 

𝜈𝑖 , σ𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, +∞)                                                                    (6) 

Based on the estimated parameter sets 𝛉 above, the next step is to calculate the bias-corrected SPE 𝑅∗ at any new site. 50 

It can be quantitatively simulated from its posterior distribution in Eq. (7) using the original SPE 𝑌𝑖
∗, and training data 

𝑅, 𝑌𝑖: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = ∫ 𝑓(𝑅∗, 𝛉|𝑌𝑖

∗, 𝑅, 𝑌𝑖) 𝑑𝛉                                                           (7)  

Following the rule of joint probabilistic distributions, the right term inside the integral of Eq. (7) is written as: 

𝑓(𝑅∗, 𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = 𝑓(𝑅∗|𝑌𝑖

∗, 𝑅, 𝑌𝑖 , 𝛉)𝑓(𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖)                                               (8) 55 

Given that 𝑌𝑖
∗ is independent with 𝑅 and 𝑌𝑖 , the first term of the right side in Eq. (8) is transformed as: 



𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖 , 𝛉) = 𝑓(𝑅∗|𝑌𝑖

∗, 𝛉)                                                                 (9) 

Since the parameters 𝛉 are dependent upon the training data 𝑅, 𝑌𝑖 , the second term of the right side in Eq. (8) is 

expressed as: 

𝑓(𝛉|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = 𝑓(𝛉|𝑅, 𝑌𝑖)                                                                    (10) 60 

Therefore, the posterior predictive distribution of 𝑅∗ in Eq. (7) is written below: 

𝑓(𝑅∗|𝑌𝑖
∗, 𝑅, 𝑌𝑖) = ∫ 𝑓(𝑅∗|𝑌𝑖

∗, 𝛉)𝑓(𝛉|𝑅, 𝑌𝑖) 𝑑𝛉                                                  (11) 

Since there is no general way to calculate the associated integral in Eq. (11), it is performed again using the MCMC 

iterations. A numerical algorithm is suggested below: 𝑛𝑠𝑖𝑚  is assumed as the replicates of the post-convergence 

MCMC samples, and the predicted samples for 𝑅∗ in Eq. (11) is iterated (i = 1, …, 𝑛𝑠𝑖𝑚) as follows:  65 

1) Calculate the model parameters 𝛉 from Eqs. (1) to (6) described above; 

2) Compute the mean parameter 𝜇𝑖
∗ from the regression model of Eq. (2), i.e., 𝜇𝑖

∗ = α𝑖 + β𝑖 ∗ 𝑌𝑖
∗ + γ𝑖 ∗ 𝑍∗; 

3) Generate the derived quantity from the posterior distribution of 𝑅∗ in Eq. (11). 

 

3.3 Stage 2: Data merging 70 

On the basis of Stage 1 in Section 3.2, the median value of the posterior samples is used as the bias-corrected SPE. 

Here, we redefine the bias-corrected SPE as 𝑌𝑖
′(𝑖 = 1,2, … , 𝑝). The formulas of blending the bias-adjusted SPE are 

shown below: 

𝐵 = ∑ 𝑌𝑖
′𝑝

𝑖=1 ∗ 𝑤𝑖 +  𝜀                                                                         (12) 

∑ 𝑤𝑖
𝑝
𝑖=1 = 1                                                                             (13) 75 

𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)                  (14) 

𝑤𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1, … , 𝑝                                                      (15) 

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, +∞)                                                                   (16) 

where B means the blended SPE; 𝑤𝑖  (i=1,2,…,p) stands for the relative weight of the ith bias-corrected SPE with its 

value ranging from 0 to 1; 𝜀 is the residual error with its value at positive real number. Ideally, the blended SPE at the 80 

training site s and time t are close to GR, i.e., R(s, t). Thereby, model parameters 𝛅, including 𝑤𝑖(𝑖 = 1,2, . . 𝑝) and 𝜎 



will be estimated based on GR and bias-corrected SPE at the training sites. With regard to the conditional distribution 

of blended SPE on the bias-corrected SPE, we propose a Gaussian distribution for residual error modelling. The 

corresponding PDF is written as follows: 

  𝑓(𝐵|𝛅) =
1

√2𝜋𝜎
exp (−

1

2
(

𝐵−∑ 𝑌𝑖
′𝑝

𝑖=1 ∗𝑤𝑖

𝜎
)2)                                                     (17) 85 

The calculation process of 𝛅 is similar with the parameter estimation described in Stage 1. After the parameters 𝛅 are 

estimated, similar to Eqs. (7) to (11), the blended SPE at any site and time t can be derived with the bias-corrected 

SPE and corresponding weights using the MCMC iterations. Finally, we can obtain spatial patterns of blended SPE in 

terms of the median, standard deviation (SD) and associated credible intervals (e.g., 5% and 95% quantiles) in regions 

of interest. 90 


