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Abstract. Humanity’s footprint on Earth systems has engendered water quality impoverishment in streams, lakes, 14 
and coastal waters globally. In agricultural areas, stream nitrogen concentrations are often high where excess 15 
nitrogen fertilization and wetland loss via artificial drainage degrade water quality. While the watershed-scale 16 
influence of fertilization and wetland loss on annual nitrogen loads has been studied, little is known about the 17 
watershed-scale effects of these wetland losses at seasonal time scales. Here we apply machine learning and linear 18 
statistical analyses in a big data framework to improve understanding of the role wetlands play in influencing the 19 
seasonality of down-gradient water quality. We confirm the seasonal role of wetlands in improving water quality at 20 
the watershed scale and uncover evidence demonstrating the importance of contemporary watershed nitrogen inputs 21 
to in-stream total nitrogen concentrations [TN]. We observe that in the Upper Mississippi River Basin, United 22 
States, after the application of spring fertilizers, [TN] drops by 70% from June to September suggesting the 23 
importance of seasonal nutrient loading. Our data mining approach affords exploration of the potential influence of 24 
numerous landscape and wetland hydrologic processes on [TN], some of which are shown to exert seasonal 25 
influence. Our counterfactual analysis—in which wetlands are restored to their historic extent—points to the 26 
substantial water quality benefits of wetland restoration, including particular water quality improvements in the 27 
spring when [TN] are highest. Water quality benefits due to wetland restoration would make water safer for human 28 
consumption and improve the security of aquatic ecosystems. 29 
 30 
1 Introduction 31 
Numerous rivers (Meybeck and Helmer, 1989), lentic inland waters (Brooks et al., 2016), and receiving coastal 32 
waters (Diaz and Rosenberg, 2008) are in the throes of a water quality crisis largely driven by increasing rates of 33 
anthropogenic nutrient loading since the 1850s (Vitousek et al., 1997) to sustain Earth’s human population of 7.8 34 
billion. With projections of continued population growth (Gerland et al., 2014) requiring expansion or further 35 
intensification of agriculture, in the absence of dramatic measures, already realized environmental degradation will 36 
persist or increase in extent or severity (Liu et al., 2012). Water quality degradation due to excess nutrient loads can 37 
lead to deterioration of ecosystems, “impoverishment of aquatic biodiversity” (Bogardi et al., 2012), harmful algal 38 
blooms (Brooks et al., 2016), and hazards to human health (Falkenmark, 1990;Bouwer, 2000). In coastal waters 39 
impacted by eutrophication, hypoxia-driven habitat compression may hinder life cycle functions of pelagic species 40 
(Diaz and Rosenberg, 2008). Integrating the economic consequences of those excess nitrogen (N) impacts yields a 41 
staggering economic burden—on the order of hundreds of billions USD per year (Houlton et al., 2019;Compton et 42 
al., 2011;Sutton et al., 2011;Sobota et al., 2015), a cost that might be partially offset through wetland restoration 43 
(Rankinen et al., 2014;Hey, 2002;Houlton et al., 2019). 44 
 At the global scale, 64% of inorganic nitrogen export originates from anthropogenic sources, and 54% 45 
occurs as a consequence of diffuse agricultural inputs (Seitzinger et al., 2005), though urban contributions are 46 
important as well (Chen et al., 2016). At regional scales as much as 78% of N loading can be a consequence of 47 
agricultural fertilization (Compton et al., 2019). Riverine export rates have been observed ranging from 5% (David 48 
et al., 2010) to 38% (Compton et al., 2019) of N inputs. While some have attributed this observed nitrogen loading 49 
in part to legacy effects (Van Meter et al., 2018;Basu et al., 2010), others have attempted to distinguish between 50 
legacy versus contemporary loading hypotheses and have found stronger evidence for the role of ongoing large-scale 51 
fertilization (Ballard et al., 2019;Stackpoole et al., 2019). However, in the absence of large-scale critical 52 
experimentation (Platt, 1964) the relative importance of possible legacy effects across different systems remains 53 
uncertain. 54 
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 Nitrogen, along with phosphorus, is a key limiting nutrient that, in excess, contributes to observed 55 
widespread eutrophication in coastal (Ryther and Dunstan, 1971), riverine (Dodds and Smith, 2016), and lacustrine 56 
(Conley et al., 2009) environments. Nitrogen-laden leachate and surface runoff that flows downgradient toward 57 
rivers, lakes, and oceans may first intersect connecting floodplain (Noe and Hupp, 2005;Sanchez-Perez et al., 2003) 58 
and/or non-floodplain wetlands (Lane et al., 2018;Mushet et al., 2015). In the anaerobic sediments underlying these 59 
wetlands, biologically available nitrogen in the form of nitrate (NO3

-) may—in the presence of labile carbon and 60 
anoxic conditions for microbial activity (Soares, 2000)—be converted to nitrogen gas (N2) by the denitrification 61 
process (Sanchez-Perez et al., 2003). Evidence has therefore emerged that wetlands may substantially reduce 62 
nitrogen loading of surface waters at the watershed scale (Hansen et al., 2018;Quin et al., 2015;Fisher and Acreman, 63 
2004;Golden et al., 2019). The efficacy of wetlands in reducing nitrogen loading has been observed across a range 64 
of flow conditions and seasons (Uuemaa et al., 2018).  65 
 Investigations of fertilizer inputs and wetland impacts on nitrogen loading are commonly conducted at an 66 
annual timescale (Basu et al., 2010;Thompson et al., 2011;Van Meter et al., 2016;Van Meter et al., 2018, 67 
2019;Golden et al., 2019). Yet temporal variability is critically important because it influences the timing and 68 
frequency of events in which nutrient concentrations exceed levels safe for human consumption (e.g., 10 mg l-1 in 69 
the US; 4.4 mg l-1 in Germany) and ecological integrity. Despite recent advances in understanding the role of 70 
wetlands in influencing water quality across spatial scales, improved understanding of the seasonal variability 71 
remains a priority (Bloschl et al., 2019).  72 
 Golden et al. (2019) suggest the possible role of big data in improving understanding of the influence of 73 
non-floodplain wetlands on water quality. To deal with the challenges associated with big data, the hydrologic 74 
science community has tentatively and successfully tested machine learning (Shen, 2018;Tyralis et al., 2019), a data 75 
driven approach that contrasts with and supplements the normative physically based methods. Application of 76 
machine learning to seasonal water quality data and process-based drivers of nutrient loads, presents an opportunity 77 
for discerning the seasonal dynamics of wetlands as they relate to watershed-scale nitrogen conditions. 78 

In this paper, we explore the seasonal role nitrogen inputs and wetlands play in influencing downgradient 79 
water quality at the watershed scale. To advance this goal we ask: 1) What is the role of watershed characteristics in 80 
mediating intra-annual stream TN concentrations ([TN]) at the catchment to large watershed scales? 2) To what 81 
extent is restoration of historic wetland distributions a viable means to improve intra-annual stream [TN] and how 82 
might water quality improvements be seasonally dependent? To answer these questions, we capitalize on recently 83 
developed novel databases of wetland metrics that reflect the structural and functional characteristics of hydrological 84 
flowpaths into and out of wetlands (Mengistu et al, In Revision; Leibowitz et al., In Review), in addition to 85 
distributed measurements of streamflow and [TN]. We combine machine learning (random forest) with a linear 86 
mixed effects model to assess seasonal variability of [TN] in watersheds across the Upper Mississippi River Basin 87 
(UMRB) in the Midwestern US. The results of our combined machine learning and linear statistical approach points 88 
to the key drivers of variations in [TN] across seasons in the UMRB and provide insights on how machine learning 89 
may be used in future watershed-scale water quality analyses. 90 

  91 
2 Methods 92 
2.1 Study area 93 
The Mississippi is the longest river in the United States, originating at Lake Itasca, Minnesota. The study area 94 
consists of the Upper Mississippi River basin (UMRB; 492,000 km2; Figure 1), the largest contributor of residual 95 
nitrogen to the Mississippi River basin (Burkart and James, 1999;Qi et al., 2020). The UMRB consists principally of 96 
the Great Plains, northern forests, and eastern temperate forests ecoregions (Omernik and Griffith, 2014). The 97 
surficial geology of the Upper Mississippi River basin is dominated by thick silty glacial till sediments interspersed 98 
with thinner units (Soller and Reheis, 2004). Additionally, thick coarse-grained proglacial sediments are present, 99 
typically toward the basin’s northern extent. Precipitation averages 920 mm yr-1, two-thirds of which falls in spring 100 
and summer. Precipitation varies spatially from a low of 600 mm yr-1 in the northwest to a high of 1200 mm yr-1 in 101 
the southeast (Daly et al., 2008). Potential evaporation increases from a low in January to a peak in July. Elevation, 102 
which serves as a hydraulic driver in topographically driven flow regimes, ranges from 520 m in the northeast to 140 103 
m in the southeast.  104 

Overlaid on climate dynamics and natural physiography, human alterations in the form of conversion of 105 
perennial vegetation to seasonal crops (Zhang and Schilling, 2006) and artificial drainage have pervasively 106 
amplified the hydrologic cycle by increasing stream discharge (Blann et al., 2009;Belmont et al., 2011;Schottler et 107 
al., 2014). The Upper Mississippi River is also influenced by the presence of numerous locks (Gramann et al., 108 
1984). Integrating the natural environmental conditions with human alterations yields a hydrologic regime in which 109 
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specific discharge (the quotient of streamflow volume and contributing area) increases throughout the winter to a 110 
peak in the spring (May), decreases through the summer, and remains low in the fall. 111 

The UMRB drains some of the continent’s most fertile arable land, which is predominantly in either corn or 112 
soybean production. Because of these and other land uses a variety of nutrients and contaminants have been 113 
observed in the waters of the Mississippi River. The majority of fertilizer is applied in the spring prior to or after 114 
planting, though dry fall fertilizer applications range from 0-25% of the total annual amount (Cao et al., 2018). 115 
Nutrient loading has been exacerbated by land management practices, such as artificial drainage, that enhance 116 
discharge in the Upper Mississippi River (Schilling et al., 2010). River sediment cores have revealed an order of 117 
magnitude increase of sediment deposition, since the 1830s (Engstrom et al., 2009). In the UMRB mean N fertilizer 118 
use rate in 2015 was 49 (maximum = 173) kg N ha-1 yr-1, corresponding to 2.4 ∙ 106 t N yr-1 (Cao et al., 2018). The 119 
use rate within the UMRB exceeds NO3-N loads discharged from the Mississippi River into the Gulf of Mexico as 120 
reported by Van Meter et al. (2018). Within the Upper Mississippi River, water quality degradation is known to 121 
impact aquatic communities (Houser and Richardson, 2010). Excess nutrients—including a tripling of NO3

-N input 122 
to the Gulf of Mexico (Goolsby et al., 2001;McIsaac et al., 2002)—are credited with causing the dead (hypoxic) 123 
zone in the Gulf of Mexico, which has been measured at 20,700 km2 in extent (Rabotyagov et al., 2010) and has 124 
raised questions about the current approaches to improving water quality in the Mississippi River (McLellan et al., 125 
2015).  126 
 127 
2.2 Water quality data 128 
We obtained quality controlled  stream [TN] (unfiltered total nitrogen as N) data (1995-2007) from the SPARROW 129 
(Spatially Referenced Regression on Watershed Attributes) Major River Basin 3 water quality modeling group, 130 
which compiled data from federal, state, and local government monitoring (Saad et al., 2011). Sites included at least 131 
25 stream [TN] measurements per site (over the course of the 13-year sampling window) distributed throughout the 132 
year to ensure representation of all seasons. This resulted in a total of 6895 [TN] measurements divided amongst 82 133 
sites (Table S1), all of which included corresponding discharge measurements. [TN] values in this dataset range 134 
from 0.1 to 25.1 mg l-1 (median=3.6). These measurements are taken from streams draining watersheds of median 135 
area 2,580 km2 (mean=7,229), ranging from small catchments (45 km2) to large watersheds (52,048 km2). 136 
 137 
2.3 Derivation of variables 138 
To describe the variation in our response variable [TN], we used static (i.e., time-invariant) watershed-scale 139 
predictor variables developed in recent work (Mengistu et al., in revision) that aimed at quantifying watershed and 140 
wetland characteristics as well as the structural and functional attributes of flowpaths between wetlands and rivers. 141 
The variables (Table S2) reflect potentially important elements of watershed-scale nutrient cycling, including source 142 
(e.g., nutrient loading via cultivated areas), sink (e.g., denitrification via wetland and open water areas), and 143 
transport processes (e.g., soil types of overland flowpaths).  144 

Specifically, for the 82 watersheds, the variables describe watershed characteristics (e.g., land cover, 145 
watershed area) and average watershed-scale wetland-to-stream flowpath characteristics (e.g., wetland-to-stream 146 
flowpath Mannings values or maximum soil porosity along that flowpath) that are intended as proxies for hydraulic 147 
and hydrologic processes. The variables represent source contributions to wetlands and the structural characteristics 148 
of hydrological flowpaths from wetlands to the nearest streams. For example, maximum porosity along the flowpath 149 
(a structural characteristic) is a proxy for infiltration and conversion of overland flow to shallow and/or deep 150 
subsurface flows, which attenuate TN from reaching the stream (functional characteristics). The derivation and 151 
detailed lists of these variables are described in detail in Mengistu et al. (in revision).  152 

The static variables are supplemented by time varying values developed in this study—monthly soil NO3-N 153 
(Wu and Liu, 2012), daily discharge (from USGS gages; see Table S1), monthly wetness index (the quotient of 154 
spatially averaged precipitation and potential evaporation) derived from PRISM climate data (Daly et al., 2008), 155 
year of [TN] sampling, and day of year of [TN] sampling. Potential evaporation (PET) was estimated following 156 
Hargreaves (1994), where daily minimum and maximum temperatures were extracted from PRISM for each 157 
watershed. Soil NO3-N consists of one value for each month, estimated from a Soil and Water Assessment Tool 158 
(SWAT) simulation for the Iowa River basin, which is located within UMRB (Wu and Liu, 2012). In the absence of 159 
watershed-specific information on temporal evolution of soil NO3-N (kg ha-1), the secular values from Wu and Liu 160 
(2012) were allowed to remain uniform across watersheds. Areal extent calculations were performed in the Albers 161 
Equal Area projection for the conterminous US. All geospatial analyses were conducted in ArcGIS 10.7 and R 162 
(Mengistu et al. (in revision)). 163 
 164 
2.4 Modeling approach 165 
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We used a three-phased model approach to investigate the potential watershed-scale wetland and landscape drivers 166 
of seasonal [TN] variability: (1) a nonlinear machine learning approach followed by (2) a linear statistical model 167 
with seasonal harmonics (i.e., periodic functions) and (3) counterfactual simulations using the statistical model to 168 
ascertain the potential influence of wetland restoration on [TN]. The three-phased approach helped us ascertain 169 
which hydrologic processes potentially serve as key drivers of [TN] variability across the UMRB, because the 170 
relative importance of the hydrologic processes influencing the seasonal evolution of water quality–including their 171 
interactive influence and scale dependence on drivers of [TN]–are unknown a priori. Hence, we first interrogated 172 
watershed metrics (see Table S2) as predictor variables for [TN] using random forest (see Machine learning). Based 173 
on the scores of explanatory variables in random forest, we then selected the top candidate variables to develop 174 
linear mixed effect (LME) models that capture and reproduce the cyclical seasonal nature of [TN] (see Mixed effects 175 
modeling). We subsequently linked these [TN] LME models to the seasonal influence of wetlands using an additive 176 
variable approach (see Mixed effects modeling). Using the linked [TN] LME model, we performed the 177 
counterfactual simulations (see Wetland restoration scenarios). 178 
 179 
2.5 Machine learning 180 
We chose the nonlinear random forest machine learning algorithm to analyze watershed proxies explaining [TN] 181 
variability. Random forest quantifies individual variable importance and minimizes overfitting and bias, while 182 
remaining “competitive” with other methods (Breiman, 2001) and providing the flexibility of fewer assumptions 183 
than traditional linear statistical methods. Despite limitations associated with interpretability (Shen, 2018), random 184 
forest has numerous perceived advantages for water resource applications—including accounting for interactions 185 
among variables (Cutler et al., 2007), appropriateness for big data applications, and computational efficiency 186 
(Tyralis et al., 2019). Random forest is increasingly applied to extract information relevant to water resources within 187 
a big data context (Cho et al., 2019), including its use in determining the role of competing drivers in mediating 188 
observed water quality across spatial scales (Read et al., 2015).  189 

We used the randomForest package (v. 4.6-14) in R (v. 3.6.1) and tuned the mtry parameter to minimize out 190 
of bag error, a procedure described in detail by Tyralis et al. (2019) and citations therein. Specifically, out of bag 191 
refers to those samples that were withheld from model training for verification purposes. We principally considered 192 
candidate variables for the LME models amongst the top five highest ranking in the random forest model results. 193 
However, noting the large number of variables considered (n=53; Table S2) and substantial cross-correlation among 194 
variables, we supplemented the random forest approach with expert knowledge by removing variables deemed 195 
important (by random forest) but not known in the scientific literature as important sources or sinks of nitrogen. 196 
(Removed variables are reported in the Results section, below.) In the interest of incisively determining the limits of 197 
random forest for the application at hand we ran the algorithm on the dataset as a whole, a random subset of 70% of 198 
observations at each measurement location, and on all measurements at a random subset using 70% of sampling 199 
locations.  200 

Our final selected variables based on random forest and expert judgement were input into the LME model. 201 
Specifically, to build an LME, we relied on a subset of the most important predictors that emerged from random 202 
forest, our system understanding, and common metrics of model performance—the Akaike and Bayesian 203 
Information Criteria (AIC and BIC, respectively; Helsel et al., 2020). 204 
 205 
2.6 Mixed effects modeling 206 
Mixed effects modeling is an extension of simple linear modeling and is widely used in investigating complex water 207 
resource problems (Bart, 2016;Wine et al., 2018a;Wine et al., 2018b;Bywater-Reyes et al., 2018;Hurley and 208 
Mazumder, 2013;Araujo et al., 2012;Ahearn et al., 2005). This is particularly true for those situations in which part 209 
of the natural variability is associated with measured phenomena (i.e., fixed effects) and part of the natural 210 
variability results from complex phenomena (i.e., random effects) such as site-specific characteristics. LME also 211 
offers tools to overcome heteroscedasticity. In this way, LME relaxes certain assumptions commonly associated 212 
with application of simpler methods (Zuur, 2009). Assumptions of LME models include homogeneity of variance 213 
and correct model specification—that all relevant terms and interactions are included.  214 

In developing an LME model, we sequentially added variables starting from those assigned highest 215 
importance by random forest, ensuring that variables representing key concepts from the advection diffusion 216 
reaction equation (ADRE)—including nitrogen sources, fluid advection, reactions (i.e., denitrification), and scale are 217 
represented. While we did not intend to solve the transient ADRE (Clairambault, 2013;Oldham et al., 2013) here, we 218 
nonetheless considered it briefly as a lens into the physical processes underlying the temporal dynamics of non-219 
conservative solute concentrations (c): 220 
 221 
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𝜕𝑐

𝜕𝑡
= −∇ ∙ (𝑐𝑢) + ∇ ∙ (𝐷∇𝑐) −

𝜕𝑞

𝜕𝑡
+ 𝑆, Eq. 1 222 

 223 
which are controlled by velocity (u), the diffusion coefficient (D), concentration change due to reactions (q), and 224 
sources and sinks (S). These dynamics are transient in time (t) and distributed across space. This transient equation 225 
allows for seasonal variations in [TN] as a consequence of advective (∇ ∙ (𝑐𝑢)), diffusive (∇ ∙ (𝐷∇𝑐)), reactive (

𝜕𝑞

𝜕𝑡
), 226 

or additive (S) processes. The quotient of the respective rates of advective transport and diffusion, the Peclet 227 
number, is directly related to velocity and length scale and inversely related to diffusivity. Empirically, increasingly 228 
chemostatic behavior has indeed been observed as catchment scale increases (Creed et al., 2015), consistent with 229 
ADRE. With respect to the source term, the timing of fertilization is expected to yield a key seasonal source whereas 230 
crop growth and denitrification serve sink functions. In UMRB it is reasonable to expect that [TN] is influenced by 231 
coupled surface and subsurface flow and transport dynamics. Though a physically based approach to understanding 232 
seasonal nitrogen dynamics is beyond the scope of this work, this approach nonetheless remains as a reference. 233 

To build our LME models, we considered first order interactions for those variables perceived as having an 234 
interactive influence on [TN], i.e., in cases where a predictor’s influence on [TN] was expected to depend on the 235 
value of another predictor. Model development was ceased—following successive AIC improvements—when the 236 
aforementioned key concepts and interactions had been represented.  237 

We anticipated seasonally cyclic behavior in [TN] across the UMRB, particularly because seasonal nutrient 238 
loading from agricultural fertilization, as well as from other diffuse nutrient sources and point discharges, is 239 
prominent across the UMRB. Helsel et al. (2020) suggest representing this cyclic behavior with periodic functions 240 
or harmonics (i.e., sine and cosine) and identifying and addressing cases where cycles shorter than one year may 241 
occur. We used this approach for our intra-annual [TN] LME models. However, we did not anticipate that all 82 242 
watersheds would exhibit identical periodic behavior (i.e., amplitude and timing of peak). Hence, we included these 243 
periodic functions as random effects, which allows the parameters defining each harmonic to vary by watershed. To 244 
ensure that modeling assumptions were met we examined the model residuals of each watershed for 245 
heteroscedasticity at the completion of the modeling analyses. 246 

Once the LME models were developed and to further explore factors that may be driving the seasonality in 247 
[TN], we calculated the amplitudes of the first harmonic in the final selected LME models and applied Spearman 248 
rank correlations between these amplitudes and the watershed variables derived from random forest. This 249 
nonparametric approach minimizes distributional assumptions and sensitivity to extreme values and provides further 250 
insights into how [TN] varies seasonally with our random forest-based watershed variables. 251 
 252 
 253 
 254 
2.7 Wetland restoration scenarios 255 
To evaluate the extent to which wetland restoration might serve as an effective means of enhancing water quality by 256 
decreasing [TN], we engaged in counterfactual modeling. Our counterfactual modeling used the final selected LME 257 
model and we altered two variables to create our various wetland restoration scenarios: the proportion of the 258 
watershed covered by wetland and the proportion of the watershed covered by cultivated land-cover types. (Note 259 
that since wetland area is not strictly independent of cultivated area—due to issues of complementarity—the results 260 
must be interpreted in the context of this limitation.) For our counterfactuals, we inferred historic wetland areas from 261 
Horvath et al. (2017), which provides fine resolution (30 m) estimates of potential wetland restoration on 262 
agricultural lands using soils and topography. In contrast to the widely referenced GLWD, derived from small-scale 263 
maps at 1:1,000,000 to 1:3,000,000 spatial resolution, Horvath et al. (2017) relies in part on SSURGO (USDA 264 
NRCS Soil Survey Geographic database), which is based principally on 1:24,000 to 1:12,000 spatial resolution. We 265 
developed two counterfactual scenarios: (1) 50% wetland restoration to historic conditions and (2) 100% wetland 266 
restoration to historic conditions. We assumed that increasing wetland area proportionally decreased cultivated area. 267 
Further, potential [TN] reductions were subject to the natural limit that concentration reductions cannot exceed 268 
observed concentrations. For each scenario, we predicted [TN] across the 82 UMRB watersheds.  269 
  270 
3. Results 271 
 272 
3.1 Seasonal variability of [TN] across UMRB 273 
[TN] varies strongly in the UMRB—by a factor of 250— among all sites and across the 13-year study period. 274 
Concentrations range from 0.1 mg l-1 to 25.1 mg l-1. In 12% of the measurements, [TN] exceeds 10 mg l-1, the 275 
maximum contaminant level goal for nitrate as N in the US, and in 44% of the measurements [TN] exceeds 4.4 mg l-276 
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1, the drinking water standard in Germany (as an example of more stringent global water quality standards). 277 
Considering all watersheds, [TN] is lowest in September, increases during the fall when fertilizer is sometimes 278 
applied, remains steady through the winter, and increases further in the spring when fertilizer is commonly applied 279 
(Figure 2). Between June and September, median [TN] drops by 70% (Figure 2). Though this pattern is generally 280 
exhibited by the dataset as a whole, the relatively small watersheds (<350 km2) have a wide range of [TN] seasonal 281 
patterns (Figure 3). 282 
 283 
3.2 Random forest 284 
Random forest predicted, with low bias, all training datasets as well as the verification dataset that consisted of a 285 
subset of observations from each site (Figure 4). Prior to running random forest, the optimization procedure 286 
incrementally reduced out of bag error for [TN] predictions. However, when predictions were attempted by a 287 
random forest trained on a random subset of sites, substantial positive biases (i.e., over-prediction) were observed on 288 
sites that had been excluded from the training dataset. This is a consistent and known challenge in predictive 289 
modeling of complex systems. Ultimately, random forest assigned candidate predictor variables a range of 290 
importance values, calculated as the percent increase in mean square error when a variable is withheld. 291 
 Discharge was identified as the single best correlate of [TN] (Table 1), though this correlation cannot be 292 
interpreted independently of other terms in ADRE. Other important variables that emerged included year of 293 
sampling, a proxy for interannual climate or land-management variability; day of year of sampling, a proxy for intra-294 
annual variability in nitrogen loading and the hydrologic cycle; and monthly wetness index, a proxy for drivers of 295 
hydrologic dynamics. While wetland metrics tended to achieve low importance ranks, this does not necessarily 296 
indicate an inability on their part to influence water quality. Rather, this may instead point to the limited remaining 297 
distribution, or historic loss, of wetlands across large areas of the UMRB (Figure 5).   298 

Forest emerged as the most important watershed metric in predicting [TN]. (As anticipated, the nature of 299 
the correlation was inverse.) Forests are not expected to serve as a major source of nitrogen, and forests are typically 300 
nitrogen sinks only in locations where atmospheric deposition is the most important nitrogen source (e.g., in forest 301 
of the Northeastern United States (Goodale et al., 2002)). Therefore, based on expert opinion that forests in the 302 
UMRB do not match either criteria, we removed the forest predictor. Its ranking in the random forest model was 303 
subsequently replaced by total watershed N inputs, i.e., total annual agricultural inputs of TN plus annual 304 
atmospheric deposition of TN (Mengistu et al, in revision), along with average watershed Manning’s roughness 305 
coefficients for wetland-to-stream flowpaths. Manning’s coefficients were estimated based on land cover values, 306 
with the highest values occurring in forested areas (Table 2).  307 
 308 
3.3 Linear mixed effects: sequential results 309 
Our linear mixed effects modeling aimed initially to reproduce the cyclical variability in [TN] and then to link [TN] 310 
to the seasonal influence of wetlands. The resulting idealized model (Table 3, equation 14) represents cyclical trends 311 
in [TN]. To determine the final model, we fit 14 sequential, increasingly complex models.  312 

In the first four models (Table 3), our goal was to reproduce the seasonally cyclic behavior in [TN] seen 313 
across the study area (e.g., see Figure 2 and Figure 3, and also large watersheds, as seen in Figure 6) with the first 314 
and second harmonics (Figure 7, Table 3 equations 1-4). We next included discharge as a random effect (Table 3, 315 
Eq. 6), noting the importance of discharge in random forest (Tables 1 and 2) and that concentration-discharge 316 
relationships may be direct, inverse, or weak (Figure 8). (Fitting discharge as a random effect allows LME to assign 317 
positive or negative coefficients of appropriate magnitudes.) Most commonly, higher [TN] was observed at higher 318 
stream stage (particularly in midsized, untiled watersheds), though the strength of this relationship was variable. It is 319 
also important to note that spring fertilization occurs coincident with spring rains, which thereby reflects a high 320 
source availability during a high flow period—a combination anticipated to enhance solute transport. Attempts at 321 
inclusion of additional random effects increased time to model convergence and the possibility of instability. 322 

Several fixed effect terms further improved the model, including year, monthly soil nitrate concentration, 323 
cultivated area, wetland area, watershed area, and monthly wetness index. In our final step, interactions between 324 
monthly wetness index and monthly soil nitrate concentrations, as well as wetness index and cultivated area, were 325 
added and improved model fit. The final model form (Table 3, Equation 14) explained the greatest amount of the 326 
observed variability in [TN] (Figure 9). We accounted for observed heteroscedasticity in model residuals by 327 
quantifying the variance of model residuals by watershed in an initial model run (of Eq. 14 in Table 3) and assigning 328 
these variances in a fixed variance structure for the final model. 329 
  Spearman rank correlations of the first harmonic, representing seasonal [TN] dynamics, with watershed 330 
variables revealed small amplitudes in association with low watershed nutrient loading (e.g., the presence of 331 
grassland (r=-0.39)) and watershed area (r=-0.21), where the convolution of many flowpaths across large watersheds 332 
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is expected to dampen peaks and troughs in [TN] temporal variability (Table 4). The total number and number of 333 
wetlands per watershed area (wetland density) were inversely related with the [TN] first harmonic amplitude (r=-334 
0.26). A wetland-to-stream structural characteristic that attenuates flow (Manning’s coefficient along the flowpath) 335 
was also negatively related to the [TN] harmonic (r=-0.25). Because Manning’s values are based on land cover and 336 
forested areas are assigned the highest Manning’s values, this result might simply reflect smaller amplitudes in 337 
predominantly forested watersheds. Impervious areas in wetland drainage areas were positively correlated with the 338 
[TN] amplitude (r=0.24).  Collectivity, the seasonal results from our LME model and correlations with the first 339 
harmonic correspond to our process understanding as derived from first principles, i.e., those embedded in the 340 
ADRE. Specifically, we see that the LME model and the associated amplitude of the harmonics captures seasonality 341 
in the sources and sinks represented in dynamic water quality models. 342 
 343 
 344 
3.4 Counterfactual models 345 
The results of our counterfactual model suggest that the potential water quality gains (i.e., [TN] reductions) 346 
associated with 50% and 100% wetland restoration are substantial, even in large watersheds of the UMRB (Figure 347 
10). Reductions reach 25 mg l-1 with Horvath et al. (2017) wetland estimates. For example, median measured [TN] 348 
was 3.6 mg l-1, which decreases to 1.4 mg l-1 following simulated (100%) wetland restoration. The decrease in the 349 
third quartile of [TN] is more dramatic, dropping from 7 mg l-1 to 2.3 mg l-1. If complementarity of cultivated areas 350 
with wetland loss is neglected, and full wetland restoration alone is considered, the third quartile decreases only to 351 
5.4 mg l-1, implying that denitrification by wetlands is secondary to the reduction in fertilization, which is of primary 352 
importance. The [TN] reductions are largest during the spring when water quality degradation is most pronounced 353 
(Figure 10).  354 

It is clear that [TN] reductions are most prevalent when the seasonal [TN] model developed herein is forced 355 
by historic wetland distribution from Horvath et al. (2017), which accounts for wetland areas not detected by GLWD 356 
and therefore captures a more complete spatial coverage of potential wetlands across the UMRB. Further, while we 357 
assume wetland and cultivated areas are complementary, this is typically reasonable given that most wetland loss in 358 
the UMRB has been a consequence of drainage to facilitate expansion of cultivated lands. 359 
 360 
4 Discussion 361 

 362 
4.1 Seasonality of TN  363 
In the presence of recurrent anthropogenic nitrogen loading from fertilizer across the UMRB, which coincides in 364 
time with peak discharges (Figure 2), flowpaths were likely activated proximal to the nitrogen source at the land 365 
surface, resulting in relatively high [TN] during high discharge periods (Domagalski et al., 2008). Lower flows 366 
tended to occur from July through February in the UMRB, out of phase with spring fertilizer application.  367 

Artificial tile drainage decreases the residence time of water in the vadose zone (Danesh-Yazdi et al., 2016) 368 
in many of the watersheds throughout the UMRB, thereby facilitating rapid transport of recurrently applied N and 369 
engendering high [TN] under baseflow conditions. This is clear in inverse concentration-discharge relationships, 370 
particularly in smaller watersheds of the UMRB (see example in Figure 8b). As flows increase in watersheds that are 371 
heavily artificially drained, concentrations rapidly decrease, suggesting [TN] is source-limited across a wide range 372 
of flow conditions in artificial drained watersheds.  373 
 374 
4.2 Wetland restoration and decreased [TN] 375 
While we are unable to separate the relative effects of reduced loading from wetland restoration, our counterfactual 376 
modeling of potential effects of wetland restoration (Figure 10) further supports this axiom: the presence of wetlands 377 
occurs in association with enhanced water quality (Mitsch et al., 2001;Carpenter et al., 1998;Creed et al., 378 
2017;Cohen et al., 2016;Vymazal, 2007;Jordan et al., 2011;Lane et al., 2018;Lane et al., 2015;Golden et al., 379 
2019;Marton et al., 2015). Our work comports with McLellan et al. (2015) that wetlands, together with other 380 
measures, can dramatically improve [TN] in the Mississippi River basin. Whereas much past nutrient removal work 381 
has focused on the annual time step (Basu et al., 2010;Cheng and Basu, 2017) or snapshots in time (Hansen et al., 382 
2018), here we show that those water quality improvements associated with the absence of loading and nitrogen 383 
removal by wetlands correspond to large reductions in stream [TN] during the spring when concentrations are 384 
highest (Figure 10).  385 
 Our results regarding the potential of wetland restoration to improve water quality contrast with past 386 
assertions that Gulf of Mexico water quality goals may not be achieved because of legacy nitrogen (Van Meter et al., 387 
2018). Our observations of a 70% drop in [TN] between June and September and [TN] increases that tend to occur 388 
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coincident with fertilization—during the spring and fall—instead appear to be indicative of the importance of 389 
contemporary basin-scale nitrogen loading (Van Meter et al., 2020). Based on empirical observations (Figure 2), if 390 
excess fertilizer applications ceased, we speculate that a large portion of the observed water quality impairment 391 
would resolve at the time scale of months.  392 

Our findings agree with retrospective analyses observing rapid recovery of groundwater nitrate 393 
concentrations from initial values exceeding 10 mg l-1 to values below this threshold at the timescale of months with 394 
cropland to grassland conversion−and if environmental protection was assigned a high priority (Van Meter and 395 
Basu, 2015). Specifically, our data analyses suggest measures to reduce [TN] in streams in the UMRB, such as 396 
wetland restoration and associated decreases in fertilization, may not be substantially confounded by legacy effects. 397 
For these reasons, we suggest that additional critical experiments (Platt, 1964) interrogating the legacy effects of 398 
nitrogen are needed. 399 
 400 
 401 
4.3 Big data, machine learning, and uncertainty 402 
When we engage in statistical modeling or data mining, we do so with two implicit assumptions—that variables are 403 
independent of one another and the amount of measurement error is similar across variables. Our analysis questions 404 
these widespread assumptions. Instead we observe the risk in data mining of incorrectly selecting a feature (e.g., 405 
forest) whose proportional cover in the watershed is correlated—for reasons of complementarity—with the true 406 
cause of nitrogen loading (i.e., surplus nutrient inputs in cultivated areas). Why is a correlated variable assigned—by 407 
random forest—higher importance than the causal driver? Perhaps, forested areas are simply more readily quantified 408 
(i.e., by satellite remote sensing) with lower error (Wickham et al., 2017) than nitrogen loading—whose estimation 409 
is subject to greater uncertainties. To be sure (inverse) dependence of nitrogen export on forest cover is well known 410 
(Wickham and Wade, 2002). However, the complexity inherent in coupled human-natural systems means that the 411 
question of how to best infer cause-effect relations will persist as a formidable challenge (Ferraro et al., 2019;Muller 412 
and Levy, 2019). 413 

Following our foray into big data, we agree with McCabe et al. (2017) that big data presents “our 414 
community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological 415 
sciences”, though big data and machine learning present a double-edged sword (Karpatne et al., 2019). On the one 416 
hand an unprecedented quantity of information is available, with the clear potential to improve hydrologic process 417 
understanding. On the other hand, this treasure trove of information raises the risk that any number of spurious 418 
variables will be assigned high importance by non-physical machine learning algorithms. For this reason, shallow 419 
learning algorithms such as random forest are best applied to hypothesis generation and gap filling (of incomplete 420 
time series). 421 
 Among the most informative aspects of this work was the importance assigned to each of scores of 422 
candidate predictor variables. In contrast to the typical approach of testing a single hypothesis, we show here that (if 423 
we think of each predictor variable as an alternative hypothesis) scores of candidate hypotheses find some level of 424 
support. As an example of the implications of the challenge this presents, our framework does not allow for 425 
distinguishing between the effects of denitrification versus the simple absence of fertilization. Whereas structural 426 
uncertainty is acknowledged as a “major scientific and engineering challenge” (Renard et al., 2010), the level of 427 
support assigned to scores of different processes relevant to hydrology suggests the possibility that conventional 428 
modeling approaches may underestimate structural uncertainty.  429 

When the challenges of model structure are combined with those of the parameterization of those models 430 
with complex structures, Beven (1993) concludes that “application of distributed hydrological models is more an 431 
exercise in prophecy than prediction”. However, we agree with Sivapalan (2009) that by changing the question that 432 
we pose we can circumvent the uncertainty that arises when uncertain model predictions are used to interrogate the 433 
possible effects of secondary, tertiary, or quaternary drivers—often a convenient focus of modern hydrology. For 434 
example, in the case of this study, we shifted our research question from a focus on observed wetland influence to 435 
wetland restoration scenarios. By asking questions related to the main drivers of unprecedented degradation of 436 
natural water resources (e.g., the environmental impacts of growth of humanity’s nutrient footprint), we can 437 
minimize uncertainty and provide the hydrologic science basis required to remedy the degradation of natural water 438 
resources observed to threaten human wellbeing and ecological integrity today. 439 
 440 
4.4 Study Implications 441 
We find ourselves at a point in the Anthropocene in which the measures humans take to secure our well-being 442 
simultaneously threaten our health and the health of the environment. For example, as we observed here, widespread 443 
nitrogen loading and the increase in agricultural land at the expense of wetlands is expected to improve agricultural 444 
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productivity, though it simultaneously has impaired water quality. For this reason, humanity’s environmental 445 
footprint remains unsustainable (Hoekstra and Wiedmann, 2014;Ehrlich and Holdren, 1971) and diverse approaches 446 
are needed to address ever-expanding nutrient-driven water quality issues.  447 

Recently, greater emphasis has been placed on approaching complex water security challenges from an 448 
integrative approach that considers perspectives from all relevant disciplines (Zeitoun et al., 2016;Melsen et al., 449 
2018). In this case the challenge involves securing high quality freshwater for humans and aquatic ecosystems in the 450 
face of powerful agricultural interests together with an unprecedented human population. Indeed, there is growing 451 
acknowledgement within the water resource community of the role of water resource securitization—the 452 
characterization of an issue as an existential threat requiring implementation of extraordinary measures—in attaining 453 
hydrologic process understanding (Wine, 2020, 2019;Wine and Laronne, 2020;Goulden et al., 2009;Brooks and 454 
Trottier, 2010;Yu et al., 2015;Schmeier and Shubber, 2018;Farnum, 2018;Grech-Madin et al., 2018). With respect to 455 
water quality in the UMRB, there is a need to examine the role played by water resource securitization in hydrologic 456 
process understanding, including how it influences the relative importance of such foci as legacy effects, climate 457 
change, or the uncertainty associated with non-point source pollution origin or best management practice siting. 458 
  459 
 460 
 461 
5 Conclusion 462 
Principally as a consequence of ongoing seasonal nitrogen loading in agriculture, [TN] in the UMRB is elevated to 463 
the extent that it regularly exceeds the US federal maximum contaminant level for nitrate-nitrogen, with exceedance 464 
most likely in June. Expansion of agriculture into former wetland areas together with widespread contemporary 465 
nitrogen fertilization (in excess of crop uptake) are primary drivers of the observed degraded conditions whose 466 
hazards to human health and biotic security are well known. Here we show that spring rains incident on fertilized 467 
agricultural fields increase [TN]. Our model results suggest that restoring historic wetland extent would substantially 468 
reduce [TN]—particularly in the spring and early summer when water quality is most severely degraded. This 469 
improved water quality, with anticipated benefits for human and biotic health, is caused by the denitrification that 470 
takes place in wetland sediments as well as the decrease in fertilization. 471 
 472 
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Table 1. Importance of top-ranked predictors of TN concentrations as measured by % increase in mean square error 839 
(MSE) if a particular predictor is omitted. Wetness index (WI) of the month of [TN] measurement (WIt) and WI of 840 
the four preceding months are considered. 841 
Predictor % Increase in 

MSE 

Discharge       112.5 

Year 56.1 
WIt-1 53.0 

Day of Year 50.8 

WIt-2 49.7 

Forest 45.6 

WIt-3 42.8 

WIt 40.6 

WIt-4 40.2 

Soil nitrate (Wu and Liu, 2012) 36.1 

Wetland count 22.9 

Shallow subsurface flowpath from wetland to stream 22.9 

Watershed area 21.5 
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Table 2. Omitting forest area as a predictor reveals the importance of nitrogen loading. See Table 1 caption for 844 
abbreviations 845 

Variable 

% Increase in 

MSE 

Discharge 105.8 

WIt-1 54.7 

Total N input 54.0 

Year 52.8 

Day of year 48.4 

WIt-2 48.2 

WIt 42.8 

WIt-4 42.7 

WIt-3 41.4 

Soil Nitrate (Wu and Liu, 

2012) 40.2 

Average Manning's 

roughness coefficient along 

the flowpath from wetland to 

stream 33.5 

Average Impervious 26.4 

Wetland Count 23.4 

 846 
  847 
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Table 3. Total Nitrogen models of increasing complexity, where yijt refers to log10[TN] from the tth day of year of the ith year measured at the jth watershed. 

Predictors include discharge (x0), seasonal soil nitrogen (x1) as simulated by Wu and Liu (2012), cultivated area (x2), wetland area (x3), watershed area (x4),  

wetness index during the preceding month (x5), and year (𝛼). The mixed effects model involves both fixed effects, which involve fitting scalar coefficients (β) 

and random effects, which fit vectors (u). 

Model  Model Form New term AIC BIC 

1 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝛽1 • sin (

2𝜋𝑡

365
) + 𝛽2 • cos (

2𝜋𝑡

365
) + 𝑒𝑖𝑗𝑡 

 11151.78 11185.97 

2 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝛽1 • sin (

2𝜋𝑡

365
) + 𝛽2 • cos (

2𝜋𝑡

365
) + 𝛽3 • sin(

4𝜋𝑡

365
) + 𝛽4 • cos (

4𝜋𝑡

365
) + 𝑒𝑖𝑗𝑡 

2nd harmonic 10886.61 10934.48 

3 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝛽1 • sin (

4𝜋𝑡

365
) + 𝛽2 • cos (

4𝜋𝑡

365
) + 𝑒𝑖𝑗𝑡 

1st harmonic, 
random effect 

9479.995 9562.049 

4 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑒𝑖𝑗𝑡 

2nd harmonic, 

random effect 

9053.358 9196.952 

5 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝛽1 • 𝑥0𝑖𝑗𝑡 + 𝑒𝑖𝑗𝑡 

Discharge, fixed 

effect 

7303.277 7453.706 

6 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝑒𝑖𝑗𝑡 

Discharge, 

random effect 

6193.4 6384.855 

7 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝑒𝑖𝑗𝑡 

Year, fixed 

effect 

6131.496 6404.933 

8 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝑒𝑖𝑗𝑡 

Soil nitrogen, 

fixed effect 

6113.457 6393.724 

9 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝑒𝑖𝑗𝑡 

Cultivated area, 

fixed effect 

6059.893 6346.99 

10 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝛽3 • 𝑥3𝑗 + 𝑒𝑖𝑗𝑡 

Wetland area, 

fixed effect 

6057.12 6351.047 

11 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝛽3 • 𝑥3𝑗 + 𝛽4 • 𝑥4𝑗 + 𝑒𝑖𝑗𝑡 

Watershed area, 

fixed effect 

6044.125 6344.88 
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12 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝛽3 • 𝑥3𝑗 + 𝛽4 • 𝑥4𝑗 + 𝛽5 • 𝑥5𝑖𝑗𝑡
+ 𝑒𝑖𝑗𝑡 

Wetness index, 

fixed effect 

6030.475 6338.06 

13 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑡

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝛽3 • 𝑥3𝑗 + 𝛽4 • 𝑥4𝑗 + 𝛽5 • 𝑥5𝑖𝑗𝑡
+ 𝛽6 • 𝑥5𝑖𝑗𝑡 • 𝑥1𝑡 + 𝑒𝑖𝑗𝑡 

Interaction of 

wetness index, 

soil NO3-N 

6022.122 6336.535 

14 
𝑦𝑖𝑗𝑡 = 𝛽0 + 𝑢0𝑗 + 𝑢1𝑗 • sin (

2𝜋𝑡

365
) + 𝑢2𝑗 • cos(

2𝜋𝑡

365
) + 𝑢3𝑗 • sin (

4𝜋𝑇

365
) + 𝑢4𝑗 • cos (

4𝜋𝑡

365
)

+ 𝑢5𝑗 • 𝑥0𝑖𝑗𝑡 + 𝛼(𝑖) + 𝛽1 • 𝑥1𝑡 + 𝛽2 • 𝑥2𝑗 + 𝛽3 • 𝑥3𝑗 + 𝛽4 • 𝑥4𝑗 + 𝛽5 • 𝑥5𝑖𝑗𝑡
+ 𝛽6 • 𝑥5𝑖𝑗𝑡 • 𝑥1𝑡 + 𝛽7 • 𝑥5𝑖𝑗𝑡 • 𝑥2𝑗 + 𝑒𝑖𝑗𝑡 

Interaction of 
wetness index, 

cultivated area 

6018.495 6339.736 
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Table 4. Spearman correlation between the first harmonic [TN] amplitude associated with each watershed and watershed metrics. 

Variable Correlation 

Watershed area covered by grassland -0.393 

Watershed area covered by barren land -0.278 

Number of wetlands in a watershed -0.259 

Average Manning's roughness coefficient along the flowpath from wetland to stream -0.246 

Watershed area covered by pasture -0.237 

Average proportion of wetland drainage areas with impervious surfaces 0.236 

Number of wetlands per unit watershed area  -0.209 

Area of a watershed -0.207 

Total wetland area in a watershed -0.202 
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Figure 1: Land cover, study basins, and stream gauges in the Upper Mississippi River basin, USA. 
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Figure 2: Stream total nitrogen (TN) concentrations peak in June following spring fertilizer loading. By September 

concentrations have decreased by 70%, consistent with contemporary nutrient loading as the primary cause of observed 

water quality impoverishment. Data are from 82 watersheds in the Upper Mississippi River basin (1995-2007). 

Recommended timing for fertilizer application (i.e., spring and fall) are shaded gray. (The gray dashed lines respectively 

refer to the highest and lowest monthly median [TN].) 
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Figure 3: A range of conditions are observed in smaller UMRB watersheds (<350 km2), e.g., here TN concentrations peak 

in September, March, January, and June, respectively. (The red dashed line references the current maximum 

contaminant level for nitrate.) 
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Figure 4: (a)The mtry parameter in random forest is optimized by minimizing out of bag (OOB) error. (b) Random forest 

predictions in which all observations are made available for training. (c) Random forest predictions on the training 

(black) and verification (gray) datasets, where 70% of samples from each site were selected. (d) Random forest 

predictions when training was performed on all observations from each of 70% of all sites. 
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Figure 5: Proportion of wetlands within each of the 82 study watersheds in the Upper Mississippi River. Historic 

distribution of wetlands from the (Top) Global Lakes and Wetlands Database (Lehner and Doll, 2004) and (Middle) 

Horvath et al. (2017). (Bottom) Contemporary distribution of wetlands from the National Wetland Inventory.  
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Figure 6: Four examples of larger watersheds in the UMRB (>27,000 km2) showing Total Nitrogen [TN] concentrations 

tend to peak in June or July and reach a trough in September or October. (The grey dashed line references 1 mg l-1.) 
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Figure 7: Linear Mixed Effect Modeling [TN] with a random intercept and first harmonic (a), adding a second harmonic 

(b), assigning the first harmonic a random effect (c), and assigning both harmonics as random effects (d). These model 

iterations correspond to equations 1-4 of Table 3. The red line represents the fixed effects and the blue lines indicate the 

random effects (by watershed).  

0 100 200 300

-2
-1

0
1

2
3

lo
g
(T

N
 (

m
g

 l
 -1

 )
)

a

0 100 200 300

-2
-1

0
1

2
3 b

0 100 200 300

-2
-1

0
1

2
3

Day of Year

lo
g
(T

N
 (

m
g

 l
 -1

 )
)

c

0 100 200 300

-2
-1

0
1

2
3

Day of Year

d

https://doi.org/10.5194/hess-2020-423
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



29 
 

 

 

 

 

 
Figure 8: Concentration-discharge relationships can be a) direct, b) inverse, or c) weak. Inverse relationships are 

observed in watersheds in which 50% or more of the area is drained artificially by tiles.  d) Typically, the Spearman 

correlation between concentration and discharge is direct, whereas fewer watersheds exhibit inverse relationships. The 

red stippled line in a) and b) corresponds to the maximum contaminant level for nitrate in the US.  
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Figure 9: Mixed effects modeling described TN variability (top), including correspondence between the seasonal 

distributions of measurements (black) and model predictions (blue). Assessment of the Spearman correlation between 

measured and modeled values indicates strong (>0.6) to very strong (>0.8) agreement in most watersheds.  
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Figure 10: Observed (black) and estimated [TN] for 50% (blue) and 100% (green) restoration of the historic wetland 

extent using our final model forced by Horvath et al. (2017). Red lines, provided as a reference, indicate the maximum 

contaminant levels for nitrate in the US 10 mg l-1 and Germany 4.4 mg l-1. 
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