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We thank Marc Schleiss for taking his time to carefully reread our paper
and for his remarks. We appreciate his thorough review, but there are
also some points where we do not agree.

Here are our statements:

This is the third time that I review this paper. The paper has

improved. However, there are still a lot of typos and unclear

sentences and the writing could be improved further. Most of

the major issues I raised during the previous rounds were (partially)

addressed. The only major points of criticism that I have left

are:

- the justification of the assumptions in Section 4.1, which

could be more quantitative and exhaustive

In the revised version we already added a new Figure 7 - showing the
rank correlations of the closest PWD and primary station pairs. This
figure is in Section 4.2 as it both supports the hypothesis of section 4.1
and the indicator based filter. One could add further justifications, but
we did not want to extend the paper which is already quite long.

- the conclusion section, which is too short and does not include

all major findings.

The conclusion section was changed.....

- an assumption on the rank stability of the PWS stations was introduced.

- A Kriging interpolation with uncertain data was used (KU). This
method allows the downweighting of the PWS stations, and leads to
an improvement of the interpolation quality.

- the structure of the paper. In particular, the event selection

procedure and cross-validation strategies which should not be

in the results part but introduced earlier in the text, in the

methods section.

The novelty of this paper is described in the methodology chapter. The
cross validation procedure is not new and used only for the evaluation of
the results. That’s why we put it in the results section. Furthermore, we
consider this a question of personal taste. Restructuring the paper does
not change its scientific content, therefore we would like to leave it as it
is.
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"Although this is only one example with a relatively short time

period it does support our assumption that the quantiles between

primary and secondary stations are similar for higher precipitation

intensities. However, one secondary device (N10) delivered data

which deviates substantially from the other measurements. This

was caused by an interrupted connection between the rain sensor

and the base station. In this case, the total sum of precipitation

over a longer time period was transferred at once (i.e. in one

single measurement interval) when the connection was established

again. This leads to an extreme outlier which falsifies the

results."

Not sure to understand your argument here. According to your

assumption, the points in Figure 4b should align with each other

(though not necessarily along y=x). Still, there seems to be

substantial residual scatter and uncertainty due to quantization

effects (especially for Netatmo). Please provide some quantitative

metrics to judge the degree of linear relationship and highlight

which data point in 4b corresponds to the "extreme outlier".

In addition, it would be worth commenting on the discretization

effects you see in the Netatmo stations.

In fact the points on figure correspond to the ranks of the observations
and they should be on the line y=x. The residual scatter on Figure 4b
is likley due to data transmission issues of Netatmo station N10. Appar-
ently, this station in particular often failed to transmit data during rain
events and hence transmitted data later on when it was dry. Therefore,
the extreme outlier is not displayed in the plot since it occurred at at
time when the reference recorded 0mm rainfall (i.e. it would be located
at the 0 quantile of the reference an the highest quantile of the PWS
station). In this figure we wanted to show that PWS can behave errati-
cally and such stations need to be detected and removed (even if they are
placed correctly). The indicator filter recognizes this error and suggests
the removal of this station. We reformulated this section to make this
more clear

ll.73-74: corrected

ll.103-104: corrected

ll.105-107: corrected

ll.119: corrected

ll.149-150: In order to have a sufficient sample size and to

have robust results, high α values and low temporal aggregations

∆t are preferred.

Can you be more specific? What are sufficiently large values

for alpha and delta t?

In order to have a sufficient sample size and to have robust results α and
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∆t have to be selected carefully. The lower the ∆t value is the more
observations are available, but the number of zeros also increases. Thus
the corresponding α has increase. The selection of ∆t = 1 hour and α =
0.99 is in our case a good choice.

ll.163-164: "Another possibility is to interpolate the quantiles

corresponding to selected non percentiles or interpolating percentiles

for selected precipitation amounts." Not clear. Please reformulate.

Corrected: Another possibility is to interpolate the quantiles correspond-
ing to selected percentiles or interpolating percentiles for selected precip-
itation amounts.

ll.272-273: corrected

l.276: "Figure 4 shows that for high percentiles their occurrence

is the same for the primary and the secondary devices." This

sentence is not clear. Please reformulate.

ll.272-273: done, section 4.1. is partially rewritten

ll.289-291 "While the distributions differ, the probability of

no precipitation p0 (defined as precipitation < 0.1 mm) ranges

from 0.90 to 0.91 and is thus very similar for both types of

stations indicating that the occurrence of precipitation can

be well detected by the secondary network." Actually, in Table

1, the percentages p0 (at 1h resolution) are 0.84 for N07 and

N10, which is 7% lower than for N11 (0.91) and 8% lower than

for the Pluvio (0.92). Please explain!

This statement is referring to the analysis in Reutlingen and not Table
1. We see that is leads to a misunderstanding hence we added a subplot
showing the p0 to Fig 5 and changed the caption accordingly. The fact
that the p0 at our weather station are so not well captured could be
related the the short time series at this location. We’ve also corrected a
typo in Table 1: p0 for N10 at 1h is 0.94

l.302 "In our case, 862 secondary stations remained after the

application of the IBF." In addition to the number, please specify

the percentage of stations that were removed.

We’ve added some numbers in the manuscript

ll.316-317: corrected

ll.332-334 "The cross validation was carried out for a set of

different temporal aggregations ∆t and a set of selected events.

Only times with intense precipitation were selected, as for low-intensity

cases the interpolation based on the primary network is sufficiently

accurate" Actually, you did not show any evidence that the interpolation

for lower intensities is accurate. Please provide some numbers

or reformulate this sentence.
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We are convinced that this is a valid argument but since we did not check
or quantify this we’ve deleted the last part of this sentence.

tt ll.338-348: the detailed description of the CV method and different
configurations and metrics used during evaluation could be moved to the
methodology section.

cf. answer above. This is again matter of taste and personal style. We
would like to leave it as it is.

ll.359-360: The measured and interpolated results were also

compared for each event in space and (r) and (rS) and the observed

the interpolated spatial patterns were calculated as well

This sentence makes no sense. Please reformulate!

You are right, we changed it as follows: The measured and interpolated
results were also compared for each event in space and the correlations
between the observed and the interpolated spatial patterns were calcu-
lated as well.

l.376 corrected

l.379 corrected

ll.380-381: Stations located very close to each other can cause

instabilities in the solution of the Kriging equations leading

to high positive and negative weights

Are you referring to the screening effect? Please clarify and

provide a reference to a textbook to clarify what you mean by

stabilizes the solution on l.382. KU. Would adding a nugget

effect in the variograms help model the small-scale differences

you see between PWS data? Please discuss!

This sentence was added in response to the reviewers previous review.
An example illustrating the effect was enclosed. The problem is that if
two stations are very close to each other and the nugget is low (or zero)
then the corresponding columns of the Kriging matrix are nearly identi-
cal - which leads to high condition numbers of the corresponding matrix
and thus instabilities in the solution of the linear equation system. If a
measurement error term (or nugget) is applied to the diagonal, the con-
ditioning number decreases. This is not related to the screening effect -
it is linear algebra. The conditioning numbers of the Kriging equations
were discussed for example in:
Davis, G.J., Morris, M.D. Six factors which affect the condition num-
ber of matrices associated with kriging. Math Geol 29, 669683 (1997).
https://doi.org/10.1007/BF02769650
We changed the text to:

ll.387-388: The poor performance of Co-Kriging is surprising,
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but an appropriate selection of the co variable (for example

transformed rank) may improve the results.

Too speculative. Please provide more details or reformulate

this sentence. One explanation could be that co-kriging makes

rather strong modelling assumptions (stationarity of both primary

and secondary variable). It also requires the estimation and

fitting of 3 (cross-)variograms, which increases uncertainty

(especially in small samples). You make some other interesting

comments about an extension of co-kriging toward the end of the

paper. Perhaps you could include these here as well.

The Co-Kriging and the other interpolation methods were performed and
added to the revised version of the paper. We did not want to include a
long discussion here, but we added the following text in order to explain
the problem.

The poor performance of the Co-Kriging is surprising. For this study we
used the PWS observations a co-variable. The linear relationship which
is supposed to exisit between the investiagated variable (precipitation)
and the secondary variable (precipitation measured at PWS) for the ap-
plication of Co-Kriging may not be appropraiate for this pair of variables.
Considering the ranks of the PWS observations or other transformed val-
ues as co-variables may improve Co-Kriging results, but this is not the
primary topic of this paper.

ll.410-411 corrected

ll.446-447 corrected

ll.463-465 corrected

ll.465-466 corrected

- ll.484-485: Problems occur if the order of the observations

is influenced by wind effects, but due to the highly skewed distribution

of the precipitation amounts the problem mainly occurs for small

precipitation amounts.

I dont understand your last argument. Please explain! The way

I see it, the wind-induced bias mostly affects high rainfall

intensities. Also, its effect will become more visible when

quantities are aggregated over time. Wind-induced biases can

represent 20-30% and are the main source of uncertainty in in-situ

rainfall measurements. PWS tend to be installed in weird places

and are particularly prone to this type of errors/biases.

we changed the text to:
The suggested methodology uses ranks and not the measured precipita-
tion values of the PWS. Thus, the problem related to wind only affects
the results if it changes the order of the precipitation measured at the
same location. This order however is relatively stable for high precipi-
tation values, as due to the skewness of the distribution the difference
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between the measured values is high.

l.488 corrected

l.490 corrected

l.502 corrected

ll.506-508 corrected

Figure 2: Change axis labels. For 2a, put years on the x-axis

and number of stations on the y-axis.

done

Figure 4: The axis labels for 4b should be Quantile Pluvio [-]

and Quantile Netatmo [-]

done

Equation 1: You need to specify in the equation that this only

applies for Y above a certain threshold.

This is the hypothesis, the higher values are emphasized as random errors
have less influence on their true ranks

Table 2: this table shows some basic statistics of the selected

events and could be moved to the methods section, together with

the text explaining how events were selected and how cross-validation

was performed. I dont think that putting it in the results section

is a good choice.

See previous comments, we would like to leave as it is.

Table 7 is interesting. But the discussion going with it is

very short. You could expand this part and provide more discussion

about the pros/cons of your approach compared with other faster,

simpler and deterministic alternatives. Im relieved to see that

KU performs better than IDW and NN. But its a close call and

the lower performances of NN and IDW are mostly due to their

higher biases compared with KU. If you would compare the methods

on a fair basis, for a similar level of bias, would you still

see significant differences in RMSE? Indeed, the bias in IDW

can easily be reduced by performing hyperparameter optimization

of the distance decay parameter or choosing a different distance

metric. So theres definitively room for improvement. On the

other hand, there also seems to be some room left for further

optimization of the KU technique. For example, you could optimize

the uncertainty parameter linked to the PWS data. In the paper,

you arbitrarily use 10% but this could be tuned to the dataset

as well (using LOOCV).

We do not consider Kriging as a very complicated interpolation proce-
dure. IDW and NN are easier to use, but in the early days of geostatistics
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several comparisons of Kriging with IDW and NN showed a superiority
of Kriging. We do not want to repeat this discussion in this paper. It is
however interesting to observe that after the selection of the appropriate
PWS and the bias correction of their values, all methods improve. Re-
moving the bias of the NN and the IDW does not change the order of
the quality of estimators. The 10 % error was used after comparing var-
iograms calculated from the primary and the PWS stations separately.
The detailed variogram analysis was not included in this paper in order
to keep it at an accaptable length. A LOOCV based estimation would
certainly be a good alternative. Discussion of the Co-Kriging results was
added as described above.
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The use of personal weather station observations for improving
precipitation estimation and interpolation
András Bárdossy1, Jochen Seidel1, and Abbas El Hachem1

1Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, D-70569 Stuttgart, Germany
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Abstract. The number of personal weather stations (PWS) with data available online through the internet is increasing grad-

ually in many parts of the world. The purpose of this study is to investigate the applicability of these data for the spatial

interpolation of precipitation using a novel approach based on indicator correlations and rank statistics. Due to unknown errors

and biases of the observations rainfall amounts from the PWS network are not considered directly. Instead, it is assumed that

the temporal order of the ranks of these data is correct. The crucial step is to find the stations which fulfil this condition. This is5

done in two steps, first by selecting the locations using time series of indicators of high precipitation amounts. The remaining

stations are then checked whether they fit into the spatial pattern of the other stations. Thus, it is assumed that the quantiles of

the empirical distribution functions are accurate.

These quantiles are then transformed to precipitation amounts by a quantile mapping using the distribution functions which

were interpolated from the information from German National Weather Service (DWD) data only. The suggested procedure10

was tested for the State of Baden-Württemberg in Germany. A detailed cross validation of the interpolation was carried out

for aggregated precipitation amounts of 1, 3, 6, 12 and 24 hours. For each of these temporal aggregations, nearly 200 intense

events were evaluated and the improvement of the interpolation was quantified. The results show that filtering of observations

from PWS is necessary as the interpolation error after filtering and data transformation decreases significantly. The biggest

improvement is achieved for the shortest temporal aggregations.15

1 Introduction

Comprehensive reviews on the current state of citizen science in the field of hydrology and atmospheric sciences were published

by Buytaert et al. (2014) and Muller et al. (2015). Both of these reviews give a detailed overview of the different forms of citizen

science data and highlight the potential to improve knowledge and data in the fields of hydrology and hydro-climatology. One

type of information which is of particular interest for hydrology are data from in-situ sensors. In recent years, the number of20

low-cost personal weather stations (PWS) has increased considerably. Data from PWS are published online on internet portals

such as Netatmo (www.netatmo.com) or Weather Underground (www.wunderground.com). These stations provide weather

observations which are available in real time as well as for the past. This is potentially very useful to complement systematic

weather observations of national weather services, especially with respect to precipitation, which is highly variable in space

and time.25
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Traditionally rainfall is interpolated using point observations. The shorter the temporal aggregation the higher the variability

of rainfall becomes, and the more the quality of interpolation deteriorates (Bárdossy and Pegram, 2013; Berndt and Haberlandt,

2018). In consequence, the number of interpolated precipitation products with sub-daily resolution is low, but such data are

required for many hydrological applications (Lewis et al., 2018). Additional information such as radar measurements can

improve interpolation (Haberlandt, 2007), however, radar rainfall estimates are still highly prone to different kinds of errors30

(Villarini and Krajewski, 2010) and the time periods where radar data is available are still rather short.

Against the backdrop of low precipitation station densities, the additional data from PWS has a high potential to improve the

information of spatial and temporal precipitation characteristics. However, one of the major drawbacks from PWS precipitation

data is their trustworthiness. There is little systematic control on the placing and correct installation and maintenance of the

PWS, so it is usually not known whether a PWS is set up according to the international standards published by the WMO (World35

Meteorological Organization, 2008). Furthermore, there’s no information available about the maintenance of PWS. Therefore,

precipitation data from PWS may contain numerous errors resulting from incorrect installation, poor maintenance, faulty

calibration and data transfer errors (de Vos et al., 2017). This shows that the data from PWS networks cannot be regarded to be

as reliable as those of professional networks operated by national weather services or environmental agencies. Consequently,

the use of PWS data requires specific efforts to to detect and take these errors into account.40

For air temperature measurements, Napoly et al. (2018) developed a quality control (QC) procedure to filter out suspicious

measurements from PWS stations that are caused e.g. by solar exposition or incorrect placement. For precipitation, de Vos

et al. (2017) investigated the applicability of personal stations for urban hydrology in Amsterdam, Netherlands. They reported

results of a systematic comparison of an official observation of the Royal Netherlands Meteorological Institute (KNMI) and

three PWS Netatmo rain gauges. This provides information on the quality of measurements in case of correct installation of the45

devices. As many of the PWS may be placed without consideration of the WMO standards, the results of these comparisons

cannot be transferred to the other PWS observations. In a more recent study, de Vos et al. (2019) developed a QC methodology

of PWS precipitation measurements based on filters which detect faulty zeroes, high influxes and stations outliers based on a

comparison between neighbouring stations. A subsequent bias correction is based on a comparison of past observations with a

combined rain gauge and radar product (de Vos et al., 2019).50

Overall, the data from PWS rain gauges may provide useful information for many precipitation events and may also be useful

for real-time flood forecasting, but data quality issues have to be overcome. In this paper we focus on the use of PWS data for

the interpolation of intense precipitation events. We propose a two-fold approach based on indicator correlations and spatial

patterns to filter out suspicious measurements and to use the information from PWS indirectly. The basic assumption hereby

is that many of the stations may be biased but are correct in the temporal order. For the spatial pattern, information from a55

reliable precipitation network, e.g. from a national weather service is required. These measurements are considered to be more

trustworthy than the PWS data, however, the number of such stations is usually much lower. This paper is organized as follows:

After the introduction, the methodology to find useful information and the subsequent interpolation steps are described. The

described procedure was used for precipitation events of the last four years in the federal state of Baden-Württemberg in South-
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West Germany. The results of the interpolation and the corresponding quality of the method are discussed in section 4. The60

paper ends with a discussion and conclusions.

2 Study Area and Data

The federal state of Baden-Württemberg is located in South-West Germany and has an area of approximately 36,000 km2. The

annual precipitation varies between 600 and 2,100 mm (Deutscher Wetterdienst, 2020), and the highest amounts are recorded

in the higher elevations of the mountain ranges of the Black Forest. The rain gauge network of the German Weather Service65

(DWD) in Baden-Württemberg (referred to as primary network from here on) currently comprises 111 stations for the study

period with high temporal resolution data (Fig. 1). The gauges used in this network are predominantly weighing gauges. This

precipitation data is available in different temporal resolutions from the Climate Data Center of the DWD. For this study, hourly

precipitation data was used.

Figure 1. Map of the federal state of Baden-Württemberg showing the topography and the location of the DWD (primary) and Netatmo

(secondary) gauges.

For the PWS data, the Netatmo network was selected (https://weathermap.netatmo.com). The stations from this PWS net-70

work (referred to as secondary network from here onwards) show an uneven distribution in space, which mainly reflects the

population density and topography of the study area (Fig. 1). The number of secondary stations is higher in densely popu-

lated areas are such as in the Stuttgart metropolitan area and the Rhine-Neckar Metropolitan Region between Karlsruhe and

Mannheim. Furthermore, there are no secondary network stations above 1,000 m a.s.l., however the primary network only has

one station above 1,000 m (at the Feldberg summit at 1,496 m) as well. The number of gauges from the secondary network75

varies over time. The time period from 2015 to 2019 was considered for this study, as before 2015 the number of available
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PWS was very low. At the end of this time period over 3,000 stations from the secondary network were available. Figure 2

shows the number of secondary stations as a function of time and the length of the time series. One can see that many stations

have less than one year of observations, which is the reasonable length of a series for the suggested method. Presently it cannot

accommodate series shorter than a year (excluding time periods with snowfall), but as the series are getting longer more and80

more PWS observations become useful.

The Netatmo rain gauges are plastic tipping buckets which have an opening orifice of 125 cm2 (compared to 200 cm2 of the

primary network). A detailed technical description of the Netatmo PWS is given by de Vos et al. (2019). Since these devices are

not heated, their usage is limited to liquid precipitation. To take this into account, data from secondary stations were only used

in case the average daily air temperature at the nearest DWD station was above 5 ◦C. Data from the Netatmo PWS network85

can be downloaded with the Netatmo API either as raw data with irregular time intervals or in different temporal resolutions

down to 5 minutes. Further information on how the raw data are processed to different temporal aggregations is not available

on the manufacturer’s website. For this study, the hourly precipitation data from the Netatmo API was used.

Figure 2. Development of the number of online available Netatmo rain gauges (a) and length of available valid hourly observations in

Baden-Württemberg (b).

In order to assess the spatial variability within a dense network of primary gauges, the precipitation data from the munici-

pality of Reutlingen (located about 30 km south of the state capital Stuttgart) was additionally used. This city operates a dense90

network of 12 weighing rain gauges (OTT Pluvio2) since 2014 in an area of 87 km2 (not shown in Fig 1). Furthermore, three

Netatmo rain gauges were installed at the Institute’s own weather station on the Campus of the University of Stuttgart, where a

Pluvio2 weighing rain gauge is installed as well. This allows a direct comparison between the gauges from the primary network

and the secondary network in the case the latter are installed and maintained correctly.

3 Methodology95

It is assumed that the secondary stations may have individual measurement problems, (e.g. incorrect placement, lack of and/or

wrong maintenance, data transmission problems) and due to their large number there is no possibility to check their proper

placing and functioning directly. Furthermore, at many locations (especially in urban areas) there is no possibility to set up the
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rain gauges in such a way that they fulfil the WMO standards. Therefore, the goal is to filter out stations which deliver data

contradicting the observations of the primary network which meet the WMO standards.100

Observations from the primary and secondary network were used in hourly time steps and can be aggregated to different

durations ∆t. The usefulness of the secondary data is investigated for different temporal aggregations. Z∆t(x,t) is the (partly

unknown) precipitation at location x and time t integrated over the time interval ∆t. It is assumed that this precipitation

is measured by the primary network at locations {x1, . . . ,xN}. The measurements of the secondary network are indicated

as Y∆t(yj , t) at locations {y1, . . . ,yM}. Note that Y is not considered to be a spatially stationary random field. The basic105

assumption for the suggested quality control and bias correction method is that the measured precipitation data from the

secondary network may be biased in their values but they are good in their ordercorrect in terms of their order - at least for high

precipitation intensities. This means that if at times t1 and t2:

Y∆t(yi, t1)< Y∆t(yi, t2)⇒ Z∆t(yi, t1)< Z∆t(yi, t2) (1)

This means that the measured precipitation amount from the secondary network is likely to have an unknown location spe-110

cific bias, but the order of values at a location is preserved. This assumption is reasonable specifically for high precipitation

intensities and supported by measurements presented in the results section.

For QC two filters are applied. The first one is an indicator based filter (IBF) which compares the secondary time series

with the closest primary series with the focus on intense precipitation. The precipitation values of the remaining PWS stations

are then bias corrected using quantile mapping. The second filter is an event based filter (EBF) designed to remove individual115

contradicting observations for a given time step using a spatial comparison. These two filters and the bias correction are

described in the following sections.

3.1 High intensity indicator based filtering (IBF)

As a first step in quality control, locations with notoriously contradicting values are removedall PWS with notoriously inconsistent rainfall

values are removed. For this purpose the dependence between neighbouring stations is investigated.120

In order to identify stations which are likely to deliver reasonable data for high intensities, indicator correlations are used. The

distribution function of precipitation at location x is denoted as Fx,∆t(z) and the one for secondary observations at locations

yj as Gyj ,∆t(z), respectively. For a selected probability α the indicator series

Iα,∆t,Z(x,t) =

 1 if Fx,∆t (U∆t(x,t))> α

0 else
(2)

and for a secondary location yj125

Iα,∆t,Y (yj , t) =

 1 if Gyj ,∆t (Y∆t(yj , t))> α

0 else
(3)

Under the order assumptions of equation (1), for any secondary location yj the two indicator series are identical Iα,∆t,Z(yj , t) =

Iα,∆t,Y (yj , t). Thus the spatial variability of Iα,∆t,Z and Iα,∆t,Y has to be the same.
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For any two locations corresponding to the primary network xi and xj and any α and ∆t the correlation (in time) of

the indicator series is ρZ,α,∆t(xi,xj) and provides an information on how precipitation series vary in space. This indicator130

correlation usually decreases with increasing separation distance. This decrease is not at the same rate everywhere and not

the same for different thresholds and aggregations. For the secondary network, indicator correlations ρZ,Y,α,∆t(xi,yj) with

the series in the primary network can be calculated. Following the hypothesis from equation (1), these correlations should be

similar and can be compared to the indicator correlations calculated from pairs of the primary network.

The sample size has a big influence on the variance of the indicator correlations. Therefore, to take into account the limited135

interval of availability of the secondary observations, indicator correlations of the primary network corresponding to the same

periods for which the secondary variable is available are used for the comparison. This is done individually for each secondary

site. A secondary station is flagged as suspicious if its indicator correlations with the nearest primary network points are below

the lowest indicator correlation corresponding to the primary network for the same time steps and at the nearly same separation

distance. A certain tolerance ∆d for the selection of the pairs of the primary network is needed due to the irregular spacing of140

the secondary stations and the natural variability of precipitation. This means if:

ρZ,Y,α,∆t(xi,yj)<min{ρZ,α,∆t(xk,xm) ; ‖(xk −xm)− (xi− yj)‖<∆d} (4)

then the secondary station shows weaker association to the primary than what one would expect from primary observations.

In this case it is reasonable to discard the measured time series corresponding to the secondary network at location yi. This

procedure can be repeated for a set of selected α values.145

Under the assumption that the temporal order of precipitation at secondary locations is correct (eq. 1), one could have used

rank correlations instead of the indicator correlations. The indicator approach is preferred however, as the sensitivity of the

devices of the primary and secondary networks is different and this would influence the order of the small values strongly.

Furthermore, random measurement errors would also influence the order of low values. In order to have a sufficient sample

size and to have robust results, high α values and low temporal aggregations ∆t are preferred.150

3.2 Bias correction: Precipitation amount estimation for secondary observations

After the selection of the potentially useful secondary stations the next step is to correct their observations. The assumption in

equation (1) means that the measured precipitation amounts from the secondary network are likely to have an unknown bias,

but the order of values at a location is preserved. This assumption is likely to be reasonable for high precipitation intensities.

Thus, the percentile of the precipitation observed at a given time at a secondary location can be used for the estimation of the155

true precipitation amounts. Since this is a percentile and not a precipitation amount it has to be converted to a precipitation

amount for further use. This can be done using the distribution function of precipitation amounts corresponding to the location

yj and the aggregation ∆t. As the observations from the secondary network could be biased their distribution Gyj ,∆t cannot

be used for this purpose. Thus, one needs an unbiased estimation of the local distribution functions.

Distribution functions based on long observation series are available for the locations of the primary network. For locations of160

the secondary network they have to be estimated via interpolation. This can be done by using different geostatistical methods. A
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method for interpolating distribution functions for short aggregation times is presented in Mosthaf and Bardossy (2017). Another

possibility is to interpolate the quantiles corresponding to selected non-percentiles or interpolating percentiles for selected precipitation amountsAnother

possibility is to interpolate the quantiles corresponding to selected percentiles or interpolating percentiles for selected pre-

cipitation amounts. Another option to estimate distribution functions corresponding to arbitrary locations is to use functional165

Kriging (Giraldo et al., 2011) to interpolate the distribution functions directly. The advantage of interpolating distribution

functions is that they are strongly related to geographical locations of the selected location and to topography. These variables

are available in high spatial resolution for the whole investigation domain. Additionally, observations from different time

periods and temporal aggregations can also be taken into account as co-variates.

In this paper Ordinary Kriging (OK) is used for the interpolation of the quantiles and for the percentiles to construct the170

distribution functions both for the locations of the secondary observations and for the whole interpolation grid. For a given

temporal aggregation ∆t, time t and target secondary location yj the observed percentile of precipitation is:

P∆t(yj , t) =Gyj ,∆t (Y∆t(yj , t)) (5)

For the observations of the primary network the quantiles of the precipitation distribution at the primary stations are selected.

The distributions at the primary stations are based on the same time steps as those which have valid observations at the target175

secondary station. In this way, a possible bias due to the short observation period at the secondary location can be avoided. The

quantiles are:

Q∆t(xi) = F−1
∆t,xi

(P∆t(yj , t)) (6)

These quantiles are interpolated using OK to obtain an estimate of the precipitation at the target location.

Zo∆t(yj , t) =

n∑
i=1

λiQ∆t(xi) (7)180

Here the λi-s are the weights calculated using the Kriging equations. Note that the precipitation amount at the target location

is obtained via interpolation, but the interpolation is not using the primary observations corresponding to the same time, but

instead is using the quantiles corresponding to the percentile of the target secondary station observation. Thus, these values

may exceed all values observed at the primary stations at time t. Note that this correction of the secondary observations is non-

linear. This procedure is used for all locations which were accepted after application of the indicator filter. In this way, the bias185

from observed precipitation values at the secondary stations is removed using the observed percentiles and the distributions at

the primary stations. This transformation does not require an independent ground truth of best estimation of precipitation at the

secondary locations.

3.3 Event based spatial filtering (EBF)

While some stations may work properly in general, due to unforeseen events (such as battery failure or transmission errors) they190

may deliver individual faulty values at certain times. In order to filter out these errors a simple geostatistical outlier detection
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method is used as described in Bárdossy and Kundzewicz (1990). The geostatistical methods used for outlier detection and

the interpolation of rainfall amounts require the knowledge of the corresponding variogram. However, the highly skewed

distribution of the precipitation amounts makes the estimation of the variogram difficult. Instead one can use rank based

methods for this purpose as suggested in Lebrenz and Bárdossy (2017) and rescale the rank based variogram.195

For a given temporal aggregation ∆t, time t and target secondary location yj the precipitation amount is estimated via OK

using the observations of aggregation ∆t at time t of primary stations. This value is denoted as Z∗
∆t(yj , t). If the precipitation

amount at the secondary station estimated using equation (7) differs very much from Z∗
∆t(yj , t), the secondary location is

discarded for the interpolation. As limit for the difference, three times the Kriging standard deviation was selected. Formally:∣∣∣∣Z∗
∆t(yj , t)−Zo∆t(yj , t)

σ∆t(yj , t)

∣∣∣∣> 3 (8)200

This means that if the estimated precipitation at the secondary location does not fit into the pattern of the primary observations

then it is discarded. Note that this filter is not necessarily discarding secondary observations which differ from the primary -

it only removes those where there is a strong local disagreement. This procedure is predominantly removing false zeros at

secondary observations which are e.g. due to temporary loss of connection between the rain gauge module and the Netatmo

base station.205

3.4 Interpolation of precipitation amounts

After the application of the two filters and the bias correction the remaining PWS data can be used for spatial interpolation.

Once the percentiles of the secondary locations are converted to precipitation amounts, different Kriging procedures can be

used for the interpolation over a grid in the target region. The simplest solution is to use OK. For aggregations of one day or

longer, the orographic influence should be taken into account. This can be done by using External Drift Kriging (Ahmed and210

de Marsily, 1987).

A problem that remains when using these Kriging procedures is that the precipitation amounts of the secondary network

are more uncertain than those of the primary network. To reflect this difference, a modified version of Kriging as described in

Delhomme (1978) is applied. This allows for a reduction of the weights for the secondary stations.

Suppose that for each point yi time t and temporal aggregation ∆t there is an unknown error of the percentiles ε(yi, t) which215

has the following properties:

1. Unbiased :

E[ε(yi, t)] = 0 (9)

2. Uncorrelated :

E[ε(yi, t)ε(yj , t)] = 0 if i 6= j (10)220

3. Uncorrelated with the parameter value:

E[ε(yi, t)Z(yi, t)] = 0 (11)
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For the primary network we assume that ε(xi, t) = 0.

The interpolation is based on the observations

{u1, . . . ,uN}= {x1, . . . ,xN}∪ {y1, . . . ,yM} (12)225

For any location x

Z∗
∆t(x,t) =

n∑
i=1

λi (Z(ui, t) + ε(ui, t)) (13)

To minimize the estimation variance an equation system similar to the OK system has to be solved, namely:

n∑
j=1

λjγ(ui−uj) +λiE[ε(ui, t)
2] +µ = γ(ui−x) i= 1, . . . ,n

n∑
j=1

λj = 1 (14)230

Note that OK is a special case of this procedure with the additional assumption ε(yj , t) = 0. This system leads to an increase

of the weights for the primary and a decrease of the weights for the secondary network. For each time step and percentile

the variances of the random error terms ε(yi, t) is estimated from the interpolation error of the distribution functions. This

interpolation method is referred to as Kriging using uncertain data (KU) (Delhomme, 1978). The variograms used for interpo-

lation were calculated in the rank space using the observations of the primary network only which leads to more robust results.235

(Lebrenz and Bárdossy, 2017). Anisotropy was not considered, the main reason for this was that the primary network did not

give robust results.

3.5 Step by step summary of the methodology

In summary, the procedure for using secondary observations is as follows:

1. Select a percentile threshold for a selected temporal aggregation. The threshold should be adapted to the temporal ag-240

gregation, e.g. 98 or 99 % for hourly or 95 % for 3 hourly data.

2. Calculate the indicator series for primary and secondary stations corresponding to the percentile threshold.

3. For each individual secondary station:

(a) Calculate the indicator correlation of the given secondary and the closest primary station.

(b) Calculate the indicator correlations of all primary stations using data corresponding to the time steps of the selected245

secondary station.

(c) Compare the correlations and keep the secondary station if its indicator correlation is in the same range as the

indicator correlations of the primary stations approximately at the same distance (IBF).
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4. Perform a bias correction by interpolating the distribution function values of the primary network.

5. Select an event to be interpolated and calculate the corresponding variogram of precipitation (based on rank statistics).250

(a) Calculate the percentile of observed precipitation (based on the corresponding time series).

(b) Calculate the quantiles corresponding to the above secondary percentile for the closest M primary stations of

observed precipitation (based on the corresponding time series).

(c) Interpolate the quantiles for the location of the secondary station using the above primary values using OK, and

assign the obtained value to the secondary location.255

6. Interpolate precipitation for each secondary location using OK excluding the value assigned to the location (cross vali-

dation mode).

7. Compare the interpolated and the assigned (5.c) value and remove station if condition of inequality (eq. 8) indicates

outlier.

8. Interpolate precipitation for target grid using all remaining values .260

Figure 3. Flow chart illustrating the procedure from raw PWS data to interpolated precipitation grids.
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Table 1. Statistics of three Netatmo stations (N07, N10, N11) compared to a Pluvio weighing gauge for April to October 2019 at the IWS

Meteorological Station for different temporal aggregations.

1h 6h 24h

Pluvio N07 N10 N11 Pluvio N07 N10 N11 Pluvio N07 N10 N11

p0 [-] 0.92 0.84 0.840.94 0.91 0.82 0.75 0.84 0.82 0.59 0.56 0.65 0.59

mean [mm] 1.24 1.46 1.80 1.41 3.46 4.04 4.24 3.89 5.78 7.28 7.51 7.02

standard deviation [mm] 2.15 2.52 4.49 2.52 4.86 5.77 7.55 5.71 8.46 10.49 11.52 10.33

25th percentile [mm] 0.18 0.20 0.10 0.20 0.39 0.33 0.30 0.40 0.48 0.63 0.58 0.58

50th percentile [mm] 0.51 0.71 0.50 0.61 1.49 1.41 0.91 1.21 2.36 2.78 1.62 2.58

75th percentile [mm] 1.34 1.72 1.41 1.52 4.60 5.33 4.14 4.95 7.82 9.87 11.26 9.95

maximum [mm] 19.84 22.62 44.74 22.22 23.28 28.58 44.74 27.98 45.62 55.55 56.16 55.55

All statistics except for the p0 values are based on non-0 values. p0 is the non-exceedance probability of precipitation < 0.1 mm.

4 Application and Results

The section describing the application of the methodology is divided into three parts. First the rationale of the assumptions

is investigated. In a second step, the methodology is applied on a large number of intense precipitation events on different

temporal aggregations using a cross validation approach. This allows for an objective judgement of the applicability of the

results. Finally, the results of the interpolation on a regular grid are shown and compared.265

4.1 Justification of the methods

For a direct comparison between the secondary rain gauges and devices from the primary network, three Netatmo rain gauges

were installed next to a Pluvio2 weighing rain gauge (the same type as regularly used by the DWD) at the Institute for Modelling

Hydraulic and Environmental Systems’ (IWS) own weather station on the Campus of the University of Stuttgart. With this data

from 15 May to 15 October 2019 a direct comparison between the different devices used in the primary and secondary network270

was possible.

Table 1 shows statistics of the three devices compared to those of the reference station. The table shows that the secondary stations overestimated precip-

itation amounts by about 20 %. Furthermore, one can observe that the deviation between the reference and the Netatmo gauge are not linear, hence a data

correction of the secondary gauges using a linear scaling factor is not sufficient. Figure 4 shows scatter plots of hourly rainfall data and the corresponding

percentiles from the three Netatmo gauges and a reference station.275

Figure 4 shows that for high percentiles their occurrence is the same for the primary and the secondary devices. Although this is only one example with

a relatively short time period it does support our assumption that the quantiles between primary and secondary stations are similar for higher precipitation

intensities. However, one secondary device (N10) delivered data which deviates substantially from the other measurements. This was caused by an interrupted

connection between the rain sensor and the base station. In this case, the total sum of precipitation over a longer time period was transferred at once (i.e. in
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Figure 4. Scatter plot showing a) the hourly rainfall values (axes log-scaled) and b) the corresponding upper percentiles > 0.92 (right)

between the Pluvio2 weighing gauge and three Netatmo gauges (N07, N10, N11) at the IWS Meteorological Station.

one single measurement interval) when the connection was established again. This leads to an extreme outlier which falsifies the results. The indicator filtering280

procedure (IBF) can identify such problems effectively.

Table 1 shows statistics of the three devices compared to those of the reference station. The secondary stations overestimated

precipitation amounts by about 20 %. It can be observed that the differences between the reference and the Netatmo gauge

are not linear, hence a data correction of the secondary gauges using a linear scaling factor is not sufficient. Furthermore, the

maximum in the sub-daily aggregations from N10 shows an outlier. This was caused by an interrupted connection between the285

rain sensor and the base station. In this case, the total sum of precipitation over a longer time period was transferred at once

(i.e. in one single measurement interval) when the connection was established again. Such transmissions errors lead to outliers

which falsify the results. Figure 4 shows scatter plots of hourly rainfall data and the corresponding percentiles from these

three Netatmo gauges and the reference station. The occurrence of high values and percentiles is similar for the primary and

the secondary devices. The Netatmo station N10 however deviates substantially from the other measurements in the quantile290

plot (Fig. 4b) which also points to data transmissions errors where the station failed to transmit data during rain events. The

indicator filtering procedure (IBF) can identify such problems effectively.

The secondary measurement devices can lead toalso have very different biases depending on where and how they are in-

stalled. This an be seen comparing the distribution functions of hourly precipitation accumulations corresponding to a set of very close primary stations

with those of the secondary stations in the same area.This can be seen by comparing the distribution functions of hourly precipitation295

data from nearby primary and secondary stations in the same area. Figure 5 shows the empirical distribution functions of

three primary and four secondary stations in the city of Reutlingen. While the distribution functions of the primary network

are nearly identical, those of the nearest secondary stations vary strongly. Some overestimate and others underestimate the

amounts significantly. This example supports the concept of the paper, namely that secondary data require filtering and data

transformations before use. While the distributions differ, the probability of no precipitation p0 (defined as precipitation < 0.1300

mm) ranges from 0.90 to 0.91 and is thus very similar for both types of stations indicating that the occurrence of precipitation

can be well detected by the secondary network.

12



Figure 5. The upper part of empirical distribution functionsProbability of no precipitation (a) and the upper part of the empirical distribution

functions (b) for three primary stations (solid lines) and four secondary stations (dashed lines) from a small area in the city of Reutlingen

based on a sample size of 15,990 data pairs (hourly precipitation). The distance between the primary stations is between 5.5 to 9 km and the

distances of the secondary stations to the next primary stations range from 1 to 3 km.

4.2 Application of the filters

Indicator correlations were calculated for different temporal aggregations and for a large number of different α values in the

range between 95 and 99 %. Figure 6 shows the indicator correlations for one hour aggregation and the 99 % quantile using305

pairs of observations of the primary-primary and the primary and secondary network as a function of station distance. The

indicator correlations of the pairs of the primary network show relatively high values and a slow decrease with increasing

distance. In contrast, if the indicator correlations are calculated using pairs with one location corresponding to the primary and

one to the secondary network the scatter increased substantially. Secondary stations for which the indicator correlations are

very small in the sense of equation (4) are considered as unreliable and are removed from further processing. A relatively large310

distance tolerance was used as the density of the primary stations is much lower than the density of the secondary stations. On

the right panel the indicator correlations corresponding to the remaining secondary stations shows a similar spatial behaviour

as the primary network. In our case, 862 secondary stations remained after the application of the IBF. This number is small compared to the total

number of available secondary stationsIn our case, 2462 of the originally available 3082 stations remained with a time series length

of more than two months. After applying the IBF filter, a set of 862 (35 %) PWS remained. This is a relatively small fraction315

of the total number of secondary stations, but note that the shortest records were removed and low correlations may occur as a

consequence of short observation periods. In the future with increasing number of measurements some of these stations may

be reconsidered.

The effect of the IBF was checked by calculating the rank correlations between pairs of primary and PWS stations with

a distance below 2,500m. Figure 7 shows that the removed PWS have a low rank correlation to their primary neighbours,320

while for the accepted ones the majority of the rank correlations is high. These high rank correlations support the rank based

hypothesis formulated in equation (1).
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Figure 6. Indicator correlations for 1h temporal resolution and α = 0.99 between the secondary network and the nearest primary network

stations before (left) and after (right) applying the IBF (red crosses). The black dots refer to the indicator correlation between the primary

network stations.

Figure 7. Histograms of the rank correlations between primary stations and PWS for pairs with a distance less than 2,500m. The left panel

shows the rank correlations for the stations removed by the filter, the right panel for those which were accepted.

The EBF was applied for each event individually. The number of discarded secondary stations is this study varied from event

to event and was on average around 5 %.

4.3 Bias correction325

The bias correction method is illustrated using the example shown in Figure 8. For simplicity, 4 primary stations at the corners

of a square and the secondary station in the center of this square are considered. This configuration ensures that the OK weights

of the primary station with respect to the secondary station are all equal to 1/4 independently of the variogram. The observed

precipitation amounts at the corner stations are 3.1, 1.8, 3.0 and 2.1 mm for a selected event. The secondary station in the

centre recorded 1.7 mm of rainfall. This corresponds to the 0.99 non-exceedance probability of precipitation for the specific330

secondary station. The precipitation quantiles at the primary stations corresponding to the 0.99 probability are 3.2, 3.5, 3.1 and
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3.0 mm. Interpolation of these values gives 3.2 mm which is the value assigned to the secondary station instead of the value

of 1.7 mm. This value is greater than all the four primary observations. The reason for this is that the primary observations all

correspond to lower percentiles. Note that the interpolation of the primary values corresponding to the event for the secondary

observation location would be 2.5 mm.

Figure 8. Example for transformation and bias correction of precipitation amounts at a secondary station.

335

The bias in the PWS observations can be recognized by investigating data with higher temporal aggregation. The comparison

of monthly or seasonal precipitation amounts primary stations and PWS reveals whether there is a systematic difference or not.

As monthly or seasonal precipitation can be well interpolated by using primary stations only (temporal aggregation increases

the quality of interpolation (Bárdossy and Pegram, 2013)), this comparison provides a good indication of bias. The difference

between the interpolated and the PWS aggregations is different from PWS to PWS and often exceeds 20 %. Both positive and340

negative deviations occur. This points out that bias correction has to be done for each station separately.

4.4 Cross validation results

As there is no ground truth available the quality of the procedure had to be tested by comparing omitted observations and their

estimates obtained after the application of the method.

The cross validation was carried out for a set of different temporal aggregations ∆t and a set of selected events. Only times345

with intense precipitation were selected , as for low-intensity cases the interpolation based on the primary network is sufficiently accurate. Table 2

shows some characteristics of the selected events. For short time periods nearly all events were from the summer season, while

for higher aggregation the number of winter season events increased, but their portion remained below 30 %.
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Table 2. Statistics of the selected intense precipitation events based on the primary network.

Temporal resolution 1 hour 3 hours 6 hours 12 hours 24 hours

Number of intense events 185 190 190 195 195

Events between October-March 1 16 29 48 57

Events between April-September 184 174 161 147 138

Minimum of the maxima [mm] 28.01 31.2 33.35 34.9 35.5

Maximum of the maxima [mm] 122.3 158.2 158.4 160 210.3

p0 (mean of all stations and events) 0.9 0.84 0.77 0.68 0.55

p0 is defined here as precipitation <0.1mm

The improvement obtained through the use of secondary data is demonstrated using a cross validation procedure. The

primary network is randomly split into 10 subsets of 10 or 11 stations each. The data of each of these subsets was removed350

and subsequently interpolated using two different configurations of the data used, namely a) only other primary network

stations (Reference 1) and b) using the other primary and the secondary network stations (Reference 2). For the latter case, the

interpolations were carried out using the primary station data and the following configurations:

– C1: All secondary stations

– C2: Secondary stations remaining after the application of the IBF355

– C3: Secondary stations remaining after application of the IBF and the EBF

– C4: Secondary stations remaining after application of the IBF and the EBF and considering uncertainty (KU)

The results were compared to the observations of the removed stations. The comparison was done for each location using

all time steps and at each time step using all locations. Different measures including those introduced in Bárdossy and Pegram

(2013) were used to compare the different interpolations. The results were evaluated for each temporal aggregation.360

First, the measured and interpolated values were compared for each individual station and the Pearson (r) and Spearman cor-

relations (rS) of the observed and interpolated series were calculated. Table 3 shows the results for the different configurations

used for the interpolation.

There is no improvement if no filter is applied - except a very slight improvement for 1 hour durations. This is mainly due to

the better identification of the wet and dry areas. The use of the filters (and the subsequent transformation of the precipitation365

values) leads to an improvement of the estimation - the IBF being the most important. The spatial filter further improves the

correlation while the additional consideration of the uncertainty of the corrected values at the secondary network resulted in

a marginal improvement for the selected events. As the secondary stations are not uniformly distributed over the investigated
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Table 3. Percentage of the stations with improved temporal correlation (compared to interpolation using primary stations only) for the

configurations C1-C4.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r rS r rS r rS r rS r rS

C1: Primary and all secondary without filter and OK 60 68 40 57 31 49 22 34 17 32

C2: Primary and secondary using IBF and OK 81 91 75 90 73 90 64 84 52 81

C3: Primary and secondary using IBF, EBF and OK 81 92 75 93 73 92 69 92 56 87

C4: Primary and secondary using IBF, EBF and KU 81 92 75 92 74 91 70 91 56 86

r Pearson correlation, rS Spearman correlation.

domain the gain of using them is also not uniform. Highest improvements were achieved in and near urban areas with a high

density of secondary stations, less improvement was achieved in forested areas with few secondary stations.370

The measured and interpolated results were also compared for each event in space and (r) and (rS ) and the observed the interpolated spatial patterns were

calculated as well.The measured and interpolated results were also compared for each event in space and the correlations between

the observed and the interpolated spatial patterns were calculated as well. Table 4 shows the frequency of improvements for

the different configurations C1 to C4 used for the interpolation.

Table 4. Percentage of the stations with improved spatial correlation (compared to interpolation using primary stations only) for the config-

urations C1-C4 ( r Pearson correlation, rS Spearman correlation)

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r rS r rS r rS r rS r rS

C1: Primary and all secondary without filter and OK 83 68 72 52 63 49 53 49 49 46

C2: Primary and secondary using IBF and OK 96 97 90 93 90 93 84 89 80 85

C3: Primary and secondary using IBF, EBF and OK 96 97 92 94 93 94 89 92 84 89

C4: Primary and secondary using IBF, EBF and KU 93 94 90 92 90 93 84 89 80 87

The use of secondary stations leads to a frequent improvement of the spatial interpolation even in the unfiltered case. The375

reason for this is that the spatial pattern is reasonably well captured by the secondary network. With increasing temporal

aggregation the improvement disappears as the role of the bias increases due to the decreasing number of data which can

be used for bias correction. As in the case of the temporal evaluation the IBF (and the subsequent transformation of the

precipitation values) leads to the highest improvement. The EBF plays a marginal role, and the consideration of the uncertainty

leads to a slight reduction of the quality of the spatial pattern. The improvement is smaller for higher temporal aggregations.380

Kriging with uncertainty did not improve the results.
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Finally, all results were compared in both space and time. Here the root mean squared error (RMSE) was calculated for all

events and control stations. Table 5 shows the results for the different configurations used for the interpolation.

Table 5. RMSE (mm) for all stations and events.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

C0: Primary stations only and OK (Reference) 5.97 6.97 7.34 7.71 8.35

C1: Primary and all secondary without filter and OK 6.21 44.79 18.43 10.01 24.16

C2: Primary and secondary using IBF and OK 4.83 6.05 6.61 7.33 8.29

C3: Primary and secondary using IBF, EBF and OK 4.84 6.07 6.58 7.19 8.12

C4: Primary and secondary using IBF, EBF and KU 4.82 6.02 6.53 7.15 8.08

The improvement using the filters is high for each aggregation. The IBF is important to improve interpolation quality. The

EBF and the consideration of the uncertainty of the secondary stations are of minor importance. The improvement is the largest385

for the shortest aggregation (1 hour) where the RMSE decreased by 20 % and the smallest for the 24 hours aggregation with

an improvement of 4 %. This deterioration is caused by the decreasing spatial variability of precipitation at higher temporal

aggregations. The processes that lead to long lasting precipitation are predominantly accompanied by a more even distribution

of precipitation in space and time. The use of KU for interpolation resulted only in a minor improvement. Nevertheless, it is

reasonable to assign lower weights to the less reliable PWS data. In order to check whether the selection of the events led to390

this result a cross validation for all 1 hour time steps during the period from April to October 2019 (5,136 time steps) was

carried out. The results are shown in Table 6. In this case, OK with secondary data did not lead to an improvement. This is

mainly caused by the irregular spatial distribution of the PWS. Stations located very close to each other can cause instabilities

in the solution of the Kriging equations leading to high positive and negative weights. Introducing a small random error (1 %)

to the PWS stabilizes the solution and leads to an improvement of the interpolation. The more realistic random error of 10 %395

further improves the results.

Table 6. RMSE (mm) and correlations for all stations for all time steps (5136) between April and October 2019 for OK and KU with different

error assumptions for 1h aggregation.

Interpolation method RMSE Correlation Rank correlation

Primary stations OK 0.331 0.640 0.443

Primary and PWS OK 3.862 0.644 0.402

Primary and PWS EK (1% error) 0.314 0.759 0.578

Primary and PWS EK (10% error) 0.158 0.809 0.631

Note that the use of the filtered and bias corrected secondary stations improves the interpolation quality even for other

interpolation methods. Table 7 shows the results for the 185 events with 1 hour aggregation. One can observe that KU gives the

18



best results, but the simple interpolations Nearest Neighbour or Inverse Distance also lead to better results than using primary

stations only. The poor peformance of Co-Kriging is surprising, but an appropriate selection of the co-variable (for example transformed rank) may improve400

the results.The poor performance of the Co-Kriging is surprising. For this study we used the observations from the secondary

stations as co-variable. The linear relationship which is supposed to exist between the investigated variable (precipitation) and

the secondary variable (precipitation measured at PWS) for the application of Co-Kriging may not be appropriate for this

combination of variables. Considering the ranks of the secondary observations or other transformed values as co-variables may

improve the Co-Kriging results, but this is not the primary topic of this paper.405

Table 7. Bias and RMSE (mm) for all stations and events for different interpolation methods for 1h aggregation.

Interpolation method Bias RMSE

Ordinary Kriging primary data only 0.05 5.97

Kriging with uncertainty primary + PWS 0.50 4.82

Nearest Neighbour primary + PWS 0.89 5.06

Inverse Distance primary + PWS 0.89 5.27

Co-Kriging primary + PWS 0.16 5.32

4.5 Selected Events

As the cross validation results were showing improvements, the data transformations and subsequent interpolations were carried

out for all selected events. As an illustration four selected events are shown and discussed here.

The first example (Fig. 9) shows the results of the interpolation of a 1 hour aggregated precipitation amount for the time

period from 15:00 to 16:00 on June 11, 2018. For this event, 531 out of 862 PWS had valid data (i.e. not NaN) from which 476410

remained after the EBF. The top panels of this figure show three different precipitation interpolations for this event:

a) using the combination of the two station networks after application of the filters and transformation of the secondary

data

b) using the primary network only

c) using all raw unfiltered and uncorrected data from the secondary network only415

The panels in the bottom row of Figure 9 show d) the difference between a) and b), and e) the difference between c) and b).

The three images a) to c) are similar in their rough structure, but there are important differences in the details. The interpolation

using the primary network leads to a relatively smooth surface. The unfiltered secondary station based interpolation is highly

variable and shows distinct patterns such as small dry and wet areas. The combination after filtering and transformation is more

detailed than the primary interpolation, and in some regions these differences are high. The map of the difference between the420

primary and the secondary station based interpolation (Fig. 9 e) shows large regions of underestimation and overestimation by

the secondary network. The differences between the primary and the filtered interpolations using transformed secondary data
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in panel d) is much smaller but in some regions the differences are still quite large, e.g. in the north-eastern part of the study

area. In both cases, negative and positive differences occur. Note that for this data the cross validation based on the primary

observations showed an improvement of r from 0.36 to 0.77, of rS from 0.55 to 0.76 and a reduction of the RMSE from 12.5425

mm to 8.2 mm.

Figure 9. Interpolated precipitation for the time period 15:00 to 16:00 on June 11, 2018 (upper panel), and the differences between primary

and combination, and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the interpo-

lation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b) and c)

and b) respectively.

Figure 10 shows the distributions of the cross validation errors for the different interpolations for this event. This is a typical

case where all methods yield unbiased reslutsresults. The use of unfiltered and uncorrected secondary observations (C1) shows

the highest variance, followed by the interpolation using only primary observations (C0). The other three methods (C2-C4)

have very similar results with significantly lower variance.430

Another interpolated 1 hour accumulation corresponding to 17:00 to 18:00 on September 6, 2018 is shown in Figure 11.

For this event, from the 862 PWS remaining after the IBF, 576 PWS had available data from which 513 remained after the

EBF. These pictures show a similar behaviour to those obtained for June 11 (Fig. 9). Here, a high local rainfall in the southern

central part of the study area was obviously not captured by the secondary network, leading to a large local underestimation in

panel e). Furthermore, a larger area with precipitation in the primary network in the northern central in panel b) is significantly435

reduced in size by the rainfall/no-rainfall information from the secondary network in panel c). For this case, the cross validation

based on the primary observations showed an improvement of r from 0.61 to 0.86, of rS from 0.59 to 0.72 and a reduction of

the RMSE from 5.65 mm to 3.75 mm.
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Figure 10. Distribution of the cross validation errors for the time period 15:00 to 16:00 on June 11, 2018 for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.

Figure 11. Interpolated precipitation for the time period 17:00 to 18:00 on September 6, 2018 (upper panel) and the differences between

primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the

interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b)

and c) and b) respectively.
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The following two case studies show two interpolation examples for 24 hours which was the highest temporal aggregation

in this study. Figure 12 shows the maps corresponding to the precipitation of 0:00 to 24:00 on May 14, 2018. For this event,440

515 PWS valid stations remained. This number was reduced to 499 after the EBF. The behaviour of the interpolations is similar

to the 1 hour cases shown above, the unfiltered and untransformed secondary interpolation is irregular and shows a systematic

underestimation. Due to the higher temporal aggregation, the local differences are less contrasting as in the case of hourly

maps. The combination contains more details and the transition between high and low intensity precipitation is more complex.

The difference between the primary (panel b) and the combination based interpolation in panel a) is relatively smaller than for445

the 1 hour aggregations. This is caused by the reduction of the variability with increasing number of observations. Note that

for this event the cross validation based on the primary observations showed an improvement of r from 0.57 to 0.8, of rS from

0.57 to 0.82 and a reduction of the RMSE from 15.99 mm to 13.61 mm.

Figure 12. Interpolated precipitation for the time period for a 24 hour event from 0:00 to 24:00 on May 14, 2018 (upper panel) and the

differences between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying

the filtering, b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences

between a) and b) and c) and b) respectively.

Another interesting 24 hour event which was recorded on July 28, 2019 is shown in figure 13. For this event, 734 valid PWS

remained from IBF and 703 after EBF. The map based on the raw secondary data in panel c) shows very scattered intense450

rainfall. The combination of the primary and secondary observations changes the structure and the connectivity of these area

with intense precipitation. The cross validation for this event showed an improvement of r from 0.32 to 0.75, of rS from 0.42

to 0.77 and a reduction of the RMSE from 14.77 mm to 10.21 mm.
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Figure 13. Interpolated precipitation for the time period for a 24h event from 0:00 to 24:00 on July 28, 2019 (upper panel) and the differences

between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering,

b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a)

and b) and c) and b) respectively.

The results of the filtering algorithm for the other events show a similar behaviour. The differences between primary and

combined interpolation can be both positive and negative for all temporal aggregations. In general, the secondary network455

provides more spatial details, which could be very important for hydrological modelling of meso-scale catchments.

Figure 14 shows the distributions of the cross validation errors for the different interpolations for this event. The results

are different from the case presented in Figure 10. In this case all methods are slightly biased. The interpolation using only

primary observations (C0) shows the highest bias and variance. In this case, the use of unfiltered and uncorrected secondary

observations (C1) yields a lower bias and a lower variance. The other three methods (C2-C4) have very similar results with460

significantly lower variance.

5 Discussion

The use of observations from such PWS networks has the potential to improve the quality of precipitation estimation. However,

the results from this study as well as the ones from de Vos et al. (2019) show that it is necessary to check the data quality from

PWS precipitation records and to discard erroneous measurements before further using these data.465

There are already several approaches to use the precipitation data from PWS (e.g. Chen et al., 2018; Cifelli et al., 2005), but

they are generally based on daily data an simple QC approaches. Studies using more sophisticated QC workflows for hourly or
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Figure 14. Distribution of the cross validation errors for the 24h event from 0:00 to 24:00 on July 28 2018, for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.

sub-hourly precipitation data from PWS are still limited. The approach presented by de Vos et al. (2019) uses a comparison of

the data with those of the nearby stations to remove unreasonable values, a separate procedure to identify and remove false zeros

and another filter to find unreasonably high values. Subsequently, the bias is corrected by comparing past local observations470

to a high quality merged radar and point observation product. The bias correction is performed uniformly in neighbourhoods.

Finally, another filter using correlations of time series serves to remove remaining suspicious data. In the study presented here,

a geostatistical method combined with rank statistics was developed. One of the main difference to the method presented by

de Vos et al. (2019) is that a set of trustworthy precipitation data (primary stations) is required for the rank correlation and

the bias correction. First, PWS which have indicator time series with low correlations compared to the primary network are475

removed. The remaining secondary stations are tested for each event separately using OK in a cross validation mode. Finally

the data are bias corrected using interpolated quantiles of the primary observations. This is an important aspect, since PWS

that are close to each other do not necessarily have a similar bias. Examples from the Reutlingen data show that positive and

negative biases can occur at neighbouring PWS. The bias correction in this study does not use simultaneous observations of

the primary and the PWS stations, but instead is based on their distributions. A detailed cross-validation of different filter480

combinations and temporal aggregations shows that the IBF is the most important step asand yields the highest improvement

in interpolation quality, whereas the EBF and bias correction only have a minor contribution. Furthermore, the performance

of the presented method is better aat smaller temporal aggregations. The applied filters in this study may be conservative by

rejecting more stations than absolutely needed, but this proved to be useful in order to obtain robust results. The length of times

series from the current secondary network will increase and subsequently more observations which were currently discarded485

may also become useful. Furthermore, it can be expected that the number of secondary stations will continue to increase, thus

one can expect further improvements of the quality of precipitation maps for all temporal aggregations. Overall, the use of

secondary stations after filtering and data transformation improves the results of interpolation for other possible interpolation

methods, such as nearest neighbour or inverse distance weighting. However, in this study these methods yielded worse results
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than OK. An advantage of the KU interpolation method is that a combination of different measurements, such as radar estimates490

or commercial microwave links which are based indirect information can be accommodated in the same framework. By using

KU for interpolation, the weights for data from secondary networks can be reduced to account for the higher uncertainty of

these data. Other procedures for the efficient use of secondary data may also be considered. Specifically, the interpolation of

precipitation amounts with Co-Kriging using non-collocated observations (Clark et al., 1989) using percentiles P∆t(yj , t) as

co-variates (eq. 5) or Quantile Kriging (QK) (Lebrenz and Bárdossy, 2019) may lead to better results. However QK has to be495

modified due to the large number of zeros occurring for short temporal aggregations, for example by combining it with the

approach developed by Bárdossy (2011).

A problem that affects both primary and PWS stations are errors caused by wind. In general, this has a major effect on

precipitation measurements leading to a systematic undercatch. These effects might differ from station to station and cannot

be corrected. Problems occur if the order of the observations is influenced by wind effects, but due to the highly skewed distribution of the precipitation500

amounts the problem mainly occurs for small precipitation amounts.The suggested methodology uses ranks and not the measured precipi-

tation values of the PWS. Thus, the problem related to wind only affects the results if it changes the order of the precipitation

measured at the same location. This order however is relatively stable for high precipitation values, as due to the skewness of

the distribution the difference between the measured values is high.

6 Conclusions and Outlook505

As precipitation uncertainty is possibly the most important factor for the uncertainty in rainfall/run-off modelling, the increasing

number of online available private weather stations offers a possibility to increase the accuracy of precipitation estimation. Fur-

thermore, the near real-time availability of the data of secondary networks may help to improve the quality of flood forecasts.

In any case, a QC of these data is required since the use of raw data of the secondary network does not improve interpolation

quality; inon the contrary it often increases uncertainty. In this study, a geostatistical method combined with rank statistics was510

applied to combine data from primary and PWS networks. In particular:

– An assumption on the rank stability of the PWS stations was introduced.

– A new method to filter out erroneous PWS data based on indicator correlations was developed.

– A second geostatistical filter to remove individual PWS observations was applied.

– A rank statistics based bias correction was developed. The bias correction does not use simultaneous observations of the515

primary and the PWS stations, but instead is based on their distributions.

– A Kriging interpolation with uncertain data was used (KU). This method allows for a down-weighting of the PWS

stations and leads to an improvement of the interpolation quality.

This approach was tested on a set of observations and the improvement of the quality of interpolation was quantified. A

detailed cross validation experiment showed that after QC and bias correction in a large number of cases interpolation quality520
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was improved. This improvement is the biggest for hourly temporal aggregations with a reduction of the RMSE by 20 % ,

while for daily values the improvement is around 4 %. The results of this study in terms of improving the interpolation of

precipitation are encouraging, but the authors believe that further improvements can be achieved. In this context, the following

aspects would be of interest:

1.) The number of primary stations in thisIn this study, the number of primary station was sufficient to improve the interpolation525

quality. However, it would be interesting to investigate which density of primary stations is necessary to improve the

precipitation interpolation.

2.) For applying this approach to shorter time steps (e.g. 5 minutes for which the PWS data is available), the effect of

advection would have to be taken into account. This requires further research.

3.) By applying a rather strict threshold of 5◦C average daily temperature, many rainfall events arewere rejected. It would be530

conceivable to include the hourly temperature data from PWS in order to estimate whether a given precipitation event of

rain or snow at a specific locationcorresponds to rain or snow.
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