
Reply to the review provided by Marc Schleiss to the revised
paper

The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank Marc Schleiss for taking his time to carefully read our paper
and for his interesting discussion on the methodology. Even thought there
are several points where we do not agree we appreciate his comprehensive
and detailed review.

Here are our statements:

a) More details about the kriging part - The authors responded

to this comment but not of all their explanations can be found

in the revised paper. Please make sure that all important details

are in the text so that others can reproduce what you did!

Issues specifically related to the paper have been added to the text. Other
topics concerning variogram scaling or discussions on local stationarity
were not added, as these questions were often dealt with in other publi-
cations.

b) Comparison of kriging with simpler, faster alternatives such

as inverse distance weighted interpolation or bilinear interpolation

Partially done but results are not shown and theres only a few

short sentences in the paper about this, without any numbers

or critical discussion about the pros/cons.

It is not the aim of our paper to compare different interpolation methods
in depth. In our opinion, Kriging is a standard interpolation method
and if one uses an optimized code (not GIS or other custom software)
time is not a problem at all. There were a great number of studies
comparing IDW and Kriging for precipitation and other environmental
variables, showing that Kriging outperforms IDW. Thus, we did not want
to discuss these well known facts again. But as the Reviewer requests
such a comparison a small table with the results is presented. Here are
some recent examples comparing Kriging and IDW for precipitation:

Adhikary, Sajal Kumar Muttil, Nitin Yilmaz, Abdullah Gokhan Cokrig-
ing for enhanced spatial interpolation of rainfall in two Australian
catchments Hydrological Processes, 31, 21432161, 2017

Alan Mair and Ali Fares Comparison of Rainfall Interpolation Meth-
ods in a Mountainous Region of a Tropical Island JOURNAL OF
HYDROLOGIC ENGINEERING, 371-382, 2011

S. Ly, C. Charles, and A. Degre, Geostatistical interpolation of daily
rainfall at catchment scale:the use of several variogram models in
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the Ourthe and Amblevecatchments, Belgium Hydrol. Earth Syst.
Sci., 15, 22592274, 2011

Another important advantage is that the geostatistical framework allows
a consistent combination of different data and variables such as Uncer-
tainty Kriging.

1) Please clearly state the main main conclusion of your paper

in the abstract and conclusions. Right now, this is not

100 % clear. Is the conclusion that careful QC and bias-correction

has to be performed before PWS precipitation data can be

used? If thats the case, then this is not really new. Other

studies have already shown the same and your method is just

another way to do this. So what exactly is your contribution?

Please clarify!

The novelty of our contribution is that it

• offers a new method for finding useful PWS,

• presents a rank based method for bias correction,

• quantifies the improvement using PWS for interpolation.

The conclusions of the paper were modified accordingly.

2) Your method is rather complicated. Yet several of its components

do not seem to significantly improve performance. For example,

the EBF filters and the KU do not make a big difference.

So why did you feel the need to include them in the methods

and results? It just makes the paper longer and more complicated

and forces you to introduce a lot of theory and notations

for no obvious gain in performance. I suggest to shorten

the paper and only keep the essential parts of the algorithm

in the methods section. If you want, you can always write

a short section or paragraph summarizing the results for

some other options/filters that you think could be useful

in other contexts.

We do not think that the method is complicated, in fact it contains
a set of simple steps.
The two methods - the EBF filter and the KU are both useful for the
interpolation. While EBF can under circumstances help to reduce
the effect of false zeros, KU is more essential. KU is improving the
interpolation in many cases.
Concerning the KU we believe this is a very important step, which
we consider as essential. Our arguments are as follows:

1. PWS are even after bias correction are inferior in quality com-
pared to the official weather service data. Therefore it is
plausible to assume an additional random error. In fact it
is very important to downweight these measurements due to
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their uncertainty. KU is a very simple but very seldom applied
method. Therefore readers should be aware of it. In our opin-
ion KU is the correct way to handle these data, even if in our
particular case it did not bring any advantage. Deterministic
methods such as nearest neighbour of inverse distance do not
offer a possibility to reflect data quality and are thus not our
first choice.

2. When calculating normalized variograms from the weather
service data only and from the bias corrected PWS only they
are similar with the exception that the PWS variograms have
a nugget between 10 and 25 %. This is reflected by the KU
procedure.

3. We interpolated and cross validated hourly precipitation data
for 7 month in 2018 and 7 in 2019 using 1,000 DWD stations
and 13,000 PWS. The cross validations show that the results
are much better with KU. This is of course work which was
done after the submission of the paper but it confirmed our
apriori assumption. It is not clear for us why our case study
did not show improvements with KU, we’ll have another look
at it.

4. The application of KU is also related to your remark number
13.

We did a cross validation for all hourly observations from 2019.
This example is now added to the paper.

3) The number of peer-reviewed studies about PWS and their use

in hydrometeorology is still limited. A few of them have

already been mentioned in the literature review. But overall,

the introduction of the paper remains rather short. I suggest

to extend this part by providing a more in-depth analysis

and discussion of the state-of-the-art related to the use

of citizen gauges in quantitative precipitation estimation

problems, including its challenges, similarities with other

fields and open questions. For example, some parts of the

Discussion (i.e., the differences/similarities with radar-gauge

QPE) could be moved to the introduction. Also, I encourage

the authors to explicitly state which aspect(s) of the problem

their study is meant to address. Whats the main contribution?

Is it the method itself or is it the lessons learned and/or

recommendations for a successful interpolation/merging of

PWS data?

Thank you for pointing out these papers. To our knowledge, the
study by de Vos et al. (2019) is the only one which uses PWS
precipitation data with high temporal resolution. Other papers,
like the one you mentioned don’t incorporate quantitative PWS
precipitation data. Therefore, we are very uneasy about these sug-
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gestions. If a paper has no influence on what we did (which is the
case in the ones you suggested), why should we cite it? The last
decade with high pressure on publications and citations lead to an
enormous increase of the volume of introductions. Introductions
are gradually becoming boring and superficial reviews. The pa-
per we wrote is not a review paper. We intend to communicate a
few new ideas which might be useful for others and not to give an
overview of what else is available. Nowadays with the fast possibil-
ities of literature search the superficial reviews are in our opinion
obsolete. We still prefer short papers with clear messages like many
fundamental papers written in the middle of the last century.

4) The writing and structure of the Results section need to be

improved. The current strategy for assessing/validating

the different components of the method is not clear to me.

Right now, analyses/results are presented in seemingly random

order, with rather vague qualitative statements and lots

of circumstantial evidence. A better, more precise, quantitative

and targeted evaluation would greatly increase the quality

of the paper. For example, you could consider a step-by-step,

hierarchical assessment of the different components (e.g.,

the IBF filter, the bias correction and the interpolation/merging),

with different scores and subsections for each part.

We tried to improve the paper by restructuring the section. The
usefulness of the filters and the bias correction can however be best
quantified through the comparison of the cross validation results.
This makes a complete step by step discussion impossible.

5) Figure A1 is crucial for understanding how the bias adjustment

method works. I suggest to move this from the Appendix to

the main text, together with the corresponding explanations.

Actually, I dont think you need an appendix at all!

We followed this suggestion and move this figure and the corre-
sponding explanation to the main text.

6) Table 3 does not show correlations (which should be between

-1 and 1). Please correct.

It seems the reviewer did not read the table caption which is: Per-
centage of the stations with improved temporal correlation(compared
to interpolation using primary stations only) for the configurations
C1-C4.

7) The step-by-step description of the algorithm is a good idea.

But its really hard to follow, even for somebody familiar

with the geostatistical jargon. More work is needed to streamline

this and make it clear. A flowchart of the whole method

would help, with different symbols for filters, adjustments

and interpolations! Also, you could shorten the text by

grouping some of the smaller steps together into larger modules
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or tasks. The details of each task can be given in the different

subsections of the methodology.

A flow chart summarizing the steps of the procedure starting with
the indicator filter and ending with the interpolation procedure was
added.

8) The crucial assumption behind your method is that for high

precipitation intensities, the ranks of the secondary stations

are correct. Some superficial analyses in Section 4.1 suggest

that this assumption is probably not too bad. But since

this is such a critical hypothesis, it should be assessed

in much more detail. Please extend Section 4.1 and perform

more tests designed to assess how good this ordering assumption

really is. For example, your could compute rank correlation

coefficients for different thresholds, stations and lengths

of time series. Or you could look at fluctuations over time

or as a function of distance. To better understand the limitations

of your method, it could also be good to show a few cases

for which the assumption does not hold.

The rank correlations for close stations were calculated for pairs of
primary and secondary stations closer than 2500m to each other,
separately for stations which were removed by the indicator filter,
and those which were not removed. Their histograms are presented
in the subsection discussing the filter, as the results both support
the hypothesis and the usefulness of the indicator filter.

9) I have some issues with the terminology chosen by the authors,

especially regarding the EBF (Eventbased filter). I think

this is a poor choice of words. In reality, the EBF filter

is a spatial filter for one particular aggregation time period

(and not an event). More generally, I dont think that it

is a good idea to use the word event to refer to a particular

aggregation time periods. This is not standard practice

and might be confusing to many readers. Please modify accordingly.

Both filters are mainly spatial filters, using observations of close sta-

tions. The difference is that the first filter is using the whole time
series of a particular PWS, while the second is used for the inves-
tigation of a particular time step (not aggregation). Therefore, we
used the word event to make this distinction clear.

10) Regarding the bias correction scheme: If I understood the

approach correctly, the idea is to use the percentile of

the PWS observations (secondary network) to estimate the

equivalent precipitation estimates of the professional gauges

(primary network) and then spatially interpolate this value

to the location of the PWS using kriging. On top of the

large uncertainty that comes with estimating a percentile

from a short PWS series, one problem with this approach is
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that it uses the ordering assumption multiple times (i.e.,

once for each pair or PWS and professional gauge). This

greatly increases the chances of errors during bias correction

due to imperfect modeling assumptions. Also, the final spatial

interpolation may re-introduce bias due to smoothing and/or

modeling choices. So my question is: why dont you just

pool the professional rain gauge data together into a single

distribution and directly adjust the PWS observations using

quantile-quantile mapping on the pooled data? In this way,

you would use the ordering assumption only once and you would

not have to interpolate at all, which is likely to be faster

and more robust. By the way, you can pool data even if the

time series of the professional gauges have different lengths.

Please explain why you think the current approach is better!

The reviewer seems to have partly misunderstood the idea. We
do not assume that the order at the PWS and the closest DWD
station is the same. We assume that if the precipitation measured
by a PWS at time t1 is larger than the precipitation measured at
the same location at time t2 then the real (unknown) precipitation
at the location of the PWS at time t1 was also larger than at time t2.
This does not involve the professional gauges at all. In equation (1)
- where Z is the precipitation which was not measured at location
yi. Here there is no assumption on the primary network. The
primary network is used to estimate the distribution function of
precipitation at the PWS location. The sample size is not a major
problem. Using 7 month (snow free) hourly data we have 5136
observations, which is a much bigger sample then often used in
hydrological applications. For larger aggregations (for example 24
hours) the bias correction should be done on an hourly basis and
aggregated afterwards.
Pooling all data is not a good alternative as some of the stations
may have a positive, while others a negative bias. (For example
due to manual calibration of the device.) If one pools all data
then these partly visible differences cannot be considered. We do
have PWS with systematic bias which is clearly visible if one com-
pares monthly or seasonal sums with the interpolated sums of the
primary stations. The bias exceeds often 20 %, and both over and
underestimations occur. The method suggested would preserve this
bias.
As this was a suggestion of the reviewer, and was not directly con-
sidered we do not think that this idea has to be discussed in the
paper.

11) A substantial part of Section 5 (Discussion) from lines 434-455

is not a discussion but just a summary of the method and

therefore should be moved to the conclusions. The last part

of the discussion (ll.467-475) about the similarities/differences
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of PWS with radar measurements. This is out of scope here

because not part of the analyses. I suggest to shorten this

and/or move it to the introduction. Please use the discussion

section to analyze pros/cons, mention alternatives or new

ideas for follow-up studies.

We’ve rewritten the discussion accordingly. For the sake of read-
ability, we’ve not use track changes for this section.

12) Conclusions, ll.501-503: Wind has a major effect on precipitation

measurements, leading to a systematic undercatch. This may

influence the order of data, but the effect is the same for

the primary and secondary network.

I do not agree with this statement. Literature shows that

wind effects tend to be very local. Sometimes, both gauges

will be affected by the same bias. But often, its likely

that the PWS and professional gauges will have different

biases. More importantly, wind-induced biases will fluctuate

over time and space, which affects the rank statistics and

the performance of the IBF and bias correction schemes. Theres

not much that you can do about this. But at least, you should

properly acknowledge the problem and discuss its possible

consequences in the text. I suggest to do this in Section

5 (Discussion) rather than the conclusions.

Please note that the bias correction does not use simultaneous ob-
servations of the primary and PWS network for the bias correction.
Therefore whether they have the same or a different wind influence
is not of great importance. Problems occur if the order of the obser-
vations is influenced by wind effects, but due to the highly skewed
distribution of the precipitation amounts the problem mainly oc-
curs for small precipitation amounts. A related statement is moved
to the discussion.

13) On a personal note: PWS stations tend to cluster in/around

urban areas. Spatial interpolation methods such as kriging

do not always perform optimally on highly clustered data.

For example, it is well known that clustering can lead to

screening effects and highly negative kriging weights. This

does not necessarily lead to wrong estimates but decreases

robustness and accuracy. I am aware that this goes beyond

the scope of this study. Still, I invite the authors to

briefly mention this issue in the Discussion section and

to point to possible ways to overcome it in future work.

This is particularly relevant for small-scale estimates of

heavy precipitation.

As mentioned in the reply to comment 2) the consideration of ob-
servation uncertainty in the Kriging procedure for the PWS solves
the problem, and thus UK is important for possible applications.
A short statement concerning this problem is added to the paper.
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Here is an example showing this effect: we’ve prepared (extracted)
a little example for you showing that KU can help to overcome the
problem of unstable (negative) weights in a reasonable way:
For a given (real) configuration of 2 primary stations and 7 PWS
(some of them clustered) the Ordinary Kriging equations are:



1.000 0.023 0.538 0.559 0.666 0.796 0.637 0.910 0.353 1.000
0.023 1.000 0.134 0.127 0.080 0.047 0.054 0.039 0.115 1.000
0.538 0.134 1.000 0.698 0.949 0.821 0.844 0.747 0.392 1.000
0.559 0.127 0.698 1.000 0.626 0.556 0.470 0.601 0.844 1.000
0.666 0.080 0.949 0.626 1.000 0.951 0.956 0.883 0.330 1.000
0.796 0.047 0.821 0.556 0.951 1.000 0.958 0.969 0.289 1.000
0.637 0.054 0.844 0.470 0.956 0.958 1.000 0.865 0.226 1.000
0.910 0.039 0.747 0.601 0.883 0.969 0.865 1.000 0.336 1.000
0.353 0.115 0.392 0.844 0.330 0.289 0.226 0.336 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000


x =



0.421
0.225
0.906
0.817
0.763
0.610
0.606
0.571
0.547
1.000


leads to the solution:[
0.034 0.038 2.194 0.406 −2.513 2.072 −0.269 −0.874 −0.089 0.002

]
Due to the high positive and negative weights makes the estimator
very unstable.
Using the uncertainty kriging approach assuming a 10 % variance
increase due to the uncertainty of the PWS leads to the equation
system



1.000 0.023 0.538 0.559 0.666 0.796 0.637 0.910 0.353 1.000
0.023 1.000 0.134 0.127 0.080 0.047 0.054 0.039 0.115 1.000
0.538 0.134 1.100 0.698 0.949 0.821 0.844 0.747 0.392 1.000
0.559 0.127 0.698 1.100 0.626 0.556 0.470 0.601 0.844 1.000
0.666 0.080 0.949 0.626 1.100 0.951 0.956 0.883 0.330 1.000
0.796 0.047 0.821 0.556 0.951 1.100 0.958 0.969 0.289 1.000
0.637 0.054 0.844 0.470 0.956 0.958 1.100 0.865 0.226 1.000
0.910 0.039 0.747 0.601 0.883 0.969 0.865 1.100 0.336 1.000
0.353 0.115 0.392 0.844 0.330 0.289 0.226 0.336 1.100 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000


x =



0.421
0.225
0.906
0.817
0.763
0.610
0.606
0.571
0.547
1.000


leads to the domesticated solution:[
−0.083 0.103 0.631 0.393 0.128 −0.056 −0.077 −0.042 0.003 −0.012

]
Minor Comments
We’ve corrected the typos, reformulated the sentences and implemented
most of the remarks. Here’s our response to the remaining comments:

- Introduction, ll.24-26, This is potentially very useful to

complement systematic weather observations of national weather

services, especially with respect to precipitation, which is

highly variable in space and time. Please add a few references

at the end of this sentence to support your statement.

The fact that precipitation is variable in space and time is common knowl-
edge and does not need to be referenced from our point of view.
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- Section 2, l.69, The gauges used in this network are typically

weighing gauges.Do you mean predominantly? In addition, please

specify the type of weighing gauges (e.g., the model, brand or

serial number).

Yes, we mean predominantly. The fact that most gauges are weighing
gauges should be sufficient information for the readers. Anyone who how
is interested in more technical details about the rain gauges can contact
the German Weather Service.

Figure 3: Please use different symbols for N07, N10 and N11

to better distinguish the points.

We do not wish to change this as different symbols as they would not
make the points more distinguishable. The message that this figure con-
veys is that the extreme scatter less than the lower values.

- Figure 1: Please add a scale! Same comment for figures 6,

8, 9,10

Done!

- Figure 4: Please specify the 3 primary and 4 secondary stations

in the caption and how far away they are from each other.

What exactly do you mean by specify? We’ve added information about
the distances between these stations in the figure caption.

- On l.119, you mention that the random variable Y is not stationary.

Yet, on ll.144-145 and Equation 2, you refer to its cumulative

distribution function F, without any dependence on time. Please

clarify this apparent contradiction.

The rank assumption (1) means that even if Y is not stationary its in-
dicator is. There is no contradiction here. The distribution function
F corresponds to the spatially stationary variable Z. The distribution
function G is defined for each secondary PWS over time. For this we do
not need any spatial stationarity. The word spatially was added to the
sentence to make this issue clear.

Equation 4, whats your definition of nearly at the same separation?

Please specify!

As the spacing of the primary network is different and in order to take the
natural variability of the indicator correlations in space we use a window
around the selected distance - similarly as for variogram calculations.
Some clarification was added, both in text and equation.

- ll.168-172, Under the assumption that the temporal order of

precipitation at secondary is correct (eq.1), one could have

used rank correlations instead of the indicator correlations.

The indicator approach is preferred however, as the sensitivity

of the devices of the primary and secondary networks is different

9



and this would influence the order of the small values strongly.

Furthermore, random measurement errors would also influence the

order of low values. In order to have a sufficient sample size

and to have robust results, high α values and low temporal aggregations

∆t tare preferred.

Or you could just say that the ordering between the primary and

secondary networks needs to be the same for values above a certain

threshold.

No, the temporal order (even for intense precipitation) at the primary
and the secondary stations can be different simply due to the spatial
variability of precipitation. However for intense precipitation the extent
of the rainfall field is usually large enough so that nearby stations both
have high ranks.

- Section 5, ll.452-455 The use of secondary stations after filtering

and data transformation improves the results of interpolation

for other possible interpolation methods, such as nearest neighbour

or inverse distance weighting. However, in this study these

methods yield worse results than OK (results not shown here).

Not clear. Please provide more details. For example, you could

give the average reduction in terms of RMSE or increase in correlation

for each interpolation method.

A table concerning the improvement for other interpolation methods was
added to the paper, even thought the focus was not on the comparison
of the interpolation methods.
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The use of personal weather station observations for improving
precipitation estimation and interpolation
András Bárdossy1, Jochen Seidel1, and Abbas El Hachem1

1Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, D-70569 Stuttgart, Germany

Correspondence: Jochen Seidel (jochen.seidel@iws.uni-stuttgart.de)

Abstract. The number of personal weather stations (PWS) with data available online through the internet is increasing gra-

dually in many parts of the world. The purpose of this study is to investigate the applicability of these data for the spatial

interpolation of precipitation using a novel approach based on indicator correlations and rank statistics..for high intensity events of

different durations. Due to unknown errors and biases of the observations rainfall amounts from the PWS network are not con-

sidered directly. Instead, it is assumed that the temporal order of the ranks of these data is correct. The crucial step is to find5

the stations which fulfil this condition. This is done in two steps, first by selecting the locations using time series of indicators

of high precipitation amounts. The remaining stations are then checked whether they fit into the spatial pattern of the other

stations. Thus, it is assumed that the quantiles of the empirical distribution functions are accurate.

These quantiles are then transformed to precipitation amounts by a quantile mapping using the distribution functions which

were interpolated from the information from German National Weather Service (DWD) data only. The suggested procedure10

was tested for the State of Baden-Württemberg in Germany. A detailed cross validation of the interpolation was carried out for

aggregated precipitation amounts of 1, 3, 6, 12 and 24 hours. For each of these temporal aggregations, nearly 200 intense events

were evaluated and the improvement of the interpolation was quantified. The results show that filtering the secondary observationsof

observations from PWS is necessary as the interpolation error after filtering and data transformation decreases significantly.

The biggest improvement is achieved for the shortest temporal aggregations.15

1 Introduction

Comprehensive reviews on the current state of citizen science in the field of hydrology and atmospheric sciences were published

by Buytaert et al. (2014) and Muller et al. (2015). Both of these reviews give a detailed overview of the different forms of citizen

science data and highlight the potential to improve knowledge and data in the fields of hydrology and hydro-climatology.

One type of information which is of particular interest for hydrology are data from in-situ sensors. In recent years, the amount20

of low-cost personal weather stations (PWS) has increased with an incredible speed.In recent years, the number of low-cost personal weat-

her stations (PWS) has increased considerably. Data from PWS are published online on internet portals such as Netatmo

(www.netatmo.com) or Weather Underground (www.wunderground.com). These stations provide weather observations which

are available in real time as well as for the past. This is potentially very useful to complement systematic weather observations

of national weather services, especially with respect to precipitation, which is highly variable in space and time.25
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Traditionally rainfall is interpolated using point observations. The shorter the temporal aggregation the higher the variability

of rainfall becomes, and the more the quality of interpolation deteriorates (Bárdossy and Pegram, 2013; Berndt and Haberlandt,

2018). In consequence, the number of interpolated precipitation products with sub-daily resolution is low, but such data would

beare required for many hydrological applications (Lewis et al., 2018). Additional information such as radar measurements can

improve interpolation (Haberlandt, 2007), however, radar rainfall isestimates are still highly prone to different kinds of errors30

(Villarini and Krajewski, 2010) and the time periods where radar data is available are still rather short.

Against the backdrop of low precipitation station densities, the additional data from PWS has a high potential to improve the

information of spatial and temporal precipitation characteristics. However, one of the major drawbacks from PWS precipitation

data is their trustworthiness. There is little systematic control on the placing and correct installation and maintenance of the

PWS, so it is usually not known whether a PWS is set up according to the international standards published by the WMO35

(World Meteorological Organization, 2008).The measured data itself may have unknown errors which can be biased and contain independent me-

asurement errors, too. Furthermore, there’s no information available about the maintenance of PWS. Therefore, precipitation data

from PWS may contain numerous errors resulting from incorrect installation, poor maintenance, faulty calibration and data

transfer errors (de Vos et al., 2017). This shows that the data from PWS networks cannot be regarded to be as reliable as those

of professional networks operated by national weather services or environmental agencies. . Hence, Consequently, the use of40

PWS data requires specific efforts to account for these errors.to detect and take these errors into account.

For air temperature measurements, Napoly et al. (2018) developed a quality control (QC) procedure to filter out suspicious

measurements from PWS stations that are caused e.g. by solar exposition or incorrect placement. For precipitation, de Vos

et al. (2017) investigated the applicability of personal stations for urban hydrology in Amsterdam, Netherlands. They reported

results of a systematic comparison of an official observation of the Royal Netherlands Meteorological Institute (KNMI) and45

three PWS Netatmo rain gauges. This provides information on the quality of measurements in case of correct installation of the

devices. As many of the PWS may be placed without consideration of the WMO standards, the results of these comparisons

cannot be transferred to the other PWS observations. In a more recent study, de Vos et al. (2019) developed a QC methodology

of PWS precipitation measurements based on filters which detect faulty zeroes, high influxes and stations outliers based on a

comparison between neighbouring stations. A subsequent bias correction is based on a comparison of past observations with a50

combined rain gauge and radar product (de Vos et al., 2019).

Overall, the data from PWS rain gauges may provide useful information for many precipitation events and may also be useful

for real-time flood forecasting, but data quality issues have to be overcome. In this paper we focus on the use of PWS data for

the interpolation of intense precipitation events. We propose a two-fold approach based on indicator correlations and spatial

patterns to filter out suspicious measurements and to use the information from PWS indirectly. The basic assumption hereby55

is that many of the stations may be biased but are correct in the temporal order. For the spatial pattern, information from a

reliable precipitation network, e.g. from a national weather service is required. These measurements are considered to be more

trustworthy than the PWS data, however, the number of such stations is usually much lower. This paper is organized as follows:

After the introduction, the methodology to find useful information and the subsequent interpolation steps are described. The

described procedure was used for precipitation events of the last four years in the federal state of Baden-Württemberg in South-60
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West Germany. The results of the interpolation and the corresponding quality of the method are discussed in section 4. The

paper ends with a discussion and conclusions.

2 Study Area and Data

The federal state of Baden-Württemberg is located in South-West Germany and has an area of approximately 36,000 km2. The

annual precipitation varies between 600 and 2,100 mm (Deutscher Wetterdienst, 2020), and the highest amounts are recorded65

in the higher elevations of the mountain ranges of the Black Forest. The rain gauge network of the German Weather Service

(DWD) in Baden-Württemberg (referred to as primary network from here on) currently comprises 111 stations for the study

period with high temporal resolution data (Fig. 1). The gauges used in this network are typicallypredominantly weighing gauges.

This precipitation data is available in different temporal resolutions from the Climate Data Center of the DWD. For this study,

hourly precipitation data was used.70

Figure 1. Map of the federal state of Baden-Württemberg showing the topography and the location of the DWD (primary) and Netatmo

(secondary) gauges.

For the PWS data, the Netatmo network was selected (https://weathermap.netatmo.com). The stations from this PWS net-

work (referred to as secondary network from here onwards) show an uneven distribution in space, which mainly reflects the

population density and topography of the study area (Fig. 1). The number of secondary stations is higher in densely populated

areas are such as in the Stuttgart metropolitan area and the Rhine-Neckar Metropolitan Region between Karlsruhe and Mann-

heim. Furthermore, there are no secondary network stations above 1,000 m a.s.l., however the primary network only has one75

station above 1,000 m (at the Feldberg summit at 1,496 m) as well. The number of gauges from the secondary network varies

over time. The time period from 2015 to 2019 was considered for this study, as before 2015 the number of available PWS
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was very low. At the end of this time period over 3,000 stations from the secondary network were available. Figure 2 shows

the number of secondary stations as a function of time and the length of the time series. One can see that many stations have

less than one year of observations, which is the reasonable length of a series for the suggested method. Presently it cannot80

accommodate series shorter than a year (excluding time periods with snowfall), but as the series are getting longer more and

more PWS observations become useful.

The Netatmo rain gauges are plastic tipping buckets which have an opening orifice of 125 cm2 (compared to 200 cm2 of the

primary network). A detailed technical description of the Netatmo PWS is given by de Vos et al. (2019). Since these devices are

not heated, their usage is limited to liquid precipitation. To take this into account, data from secondary stations were only used85

in case the average daily air temperature at the nearest DWD station was above 5 ◦C. Data from the Netatmo PWS network

can be downloaded with the Netatmo API either as raw data with irregular time intervals or in different temporal resolutions

down to 5 minutes. Further information on how the raw data are processed to different temporal aggregations is not available

on the manufacturer’s website. For this study, the hourly precipitation data from the Netatmo API was used.

Figure 2. Development of the number of online available Netatmo rain gauges (a) and length of available valid hourly observations in

Baden-Württemberg (b).

In order to assess the spatial variability within a dense network of primary gauges, the precipitation data from the munici-90

pality of Reutlingen (located about 30 km south of the state capital Stuttgart) was additionally used. This city operates a dense

network of 12 weighing rain gauges (OTT Pluvio2) since 2014 in an area of 87 km2 (not shown in Fig 1). Furthermore, three

Netatmo rain gauges were installed at the Institute’s own weather station on the Campus of the University of Stuttgart, where a

Pluvio2 weighing rain gauge is installed as well. This allows a direct comparison between the gauges from the primary network

and the secondary network in the case the latter are installed and maintained correctly.95

3 Methodology

It is assumed that the secondary stations may have individual measurement problems, (e.g. incorrect placement, lack of and/or

wrong maintenance, data transmission problems) and due to their large number there is no possibility to check their proper

placing and functioning directly. Furthermore, at many locations (especially in urban areas) there is no possibility to set up the

4



rain gauges in such a way that they fulfil the WMO standards. Therefore, the goal is to filter out stations which deliver data100

contradicting the observations of the primary network which meet the WMO standards.

Observations from the primary and secondary network were used in hourly time steps and can be aggregated to different

durations ∆t. The usefulness of the secondary data is investigated for different temporal aggregations. Z∆t(x,t) is the (partly

unknown) precipitation at location x and time t integrated over the time interval ∆t. It is assumed that this precipitation is me-

asured by primary network at locations {x1, . . . ,xN}. The measurements of the secondary network are indicated as Y∆t(yj , t)105

at locations {y1, . . . ,yM}. Note that Y is not considered to be a spatially stationary random field. The basic assumption for the

suggested quality control and bias correction method is that the measured precipitation data from the secondary network may

be biased in their values but they are good in their order - at least for high precipitation intensities. This means that if at times

t1 and t2:

Y∆t(yi, t1)< Y∆t(yi, t2)⇒ Z∆t(yi, t1)< Z∆t(yi, t2) (1)110

This means that the measured precipitation amount from the secondary network is likely to have an unknown location spe-

cific bias, but the order of values at a location is preserved. This assumption is reasonable specifically for high precipitation

intensities and supported by measurements presented in the results section.

For QC two filters are applied. The first one is an indicator based filter (IBF) which compares the secondary time series

with the closest primary series with the focus on intense precipitation. The precipitation values of the remaining PWS stations115

are then bias corrected using quantile mapping. The second filter is an event based filter (EBF) designed to remove individual

contradicting observations for a given time step using a spatial comparison. These two filters and the bias correction are

described in the following sections.

3.1 High intensity indicator based filtering (IBF)

As a first step in quality control, locations with notoriously contradicting values are removed. For this purpose the dependence120

between neighbouring stations is investigated.

In order to identify stations which are likely to deliver reasonable data for high intensities, indicator correlations are used. The

distribution function of precipitation at location x is denoted as Fx,∆t(z) and the one for secondary observations at locations

yj as Gyj ,∆t(z), respectively. For a selected probability α the indicator series

Iα,∆t,Z(x,t) =

 1 if Fx,∆t (U∆t(x,t))> α

0 else
(2)125

and for a secondary location yj

Iα,∆t,Y (yj , t) =

 1 if Gyj ,∆t (Y∆t(yj , t))> α

0 else
(3)

Under the order assumptions of equation (1), for any secondary location yj the two indicator series are identical Iα,∆t,Z(yj , t) =

Iα,∆t,Y (yj , t). Thus the spatial variability of Iα,∆t,Z and Iα,∆t,Y has to be the same.
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For any two locations corresponding to the primary network xi and xj and any α and ∆t the correlation (in time) of130

the indicator series is ρZ,α,∆t(xi,xj) and provides an information on how precipitation series vary in space. This indicator

correlation usually decreases with increasing separation distance. This decrease is not at the same rate everywhere and not

the same for different thresholds and aggregations. For the secondary network, indicator correlations ρZ,Y,α,∆t(xi,yj) with

the series in the primary network can be calculated. Following the hypothesis from equation (1), these correlations should be

similar and can be compared to the indicator correlations calculated from pairs of the primary network.135

The sample size has a big influence on the variance of the indicator correlations. Therefore, to take into account the limited

interval of availability of the secondary observations, indicator correlations of the primary network corresponding to the same

periods for which the secondary variable is available are used for the comparison. This is done individually for each secondary

site. A secondary station is flagged as suspicious if its indicator correlations with the nearest primary network points are below

the lowest indicator correlation corresponding to the primary network for the same time steps and at the nearly same separation140

distance. A certain tolerance ∆d for the selection of the pairs of the primary network is needed due to the irregular spacing of

the secondary stations and the natural variability of precipitation. This means if:

ρZ,Y,α,∆t(xi,yj)<min{ρZ,α,∆t(xk,xm) ; ‖(xk −xm)− (xi− yj)‖<∆d} (4)

then the secondary station shows weaker association to the primary than what one would expect from primary observations.

In this case it is reasonable to discard the measured time series corresponding to the secondary network at location yi. This145

procedure can be repeated for a set of selected α values.

Under the assumption that the temporal order of precipitation at secondary locations is correct (eq. 1), one could have used

rank correlations instead of the indicator correlations. The indicator approach is preferred however, as the sensitivity of the

devices of the primary and secondary networks is different and this would influence the order of the small values strongly.

Furthermore, random measurement errors would also influence the order of low values. In order to have a sufficient sample150

size and to have robust results, high α values and low temporal aggregations ∆t are preferred.

3.2 Bias correction: Precipitation amount estimation for secondary observations

After the selection of the potentially useful secondary stations the next step is to correct their observations. The assumption in

equation (1) means that the measured precipitation amounts from the secondary network are likely to have an unknown bias,

but the order of values at a location is preserved. This assumption is likely to be reasonable for high precipitation intensities.155

Thus, the percentile of the precipitation observed at a given time at a secondary location can be used for the estimation of the

true precipitation amounts. Since this is a percentile and not a precipitation amount it has to be converted to a precipitation

amount for further use. This can be done using the distribution function of precipitation amounts corresponding to the location

yj and the aggregation ∆t. As the observations from the secondary network could be biased their distribution Gyj ,∆t cannot

be used for this purpose. Thus, one needs an unbiased estimation of the local distribution functions.160

Distribution functions based on long observation series are available for the locations of the primary network. For locations of

the secondary network they have to be estimated via interpolation. This can be done by using different geostatistical methods.
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A method for interpolating distribution functions for short aggregation times is presented in Mosthaf and Bardossy (2017).

Another possibility is to interpolate the quantiles corresponding to selected non-percentiles or interpolating percentiles for

selected precipitation amounts. Another option to estimate distribution functions corresponding to arbitrary locations is to165

use functional Kriging (Giraldo et al., 2011) to interpolate the distribution functions directly. The advantage of interpolating

distribution functions is that they are strongly related to geographical locations of the selected location and to topography.

These variables are available in high spatial resolution for the whole investigation domain. Additionally, observations from

different time periods and temporal aggregations can also be taken into account as co-variates.

In this paper Ordinary Kriging (OK) is used for the interpolation of the quantiles and for the percentiles to construct the170

distribution functions both for the locations of the secondary observations and for the whole interpolation grid. For a given

temporal aggregation ∆t, time t and target secondary location yj the observed percentile of precipitation is:

P∆t(yj , t) =Gyj ,∆t (Y∆t(yj , t)) (5)

For the observations of the primary network the quantiles of the precipitation distribution at the primary stations are selected.

The distributions at the primary stations are based on the same time steps as those which have valid observations at the target175

secondary station. In this way, a possible bias due to the short observation period at the secondary location can be avoided. The

quantiles are:

Q∆t(xi) = F−1
∆t,xi

(P∆t(yj , t)) (6)

These quantiles are interpolated using OK to obtain an estimate of the precipitation at the target location.

Zo∆t(yj , t) =

n∑
i=1

λiQ∆t(xi) (7)180

Here the λi-s are the weights calculated using the Kriging equations. Note that the precipitation amount at the target location

is obtained via interpolation, but the interpolation is not using the primary observations corresponding to the same time, but

instead is using the quantiles corresponding to the percentile of the target secondary station observation. Thus, these values

may exceed all values observed at the primary stations at time t. Note that this correction of the secondary observations is non-

linear. This procedure is used for all locations which were accepted after application of the indicator filter. In this way, the bias185

from observed precipitation values at the secondary stations is removed using the observed percentiles and the distributions at

the primary stations. as shown in Appendix A. This transformation does not require an independent ground truth of best estimation

of precipitation at the secondary locations.

3.3 Event based spatial filtering (EBF)

While some stations may work properly in general, due to unforeseen events (such as battery failure or transmission errors) they190

may deliver individual faulty values at certain times. In order to filter out these errors a simple geostatistical outlier detection

method is used as described in Bárdossy and Kundzewicz (1990). The geostatistical methods used for outlier detection and
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the interpolation of rainfall amounts require the knowledge of the corresponding variogram. However, the highly skewed

distribution of the precipitation amounts makes the estimation of the variogram difficult. Instead one can use rank based

methods for this purpose as suggested in Lebrenz and Bárdossy (2017) and rescale the rank based variogram.195

For a given temporal aggregation ∆t, time t and target secondary location yj the precipitation amount is estimated via OK

using the observations of aggregation ∆t at time t of primary stations. This value is denoted as Z∗
∆t(yj , t). If the precipitation

amount at the secondary station estimated using equation (7) differs very much from Z∗
∆t(yj , t), the secondary location is

discarded for the interpolation. As limit for the difference, three times the Kriging standard deviation was selected. Formally:∣∣∣∣Z∗
∆t(yj , t)−Zo∆t(yj , t)

σ∆t(yj , t)

∣∣∣∣> 3 (8)200

This means that if the estimated precipitation at the secondary location does not fit into the pattern of the primary observations

then it is discarded. Note that this filter is not necessarily discarding secondary observations which differ from the primary -

it only removes those where there is a strong local disagreement. This procedure is predominantly removing false zeros at

secondary observations which are e.g. due to temporary loss of connection between the rain gauge module and the Netatmo

base station.205

3.4 Interpolation of precipitation amounts

After the application of the two filters and the bias correction the remaining PWS data can be used for spatial interpolation.

Once the percentiles of the secondary locations are converted to precipitation amounts, different Kriging procedures can be

used for the interpolation over a grid in the target region. The simplest solution is to use OK. For aggregations of one day or

longer, the orographic influence should be taken into account. This can be done by using External Drift Kriging (Ahmed and210

de Marsily, 1987).

A problem that remains when using these Kriging procedures is that the precipitation amounts of the secondary network

are more uncertain than those of the primary network. To reflect this difference, a modified version of Kriging as described in

Delhomme (1978) is applied. This allows for a reduction of the weights for the secondary stations.

Suppose that for each point yi time t and temporal aggregation ∆t there is an unknown error of the percentiles ε(yi, t) which215

has the following properties:

1. Unbiased :

E[ε(yi, t)] = 0 (9)

2. Uncorrelated :

E[ε(yi, t)ε(yj , t)] = 0 if i 6= j (10)220

3. Uncorrelated with the parameter value:

E[ε(yi, t)Z(yi, t)] = 0 (11)
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For the primary network we assume that ε(xi, t) = 0.

The interpolation is based on the observations

{u1, . . . ,uN}= {x1, . . . ,xN}∪ {y1, . . . ,yM} (12)225

For any location x

Z∗
∆t(x,t) =

n∑
i=1

λi (Z(ui, t) + ε(ui, t)) (13)

To minimize the estimation variance an equation system similar to the OK system has to be solved, namely:

n∑
j=1

λjγ(ui−uj) +λiE[ε(ui, t)
2] +µ = γ(ui−x) i= 1, . . . ,n

n∑
j=1

λj = 1 (14)230

Note that OK is a special case of this procedure with the additional assumption ε(yj , t) = 0. This system leads to an increase

of the weights for the primary and a decrease of the weights for the secondary network. For each time step and percentile

the variances of the random error terms ε(yi, t) is estimated from the interpolation error of the distribution functions. This

interpolation method is referred to as Kriging using uncertain data (KU) (Delhomme, 1978). The variograms used for interpo-

lation were calculated in the rank space using the observations of the primary network only which leads to more robust results.235

(Lebrenz and Bárdossy, 2017). Anisotropy was not considered, the main reason for this was that the primary network did not

give robust results.

3.5 Step by step summary of the methodology

In summary, the procedure for using secondary observations is as follows:

1. Select a percentile threshold for a selected temporal aggregation. The threshold should be adapted to the temporal ag-240

gregation, e.g. 98 or 99 % for hourly or 95 % for 3 hourly data.

2. Calculate the indicator series for primary and secondary stations corresponding to the percentile threshold.

3. For each individual secondary station:

(a) Calculate the indicator correlation of the given secondary and the closest primary station.

(b) Calculate the indicator correlations of all primary stations using data corresponding to the time steps of the selected245

secondary station.

(c) Compare the correlations and keep the secondary station if its indicator correlation is in the same range as the

indicator correlations of the primary stations approximately at the same distance (IBF).
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4. Perform a bias correction by interpolating the distribution function values of the primary network.

5. Select an event to be interpolated and calculate the corresponding variogram of precipitation (based on rank statistics).250

(a) Calculate the percentile of observed precipitation (based on the corresponding time series).

(b) Calculate the quantiles corresponding to the above secondary percentile for the closest M primary stations of

observed precipitation (based on the corresponding time series).

(c) Interpolate the quantiles for the location of the secondary station using the above primary values using OK, and

assign the obtained value to the secondary location.255

6. Interpolate precipitation for each secondary location using OK excluding the value assigned to the location (cross vali-

dation mode).

7. Compare the interpolated and the assigned (5.c) value and remove station if condition of inequality (eq. 8) indicates

outlier.

8. Interpolate precipitation for target grid using all remaining values using OK or KU.260

Figure 3. Flow chart illustrating the procedure from raw PWS data to interpolated precipitation grids.
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Table 1. Statistics of three Netatmo stations (N07, N10, N11) compared to a Pluvio weighing gauge for April to October 2019 at the IWS

Meteorological Station for different temporal aggregations.

1h 6h 24h

Pluvio N07 N10 N11 Pluvio N07 N10 N11 Pluvio N07 N10 N11

p0 [-] 0.92 0.84 0.84 0.91 0.82 0.75 0.84 0.82 0.59 0.56 0.65 0.59

mean [mm] 1.24 1.46 1.80 1.41 3.46 4.04 4.24 3.89 5.78 7.28 7.51 7.02

standard deviation [mm] 2.15 2.52 4.49 2.52 4.86 5.77 7.55 5.71 8.46 10.49 11.52 10.33

25th percentile [mm] 0.18 0.20 0.10 0.20 0.39 0.33 0.30 0.40 0.48 0.63 0.58 0.58

50th percentile [mm] 0.51 0.71 0.50 0.61 1.49 1.41 0.91 1.21 2.36 2.78 1.62 2.58

75th percentile [mm] 1.34 1.72 1.41 1.52 4.60 5.33 4.14 4.95 7.82 9.87 11.26 9.95

maximum [mm] 19.84 22.62 44.74 22.22 23.28 28.58 44.74 27.98 45.62 55.55 56.16 55.55

All statistics except for the p0 values are based on non-0 values. p0 is the non-exceedance probability of precipitation < 0.1 mm.

4 Application and Results

The section describings the application of the methodology is divided into three parts. First the rationale of the assumptions

is investigated. In a second step, the methodology is applied on a large number of intense precipitation events on different

temporal aggregations using a cross validation approach. This allows for an objective judgement of the applicability of the

results. Finally, the results of the interpolation on a regular grid are shown and compared.265

4.1 Justification of the methods

For a direct comparison between the secondary rain gauges and devices from the primary network, three Netatmo rain gauges

were installed next to a Pluvio2 weighing rain gauge (the same type as regularly used by the DWD) at the Institute for Modelling

Hydraulic and Environmental Systems’ (IWS) own weather station on the Campus of the University of Stuttgart. With this data

from 15 May to 15 October 2019 a direct comparison between the different devices used in the primary and secondary network270

was possible.

Table 1 shows statistics of the three devices compared to those of the reference station. The table shows that the secondary

stations overestimated precipitation amounts by about 20 %. Furthermore, one can observe that the deviation between the

reference and the Netatmo gauge are not linear, hence a data correction of the secondary gauges using a linear scaling factor

is not sufficient. Figure 4 shows scatter plots of hourly rainfall data and the corresponding percentiles from the three Netatmo275

gauges and a reference station.

Figure 4 shows that for high percentiles their occurrence is the same for the primary and the secondary devices. Although

this is only one example with a relatively short time period it does support our assumption that the quantiles between primary

and secondary stations are similar for higher precipitation intensities. However, one secondary device (N10) delivered data

which deviates substantially from the other measurements. This was caused by an interrupted connection between the rain280
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Figure 4. Scatter plot showing a) the hourly rainfall values (axes log-scaled) and b) the corresponding upper percentiles > 0.92 (right)

between the Pluvio2 weighing gauge and three Netatmo gauges (N07, N10, N11) at the IWS Meteorological Station.

sensor and the base station. In this case, the total sum of precipitation over a longer time period was transferred at once (i.e. in

one single measurement interval) when the connection was established again. This leads to an extreme outlier which falsifies

the results. The indicator filtering procedure (IBF) can identify such problems effectively.

The secondary measurement devices can lead to very different biases depending on where and how they are installed.

This can be seen comparing the distribution functions of hourly precipitation accumulations corresponding to a set of very285

close primary stations with those of the secondary stations in the same area. Figure 5 shows the distribution functions of

three primary and four secondary stations in the city of Reutlingen. While the distribution functions of the primary network

are nearly identical, those of the nearest secondary stations vary strongly. Some overestimate and others underestimate the

amounts significantly. This example supports the concept of the paper, namely that secondary data require filtering and data

transformations before use. While the distributions differ, the probability of no precipitation p0 (defined as precipitation < 0.1290

mm) ranges from 0.90 to 0.91 and is thus very similar for both types of stations indicating that the occurrence of precipitation

can be well detected by the secondary network.

4.2 Application of the filters

Indicator correlations were calculated for different temporal aggregations and for a large number of different α values in the

range between 95 and 99 %. Figure 6 shows the indicator correlations for one hour aggregation and the 99 % quantile using pairs295

of observations of the primary-primary and the primary and secondary network as a function of station distance. The indicator

correlations of the pairs of the primary network show relatively high values and a slow decrease with increasing distance. In

contrast, if the indicator correlations are calculated using pairs with one location corresponding to the primary and one to the

secondary network the scatter increased substantially. Secondary stations for which the indicator correlations are very small

in the sense of equation (4) are considered as unreliable and are removed from further processing. A relatively large distance300
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Figure 5. The upper part of empirical distribution functions of three primary stations (solid lines) and four secondary stations (dashed lines)

from a small area in the city of Reutlingen based on a sample size of 15,990 data pairs (hourly precipitation). The distance between the

primary stations is between 5.5 to 9 km and the distances of the secondary stations to the next primary stations range from 1 to 3 km.

tolerance was used as the density of the primary stations is much lower than the density of the secondary stations. On the right

panel the indicator correlations corresponding to the remaining secondary stations shows a similar spatial behaviour as the

primary network. In our case, 862 secondary stations remained after the application of the IBF. This number is small compared

to the total number of available secondary stations, but note that the shortest records were removed and low correlations may

occur as a consequence of short observation periods, and in the future with increasing number of measurements some of these305

stations may be reconsidered.

Figure 6. Indicator correlations for 1h temporal resolution and α = 0.99 between the secondary network and the nearest primary network

stations before (left) and after (right) applying the IBF (red crosses). The black dots refer to the indicator correlation between the primary

network stations.

The effect of the IBF was checked by calculating the rank correlations between pairs of primary and PWS stations with

a distance below 2,500m. Figure 7 shows that the removed PWS have a low rank correlation to their primary neighbours,
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while for the accepted ones the majority of the rank correlations is high. These high rank correlations support the rank based

hypothesis formulated in equation (1).310

Figure 7. Histograms of the rank correlations between primary stations and PWS for pairs with a distance less than 2,500m. The left panel

shows the rank correlations for the stations removed by the filter, the right panel for those which were accepted.

The EBF was applied for each event individually. The number of discarded secondary stations is this study varied from event

to event and was on average around 5 %.

4.3 Bias correction

The bias correction method is illustrated using the example shown in Figure 8. For simplicity, 4 primary stations at the corners

of a square and the secondary station in the center of this square are considered. This configuration ensures that the OK weights315

of the primary station with respect to the secondary station are all equal to 1/4 independently of the variogram. The observed

precipitation amounts at the corner stations are 3.1, 1.8, 3.0 and 2.1 mm for a selected event. The secondary station in the centre

recorded 1.7 mm rainfall. This corresponds to the 0.99 non-exceedance probability of precipitation for the specific secondary

station. The precipitation quantiles at the primary stations corresponding to the 0.99 probability are 3.2, 3.5, 3.1 and 3.0 mm.

Interpolation of these values gives 3.2 mm which is the value assigned to the secondary station instead of the value of 1.7 mm.320

This value is greater than all the four primary observations. The reason for this is that the primary observations all correspond

to lower percentiles. Note that the interpolation of the primary values corresponding to the event for the secondary observation

location would be 2.5 mm.

The bias in the PWS observations can be recognized by investigating data with higher temporal aggregation. The comparison

of monthly or seasonal precipitation amounts primary stations and PWS reveals whether there is a systematic difference or not.325

As monthly or seasonal precipitation can be well interpolated by using primary stations only (temporal aggregation increases

the quality of interpolation (Bárdossy and Pegram, 2013)), this comparison provides a good indication of bias. The difference

between the interpolated and the PWS aggregations is different from PWS to PWS and often exceeds 20 %. Both positive and

negative deviations occur. This points out that bias correction has to be done for each station separately.
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Figure 8. Example for transformation and bias correction of precipitation amounts at a secondary station.

Table 2. Statistics of the selected intense precipitation events based on the primary network.

Temporal resolution 1 hour 3 hours 6 hours 12 hours 24 hours

Number of intense events 185 190 190 195 195

Events between October-March 1 16 29 48 57

Events between April-September 184 174 161 147 138

Minimum of the maxima [mm] 28.01 31.2 33.35 34.9 35.5

Maximum of the maxima [mm] 122.3 158.2 158.4 160 210.3

p0 (mean of all stations and events) 0.9 0.84 0.77 0.68 0.55

p0 is defined here as precipitation <0.1mm

4.4 Cross validation results330

As there is no ground truth available the quality of the procedure had to be tested by comparing omitted observations and their

estimates obtained after the application of the method.

The cross validation was carried out for a set of different temporal aggregations ∆t and a set of selected events. Only

times with intense precipitation were selected, as for low-intensity cases the interpolation based on the primary network is

sufficiently accurate. Table 2 shows some characteristics of the selected events. For short time periods nearly all events were335

from the summer season, while for higher aggregation the number of winter season events increased, but their portion remained

below 30 %.
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The improvement obtained through the use of secondary data is demonstrated using a cross validation procedure. The

primary network is randomly split into 10 subsets of 10 or 11 stations each. The data of each of these subsets was removed

and subsequently interpolated using two different configurations of the data used, namely a) only other primary network340

stations (Reference 1) and b) using the other primary and the secondary network stations (Reference 2). For the latter case, the

interpolations were carried out using the primary station data and the following configurations:

– C1: All secondary stations

– C2: Secondary stations remaining after the application of the IBF

– C3: Secondary stations remaining after application of the IBF and the EBF345

– C4: Secondary stations remaining after application of the IBF and the EBF and considering uncertainty (KU)

The results were compared to the observations of the removed stations. The comparison was done for each location using

all time steps and at each time step using all locations. Different measures including those introduced in Bárdossy and Pegram

(2013) were used to compare the different interpolations. The results were evaluated for each temporal aggregation.

First, the measured and interpolated values were compared for each individual station and the Pearson (r) and Spearman cor-350

relations (rS) of the observed and interpolated series were calculated. Table 3 shows the results for the different configurations

used for the interpolation.

Table 3. Percentage of the stations with improved temporal correlation (compared to interpolation using primary stations only) for the

configurations C1-C4.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r ρ rS r ρ rS r ρ rS r ρ rS r ρ rS

C1: Primary and all secondary without filter and OK 60 68 40 57 31 49 22 34 17 32

C2: Primary and secondary using IBF and OK 81 91 75 90 73 90 64 84 52 81

C3: Primary and secondary using IBF, EBF and OK 81 92 75 93 73 92 69 92 56 87

C4: Primary and secondary using IBF, EBF and KU 81 92 75 92 74 91 70 91 56 86

r Pearson correlation, rS Spearman correlation.

There is no improvement if no filter is applied - except a very slight improvement for 1 hour durations. This is mainly due to

the better identification of the wet and dry areas. The use of the filters (and the subsequent transformation of the precipitation

values) leads to an improvement of the estimation - the IBF being the most important. The spatial filter further improves the355

correlation while the additional consideration of the uncertainty of the corrected values at the secondary network resulted in

a marginal improvement for the selected events. As the secondary stations are not uniformly distributed over the investigated

domain the gain of using them is also not uniform. Highest improvements were achieved in and near urban areas with a high

density of secondary stations, less improvement was achieved in forested areas with few secondary stations.
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The measured and interpolated results were also compared for each event in space and (r) and (rS) and the observed the360

interpolated spatial patterns were calculated as well. Table 4 shows the resultsfrequency of improvements for the different

configurations C1 to C4 used for the interpolation.

Table 4. Percentage of the stations with improved spatial correlation (compared to interpolation using primary stations only) for the confi-

gurations C1-C4 ( r Pearson correlation, rS Spearman correlation)

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r rS r rS r rS r rS r rS

C1: Primary and all secondary without filter and OK 83 68 72 52 63 49 53 49 49 46

C2: Primary and secondary using IBF and OK 96 97 90 93 90 93 84 89 80 85

C3: Primary and secondary using IBF, EBF and OK 96 97 92 94 93 94 89 92 84 89

C4: Primary and secondary using IBF, EBF and KU 93 94 90 92 90 93 84 89 80 87

The use of secondary stations leads to a frequent improvement of the spatial interpolation even in the unfiltered case. The

reason for this is that the spatial pattern is reasonably well captured by the secondary network. With increasing temporal

aggregation the improvement disappears as the role of the bias increases due to the decreasing number of data which can365

be used for bias correction. As in the case of the temporal evaluation the IBF (and the subsequent transformation of the

precipitation values) leads to the highest improvement. The EBF plays a marginal role, and the consideration of the uncertainty

leads to a slight reduction of the quality of the spatial pattern. The improvement is smaller for higher temporal aggregations.

Kriging with uncertainty did not improve the results.

Finally, all results were compared in both space and time. Here the root mean squared error (RMSE) was calculated for all370

events and control stations. Table 5 shows the results for the different configurations used for the interpolation.

Table 5. RMSE (mm) for all stations and events.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

C0: Primary stations only and OK (Reference) 5.97 6.97 7.34 7.71 8.35

C1: Primary and all secondary without filter and OK 6.21 44.79 18.43 10.01 24.16

C2: Primary and secondary using IBF and OK 4.83 6.05 6.61 7.33 8.29

C3: Primary and secondary using IBF, EBF and OK 4.84 6.07 6.58 7.19 8.12

C4: Primary and secondary using IBF, EBF and KU 4.82 6.02 6.53 7.15 8.08

The improvement using the filters is high for each aggregation. The IBF is important to improve interpolation quality. The

EBF and the consideration of the uncertainty of the secondary stations are of minor importance. The improvement is the largest

for the shortest aggregation (1 hour) where the RMSE decreased by 20 % and the smallest for the 24 hours aggregation with

an improvement of 4 %. Decreasing spatial variability and increasing regularity with increasing temporal aggregation is the reason for these diffe-375
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rences.This deterioration is caused by the decreasing spatial variability of precipitation at higher temporal aggregations. The

processes that lead to long lasting precipitation are predominantly accompanied by a more even distribution of precipitation in

space and time. The use of KU for interpolation resulted only a minor improvement. Nevertheless, it is reasonable to assign

lower weights to the less reliable PWS data. In order to check whether the selection of the events led to this result a cross

validation for all 1 hour time steps during the period from April to October 2019 (5,136 time steps) was carried out. The380

results are shown in Table 6. In this case, OK with secondary data did not lead an improvement. This is mainly caused by the

irregular spatial distribution of the PWS. Stations located very close to each other can cause instabilities in the solution of the

Kriging equations leading to high positive and negative weights. Introducing a small random error (1 %) to the PWS stabilizes

the solution and leads to an improvement of the interpolation. The more realistic random error of 10 % further improves the

results.385

Table 6. RMSE (mm) and correlations for all stations for all time steps (5136) between April and October 2019 for OK and KU with different

error assumptions for 1h aggregation.

Interpolation method RMSE Correlation Rank correlation

Primary stations OK 0.331 0.640 0.443

Primary and PWS OK 3.862 0.644 0.402

Primary and PWS EK (1% error) 0.314 0.759 0.578

Primary and PWS EK (10% error) 0.158 0.809 0.631

Note that the use of the filtered and bias corrected secondary stations improves the interpolation quality even for other in-

terpolation methods. Table 7 shows the results for the 185 events with 1 hour aggregation. One can observe that KU gives the

best results, but the simple interpolations Nearest Neighbour or Inverse Distance also lead to better results than using primary

stations only. The poor peformance of Co-Kriging is surprising, but an appropriate selection of the co-variable (for example

transformed rank) may improve the results.390

Table 7. Bias and RMSE (mm) for all stations and events for different interpolation methods for 1h aggregation.

Interpolation method Bias RMSE

Ordinary Kriging primary data only 0.05 5.97

Kriging with uncertainty primary + PWS 0.50 4.82

Nearest Neighbour primary + PWS 0.89 5.06

Inverse Distance primary + PWS 0.89 5.27

Co-Kriging primary + PWS 0.16 5.32
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4.5 Selected Events

As the cross validation results were showing improvements, the data transformations and subsequent interpolations were carried

out for all selected events. As an illustration four selected events are shown and discussed here.

The first example (Fig. 9) shows the results of the interpolation of a 1 hour aggregated precipitation amount for the time

period from 15:00 to 16:00 on June 11, 2018. For this event, 531 out of 862 PWS had valid data (i.e. not NaN) from which 476395

remained after the EBF. The top panels of this figure show three different precipitation interpolations for this event:

a) using the combination of the two station networks after application of the filters and transformation of the secondary

data

b) using the primary network only

c) using all raw unfiltered and uncorrected data from the secondary network only400

The panels in the bottom row of Figure 9 show d) the difference between a) and b), and e) the difference between c) and b).

The three images a) to c) are similar in their rough structure, but there are important differences in the details. The interpolation

using the primary network leads to a relatively smooth surface. The unfiltered secondary station based interpolation is highly

variable and shows distinct patterns such as small dry and wet areas. The combination after filtering and transformation is more

detailed than the primary interpolation, and in some regions these differences are high. The map of the difference between the405

primary and the secondary station based interpolation (Fig. 9 e) shows large regions of underestimation and overestimation by

the secondary network. The differences between the primary and the filtered interpolations using transformed secondary data

in panel d) is much smaller but in some regions the differences are still quite large, e.g. in the north-eastern part of the study

area. In both cases, negative and positive differences occur. Note that for this data the cross validation based on the primary

observations showed an improvement of r from 0.36 to 0.77, of rS from 0.55 to 0.76 and a reduction of the RMSE from 12.5410

mm to 8.2 mm.

Figure 10 shows the distributions of the cross validation errors for the different interpolations for this event. This is a typical

case where all methods yield unbiased resluts. The use of unfiltered and uncorrected secondary observations (C1) shows the

highest variance, followed by the interpolation using only primary observations (C0). The other three methods (C2-C4) have

very similar results with significantly lower variance.415

Another interpolated 1 hour accumulation corresponding to 17:00 to 18:00 on September 6, 2018 is shown in Figure 11.

For this event, from the 862 PWS remaining after the IBF, 576 PWS had available data from which 513 remained after the

EBF. These pictures show a similar behaviour to those obtained for June 11 (Fig. 9). Here, a high local rainfall in the southern

central part of the study area was obviously not captured by the secondary network, leading to a large local underestimation in

panel e). Furthermore, a larger area with precipitation in the primary network in the northern central in panel b) is significantly420

reduced in size by the rainfall/no-rainfall information from the secondary network in panel c). For this case, the cross validation

based on the primary observations showed an improvement of r from 0.61 to 0.86, of rS from 0.59 to 0.72 and a reduction of

the RMSE from 5.65 mm to 3.75 mm.
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Figure 9. Interpolated precipitation for the time period 15:00 to 16:00 on June 11, 2018 (upper panel), and the differences between primary

and combination, and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the interpo-

lation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b) and c)

and b) respectively.

Figure 10. Distribution of the cross validation errors for the time period 15:00 to 16:00 on June 11, 2018 for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.
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Figure 11. Interpolated precipitation for the time period 17:00 to 18:00 on September 6, 2018 (upper panel) and the differences between

primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the

interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b)

and c) and b) respectively.
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The following two case studies show two interpolation examples for 24 hours which was the highest temporal aggregation

in this study. Figure 12 shows the maps corresponding to the precipitation of 0:00 to 24:00 on May 14, 2018. For this event,425

515 PWS valid stations remained. This number was reduced to 499 after the EBF. The behaviour of the interpolations is similar

to the 1 hour cases shown above, the unfiltered and untransformed secondary interpolation is irregular and shows a systematic

underestimation. Due to the higher temporal aggregation, the local differences are less contrasting as in the case of hourly

maps. The combination contains more details and the transition between high and low intensity precipitation is more complex.

The difference between the primary (panel b) and the combination based interpolation in panel a) is relatively smaller than for430

the 1 hour aggregations. This is caused by the reduction of the variability with increasing number of observations. Note that

for this event the cross validation based on the primary observations showed an improvement of r from 0.57 to 0.8, of rS from

0.57 to 0.82 and a reduction of the RMSE from 15.99 mm to 13.61 mm.

Figure 12. Interpolated precipitation for the time period for a 24 hour event from 0:00 to 24:00 on May 14, 2018 (upper panel) and the

differences between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying

the filtering, b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences

between a) and b) and c) and b) respectively.

Another interesting 24 hour event which was recorded on July 28, 2019 is shown in figure 13. For this event, 734 valid PWS

remained from IBF and 703 after EBF. The map based on the raw secondary data in panel c) shows very scattered intense435

rainfall. The combination of the primary and secondary observations changes the structure and the connectivity of these area

with intense precipitation. The cross validation for this event showed an improvement of r from 0.32 to 0.75, of rS from 0.42

to 0.77 and a reduction of the RMSE from 14.77 mm to 10.21 mm.
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Figure 13. Interpolated precipitation for the time period for a 24h event from 0:00 to 24:00 on July 28, 2019 (upper panel) and the differences

between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering,

b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a)

and b) and c) and b) respectively.

The results of the filtering algorithm for the other events show a similar behaviour. The differences between primary and

combined interpolation can be both positive and negative for all temporal aggregations. In general, the secondary network440

provides more spatial details, which could be very important for hydrological modelling of meso-scale catchments.

Figure 14 shows the distributions of the cross validation errors for the different interpolations for this event. The results

are different from the case presented in Figure 10. In this case all methods are slightly biased. The interpolation using only

primary observations (C0) shows the highest bias and variance. In this case, the use of unfiltered and uncorrected secondary

observations (C1) yields a lower bias and a lower variance. The other three methods (C2-C4) have very similar results with445

significantly lower variance.

5 Discussion

The use of observations from such PWS networks has the potential to improve the quality of precipitation estimation. However,

the results from this study well as the ones from de Vos et al. (2019) show that it is necessary to check the data quality from

PWS precipitation records and to discard erroneous measurements before further using these data.450

There are already several approaches to use the precipitation data from PWS (e.g. Chen et al., 2018; Cifelli et al., 2005), but

they are generally based on daily data an simple QC approaches. Studies using more sophisticated QC workflows for hourly or
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Figure 14. Distribution of the cross validation errors for the 24h event from 0:00 to 24:00 on July 28 2018, for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.

sub-hourly precipitation data from PWS are still limited. The approach presented by de Vos et al. (2019) uses a comparison of

the data with those of the nearby stations to remove unreasonable values, a separate procedure to identify and remove false ze-

ros and another filter to find unreasonably high values. Subsequently, the bias is corrected by comparing past local observations455

to a high quality merged radar and point observation product. The bias correction is performed uniformly in neighbourhoods.

Finally, another filter using correlations of time series serves to remove remaining suspicious data. In the study presented here,

a geostatistical method combined with rank statistics was developed. One of the main difference to the method presented by

de Vos et al. (2019) is that a set of trustworthy precipitation data (primary stations) is required for the rank correlation and

the bias correction. First, PWS which have indicator time series with low correlations compared to the primary network are460

removed. The remaining secondary stations are tested for each event separately using OK in a cross validation mode. Finally

the data are bias corrected using interpolated quantiles of the primary observations. This is an important aspect, since PWS

that are close to each other do not necessarily have a similar bias. Examples from the Reutlingen data show that positive and

negative biases can occur at neighbouring PWS. The bias correction in this study does not use simultaneous observations of

the primary and the PWS stations, but instead is based on their distributions. A detailed cross-validation of different filter465

combinations and temporal aggregations shows that the IBF is the most important step as yields the highest improvement in

interpolation quality, whereas the EBF and bias correction only have a minor contribution. Furthermore, the performance of the

presented method is better a smaller temporal aggregations. The applied filters in this study may be conservative by rejecting

more stations than absolutely needed, but this proved to be useful in order to obtain robust results. The length of times series

from the current secondary network will increase and subsequently more observations which were currently discarded may also470

become useful. Furthermore, it can be expected that the number of secondary stations will continue to increase, thus one can

expect further improvements of the quality of precipitation maps for all temporal aggregations. Overall, the use of secondary

stations after filtering and data transformation improves the results of interpolation for other possible interpolation methods,

such as nearest neighbour or inverse distance weighting. However, in this study these methods yielded worse results than OK.
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An advantage of the KU interpolation method is that a combination of different measurements, such as radar estimates or475

commercial microwave links which are based indirect information can be accommodated in the same framework. By using

KU for interpolation, the weights for data from secondary networks can be reduced to account for the higher uncertainty of

these data. Other procedures for the efficient use of secondary data may also be considered. Specifically, the interpolation of

precipitation amounts with Co-Kriging using non-collocated observations (Clark et al., 1989) using percentiles P∆t(yj , t) as

co-variates (eq. 5) or Quantile Kriging (QK) (Lebrenz and Bárdossy, 2019) may lead to better results. However QK has to be480

modified due to the large number of zeros occurring for short temporal aggregations, for example by combining it with the

approach developed by Bárdossy (2011).

A problem that affects both primary and PWS stations are errors caused by wind. In general, this has a major effect on

precipitation measurements leading to a systematic undercatch. These effects might differ from station to station and cannot

be corrected. Problems occur if the order of the observations is influenced by wind effects, but due to the highly skewed485

distribution of the precipitation amounts the problem mainly occurs for small precipitation amounts.

6 Conclusions and Outlook

As precipitation uncertainty is possibly the most important factor for the uncertainty in rainfall/run-off modelling, the increa-

sing number of online available private weather stations offers a possibility to increase the accuracy of precipitation estimation.

Furthermore, the real-time availability of the data of secondary networks may help to improve the quality of flood forecasts. In490

any case, a QC of these data is required since the use of raw data of the secondary network does not improve interpolation qua-

lity; in contrary it often increases uncertainty. In this study a geostatistical method combined with rank statistics was applied

to combine data from primary and PWS networks. In particular:

– A new method to filter out erroneous PWS data based on indicator correlations was developed.

– A second geostatistical filter to remove individual PWS observations was applied.495

– A rank statistics based bias correction was developed. The bias correction does not use simultaneous observations of the

primary and the PWS stations, but instead is based on their distributions.

This approach was tested on a set of observations and the improvement of the quality of interpolation was quantified. A

detailed cross validation experiment showed that after QC and bias correction in a large number of cases interpolation quality

was improved. This improvement is the biggest for hourly temporal aggregations with a reduction of the RMSE by 20 % ,500

while for daily values the improvement is around 4 %. The results of this study in terms of improving the interpolation of

precipitation are encouraging, but the authors believe that further improvements can be achieved. In this context, the following

aspects would be of interest:

1.) The number of primary stations in this was sufficient to improve the interpolation quality. However, it would be interes-

ting to investigate which density of primary stations is necessary to improve the precipitation interpolation.505
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2.) For applying this approach to shorter time steps (e.g. 5 minutes for which the PWS data is available), the effect of

advection would have to be taken into account. This requires further research.

3.) By applying a rather strict threshold of 5◦C average daily temperature, many rainfall events are rejected. It would be

conceivable to include the hourly temperature data from PWS in order to estimate whether a precipitation event of rain

or snow at a specific location.510
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