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Abstract. The number of personal weather stations (PWS) with data available online through the internet is increasing grad-

ually in many parts of the world. The purpose of this study is to investigate the applicability of these data for the spatial

interpolation of precipitation for high intensity events of different durations. Due to unknown errors and biases of the observa-

tions rainfall amounts of the PWS network are not considered directly. Instead, only their temporal order is assumed to be correct.Instead,

it is assumed that the temporal order of the ranks of these data is correct. The crucial step is to find the stations with informative5

measurements.which fulfil this condition. This is done in two steps, first by selecting the locations using time series of indicators

of high precipitation amounts. The remaining stations are then checked whether they fit into the spatial pattern of the other

stations. Thus, it is assumed that the percentiles of the PWS networkquantiles of the empirical distribution functions are accurate.

These percentiles are then translated to precipitation amounts using the distribution functions which were interpolated using the information from German

National Weather Service (DWD) data only.These quantiles are then transformed to precipitation amounts by a quantile mapping using10

the distribution functions which were interpolated from the information from German National Weather Service (DWD) data

only. The suggested procedure was tested for the State of Baden-Württemberg in Germany. A detailed cross validation of the

interpolation was carried out for aggregated precipitation amounts of 1, 3, 6, 12 and 24 hours. For each aggregation, nearly

200 intense events were evaluated. The results show that filtering the secondary observations is necessary as the interpolation

error after filtering and data transformation decreases significantly. The biggest improvement is achieved for the shortest time15

aggregations.

1 Introduction

Comprehensive reviews on the current state of citizen science in the field of hydrology and atmospheric sciences were published

by Buytaert et al. (2014) and Muller et al. (2015). Both of these reviews give a detailed overview of the different forms of citizen

science data and highlight the potential to improve knowledge and data in the fields of hydrology and hydro-climatology. One20

type of information which is of particular interest for hydrology are data from in-situ sensors. In recent years, the amount of low-

cost personal weather stations (PWS) has increased with an incredible speed. Data from PWS are published online on internet

portals such as Netatmo (www.netatmo.com) or Weather Underground (www.wunderground.com). These stations provide

weather observations which are available in real time as well as for the past. This is potentially very useful to complement

systematic weather observations of national weather services, especially with respect to precipitation, which is highly variable25
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in space and time. Traditionally rainfall is interpolated using point observations. The shorter the time aggregation the higher

the variability of rainfall becomes, and the more the quality of interpolation deteriorates (Bárdossy and Pegram, 2013; Berndt

and Haberlandt, 2018). In consequence, the number of interpolated precipitation products with sub-daily resolution is low, but

such data would be required for many hydrological applications (Lewis et al., 2018). Additional information such as radar

measurements can improve interpolation (Haberlandt, 2007), however, radar rainfall is still highly prone to different kinds of30

errors (Villarini and Krajewski, 2010) and the time periods where radar data is available are still rather short.

Against the backdrop of low precipitation station densities, the additional data from PWS has a high potential to improve the

information of spatial and temporal precipitation characteristics. However, one of the major drawbacks from PWS precipitation

data is their trustworthiness. There is little systematic control on the placing and correct installation and maintenance of the

PWS, so it is usually not known whether a PWS is set up according to the international standards published by the WMO35

(World Meteorological Organization, 2008). The measured data itself may have unknown errors which can be biased and

contain independent measurement errors, too. Therefore, the data from PWS networks cannot be regarded to be as reliable as

those of professional networks operated by national weather services or environmental agencies. Hence, the use of PWS data

requires specific efforts to account for these errors. For air temperature measurements, Napoly et al. (2018) developed a quality

control (QC) procedure to filter out suspicious measurements from PWS stations that are caused e.g. by solar exposition40

or incorrect placement. For precipitation, de Vos et al. (2017) investigated the applicability of personal stations for urban

hydrology in Amsterdam, Netherlands. They reported results of a systematic comparison of an official observation of the

Royal Netherlands Meteorological Institute (KNMI) and three PWS Netatmo rain gauges. This provides information on the

quality of measurements in case of correct installation of the devices. As many of the PWS may be placed without consideration

of the WMO standards, the results of these comparisons cannot be transferred to the other PWS observations. In a more recent45

study, de Vos et al. (2019) developed a QC methodology of PWS precipitation measurements based on filters which detect

faulty zeroes, high influxes and stations outliers based ona a comparison between neighbouring stations. A subsequent bias

correction is based on a comparison of past observations with a combined rain gauge and radar product (de Vos et al., 2019).

based on a combined official rain gauge and radar product over the Netherlands. This however can be problematic as radar data has errors as well (e.g.

attenuation, clutter, beam blockage) and thus the quantitative precipitation estimation (QPE) is often uncertain Furthermore, on the shorter time scales effects50

such as attenuation or wind drift lead to a disagreement between radar data and rain gauge data . In addition, the study by does not provide a guideline on how

to use the measurements of the PWS if no radar observations are available.

Overall, the data from PWS rain gauges may provide useful information for many precipitation events and may also be useful

for real-time flood forecasting, but data quality issues have to be overcome. In this paper we focus on the use of PWS data for

the interpolation of intense precipitation events. We propose a two-fold approach based on indicator correlations and spatial55

patterns to filter out suspicious measurements and to use the information from PWS indirectly. The basic assumption hereby

is that many of the stations may be biased but are correct in the temporal order. For the spatial pattern, information from a

reliable precipitation network, e.g. from a national weather service is required. These measurements are considered to be more

trustworthy than the PWS data, however, the number of such stations is usually much lower. This paper is organized as follows:

After the introduction, the methodology to find useful information and the subsequent interpolation steps are described. The60
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described procedure was used for precipitation events of the last four years in the federal state of Baden-Württemberg in South-

West Germany. The results of the interpolation and the corresponding quality of the method are discussed in section 4. The

paper ends with a discussion and conclusions.

2 Study Area and Data

The federal state of Baden-Württemberg is located in South-West Germany and has an area of approximately 36,000 km2. The65

annual precipitation varies between 600 and 2,100 mm (Deutscher Wetterdienst, 2020), and the highest amounts are recorded

in the higher elevations of the mountain ranges of the Black Forest. The rain gauge network of the German Weather Service

(DWD) in Baden-Württemberg (referred to as primary network from here on) currently comprises 111 stations for the study

period with high temporal resolution data (Fig. 1). The gauges used in this network are typically weighing gauges. This pre-

cipitation data is available in different temporal resolutions from the Climate Data Center of the DWD. For this study, hourly70

precipitation data was used.

Figure 1. Map of the federal state of Baden-Württemberg showing the topography and the location of the DWD (primary) and Netatmo

(secondary) gauges.

For the PWS data, the Netatmo network was selected (https://weathermap.netatmo.com). The stations from this PWS net-

work (referred to as secondary network from here onwards) show an uneven distribution in space, which mainly reflects the

population density and topography of the study area (Fig. 1). The number of secondary stations is higher in densely popu-

lated areas are such as in the Stuttgart metropolitan area and the Rhine-Neckar Metropolitan Region between Karlruhe and75

Mannheim. Furthermore, there are no secondary network stations above 1,000 m a.s.l., however the primary network only has

one station above 1,000 m (at the Feldberg summit at 1,496 m) as well. The number of gauges from the secondary network

3



varies over time. The time period from 2015 to 2019 was considered for this study, as before 2015 the number of available

PWS was very low. At the end of this time period over 3,000 stations from the secondary network were available. Figure 2

shows the number of secondary stations as a function of time and the length of the time series. One can see that many stations80

have less than one year of observations, which is the reasonable length of a series for the suggested method. Presently it cannot

accommodate series shorter than a year (excluding time periods with snowfall), but as the series are getting longer more and

more PWS observations become useful. The Netatmo rain gauges are plastic tipping buckets which have an opening orifice

of 125 cm2 (compared to 200 cm2 of the primary network). A detailed technical description of the Netatmo PWS is given by

de Vos et al. (2019). Since these devices are not heated, their usage is limited to liquid precipitation. To take this into account,85

data from secondary stations were only used in case the average daily air temperature at the nearest DWD station was above 5
◦C. Data from the Netatmo PWS network can be downloaded with the Netatmo API in different temporal resolutions down to 5 minutes.

either as raw data with irregular time intervals or in different temporal resolutions down to 5 minutes. Further information on

how the raw data are processed to different temporal aggregations is not available on the manufacturer’s website. For this study,

the hourly precipitation data from the Netatmo API was used.90

In order to asses the spatial variability within a dense network of primary gauges, the precipitation data from the municipality of Reutlingen (located about

30 km south of the state capital Stuttgart) was additionally used. This city operates a dense network of 12 weighing rain gauges (OTT Pluvio2) since 2014

in an area of 87 km2 (not shown in Fig 1). Furthermore, three Netatmo rain gauges were installed at the Institute’s own weather station on the Campus of

the University of Stuttgart, where a Pluvio2 weighing rain gauge is installed as well. This allows a direct comparison between the gauges from the primary

network and the secondary network in the case the latter are installed and maintained correctly.95

The Netatmo rain gauges are plastic tipping buckets which have an opening orifice of 125 cm2 (compared to 200 cm2 of the primary network). Since these

devices are not heated, their usage is limited to liquid precipitation. To take this into account, data from secondary stations were only used in case the average

daily air temperature at the nearest DWD station was above 5 ◦C.

Figure 2. Development of the number of online available Netatmo rain gauges (left) and length of available valid hourly observations (right).

Figure 2 shows the number of secondary stations as a function of time. The stations from the secondary network show an uneven distribution in space,

which mainly reflects the population density and topography of the study area. The number of secondary stations is higher in densely populated areas are such100

as in the Stuttgart metropolitan area and the Rhine-Neckar Metropolitan Region. Furthermore, there are no secondary network stations above 1,000 m a.s.l.,
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however the primary network only has one station above 1,000 m (at the Feldberg summit at 1,496 m) as well. In order to assess the spatial variability

within a dense network of primary gauges, the precipitation data from the municipality of Reutlingen (located about 30 km

south of the state capital Stuttgart) was additionally used. This city operates a dense network of 12 weighing rain gauges (OTT

Pluvio2) since 2014 in an area of 87 km2 (not shown in Fig 1). Furthermore, three Netatmo rain gauges were installed at the105

Institute’s own weather station on the Campus of the University of Stuttgart, where a Pluvio2 weighing rain gauge is installed

as well. This allows a direct comparison between the gauges from the primary network and the secondary network in the case

the latter are installed and maintained correctly.

3 Methodology

It is assumed that the secondary stations may have individual measurement problems, (e.g. incorrect placement, lack of and/or110

wrong maintenance, data transmission problems) and due to their large number there is no possibility to check their proper

placing and functioning directly. Furthermore, at many locations (especially in urban areas) there is no possibility to set up the

rain gauges soin such a way that they fulfil the WMO standards. Therefore, the goal is to filter out stations which deliver data

contradicting the observations of the primary network which meet the WMO standards.

Observations from the primary and secondary network were used in hourly time steps and can be aggregated to differ-115

ent durations ∆t. The usefulness of the secondary data is investigated for different time aggregations. Z∆t(x,t) is the (partly

unknown) precipitation at location x and time t integrated over the time interval ∆t. It is assumed that this precipitation is mea-

sured by primary network at locations {x1, . . . ,xN}. The measurements of the secondary network are indicated as Y∆t(yj , t) at

locations {y1, . . . ,yM}. Note that Y is not considered to be a stationary random field. The basic assumption for the suggested

quality control and bias correction method is that the measured precipitation data from the secondary network may be biased120

in their values but they are good in their order - at least for high precipitation intensities. This means that if at times t1 and t2:

Y∆t(yi, t1)< Y∆t(yi, t2)⇒ Z∆t(yi, t1)< Z∆t(yi, t2) (1)

This means that the measured precipitation amount from the secondary network is likely to have an unknown location spe-

cific bias, but the order of values at a location is preserved. This assumption is reasonable specifically for high precipitation

intensities and supported by measurements presented in the results section.125

For QC two filters are applied. The first one is an indicator based filter (IBF) which compares the secondary time series

with the closest primary series with the focus on intense precipitation. The precipitation values of the remaining PWS sta-

tions are then bias corrected using quantile mapping. The second filter is an event based filter (EBF) designed to remove

individual contradicting observations for a given time step using a spatial comparison. These two filters and the bias correction

are described in the following sections.130
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3.1 High intensity indicator based filtering (IBF)

As a first step in quality control, locations with notoriously contradicting values are removed. For this purpose the dependence

between neighbouring stations is investigated.

This relationship is independent of a possible station bias and is only important for high intensities, since for most hydrological applications low precip-

itation values play a minor role. A secondary station is useful if this relationship holds. Unfortunately the assumption can only be checked for selected test135

locations. Since it is not intended to use the data from the secondary stations directly, their temporal ranks which are considered as indicator series of intense

precipitation are used for this purpose instead.

Observations from the primary and secondary network are available at short time steps (5-min) and can be aggregated to different durations ∆t. The use-

fulness of the secondary data is investigated for different time aggregations. Z∆t(x,t) is the (partly unknown) precipitation at location x and time t integrated

over the time interval ∆t. It is assumed that this precipitation is measured by primary network at locations {x1, . . . ,xN}. The measurements of the secondary140

network are indicated as Y∆t(yj , t) at locations {y1, . . . ,yM}. Note that Y is considered not a random field, and thus methods like Co-Kriging or Kriging

with an external drift are not applicable.

In order to identify stations which are likely to deliver reasonable data for high intensities, indicator correlations are used.

The distribution function of precipitation at location x is denoted as Fx,∆t(z) and the one for secondary observations at loca-

tions yj as Gyj ,∆t(z), respectively. For a selected variable U = Z or U = Y and a selected probability α the indicator series145

Iα,∆t,Z(x,t) =

 1 if Fx,∆t (U∆t(x,t))> α

0 else
(2)

and for a secondary location yj

Iα,∆t,Y (yj , t) =

 1 if Gyj ,∆t (Y∆t(yj , t))> α

0 else
(3)

Under the order assumptions of equation (1), for any secondary location yj the two indicator series are identical Iα,∆t,Z(yj , t) =

Iα,∆t,Y (yj , t). Thus the spatial variability of Iα,∆t,Z and Iα,∆t,Y has to be the same.150

For any two locations corresponding to the primary network xi and xj and any α and ∆t the correlation (in time) of

the indicator series is ρZ,α,∆t(xi,xj) and provides an information on how precipitation series vary in space. This indicator

correlation usually decreases with increasing separation distance. This decrease is not at the same rate everywhere and not

the same for different thresholds and aggregations. For the secondary network, indicator correlations ρZ,Y,α,∆t(xi,yj) with

the series in the primary network can be calculated. Following the hypothesis from equation (1), these correlations should be155

similar and This can be compared to the indicator correlations calculated from pairs of the primary network.

The sample size has a big influence on the variance of the indicator correlations. Therefore, to take into account the limited

interval of availability of the secondary observations, indicator correlations of the primary network corresponding to the same

periods for which the secondary variable is available are used for the comparison. This is done individually for each secondary

site. A secondary station is flagged as suspicious if its indicator correlations with the nearest primary network points are below160

the lowest indicator correlation corresponding to the primary network for the same time steps and at the nearly same separation
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distance. This means if:

ρZ,Y,α,∆t(xi,yj)<min{ρZ,α,∆t(xk,xm) ; ‖ xk −xm ‖≈‖ xi− yj ‖} (4)

then the secondary station shows weaker association to the primary than what one would expect from primary observations.

In this case it is reasonable to discard the measured time series corresponding to the secondary network at location yi. This165

procedure can be repeated for a set of selected α values. High α-s (dependent on the aggregation interval ∆t are preferred as the goal is to

improve precipitation estimation for strong precipitation events.

Under the assumption that the temporal order of precipitation at secondary is correct (eq. 1), one could have used rank cor-

relations instead of the indicator correlations. The indicator approach is preferred however, as the sensitivity of the devices of

the primary and secondary networks is different and this would influence the order of the small values strongly. Furthermore,170

random measurement errors would also influence the order of low values. In order to have a sufficient sample size and to have

robust results, high α values and low temporal aggregations ∆t are preferred.

3.2 Bias correction: Precipitation amount estimation for secondary observations

After the selection of the potentially useful secondary stations the next step is to correct their observations. The distribution function

of the measured precipitation values at locations xi of the primary and at locations yj of the secondary network are denoted as Fxi,∆t(z) and Gyj ,∆t(z)

respectively. The basic assumption for the suggested approach is that the measured precipitation data from the secondary network may be biased in their values

but are good in their order (at least for high intensities). This means that if at times t1 and t2:

((((((((((((((((((((hhhhhhhhhhhhhhhhhhhh

Y∆t(yi, t1)< Y∆t(yi, t2) ⇒ Z∆t(yi, t1)< Z∆t(yi, t2)

The assumption (1) means that the measured precipitation amounts from the secondary network are likely to have an175

unknown bias, but the order of values at a location is preserved. This assumption is likely to be reasonable for high precipitation

intensities. Thus, the percentile of the precipitation observed at a given time at a secondary location can be used for the

estimation of the true precipitation amounts. Since this is a percentile and not a precipitation amount it has to be converted to

a precipitation amount for further use. This can be done using the distribution function of precipitation amounts corresponding

to the location yj and the aggregation ∆t. As the secondary observation could be biased their distribution Gyj ,∆t cannot be180

used for this purpose. Thus, one needs an unbiased estimation of the local distribution functions.

Distribution functions based on long observation series are available for the locations of the primary network. For locations of

the secondary network they have to be estimated via interpolation. This can be done by using different geostatistical methods.

A method for interpolating distribution functions for short aggregation times is presented in Mosthaf and Bardossy (2017).

Another possibility is to interpolate the quantiles corresponding to selected non-percentiles or interpolating percentiles for185

selected precipitation amounts. Another alternative to estimate distribution functions corresponding to arbitrary locations is to

use functional kriging (Giraldo et al., 2011) to interpolate the distribution functions directly. The advantage of interpolating

distribution functions is that they are strongly related to geographical locations of the selected location and to topography.
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These variables are available in high spatial resolution for the whole investigation domain. Additionally, observations from

different time periods and time aggregations can also be taken into account as co-variates.190

In this paper Ordinary Kriging (OK) is used for the interpolation of the quantiles and for the percentiles to construct the

distribution functions both for the locations of the secondary observations and for the whole interpolation grid. For a given

aggregation ∆t, time t and target secondary location yj the observed percentile of precipitation is:

P∆t(yj , t) =Gyj ,∆t (Y∆t(yj , t)) (5)

For the observations of the primary network the quantiles of the precipitation distribution at the primary stations are selected.195

The distributions at the primary stations are based on the same time steps as those which have valid observations at the target

secondary station. In this way, a possible bias due to the short observation period at the secondary location can be avoided. The

quantiles are:

Q∆t(xi) = F−1
∆t,xi

(P∆t(yj , t)) (6)

These quantiles are interpolated using OK to obtain an estimate of the precipitation at the target location.200

Zo∆t(yj , t) =

n∑
i=1

λiQ∆t(xi) (7)

Here the λi-s are the weights calculated using the Kriging equations. Note that the precipitation amount at the target location

is obtained via interpolation, but the interpolation is not using the primary observations corresponding to the same time, but

instead is using the quantiles corresponding to the percentile of the target secondary station observation. Thus, these values

may exceed all values observed at the primary stations at time t. Note that this correction of the secondary observations is205

non-linear. This procedure is used for all locations which were accepted after application of the temporalindicator filter.

In this way, the bias from observed precipitation values at the secondary stations is removed using the observed percentiles

and the distributions at the primary stations as shown in Appendix A. This transformation does not require an independent

ground truth of best estimation of precipitation at the secondary locations.

3.3 Event based spatial filtering (EBF)210

While some stations may work properly in general, due to unforeseen events (such as battery failure or transmission errors) at

certain times they may deliver individual false values. In order to filter out these errors a simple geostatistical outlier detection

method is used as described in Bárdossy and Kundzewicz (1990). The geostatistical methods used for outlier detection and the

interpolation of rainfall amounts require the knowledge of the corresponding variogram. However, the highly skewed distribu-

tion of the precipitation amounts makes the estimation of the variogramm difficult. Instead one can use rank based methods for215

this purpose as suggested in Lebrenz and Bárdossy (2017) and rescale the rank based variogramm.

For a given aggregation ∆t, time t and target secondary location yj the precipitation amount is estimated via OK using the

observations of aggregation ∆t at time t of primary stations. This value is denoted as Z∗
∆t(yj , t). If the precipitation amount at

8



the secondary station estimated using equation (7) differs very much from Z∗
∆t(yj , t), the secondary location is discarded for

the interpolation. As limit for the difference, three times the Kriging standard deviation was selected. Formally:220 ∣∣∣∣Z∗
∆t(yj , t)−Zo∆t(yj , t)

σ∆t(yj , t)

∣∣∣∣> 3 (8)

This means that if the estimated precipitation at the secondary location does not fit into the pattern of the primary observations
then it is discarded. Note that this filter is not necessarily discarding secondary observations which differ from the primary -
it only removes those where there is a strong local disagreement. This procedure is most frequentlypredominantly removing false
zeros at secondary observations which are e.g. due to temporary loss of connection between the rain gauge module and the225

Netatmo base station.
Note that this method could also be applied using the percentiles.

This and the previous procedure allow the selection of secondary data which can be used for precipitation interpolation.

3.4 Interpolation of precipitation amounts

After the application of the two filters and the bias correction the remaining PWS data can be used for spatial interpolation.230

Once the percentiles of the secondary locations are converted to precipitation amounts, different Kriging procedures can be

used for the interpolation over a grid in the target region. The simplest solution is to use OK. For aggregations of one day or

longer, the orographic influence should be taken into account. This can be done by using External Drift Kriging (Ahmed and

de Marsily, 1987).

The problem with theseA problem that remains when using these krigings procedures is that the precipitation amounts of the235

secondary network are more uncertain than those of the primary network. To reflect this difference, a modified version of

Kriging as described in Delhomme (1978) is applied. This allows for a reduction of the weights for the secondary stations.

Suppose that for each point yi time t and time aggregation ∆t there is an unknown error of the percentiles ε(yi, t) which has

the following properties:

1. Unbiased :240

E[ε(yi, t)] = 0 (9)

2. Uncorrelated :

E[ε(yi, t)ε(yj , t)] = 0 if i 6= j (10)

3. Uncorrelated with the parameter value:

E[ε(yi, t)Z(yi, t)] = 0 (11)245

For the primary network we assume that ε(xi, t) = 0.

The interpolation is based on the observations

{u1, . . . ,uN}= {x1, . . . ,xN}∪ {y1, . . . ,yM} (12)
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For any location x

Z∗
∆t(x,t) =

n∑
i=1

λi (Z(ui, t) + ε(ui, t)) (13)250

To minimize the estimation variance an equation system similar to the OK system has to be solved, namely:

n∑
j=1

λjγ(ui−uj) +λiE[ε(ui, t)
2] +µ = γ(ui−x) i= 1, . . . ,n

n∑
j=1

λj = 1 (14)

Note that OK is a special case of this procedure with the additional assumption ε(yj , t) = 0. This system leads to an increase

of the weights for the primary and a decrease of the weights for the secondary network. For each time step and percentile255

the variances of the random error terms ε(yi, t) is estimated from the interpolation error of the distribution functions. This

interpolation method is referred to as Kriging using uncertain data (KU)(Delhomme, 1978).

3.5 Step by step summary of the methodology

In summary, the procedure for using secondary observations is as follows:

1. Select a percentile threshold for a selected time aggregation. The threshold should be adapted to the temporal aggrega-260

tion, e.g. 98 or 99 % for hourly or 95 % for 3 hourly data.

2. Calculate the indicator series for primary and secondary stations corresponding to the percentile threshold.

3. For each individual secondary station:

(a) Calculate the indicator correlation of the given secondary and the closest primary station.

(b) Calculate the indicator correlations of all primary stations using data corresponding to the time steps of the selected265

secondary station.

(c) Compare the correlations and keep the secondary station if its indicator correlation is in the same range as the

indicator correlations of the primary stations approximately at the same distance (IBF).

4. Perform a bias correction by interpolating the distribution function values of the primary network.

5. Select an event to be interpolated and calculate the corresponding variogram of precipitation (based on rank statistics).270

(a) Calculate the percentile of observed precipitation (based on the corresponding time series).

(b) Calculate the quantiles corresponding to the above secondary percentile for the closest M primary stations of

observed precipitation (based on the corresponding time series).

10



Table 1. Statistics of three Netatmo stations (N07, N10, N11) compared to a Pluvio weighing gauge for April to October 2019 at the IWS

Meteorological Station for different temporal aggregations.

1h 6h 24h

Pluvio N07 N10 N11 Pluvio N07 N10 N11 Pluvio N07 N10 N11

p0 [-] 0.92 0.84 0.84 0.91 0.82 0.75 0.84 0.82 0.59 0.56 0.65 0.59

mean [mm] 1.24 1.46 1.80 1.41 3.46 4.04 4.24 3.89 5.78 7.28 7.51 7.02

standard deviation [mm] 2.15 2.52 4.49 2.52 4.86 5.77 7.55 5.71 8.46 10.49 11.52 10.33

25th percentile [mm] 0.18 0.20 0.10 0.20 0.39 0.33 0.30 0.40 0.48 0.63 0.58 0.58

50th percentile [mm] 0.51 0.71 0.50 0.61 1.49 1.41 0.91 1.21 2.36 2.78 1.62 2.58

75th percentile [mm] 1.34 1.72 1.41 1.52 4.60 5.33 4.14 4.95 7.82 9.87 11.26 9.95

maximum [mm] 19.84 22.62 44.74 22.22 23.28 28.58 44.74 27.98 45.62 55.55 56.16 55.55

All statistics except for the p0 values are based on non-0 values. p0 is the non-exceedance probability of precipitation < 0.1 mm.

(c) Interpolate the quantiles for the location of the secondary station using the above primary values using Ordinary

Kriging, and assign the obtained value to the secondary location.275

6. Interpolate precipitation for each secondary location using Ordinary Kriging excluding the value assigned to the location

(cross validation mode).

7. Compare the interpolated and the assigned (5.c) value and remove if condition of inequality (eq. 8) indicates outlier.

8. Interpolate precipitation for target grid using all remaining values using OK or KU.

4 Application and Results280

The section describing the application of the methodology is divided into three parts. First the rationale of the assumptions

is investigated. In a second step, the methodology is applied on a large number of intense precipitation events on different

time aggregations using a cross validation approach. This allows for an objective judgement of the applicability of the results.

Finally, the results of the interpolation on a regular grid are shown and compared.

4.1 Justification of the methods285

For a direct comparison between the secondary rain gauges and devices from the primary network, three Netatmo rain gauges

were installed next to a Pluvio2 weighing rain gauge (the same type as regularly used by the DWD) at the Institute for Modelling

Hydraulic and Environmental Systems’ (IWS) own weather station on the Campus of the University of Stuttgart. With this data

from 15 May to 15 October 2019 a direct comparison between the different devices used in the primary and secondary network

was possible.290
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Figure 3. Scatter plot showing a) the hourly rainfall values (axes log-scaled) and b) the corresponding upper percentiles > 0.92 (right)

between the Pluvio2 weighing gauge and three Netatmo gauges (N07, N10, N11) at the IWS Meteorological Station.

Table 1 shows statistics of the three devices compared to those of the reference station. The table shows that the secondary

stations overestimated precipitation amounts by about 20 %. Furthermore, one can observe that the deviation between the

reference and the Netatmo gauge are not linear, hence a data correction of the secondary gauges using a linear scaling factor

is not sufficient. Figure 3 shows scatter plots of hourly rainfall data and the corresponding percentiles from the three Netatmo

gauges and a reference station.295

Figure 3 shows that for high percentiles their occurrence is the same for the primary and the secondary devices. Although

this is only one example with a relatively short time period it does support our assumption that the quantiles between primary

and secondary stations are similar for higher precipitation intensities. However, one secondary device (N10) delivered data

which deviates substantially from the other measurements. This was caused by an interrupted connection between the rain

sensor and the base station. In this case, the total sum of precipitation over a longer time period was transferred at once (i.e. in300

one single measurement interval) when the connection was established again. This leads to an extreme outlier which falsifies

the results. The firstindicator filtering procedure (IBF) can identify such problems effectively.

The secondary measurement devices can lead to very different biases depending on where and how they are installed. This

can be seen comparing the distribution functions of hourly precipitation accumulations corresponding to a set of very close

primary stations with those of the secondary stations in the same area. Figure 4 shows the distribution functions of three305

primary and four secondary stations in the city of Reutlingen. While the distribution functions of the primary network are

nearly identical, those of the nearest secondary stations vary significantlystrongly. Some overestimate and others underestimate

the amounts significantly. This example supports the concept of the paper, namely that secondary data require filtering and data

transformations before use. While the distributions differ, the probability of no precipitation p0 (defined as precipitation < 0.1

mm) ranges from 0.90 to 0.91 and is thus very similar for both types of stations indicating that the occurrence of precipitation310

can be well detected by the secondary network.
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Figure 4. The upper part of empirical distribution functions of three primary stations (solid lines) and four secondary stations (dashed lines)

from a small area in the city of Reutlingen based on a sample size of 15,990 data pairs (hourly precipitation).

4.1.1 Application of the filters

Indicator correlations were calculated for different temporal aggregations and for a large number of different α values in the

range between 95 and 99 %. Figure 5 shows the indicator correlations for one hour aggregation and the 99 % quantile using

pairs of observations of the primary-primary and the primary and secondary network as a function of station distance. The315

indicator correlations of the pairs of the primary network show relatively high values and a slow decrease with increasing

distance. In contrast, if the indicator correlations are calculated using pairs with one location corresponding to the primary

and one to the secondary network the scatter increased substantially. Secondary stations for which the indicator correlations

are very small in the sense of equation (4) are considered as unreliable and are removed from further treatmentprocessing.

A relatively large distance tolerance was used as the density of the primary stations is much lower than the density of the320

secondary stations. On the right panel the indicator correlations corresponding to the remaining secondary stations shows a

similar spatial behaviour as the primary network. In our case, 862 secondary stations remained after the application of the

IBF. This number is small compared to the total number of available secondary stations, but note that the shortest records

were removed and low correlations may occur as a consequence of short observation periods, and in the future with increasing

number of measurements some of these stations may be reconsidered.325

The second filterEBF was applied for each event individually. The number of removed measurementsdiscarded secondary stations

is this study varied from event to event and was on average around 5 %. Hence, the secondary filter did not play an important role in the

procedure.

4.2 Cross validation results

As there is no ground truth available the quality of the procedure had to be tested by comparing omitted observations and their330

estimates obtained after the application of the method.
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Figure 5. Indicator correlations for 1h temporal resolution and α = 0.99 between the secondary network and the nearest primary network

stations before (left) and after (right) applying the IBF (red crosses). The black dots refer to the indicator correlation between the primary

network stations.

Table 2. Statistics of the selected intense precipitation events based on the primary network.

Temporal resolution 1 hour 3 hours 6 hours 12 hours 24 hours

Number of intense events 185 190 190 195 195

Events between October-March 1 16 29 48 57

Events between April-September 184 174 161 147 138

Minimum of the maxima [mm] 28,01 31,2 33,35 34,9 35,5

Maximum of the maxima [mm] 122,3 158,2 158,4 160 210,3

p0 (mean of all stations and events) 0,9 0,84 0,77 0,68 0,55

p0 is defined here as precipitation <0.1mm

The cross validation was carried out for a set of different time aggregations ∆t and a set of selected events. Only times with

intense precipitation were selected, as for low-intensity cases the interpolation based on the primary network is sufficiently

accurate. Table 2 shows some characteristics of the selected events. For short time periods nearly all events were from the

summer season, while for longer aggregation the number of winter season events increased, but their portion remained below335

30 %. Note the high portion of zeros for all aggregations.

The improvement obtained through the use of secondary data is demonstrated using a cross validation procedure. The

primary network is randomly split into 10 subsets of 10 or 11 stations each. The data of each of these subsets was removed

and subsequently interpolated using two different configurations of the data used, namely a) only other primary network

stations (Reference 1) and b) using the other primary and the secondary network stations (Reference 2). For the latter case, the340

interpolations were carried out using the primary station data and the following configurations:

– C1: All secondary stations

– C2: Secondary stations remaining after the application of the temporal filterIBF
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– C3: Secondary stations remaining after application of the temporal filterIBF and the event based spatial filterEBF

– C4: Secondary stations remaining after application of the temporal filterIBF and the event based spatial filterEBF and consider-345

ing uncertainty (KU)

The results were compared to the observations of the removed stations. The comparison was done for each location using

all time steps and at each time step using all locations. Different measures including those introduced in Bárdossy and Pegram

(2013) were used to compare the different interpolations. The results were evaluated for each time aggregation.

First, the measured and interpolated values were compared for each individual station and the Pearson (r) and Spearman350

correlations (ρ rS) of the observed and interpolated series were calculated. Table 3 shows the results for the different configu-

rations used for the interpolation.

Table 3. Percentage of the stations with improved temporal correlation (compared to interpolation using primary stations only) for the

configurations C1-C4.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r ρ rS r ρ rS r ρ rS r ρ rS r ρ rS

C1: Primary and all secondary without filter and OK 60 68 40 57 31 49 22 34 17 32

C2: Primary and secondary using temporalIBF and OK 81 91 75 90 73 90 64 84 52 81

C3: Primary and secondary using temporalIBF, spatial filterEBF and OK 81 92 75 93 73 92 69 92 56 87

C4: Primary and secondary using temporalIBF, spatial filterEBF and KU 81 92 75 92 74 91 70 91 56 86

r Pearson correlation, rS Spearman correlation.

There is no improvement if no filter is applied - except a very slight improvement for 1 hour durations. This is mainly due to

the better identification of the wet and dry areas. The use of the filters (and the subsequent transformation of the precipitation

values) leads to an improvement of the estimation - the temporal filterIBF being the most important. The spatial filter further355

improves the correlation while the additional consideration of the uncertainty of the corrected values at the secondary network

resulted in a marginal improvement. As the secondary stations are not uniformly distributed over the investigated domain the

gain of using them is also not uniform. Highest improvements were achieved in and near urban areas with a high density of

secondary stations, less improvement was achieved in forested areas with few secondary stations.

The measured and interpolated results were also compared for each event in space and (r) and (rS) and the observed the360

interpolated spatial patterns were calculated as well. Table 4 shows the results for the different configurations C1 to C4 used

for the interpolation.

The use of secondary stations leads to a frequent improvement of the spatial interpolation even in the unfiltered case. The

reason for this is that the spatial pattern is reasonably well captured by the secondary network. With increasing time aggregation

the improvement disappears as the role of the bias increases due to the decreasing number of data which can be used for bias365
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Table 4. Percentage of the stations with improved spatial correlation (compared to interpolation using primary stations only) for the config-

urations C1-C4 ( r Pearson correlation, rS Spearman correlation)

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

Correlation measure r ρ rS r ρ rS r ρ rS r ρ rS r ρ rS

C1: Primary and all secondary without filter and OK 83 68 72 52 63 49 53 49 49 46

C2: Primary and secondary using temporalIBF and OK 96 97 90 93 90 93 84 89 80 85

C3: Primary and secondary using temporalIBF, spatial filterEBF and OK 96 97 92 94 93 94 89 92 84 89

C4: Primary and secondary using temporalIBF, spatial filterEBF and KU 93 94 90 92 90 93 84 89 80 87

correction. As in the case of the temporal evaluation the first filterIBF (and the subsequent transformation of the precipitation

values) leads to the highest improvement. The spatial filterEBF plays a marginal role, and the consideration of the uncertainty

leads to a slight reduction of the quality of the spatial pattern. The improvement is smaller for higher temporal aggregations.

Kriging with uncertainty did not improve the results.

Finally all results were compared in both space and time. Here the root mean squared error (RMSE) was calculated for all370

events and control stations. Table 5 shows the results for the different configurations used for the interpolation.

Table 5. RMSE (mm) for all stations and events.

Temporal aggregation 1 hour 3 hours 6 hours 12 hours 24 hours

Number of events 185 190 190 195 195

C0: Primary stations only and OK (Reference) 5.97 6.97 7.34 7.71 8.35

C1: Primary and all secondary without filter and OK 6.21 44.79 18.43 10.01 24.16

C2: Primary and secondary using temporalIBF and OK 4.83 6.05 6.61 7.33 8.29

C3: Primary and secondary using temporalIBF, spatial filterEBF and OK 4.84 6.07 6.58 7.19 8.12

C4: Primary and secondary using temporalIBF, spatial filterEBF and KU 4.82 6.02 6.53 7.15 8.08

The improvement using the filters is high for each aggregation. The temporal filterIBF is important to improve interpolation

quality. The spatial filterEBF and the consideration of the uncertainty of the secondary stations are of minor importance. The

improvement is the largest for the shortest aggregation (1 hour) where the RMSE decreased by 20 % and the smallest for the

24 hours aggregation with an improvement of 4 %. Decreasing spatial variability and increasing regularity with increasing time375

aggregation is the reason for these differences.

4.3 Selected Events Case Studies

As the cross validation results were showing improvements, the data transformations and subsequent interpolations were carried

out for all selected events. As an illustration four case studies selected events are shown and discussed here.
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The first example (Fig. 6) shows the results of the interpolation of a 1 hour aggregated precipitation amount for the time380

period from 15:00 to 16:00 on June 11, 2018. For this event, 531 out of 862 PWS had valid data (i.e. not NaN) from which 476

remained after the EBF. The top panels of this figure show three different precipitation interpolations for this event:

a) using the combination of the two station networks after application of the filters and transformation of the secondary

data

b) using the primary network only385

c) using all raw unfiltered and uncorrected data from the secondary network only

The panels in the bottom row of Figure 6 show d) the difference between a) and b), and e) the difference between c) and b).

The three images a) to c) are similar in their rough structure, but there are important differences in the details. The interpolation

using the primary network leads to a relatively smooth surface. The unfiltered secondary station based interpolation is highly

variable and shows distinct patterns such as small dry and wet areas. The combination after filtering and transformation is more390

detailed than the primary interpolation, and in some regions these differences are high. The map of the difference between the

primary and the secondary station based interpolation (Fig. 6 e) shows large regions of underestimation and overestimation by

the secondary network. The differences between the primary and the filtered interpolations using transformed secondary data

in panel d) is much smaller but in some regions the differences are still quite large, e.g. in the north-eastern part of the study

area. In both cases, negative and positive differences occur. Note that for this data the cross validation based on the primary395

observations showed an improvement of r from 0.36 to 0.77, of rS from 0.55 to 0.76 and a reduction of the RMSE from 12.5

to 8.2.

Figure 7 shows the distributions of the cross validation errors for the different interpolations for this event. This is a typical

case where all methods yield unbiased resluts. The use of unfiltered and uncorrected secondary observations (C1) shows the

highest variance, followed by the interpolation using only primary observations (C0). The other three methods (C2-C4) have400

very similar results with significantly lower variance.

Another interpolated 1 hour accumulation corresponding to 17:00 to 18:00 on September 6, 2018 is shown in Figure 8. For

this event, from the 862 PWS remaining after the IBF, 576 PWS had available data from which 513 remained after the EBF.

These pictures show a similar behaviour to those obtained for June 11 (Fig. 6). Here, a high local rainfall in the southern central

part of the study area was obviously not captured by the secondary network, leading to a large local underestimation in panel e).405

Furthermore, a larger area with precipitation in the primary network in the northern central in panel b) is significantly reduced

in size by the rainfall/no-rainfall information from the secondary network in panel c). For this case, the cross validation based

on the primary observations showed an improvement of r from 0.61 to 0.86, of rS from 0.59 to 0.72 and a reduction of the

RMSE from 5.65 to 3.75.
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Figure 6. Interpolated precipitation for the time period 15:00 to 16:00 on June 11, 2018 (upper panel), and the differences between primary

and combination, and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the interpo-

lation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b) and c)

and b) respectively.

Figure 7. Distribution of the cross validation errors for the time period 15:00 to 16:00 on June 11, 2018 for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.
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Figure 8. Interpolated precipitation for the time period 17:00 to 18:00 on September 6, 2018 (upper panel) and the differences between

primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering, b) the

interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a) and b)

and c) and b) respectively.

19



The following two case studies show two interpolation examples for 24 hours which was the longest time aggregation in410

this study. Figure 9 shows the maps corresponding to the precipitation of 0:00 to 24:00 on May 14, 2018. For this event,

515 PWS valid stations remained. This number was reduced to 499 after the EBF. The behaviour of the interpolations is

similar to the 1 hour cases shown above, the unfiltered and untransformed secondary interpolation is irregular and shows a

systematic underestimation. Due to the longer aggregation, the local differences are less contrasting as in the case of hourly

maps. The combination contains more details and the transition between high and low intensity precipitation is more complex.415

The difference between the primary (panel b) and the combination based interpolation in panel a) is relatively smaller than for

the 1 hour aggregations. This is caused by the reduction of the variability with increasing number of observations. Note that

for this dataevent the cross validation based on the primary observations showed an improvement of r from 0.57 to 0.8, of rS

from 0.57 to 0.82 and a reduction of the RMSE from 15.99 to 13.61.

Figure 9. Interpolated precipitation for the time period for a 24 hour event from 0:00 to 24:00 on May 14, 2018 (upper panel) and the

differences between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying

the filtering, b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences

between a) and b) and c) and b) respectively.

Another interesting 24 hour event which was recorded on July 28, 2019 is shown in figure 10. For this event, 734 valid PWS420

remained from IBF and 703 after EBF. The map based on the raw secondary data in panel c) shows very scattered intense

rainfall. The combination of the primary and secondary observations changes the structure and the connectivity of these area

with intense precipitation. The cross validation for this event showed an improvement of r from 0.32 to 0.75, of rS from 0.42

to 0.77 and a reduction of the RMSE from 14.77 to 10.21.
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Figure 10. Interpolated precipitation for the time period for a 24h event from 0:00 to 24:00 on July 28, 2019 (upper panel) and the differences

between primary and combination and primary and secondary data based interpolations. Panel a) shows the result after applying the filtering,

b) the interpolation from the primary network and c) the one from the secondary network. Panels d) and e) depict the differences between a)

and b) and c) and b) respectively.

The results of the filtering algorithm for the other events show a similar behaviour. The differences between primary and425

combined interpolation can be both positive and negative for all temporal aggregations. In general, the secondary network

provides more spatial details, which could be very important for hydrological modelling of meso-scale catchments.

Figure 11 shows the distributions of the cross validation errors for the different interpolations for this event. The results

are different from the case presented in Figure 7. In this case all methods are slightly biased. The interpolation using only

primary observations (C0) shows the highest bias and variance. In this case, the use of unfiltered and uncorrected secondary430

observations (C1) yields a lower bias and a lower variance. The other three methods (C2-C4) have very similar results with

significantly lower variance.

5 Discussion and conclusion

Precipitation is highly variable in space and time, therefore the estimation of precipitation for unobserved locations is very

uncertain. This uncertainty can be reduced with additional information from e.g. PWS. The use of observations from such435

PWS networks has the potential to improve the quality of precipitation estimation. But because it is not known whether these

PWS are installed and maintained correctly (i.e. in compliance with the WMO standards) the corresponding data are not always
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Figure 11. Distribution of the cross validation errors for the 24h event from 0:00 to 24:00 on July 28 2018, for the five interpolation methods:

C0: using primary stations only and OK, C1: Primary and all secondary without filter and OK, C2: Primary and secondary using IBF and

OK, C3: Primary and secondary using IBF, EBF and OK, C4: Primary and secondary using IBF, EBF and KU.

reliable and trustworthy. The results from this study indicate that using uncorrected PWS data may lead to higher RMSE than

using only data from primary networks. Hence, a QC has to be performed before such data sets can be used.

There are several possible QC methods which could be used, e.g. such as presented by de Vos et al. (2019).This approach440

uses a comparison of the data with those of the nearby stations to remove unreasonable values, a separate procedure to identify

and remove false zeros and another one filter to find unreasonably high values. Subsequently, the bias is corrected by com-

paring past local observations to a high quality merged radar and point observation product. The bias correction is performed

uniformly in neighbourhoods. Finally, another filter using correlations of time series serves to remove remaining suspicious

data. The methodology presented in this study uses rank statistics and geostatistics for filtering and bias correction. The ob-445

servations of the secondary network are directly compared to those of the primary network. This is done individually for each

station based on the ranks of the observations under the assumption that for high precipitation intensities the ranks of the ob-

servations are correct for the secondary stations. First, PWS which have indicator time series with low correlations compared

to the primary network are removed. The remaining secondary stations are tested for each event separately using Ordinary

Kriging in a cross validation mode. Finally the data are bias corrected using interpolated quantiles of the primary observations.450

This is an important aspect, since stations that are close to each other do not necessarily have a similar bias. Examples from

the Reutlingen data show that positive and negative biases can occur at neighbouring PWS. The use of secondary stations

after filtering and data transformation improves the results of interpolation for other possible interpolation methods, such as

nearest neighbour or inverse distance weighting. However, in this study these methods yield worse results than OK (results

not shown here). An advantage of the KU interpolation method is that combination of different measurements, such as radar455

or commercial microwave links based indirect information can be accommodated in the same framework. By using KU for

interpolation, the weights for data from secondary networks can be reduced to account for the higher uncertainty for these data.

Other procedures for the efficient use of secondary data may also be considered. Specifically, the interpolation of precipitation

amounts with Co-Kriging using non-collocated observations (Clark et al., 1989) using percentiles P∆t(yj , t) as co-variates (5)
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or Quantile Kriging (QK) (Lebrenz and Bárdossy, 2019) may lead to better results. However QK has to be modified due to460

the large number of zeros occurring for short aggregation intervals, for example by combining it with the approach developed

by Bárdossy (2011). The applied filters in this study may be conservative by rejecting more stations than absolutely needed,

but this proved to be useful in order to obtain robust results. The length of times series from the current secondary network

will increase and subsequently more observations which were currently discarded may also become useful. Furthermore, it can

be expected that the number of secondary stations will continue to increase, thus one can expect further improvements of the465

quality of precipitation maps for all temporal aggregations.

Finally, we want to highlight the differences of the approach used in this study compared to precipitation estimation using

weather radar, since this type is often used when rainfall fields with a high temporal and spatial resolution are required.

– Secondary stations measure precipitation on the ground whereas radar measures reflectivity at higher elevations. There-

fore, rain measured by radar may be advected by wind.470

– Secondary stations measure precipitation as a point value, radar measures spatial aggregations over large volumes.

– Radar measurements have problems with attenuation, secondary stations do not.

– Radar resolution is relatively uniform, secondary stations form an irregular network.

These differences are not listed here to compete between the two forms of additional information, but to point out that their

different behaviour may be used for an effective combination. The method presented here requires a relatively dense primary475

network. The use of secondary stations in regions with sparse reliable networks seems to be also possible but will require

further research on the required station density of primary networks.

6 Conclusions and Outlook

As precipitation uncertainty is possibly the most important factor for the uncertainty in rainfall/runoff modelling, the increas-

ing number of online available private weather stations offers a possibility to increase the accuracy of precipitation estimation.480

Furthermore, the real-time availability of the data of secondary networks may help to improve the quality of flood forecasts.

In any case, a QC of these data is required since the use of raw data of the secondary network does not improve interpolation

quality; in contrary it often increases uncertainty.

In this study a geostatistical method combined with rank statistics was successfully applied. Stations which do not fit to

the space-time pattern of the primary observations can be flagged and removed using indicator correlations. The remaining485

observations are still not directly useful, they have to be bias corrected using the time series of nearby stations of the primary

network. A detailed cross validation experiment showed that after QC and bias correction in a large number of cases inter-

polation quality was improved. This improvement is the biggest for hourly time aggregations with a reduction of the RMSE

by 20 % , while for daily values the improvement is around 4 %. Overall, the spatial precipitation patterns are improved af-

ter corrections with the help of secondary network observations, especially for the short time scales. In particular, the spatial490
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extent of precipitation fields are modified by the rainfall/no-rainfall information from the dense secondary network data. The

results of this study in terms of improving the interpolation of precipitation are encouraging, but the authors believe that further

improvements can be achieved. In this context, the following aspects would be of interest:

1.) The number of primary stations in this was sufficient to improve the interpolation quality. However, it would be interest-

ing to investigate which density of stations is necessary to improve the precipitation interpolation.495

2.) For applying this approach to shorter time steps (e.g. 5 minutes for which the PWS data is available), the effect of

advection would have to be taken into account.

3.) By applying a rather strict threshold of 5◦C average daily temperature, many rainfall events are rejected. It would be

conceivable to include the hourly temperature data from PWS in order to estimate whether a precipitation event of rain

or snow at a specific location.500

4.) Wind has a major effect on precipitation measurements, leading to a systematic undercatch. This may influence the order

of data, but the effect is the same for the primary and secondary network. As PWS often contain wind measurements

too, there is a chance that the wind influence can be partly corrected.

The approach presented in this study is based on a combination of a reliable but spatially sparse primary network and a secondary network with numerous

but also potentially biased and/or faulty observations.505

For all temporal resolutions, using the unfiltered secondary network data substantially increased the RMSE values. Hence, a direct application of the raw

secondary data leads to a deterioration of the interpolation quality. Therefore, a filtering of data from the secondary network is essential.

Observed precipitation values at the remaining secondary stations can be transformed to become unbiased using the observed percentiles and the distribu-

tions at the primary stations as shown in Appendix A. This transformation does not require an independent ground truth of best estimation of precipitation at

the secondary locations.510

A comparison of the spatial characteristics of the time series of primary and secondary stations can be used to filter out stations with unreliable data.

Observed precipitation values at the remaining secondary stations can be transformed to become unbiased using the observed percentiles and the distributions

at the primary stations as shown in Appendix A. This transformation does not require an independent ground truth of best estimation of precipitation at the

secondary locations. A second spatial filter can be applied to find occasional faulty values at the used secondary stations. The cross validation results of a

large number of different intense precipitation events show that with the presently available secondary stations after application of the two filters and the515

data transformation one can improve interpolation quality significantly. The improvement is the biggest for hourly time aggregations with a reduction of the

RMSE by 20 % , while for daily values the improvement is around 4 %. The spatial precipitation patterns are improved after corrections with the help of sec-

ondary network observations, especially for the short time scales. In particular, the spatial extent of precipitation fields are modified by the rainfall/no-rainfall

information from the dense secondary network data.

Data availability. The precipitation data was obtained from the Climate Data Center of the German Weather Service (https://opendata.520

dwd.de/climate_environment/CDC). The data from the Netamo stations was downloaded using the Netatmo API (https://dev.netatmo.com/

apidocumentation).
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Appendix A: Transformation of Precipitation Amounts at Secondary Stations

This appendix illustrates the calculation for the transformation of precipitation amounts at secondary stations as described in

section 3.2. For simplicity consider 4 primary stations at the corners of a square and the secondary station being in the center525

of the square. This configuration ensures that the Ordinary Kriging weights of the primary station with respect to the secondary

station are all equal to 1/4 independently of the variogram.

The observed precipitation amounts at the stations are 3.1, 1.8, 3.0 and 2.1 mm for a selected event. The secondary station

reported 1.7 mm rainfall. This corresponds to the 0.99 non-exceedence probability of precipitation for the specific secondary

station. The precipitation quantiles at the primary stations corresponding to the 0.99 probability are 3.2, 3.5, 3.1 and 3.0 mm.530

Interpolation of these values gives 3.2 mm which is the value assigned to the secondary station instead of the value of 1.7 mm.

This value is greater than all the four primary observations. The reason for this is that the primary observations all correspond

to lower percentiles. Note that the interpolation of the primary values corresponding to the event for the secondary observation

location would be 2.5 mm. Figure A1 illustrates this example.

Figure A1. Example for Transformation of precipitation amounts at a secondary station.
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Reply to the review provided by Lotte de Vos to the paper
The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank Lotte de Vos for taking the time to review our manuscript thor-
oughly. Regarding the summary, we’ like to clarify that we investigated
955 individual events (about 200 for each duration), not only 200.

Our response to the major comments:

P2L42-49 ff.

We appologize for the misinterpretation of the paper of de Vos et al.
(2019). After careful rereading we recognized that our interpretation
was wrong, and we’ll correct the corresponding paragraphs in the revised
version of the paper. The filtering is in fact not requiring the actual
radar product. On the other hand the bias correction filter SO requires
the radar product for the previous time period. This is itself is subject
of errors. Further please note that the validation of the precipitation
amounts is done on the basis of the radar product, for which the uncer-
tainty and inaccuracy plays an important role. The SO filter provides
a kind of regional bias correction, our transformation is correcting each
station individually as we have observed that even within a small region
significant positive and negative biases may occur. The filters FZ and HI
are very similar to our second event based filters. The first filter requires
at least a few months of observations - this is a disadvantage, but on the
other hand it provides an overall judgement of the individual PWS. As
the second filter is applied for each event to all stations which passed the
first filter. Thus there is little risk that occasionally bad measurement
are not rejected. Our filter is in fact rather strict (conservative) as we
remove many stations. We need further work to find the best selection
of useful PWS and for the bias correction.

The proposed method is interesting and promising, however there are
some significant limitations due to the assumptions in the filters. It
can be considered contradictory that the main perceived issue with the
QC in previous work (mistakenly) is its dependence on another data
source, while this methodology relies on the availability of another data
source itself. The PWS are used as an addition to a high quality primary
rain gauge network with long observation series in the study area of
interest, measuring in high temporal resolution. Such a network may
not be readily available everywhere, and this should be mentioned in the
discussion more broadly than it is now.

It is true that high quality primary measurements might not be available
everywhere. We are testing the methodology on smaller primary datasets
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to quantify the usefulnes of the PWS network.

The paper is very limited in describing how the data is gathered from
the Netatmo rain gauges, which measure approximately every 5 minutes.
The unprocessed time series that can be collected with the Netatmo API
do typically not have fixed time steps and can contain large data gaps.
The paper is not clear on how these raw time series are processed into
structured aggregated time series at 1, 3, 6, 12 and 24 hour time steps, but
does mention in the evaluation of Netatmo data from the experimental
set- up with a Pluvio sensor an error resulting from station connectivity.
This error is difficult to understand without knowing the process that
the authors have used.

We will describe the data used and the processing more clearly in the
revised manuscript. The data we downloaded using the Netatmo API
did have regular 5-min timesteps, however these we’re not always contin-
uous. Such gaps in the data were filled with NaNs. These data were then
aggregated to 1h sums and by keeping the NaNs, i.e. any 1h-aggregation
with NaNs in-between was considered as NaN. We compared the fre-
quencies of the zero observations of the primary and secondary network
and did not find significant differences. This means that the problem of
providing 0-s for nan-s was negligible in our case (but we did find occa-
sional occurrences of false zeroes when comparing the 3 Netatmos with
the reference at our weather station). Moreover, since each PWS station
was verified individually, the missing data were always taken into account
and the corresponding data from the primary network were considered.
All analyses in the study are based on hourly precipitation sums, and all
other aggregations were based upon these.

Minor comments:

P4L77: ”one can see that many stations have less than one year of ob-
servations” - how does that follow (from figure 2 or elsewhere), and why
is the proposed methodology not able to accommodate these stations?

We will clarify this in the revisions by adding a figure showing a his-
togram of the time lengths of the PWS stations. Furthermore, a certain
time length (2 months excluding the winter months) is required for the
filters to work.

Section 2 would benefit from more quantitative descriptions of the mea-
surement uncertainty of the sensors that are mentioned, e.g. from tech-
nical documentation of these sensors from the supplier.

We will adress this aspect in the revisions.

P5L103: Note that Y is considered to be a random field, and thus meth-
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ods like Co-Kriging or Kriging with an external drift are not applicable.
the purpose of this statement in this context is not entirely clear to me.

Correctly: Y is not a stationary random field as the measurement bias
and uncertainty can differ from one station to the other. Meanwhile
we found a way to use Co-Kriging - after using a transformation. The
reference for non-collocated Kriging is in our response to Reviewer #3.
The manuscript will be modified accordingly.

Section 3.1 describes that a secondary station is flagged as suspicious
if its indicator correlations with the nearest primary network points are
below the lowest indicator correlation corresponding to the primary net-
work for the same time steps and at the same separation distance. I can
imagine that not all distances between secondary station and nearest pri-
mary network points equal a separation distance between two primary
network stations exactly. Is then the nearest distance used? If so, what
are the largest differences between separation distances? Or is the re-
lationship between distance and correlation (ρ) described with a fitted
relation (effectively a correlogram)? If so, what is then the meaning of
”min” in Eq. (2)?

Each secondary station has a single closest primary station. The indi-
cator correlations are calculated based on the whole time series (after
removal of the nan-s) of these pairs . The indicator correlations using
all pairs of primary stations are also calculated using exactly the same
timesteps. We assume that the indicator correlations of the primary
stations represent the true spatial variability of precipitation. Thus we
compare these clouds and reject all secondary stations where the corre-
lations are below those primary pairs within a distance window with a
tolerance. The tolerance is needed for close pairs of primary and sec-
ondary stations. We do not calculate indicator correlations for pairs of
secondary stations.

P7L163: ”.. due to unforeseen events (such as battery failure or trans-
mission errors) at certain times they may deliver individual false values.”
→ How is the issue of data gaps in Netatmo time series addressed? Here
it seems to be referred to as ”false values”, however it should be evident
from the Netatmo time series that an observation was lacking (due to a
long duration between the timestamps of two subsequent observations).I
wonder if regarding these observations as zero observations and subse-
quently identifying them with a simple geostatistical outlier detection
method is the best approach. The authors may refer to the station in
total(not a certain period in observations), which due to battery failure
or transmission errors is considered to be faulty. If that is the case, which
fraction of the data should be missing for a station to be considered a
geostatistical outlier?A later section (P9L224-229) hints at problems due
to data gaps which resulted in a large outlier, but it’s not clear if these
cannot be avoided by looking at the timestamps of the PWS observations.
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More information on how the raw irregular Netatmo PWS datasets are
converted to timeseries with fixed timesteps would be very helpful.

As mentioned above, all missing time stamps in the downloaded data
were flagged as NaN (not 0). The timesteps from the data we downloaded
are in regular 5-min intervals. We will decribe our data processing more
clearly in the revised manuscript. In table 1, only 1h timesteps where
all devices (i.e. the three Netatmo and the Pluvio reference) have valid
data were considered.

Figure 4: why are the lines of the Secondary Stations stepped and the
Primary Stations not?

Because of the different resolution of the rain gauges, i.e. Netamo 0.1mm
and Pluvio 0.01mm

Table 2 caption: I assume that p0 still refers to probability of precipi-
tation. Is it then the fraction of intervals where precipitation is larger
than 0.1 mm? In that case it makes more sense to change the text in the
table from ”<0.1 mm” to ”>0.1 mm”. Also, ”(mean of all stations and
events)” is not very clear in this context, please explain.

P12L260: ”Note the high portion of zeros” - where can this portion be
found? It doesnt seem to be provided in Table 2. Should this be portions
of intervals where precipitation is <0.1 mm?

We will clarify this in the revision.

Table 2: what was the procedure to select these events?

The intense rainfall events were selected from the observation of the pri-
mary network. For each temporal aggregation, we investigated the high-
est 200 intense events. These were selected regardless of the observed
location or time. For the cross validation procedure, only events without
nugget variograms were chosen, this is why for each temporal resolution
the final number of events was slightly less than 200.

P12L274: Pearson (r) and Spearman (ρ) correlation→ up until now I
would have assumed the correlation that was introduced in section 3.1
to be the Pearson correlation. However, as the symbol ρ was used in
that section, that was likely actually Spearman. Either way, it should
be specified in section 3.1. Also, what is the motivation to evaluate two
types of correlation?

As the distribution of precipitation amounts is skewed the Pearson cor-
relation may be strongly influenced by a few high values. The Spearman
correlation is independent of the distribution and shows whether the

4



ranks of the observations were correctly reproduced. As our method is
strongly based on rank based assumptions it is reasonable to consider it.
The text will be revised to recognize which correlation was actually used.

Section 4.2: It is explained that two references are constructed using
cross validation. Reference 1 is constructed by interpolating the subsets
with only primary network stations, and Reference 2 is constructed by
interpolating the subsets with primary and secondary network stations.
What is the reason for constructing two references? From their captions
it seems that Table 3 and 4 are based on comparisons with Reference 1.
Is Reference 2 used somewhere else?

This seems to be a misunderstanding. These sets are not references these
are the interpolations - we used a cross validation approach and both in-
terpolations are compared on the observed primary dataset (every time
for the stations not considered).

P17L334: ”This is caused by the reduction of the variability with increas-
ing number of observations” → Is that true? Why would the variability
of a rainfall event be dictated by the number of observations in space? It
seems to refer to the more smooth rainfall patterns found at daily scales
compared to hourly scales, but this phrasing is confusing.

Our wording is in fact confusing - we meant with the increase of aggrega-
tion (the number of 5 min data considered) the fields become smoother.
We’ll correct this in the manuscript.

P20L400: ”The precipitation quantiles at the primary stations corre-
sponding to the 0.99 probability are 3.2, 3.5, 3.1 and 3.0 mm.” → how
does this follow from the information that is provided? Or is this pro-
vided information?

The quantiles are derived from the distributions based on the time series
of the primary stations. For this example we assumed that these are the
corresponding values.

Some interesting additional literature to refer to could be: https://www.nat-
hazards-earth-syst-sci.net/20/299/2020/nhess-20-299-2020.pdf on the use
of Netatmo data for describing deep convection features. Also, the QC
method https://github.com/metno/TITAN could be mentioned in addi-
tion to the QC method of Napoly et al. in the introduction. Finally,
Chen et al. (2018) ”Trust me, my neighbors say it’s raining outside:
Ensuring data trustworthiness for crowdsourced weather stations.” is an
example for quality estimation of PWS rainfall data from the Wundermap
platform.

Thank you for pointing out these references, we will consider them in the
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Introduction.

The other minor remarks will be considered while preparing the revised
manuscript.
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Reply to the review provided by Nadav Peleg to the paper
The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank Nadav Peleg for taking his time to carefully read our paper
and for his constructive remarks.

1. The motivation to use PWS in rainfall estimation is quite clear and
well written in the introduction. However, many studies suggest
various stochastic and deterministic methods to blend/merge/interpolate
different rainfall products, e.g. combining data from rain-gauges,
weather radar and CML together. Why not applying an already
established method to merge data from trustable rain-gauges with
PWS? There should be a short explanation in the introduction of
why a new merging method is needed.
Merging data requires assumptions on the dependence of the vari-
ables and on the error structure of the secondary variable. In the
case of PWS, the errors are spatially independent but due to the
fact that most of the measurements are likely to be biased the er-
rors do not have zero as mean. This already reduces the number of
possible merging methods. Furthermore, quite a few stations may
provide erroneous data; that is why we decided to use a filter first.
After filtering, some of the established methods such as Co-Kriging
could be applied. We tested a non-collocated version of Co-Kriging
and found that the correction of the secondary observations leads
to better results. We’ll adress this point in the introduction.

2. Empirical distributions are used for all PWS. I was wondering if
it wouldn’t be more accurate to use a specific distribution instead.
For example, the same distribution can be fitted to all the trustable
stations (but with different parameters), and the parameters can
be spatially interpolated to the PWS (and other) locations.
This is a good idea and may help identify and to quantify some
extremes of the PWS. At the present stage we intended to keep the
methodology as simple as possible.

3. I agree that the examples presented in figures 6 to 8 cannot be eval-
uated against ”true-rainfall” due to a lack of spatial information.
That is why I believe that there is an added value in comparing the
outcomes of the interpolation with data emerging from the weather
radar composite in Germany. If you do not trust the radar QPE,
there is no need to compare the actual rainfall intensities, but just
to demonstrate that the interpolated rainfall fields can assist in
revealing high-intensity rainfall features that are ”hidden” when
using the official rain-gauge network alone.
We compared interpolated rainfall maps with radar images and

1



discovered quite a few cases where the primary network missed
intense precipitation which was detected using the PWS and also
appeared on the radar image. We’ll add an example for this to the
paper.

4. The potential to use PWS to generate rainfall fields at a minutes-
scale is very appealing, especially for applications in urban hydrol-
ogy. I see the potential in using PWS to simulate rainfall fields at
high temporal-resolution, but in the presented study no sub- hourly
examples are presented. It will be nice to see if the potential to
interpolate the rainfall at high-resolution can be fulfilled and to
discuss the limitations of the PWS and methods in going to such
fine scales.
We did not include any examples for short time scales (5 to 30
minutes). The reason for this is that for very fine time scales a space
time interpolation is likely to perform much better than the pure
spatial interpolation. This however requires some new theoretical
developments including advection direction and speed estimations
which go beyond the scope of the present paper.

Minor points

L64. 10-min? yes, some even 1 Minute. In our study, we aggregates all
data (i.e. DWD and PWS) to 1h temporal resolution. We will decribe
our data processing more thoroughly in the revised manuscript.

Figure 2. It can be presented as Supplementary Material.

Based on the comments from referee 1, we will add an additional subfig-
ure showing a histogram of the avaialbe length of the PWS time series
and would therefore like to keep this fiugre in the main text.

L98. ”at short time steps” - 1-min? 5-min?

The PWS data are availabe at 5-min resolution, c.f. answer to L 64.

L102-103. ”...thus methods like Co-Kriging or Kriging with an exter-
nal drift are not applicable” - at this point in the text, some further
explanation is needed to put this sentence in context.

Co-Kriging in its regular form cannot be applied but we found a method
to use non-collocated observations which we applied. We’ll add a few
remarks on Co-Kriging.

L102. is considered to be a random field - Why? Reading further, this
sentence is clear. But it is not clear at first reading.
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It should be ”not a stationary random field”. Will be corrected.

L105. It should be mentioned in the text that alpha defines the percentile
threshold. I assume it is subjectively defined?

This was also remakred by reeferee 1, we’ll adress this appropriately in
the revisions.

Equation 1. I assume Fu stands for distribution function? Please clarify
in the text. In addition, there are two commas with empty space in the
left term of the equation.

We will clarify this. in Eq. 2 there’s a ∆t missing between the commas.

Section 3.2. Consider adding a flow chart to illustrate the steps described
in this section.

Referee 4 also made a remark that the work flow and interaction of the
steps should be pointed out more clearly. We will consider adding a flow
chart to make this more clear.

L239. Isn’t 95 percentile too low threshold if the goal is to attract the
extreme rainfall intensities? Especially for the fine temporal resolution,
for which I assume the sample size is quite large.

We tested this for different threshold starting from 95. For the study
we’ve used the 99 percentile.

L397-400. Wouldn’t it be more accurate to fit a specific distribution to
each secondary station, based on parameters obtained from the primary
stations around it?

We do not fit the distribution to the secondary observations as they are
biased, but we interpolate the distributions from the primary stations.

The other minor remarks made by the referee will be considered in the
revised manuscript.
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Reply to the review provided by Anonymous Referee #3 to
the paper

The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank the anonymous aeferee for positive review and for the suggested
corrections.

2. Figure 1: Red triangles are difficult see against brown elevations.
Please consider changing colour, e.g. to black and bigger triangles

We will revise this figure accordingly, Reviewer 4 also has also recom-
mended some changes

3. Lines 102-103: Why can multivariate methods like Co-Kriging not
applied to random fields?

This sentence will be corrected. The problem for applying Co-Kriging is
that co-variogramms cannot be calculated in a traditional way as there
are no common observation locations between the primary and the sec-
ondary networks. We found an interesting reference (Clark et al. 1989)
where a non-collocated version of Co-Kriging was presented. We applied
this methodology to the filtered data. The results show significant im-
provements, but the combination of the transformation and the Ordinary
Kriging leads to superior results.

4. Lines 146-147ff: The sentence with quantiles and percentiles first
caused some confusion to me. After reading several times I understood
that the term ”quantiles” is used here for precipitation values with certain
non-exceedance probabilities (Eq. 5), which is common. But the term
”percentiles” is used here for the non-exceedance probabilities (Eq. 4),
which is not always common. Often, it also refers to the quantiles which
divide the distribution into 100 equal portions. In order to avoid con-
fusion, I would suggest beside giving equation (4) also verbally to make
clear that with percentiles the non-exceedance probability is referred to.
Please, also make a comment on G(y) and F(x) if here empirical or the-
oretical distributions will be used.

We will adress and clarify these issues in the revised manuscript

5. Equation (5,6): It becomes not immediately clear which x(i) locations
are related the y(j) location. Please, explain in the text and make a
reference to Appendix A here.

We checked the equations (5,6), the primary observation locations are xi
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the secondary yj. This is correct in the equations, but we’ll add some
text to better explain the procedure.

6. Line 160: The estimate for y at time t can be bigger the observation
at this time but cannot be bigger than the maximum observation for
all times t at x, if an empirical distribution for F(x) is used. Please
comment.

The remark is correct. If one would use fitted theoretical distributions
one could obtain new record values. The usefulness of this approach has
to be tested. We’ll add some discussions on this.

7. Line 205: Is there a reference available for KU?

Delhomme (1978), we’ll add this reference.

11. Line 277: ”There is no improvement...” From Table 3 I see improve-
ment for the different time aggregations between 17% and 60% of the
stations?

The 17 % means that in 17 % of the cases the estimation was better and
in 83 % of the cases it was worse.

The other minor comments (1., 8., 9.,10.,12. and 13.) will all be consid-
ered in the revised version of the manuscript. Furthermore we will add
the following reference:

Clark, I., Basinger, K. L., and Harper, W. V., 1989, MUCKa Novel
Approach to Co-Kriging,in B. E. Buxton (Ed.), Proc. of the Conf. on
Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water
Flow and Radionuclide Transport Modeling: Battelle Press, p. 473493.

Delhomme, J.: 1978, Kriging in the hydrosciences, Advances in Water
Resources, 251266,
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Reply to the review provided by Hannes Müller-Thomy to
the paper

The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank Hannes Müller-Thomy for his thoughtful remarks. Our answers
to the specific comments (in blue) are as follows:

L26-28 The short periods of available radar data should be mentioned in
this context as well.

We will add this aspect in the revised manuscript.

L77-79 It would be helpful if the authors are more concise regarding the
number os PWS stations finally used in the study. To enable a transfer of
the applied methods the authors should provide some information, which
minimum time series length was chosen for the secondary time series and
how was it chosen?

The number of PWS stations varies strongly due to the increase of the
network in time and due to unexpected missing records. The first filter
is used to identify the locations which can be used. The number of PWS
for each time step is normally slightly less than the number of stations
remaining after the first filter. This depends on which stations had valid
observations for this time step and if they were eliminated by the on-
event filter or not. We’ll include the actual number of PWS used for
the maps presented in the paper. The minimum length of observations
for the application of the first filter was two months. This is a reason-
able choice for hourly aggregations. For longer aggregations longer series
would be required. This of course leads to high uncertainties of the in-
dicator correlations.

L85 From the first paragraph in Section 3 it sounds as only the two data
quality filters will be explained. I suggest to provide a brief overview of
all subsections at the beginning of Section 3 and an explanation, how
they are interacting.

Referee 2 suggested a flow chart to illustrate the procedure, we will make
this more clear at the beginning of the Methodology chapter.

L102 Maybe the authors should explain briefly why they consider Y as
a random field.
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This is a mistake and will be corrected, Y is not a stationary random
field. It is the sum of precipitation (considered as random field) and a
measurement error which is spatially independent, temporally dependent
and has a non-zero mean.

L120-123 The chosen criterion sounds reasonable. Im wondering if an
exclusion for too high correlations has to be applied as well. Later in
Fig. 5 indicator correlations of 1 are shown for interstation distances of
10 km, which is way higher than from the primary network. Maybe the
authors can report if an upper limit is required or not when working with
the data as a result from their data analysis.

Due to the partly very short time series the indicator correlation between
the primary and secondary networks can fluctuate a lot. We did not cal-
culate the sample size dependent confidence intervals of the correlations
as this should be done for each pair individually. Instead we decided to
remove the low ones - where we certainly removed a few which provide
reasonable data. The correlation being 1 is mainly the consequence of
small samples, and thus we did not exclude those stations.

Also, I’m struggling with the final decision if a secondary time series
remains in the potential useful data set or not. As far as I understand it
a time series is ”flagged as suspicious” if it does not meet the criterion in
Eq. 2. That means the time series will be sorted out. Since the procedure
is repeated for several α and ∆t, I imagine the highest exclusion rate will
be found for high values of α. Is a flagging for only one of the analysed
values of α enough for an exclusion of that time series? Which values of
α have been applied and what was the exclusion rate?

Due to sample size we decided to apply the filter to the hourly data. The
reason for taking the 99 % threshold was that we are mainly interested
in heavy rainfall. Other durations and thresholds were also calculated
but the decision was taken on the basis of the above aggregation and
threshold. For these, the exclusion rate was about 60%.

L159-160 Does this approach introduce an upper limit for the point of
interest, resulting from the maximum rainfall amount measured at the
surrounding primary stations? Or are theoretical distribution functions
applied and the information is missing (or I missed it)?

There is no upper limit on the observations implied by the second filter.
If the second filter is applied on the percentiles the upper limit is 1.

Fig. 3 & Table 3 From Fig. 3 it is obvious that the minimum resolution
is 0.01mm for the Pluvio, while it is 0.1mm for the PWS. This makes
a comparison of p0 without its consideration biased. Was the different
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measurement resolution taken into account for the values of p0 in Table
1? Otherwise I would recommend to either neglect values ¡0.1mm or to
sum rainfall amounts up to a minimum of 0.1mm. The Pluvio will gain
more dry time steps by doing so. It maybe has a negligible effect for
hourly time steps, but for the original temporal resolution of 5min it will
be critical. Hence, it should be at least communicated to the reader.

Thank you for pointing out the issue with the zeros and the resolution.
This effect is indeed critical for high temporal resolution, i.e. 5 Minutes.
In Fig. 3, we will consider this aspect by summing up amounts from the
Pluvio to 0.1mm. The numbers in table 1 are based on 1h resolution, so
this effect should be negligible, but we will check this and correct it if
necessary.

Fig.3 I recommend to add x-y-lines to illustrate the perfect match since
in the left figure it is not the diagonal.

We will add this.

Fig. 5 Indicator correlations with values below the minimum resulting
from the primary network for similar distances are included in the right
figure. From my understanding these were removed by (2)? Also, for
the decision of keeping secondary stations or not indicator correlations
for unknown distances resulting from the primary network have to be
estimated. In general, this is done by fitting regression lines to the ob-
servations? Was it done similar in this study? If so, it could be useful
for the reader to provide the type of regression line and it parameters. If
not, how were values judged for unknown distances?

The indicator correlation are filtered by comparing the correlation be-
tween the pairs (1) PWS station - Primary neighbouring station and (2)
Primary neighbouring station - Primary neighbouring station. This is
done for the available PWS time period and varies individually. This
is why, the equation was tested for each PWS and fitting a regression
line cannot describe the individual behaviour between each PWS and
it’s neighbours.

L289 ...With increasing...as the role of the bias increases. Is the bias the
only reason therefore? I guess the much higher spatial correlation for
longer time steps also gives less possibility for improvements, so a frontal
event with 12h duration covers some of the stations from the primary
network, while this is not the case for hourly time steps (it is mentioned
later, L298).

The aggregation leads to more smooth and higher correlated variables
which is as the reviewer pointed out another reason for the smaller im-
provements for longer aggregations. This will be mentioned in the revised
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paper.

L335-336 Do the authors mean ”event” here instead of ”data”? Other-
wise Im wondering to not find the values for the RMSE in Table 5.

Table 5 contains the RMSE calculated over all events and stations, while
in the text discussing the figures we used the RMSE calculated for the
single event using all available primary stations. That is why the num-
bers are different. The word data will be replaced by event.

L75 Can the authors provide a reference for the 5◦C threshold or how
was it chosen?

This threshold was chosen arbitrarily, we wanted to be sure not to in-
clude any snow fall events, so this is threshold is rather strict.

The other technical corrections will be considered while preparing the
revised manuscript.
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Reply to the review provided by Marc Schleiss to the paper
The use of citizen observations for better
precipitation estimation and interpolation

submitted for publication in
Hydrology and Earth System Sciences

We thank Marc Schleiss for taking his time to carefully read our pa-
per and for his interesting discussion on the methodology. Here are our
responses to the major comments

a) The authors should provide more details about the kriging part. -
How did you esti- mate the variograms? (with/without zeros?) -
How do the variograms look like? - Which variogram model did
you use and how well does it fit the empirical variogram? - How do
you deal with cases in which there are not enough data to reliably
fit a variogram? - How do you deal with spatial anisotropy and
intermittency during interpolation?
The variograms used for this paper were calculated using the obser-
vations of the primary network only. The variograms were calcu-
lated on in the rank space which leads more robust results (Lebrenz
and Bárdossy 2017). Further as the kriging weights do not change
if the variogram is multiplied by a constant in this study the es-
timation of the range of the variogram was the major task. We
assumed that there is no nugget (precipitation amounts are spa-
tially continuous). The possible measurement error was included
in the kriging with uncertainty. Anisotropy was not considered,
the main reason for this was that the primary network did not give
robust results. In the future we intend to estimate anisotropy from
the corresponding radar images. The kriging weights are not very
sensitive to the choice of the range and the variogram type as it
was investigated in the paper (Bárdossy 1988). The variograms
used for the second filter are the rescaled (adjusted to the variance
of the observed event) variograms calculated from the percentiles.
A discussion on the variogram calculation and fitting including the
corresponding references will be added to the paper.

b) Ordinary kriging makes rather strong assumptions about the data
(such as second- order stationarity). The latter might not be very
realistic in heavy localized rain events. Kriging is also relatively
slow compared with other deterministic interpolation methods and
its accuracy strongly depends on the density and number of pri-
mary observations. For example, the estimation and fitting of a
variogram model (from a small number of samples) might intro-
duce additional errors into your predictions that are due to model-
ing choices rather than the quality of the data. So my question is:
why did you choose ordinary kriging? Please motivate this choice

1



by some form of cost/benefit analysis, for example by comparing
it to simpler, faster alternatives such as inverse weighted distance
interpolation or bilinear interpolation (which make different mod-
eling assump- tions).

c) Related to the previous comment. Please note that during cross-
validation, one part of the error is due to the spatial interpolation
method that you use (i.e., kriging). If you had taken a different in-
terpolation method (say IDW or Bilinear), perhaps the usefulness
of the PWS data would have been different. I think it is important
that you assess this part of the error by using at least one alter-
native non-parametric interpo- lation method other than kriging
(e.g., bilinear interpolation). My point here is that in some cases,
you might see improvement for one particular interpolation method
but not for another.
Regarding both comments above, we assume local second order
stationarity - this means kriging is carried out using a few neigh-
bouring stations only. The assumption partly accounts for the
non-stationarity. There are several studies which compared dif-
ferent interpolation methods for precipitation which in most cases
showed that kriging is superior to other techniques. We compared
the interpolation with inverse distance and nearest neighbour for
the selected events. For all three interpolation methods the usage
of the filtered and corrected PWS lead to an improvement of the
cross validation. The selected OK approach was superior to the
others. We did not want to overload the paper with the other in-
terpolation results. We also tested different Co-Kriging approaches
which also lead to improvements, compared to the inverse distance
and nearest neighbour interpolations, but remains slightly inferior
to the simplest OK approach. Therefore not to overload the paper
these results are not included.

d) The cross-validation part lacks crucial details about parameter esti-
mation. For ex- ample, did you use the same variograms or recal-
culate them based on the selected subset of observations? Theoret-
ically, you should recalculate the variograms on the smaller subset.
Variograms were recalculated for each subset. Due to the relatively
large number of primary stations and the fact that we used per-
centiles the change in the ranges was minor.

e) The second step (i.e., amount estimation) involves a quantile map-
ping. Accord- ing to your Figure A1, this mapping is different for
each PWS. However, this would mean that you need to estimate
and fit a separate variogram model (with different nugget/range/sill)
for each PWS location at which you want to interpolate. Is that
correct? This would be computationally heavy. Please add more
details to help me understand this.
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Variograms of the quantiles are estimated from the primary sta-
tions only. Thus there is no need to recalculate the variograms for
each PWS. The appropriate quantiles are also estimated from the
primary stations for each PWS locations. For each event this re-
quires one additional OK. The example in the Appendix shows the
procedure.

f) Wind is known to cause localized biases in rain gauge measurements
in the order of 10-30%. The latter are not stationary over time
and space and can significantly affect the ordering of your data,
therefore violating your model assumptions (i.e., monotonic link
between quantiles of primary and secondary variables). This is
not catastrophic but will occasionally affect the accuracy of your
rainfall estimates and lower the reliability of your method. I think
this issue should be clearly mentioned and discussed in the paper,
along with the other limitations in the methodology mentioned by
the other reviewers.
You are right - wind has a strong effect on precipitation bias. How-
ever this applies for both networks. Our methodology is presently
focussing on adjusting the PWS to the primary network. We in-
tend to consider wind dependent corrections in the future. Several
PWS measure local wind speed this could be used for further in-
vestigations.

g) Tables 3 and 4: Your evaluation of the improvement in terms of a
binary response (yes/no) is not very informative. Improved by how
much? Some conditional error distri- butions (for both cases) might
help shed some more light on best/worst case scenarios and what
to expect in practice.
We’ll add one or two figures on showing error distributions. The
main reason for this is to provide a transparent evaluation show-
ing that for the majority of the stations and events there is an
improvement, but not for all.

h) I agree with Lotte de Vos (referee 1) when she says that more details
about the limitations of the method need to provided. I would
go one step further and say that right now, the paper is heavily
focused (biased?) towards demonstrating potential and improve-
ments over the status quo. However, the numbers suggest there
are also a lot of cases in which the PWS data deteriorate the ac-
curacy of the predictions. Perhaps you could show a few of these
cases and comment on them. By explicitly showing what can go
wrong, you may be able to provide concrete recommendations for
future developments.
We do not agree that the paper would be optimistically biased.
In Tables 3 and 4 (which you previously criticized) we show the
frequencies of cases when the method was better and when it was
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worse than the standard. This information is usually not provided
and shows that there are cases and locations where there are no
improvements. Summary statistics as in Table 5 are usually shown
and do not provide this information. The locations with no im-
provements can easily be identified as those where the density of
PWS is small. The reason why the PWS bring no improvements
for some events is not clear. As the these cases are rare (< 10 %
for short durations) we do not consider this as a major drawback.
Of course further research is needed to improve the interpolation,
but we believe that the current results are encouraging.

The minor comments will be considered while preparing the revised
manuscript.
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