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Abstract 
The discontinuous permafrost zone is undergoing rapid transformation as a result of unprecedented 

permafrost thaw brought on by circumpolar climate warming. Rapid warming over recent decades has significantly 
decreased the area underlain by permafrost in peatland complexes. It has catalyzed extensive landscape transitions in 
the Taiga Plains of northwestern Canada, transforming forest-dominated landscapes to those that are wetland-15 
dominated. However, the advanced stages of this landscape transition, and the hydrological and thermal mechanisms 
and feedbacks governing these environments, are unclear. This study explores the current trajectory of land cover 
change across a 300,000 km2 region of northwestern Canada’s discontinuous permafrost zone by presenting a north-
south space-for-time substitution that capitalizes on the region’s 600 km latitudinal span. We combine extensive 
geomatics data across the Taiga Plains with ground-based hydrometeorological measurements collected in the 20 
Scotty Creek basin, Northwest Territories, Canada, which is located in the medial latitudes of the Taiga Plains and is 
undergoing rapid landscape change. This data is used to inform a new conceptual framework of landscape evolution 
that accounts for the observed patterns of permafrost thaw-induced land cover change, and provides a basis for 
predicting future changes. Permafrost thaw-induced changes in hydrology promote partial drainage and drying of 
collapse scar wetlands, leading to areas of afforestation forming treed wetlands without underlying permafrost.  25 
Across the north-south latitudinal gradient spanning the Taiga Plains, relatively undisturbed forested plateau-
wetland complexes dominate the region’s higher latitudes, forest-wetland patchworks are most prevalent at the 
medial latitudes, and forested peatlands are increasingly present across lower latitudes. This trend reflects the 
progression of wetland transition occurring locally in the plateau-wetland complexes of the Scotty Creek basin and 
informs our understanding of the anticipated trajectory of change in the discontinuous permafrost zone. 30 

Keywords: discontinuous permafrost zone; Taiga Plains; peatland; climate change; boreal forest; hydrology; energy 
dynamics 

Key Points  
1. Conceptual framework developed to understand the trajectory of permafrost thaw-induced land cover 

change 35 
2. Permafrost thaw-induced land cover change varies latitudinally across the plateau-wetland complexes 

of the discontinuous permafrost zone 

3. Partial wetland drainage triggers ecohydrological and thermal feedbacks that promote reforestation 
after full permafrost thaw 
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1. Introduction 

Northwestern Canada is one of the most rapidly warming regions on Earth (Vincent et 

al., 2015; Box et al., 2019) and it is transitioning to a warmer state at a rate that appears to have 75 

no analogue in the historical record (Porter et al., 2019). This transition includes region-wide 

thaw and disappearance of permafrost at unprecedented rates (Rowland et al., 2010). The Taiga 

Plains ecoregion of northwestern Canada extends from 55º to 68º N and as such, encompasses 

the spectrum of permafrost cover, from continuous to sporadic. Permafrost thaw in the Taiga 

Plains ecoregion is especially pronounced in its lower latitudes where the permafrost is relatively 80 

thin and warm, often already at the thaw-point temperature (Biskaborn et al., 2019), indicating a 

state of disequilibrium with the current climate (Helbig et al., 2016a). For example, Kwong & 

Gan (1994) repeated the permafrost surveys of Brown (1964) in northern Alberta and the 

southern Northwest Territories (NWT) and found that the southern limit of permafrost 

occurrence had migrated northward by about 120 km over a period of 26 years. Beilman & 85 

Robinson (2003) estimated that 30-65% of the permafrost has disappeared from the southern 

Taiga Plains in the preceding 150 years, most of which disappeared in the latter 50 years. The 

accelerated rates of permafrost warming and thaw observed in recent decades throughout the 

circumpolar region (Biskaborn et al., 2019), including all of northwestern Canada (Kokelj et al., 

2017; Holloway & Lewkowiz 2019), have dramatically transformed land covers in the southern 90 

Taiga Plains (Chasmer & Hopkinson, 2017). 

Much of the southern Taiga Plains is occupied by peatland-dominated lowlands, a 

landscape of raised, black spruce (Picea mariana) tree-covered peat plateaus overlying thin (<10 

m), ice-rich permafrost interspersed with permafrost-free, treeless wetlands. These permafrost-

free wetlands are predominantly classified as channel fens and collapse scar wetlands, the latter 95 
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the Earth’s land surface (Tarnocai 2009), it is estimated that 80% of 110 
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of which is developed from thermokarst erosion of the plateaus (Robinson & Moore, 2000). Peat 120 

plateaus and collapse scar wetlands are typically arranged into distinct “plateau-wetland 

complexes,” which are separated by channel fens. Each of these major land cover types in the 

lowlands of the southern Taiga Plains, have contrasting hydrological functions (Hayshi et al., 

2004) and therefore changes to their relative proportions on the landscape can affect water flux 

and storage at the basin scale (Quinton et al., 2011). Permafrost thaw underlying plateaus is 125 

driven by horizontal conduction and advection from adjacent wetlands, and vertical heat flows 

from the ground surface (Walvoord & Kurylyk, 2016). As this permafrost thaws, the overlying 

plateau ground surface subsides and is engulfed by the surrounding wetlands (Beilman et al., 

2001; Quinton et al., 2011; Helbig et al., 2016a). As such, permafrost thaw in this environment 

transforms forests to treeless, permafrost-free wetlands (Robinson & Moore, 2000). In the 130 

process, this also changes the hydrological function of the transformed land cover, in part due to 

a change in surface water-groundwater interactions (McKenzie & Voss 2013). Such a 

transformation can profoundly affect local drainage processes and pathways (Connon et al., 

2014; 2015) with implications to regional hydrology (St. Jacques & Sauchyn, 2009; Korosi et al., 

2017; Connon et al., 2018), ecology (Beilman, 2001) biogeochemical processes (Gordon et al., 135 

2016) and carbon cycling (Vonk et al., 2019;  Helbig et al., 2016a). 

Zoltai (1993) described a perpetual cycle of permafrost development and thaw in which 

permafrost evolves from perennial ice bulbs that form below Sphagnum hummocks in 

permafrost-free treeless wetlands (i.e. collapse scars). Such hummocks expand and coalesce 

eventually forming tree-covered plateaus. However, over time plateaus experience a disturbance 140 

(e.g. fire, disease) that initiates the development of collapse scars and as a result, the plateau or 

portions of it revert to a permafrost-free wetland. In a stable climate, the permafrost and 

permafrost-free fractions of a landscape are assumed to remain relatively consistent. Zoltai 
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(1993) estimated that the time required to complete this cycle is approximately 600 years. Treat 

and Jones (2018) indicated time scales for forest recovery following permafrost thaw in the range 

of 450 to 1500 years. However, there is growing evidence throughout the southern Taiga Plains 215 

that the climate warming of recent decades has disrupted the cycle of permafrost thaw and 

redevelopment such that the rates of permafrost loss greatly exceed those of permafrost 

development (e.g. Halsey et al., 1995; Robinson & Moore, 2002; Quinton et al., 2011).  

The accelerated rates of permafrost thaw and resulting land cover change described above 

call into question the utility of existing concepts (e.g. Zoltai, 1993) as a means to estimate the 220 

current trajectory of land cover change since such concepts were developed from analyses of 

geological sediments (e.g. peat cores) which generally lack the resolution needed to identify land 

cover change sequences over relatively short (i.e. decadal) periods. Moreover, it is uncertain 

whether the current rates of climate warming are represented in the sediment record. As a result, 

there remains considerable uncertainty on the trajectory of permafrost thaw-induced land cover 225 

change in this region, including possible end-members and intermediate stages. Because of the 

close connection between land cover type and hydrological function in this region, the 

uncertainty related to possible land cover change trajectories also raises new uncertainties in 

regards to the region’s water resources. 

In addition to unprecedented climate warming in the North, accelerated permafrost thaw 230 

is also driven by positive feedbacks including increased fragmentation of forested peat plateaus 

with increasing thaw (Chasmer et al., 2011), a process which increases the length of interface 

between permafrost and permafrost-free terrain, and therefore also increases the overall flux of 

energy into the remaining permafrost bodies (Kurylyk et al., 2016). Connon et al., (2018) 

demonstrated that talik layers situated between the active layer and underlying permafrost are 235 
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widespread in thawing peatland-dominated terrains and their occurrence increases with 

increasing permafrost thaw. Devoie et al., (2019) demonstrated that once a talik forms, the rate 

of permafrost thaw can increase 10-fold. 

Since the permafrost table beneath peat plateaus rises above the water surface of the 

adjacent wetlands, plateaus function as “permafrost dams” that prevent wetlands from draining. 240 

Permafrost thaw therefore removes this effect and enables previously impounded wetlands to 

partially drain until the hydraulic gradient driving their partial drainage reaches an equilibrium 

state (Haynes et al., 2020). The slow release of water from the long-term storage of wetlands no 

longer impounded by permafrost changes the physical and ecological characteristics and 

hydrological function of these wetlands (Haynes et al., 2020). Such drainage transforms the 245 

uniformly wet Sphagnum lawns that characterise impounded wetlands, into hummocky surfaces 

that provide a wider range of near surface moisture conditions including those sufficiently dry to 

support the re-growth of trees (Haynes et al., 2020). There is also evidence that when black 

spruce forest is lost due to permafrost thaw and plateau inundation, forest regeneration does not 

depend on the regeneration of permafrost (Haynes et al., 2020; Chasmer & Hopkinson 2017). 250 

For example, treeless collapse scars have transformed into black spruce forest within two to three 

decades after the permafrost dams disappear (Haynes et al., 2018).  

In addition to the transient drainage process described above that may occur following the 

removal of the impounding permafrost (Haynes et al., 2018), such removal also increases the 

hydrological connectivity of basins through the incorporation of wetlands that were previously 255 

impounded and therefore hydrologically isolated from the basin drainage network (Connon et al., 

2015). This process of “wetland capture” expands the runoff contributing areas of basins, a 

process that increases their runoff potential. Connon et al., (2018) attributed the trends of 
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increasing runoff ratio (i.e. fraction of basin runoff per unit input of precipitation) in basins 

throughout the Taiga Plains to this permafrost thaw-induced process of runoff contributing area 260 

expansion. 

The transition of one type of ground cover to another as a result of permafrost thaw or a 

subsequent process such as partial wetland drainage and re-establishment of forest also results in 

a change of surface energy balance (Kurylyk et al., 2016; Devoie et al., 2019). Insight into the 

nature of such changes can be obtained through comparing the energy regimes of the existing 265 

suite of land covers including the end-members of land cover change. For example, the incoming 

solar radiation measured at a height of 2 m above the ground surface is highest in the treeless 

wetlands and lowest in areas of peat plateaus with dense forest (Haynes et al., 2019). The 

average shortwave radiation flux density of treeless wetlands is approximately twice of that 

measured below dense forest (Haynes et al., 2019). Plateau areas with moderate or sparse tree 270 

canopies have incoming solar radiation values intermediate between these two end members 

(Chasmer et al., 2011). The ground surface albedo varies over the narrow range of 0.15 to 0.19 

(Hayashi et al., 2007) among the ground surface types discussed here, the exception being the 

late snowmelt period while plateau ground surfaces are still snow covered and the treeless 

wetlands are snow-free (Disher et al., 2021; Connon et al., Submitted).  275 

The nature of changes to a land cover’s surface energy balance is governed by the 

properties of its subsurface, ground surface, and the overlying tree canopy, all of which change 

as one land cover type transitions to another (Helbig et al., 2016b). The reduction in the areal 

cover of forested plateaus and concomitant increase in the coverage of treeless wetlands 

indicates that in the first instance, permafrost thaw increases the incoming shortwave flux to the 280 

transformed land cover (Kurylyk et al., 2016; Devoie et al., 2019). Chasmer et al., (2011) found 
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that this thaw-induced transition and associated increase of incoming shortwave radiation occurs 

over several years as tree mortality decreases the density of tree canopies. However, the forests 

that subsequently re-establish in partially drained wetlands may have an energy balance that 

shares some characteristics of the forested peat plateaus, where insolation is relatively low, and 285 

the low albedo (and therefore high energy adsorption) of trunks, branches and stems result in 

relatively high long-wave and sensible heat compared to the treeless wetland surfaces (Helbig et 

al., 2016b). 

Unprecedented climate warming and the feedbacks to thaw and land cover change are 

new factors not accounted for in current theories on permafrost degradation-aggregation cycles 290 

based on the analysis of peat cores. As a result, the time scales for land cover transformations 

derived from such theories cannot account for the current rates and patterns of all thaw-induced 

land cover change. This study examines peat plateau-wetland complexes along a latitudinal 

gradient through the Taiga Plains to improve the understanding of permafrost thaw-driven land 

cover change in this region as well as to advance the ability to predict land cover changes over 295 

the coming decades. This overall objective will be accomplished by: (1) delineating the current 

extent of peatlands and forest distribution along the latitudinal span of discontinuous permafrost; 

(2) characterising the end-members and intervening stages of land cover transition; (3) providing 

an interpretation of the hydrological and ground surface energy balance regimes for each stage of 

land cover transition based on twenty years of field studies at the Scotty Creek Research Station; 300 

and (4) presenting a conceptual framework of peatland transition during and following 

permafrost thaw.   
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2. Study Site 

2.1 The Taiga Plains Ecozone 

Much of northwestern Canada’s boreal region is located within the discontinuous 

permafrost zone, which ranges latitudinally from extensive-discontinuous (50-90% areal 

permafrost coverage) in the north to sporadic-discontinuous (10-50%) in the south. Within this 365 

region, the Taiga Plains ecozone contains a patchwork of mineral and organic terrain. This study 

examines the peat plateau-collapse scar wetland complexes that dominate the lowlands of this 

ecoregion (Wright et al., 2009; Helbig et al., 2016a). While air temperature is the predominant 

control on permafrost, relatively dry peat at the ground surface can allow permafrost to exist 

where mean annual air temperatures (MAATs) are at or even above 0°C due to thermal 370 

insulation (Vitt et al., 1994; Camill & Clark 1998). Permafrost is therefore largely restricted to 

below peat plateaus since only these features contain unsaturated layers sufficiently developed to 

insulate permafrost (Zoltai & Tarnocai 1975; Hayashi et al., 2004; Quinton et al., 2009). The 

areal coverage of permafrost in the discontinuous zone has significantly decreased in recent 

decades due to increasing MAATs and has resulted in a shift towards more wetland-dominated 375 

landscapes (Thie, 1974; Robinson & Moore, 2000; Wright et al., 2009; Quinton et al., 2011; 

Olefeldt et al., 2016).  

The discontinuous permafrost zone of the Taiga Plains ecozone covers 312,000 km2 and, 

for the purposes of this study, is divided into the areas of extensive-discontinuous permafrost 

(151,000 km2) and sporadic-discontinuous permafrost (161,000 km2) (Brown et al., 2002; Figure 380 

1). The Taiga Plains, bounded by the Taiga Cordillera to the west and Taiga Shield to the east, 

has a dry continental climate with short summers and long, cold winters with MAATs ranging 

from -5.5°C to -1.5°C (Vincent et al., 2012). MAATs have increased across the Taiga Plains 
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over the past 50 years (1970 – 2019) (Vincent et al., 2012) in a manner consistent with panarctic 

warming (Overland et al., 2019). This is largely due to increases in average winter and spring 

temperatures of approximately 3°C over this period (Vincent et al., 2012). However, there has 

been no consistent trend in mean annual precipitation over this period in the Taiga Plains (Mekis 

& Vincent, 2011).  425 

 
Figure 1: The Taiga Plains ecoregion with the discontinuous permafrost zones (coloured) 
defining the study region (Brown et al., 2002). The location of Scotty Creek Research 
Station (SCRS) is also indicated. Contains information licensed under the Open 
Government Licence – Canada. 430 
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2.2 Scotty Creek, Northwest Territories  

Scotty Creek (61.3ºN, 121.3ºW) has been the focus of field studies and monitoring since 

the mid-1990s and as such, the long-term and detailed data archive at Scotty Creek (Haynes et 445 

al., 2019) provide a unique opportunity to evaluate land cover changes over a period that 

coincides with rapid climate warming. Scotty Creek therefore also provides a reference to 

interpret land cover changes for terrains that are also present throughout the region. Scotty Creek 

is located approximately 50 km south of Fort Simpson, Northwest Territories (Figure 1) where 

the MAAT (1970-2015) is -2.6°C and the mean annual precipitation (1970-2015) is 400 mm, of 450 

which 150 mm falls as snow (Environment and Climate Change Canada, 2019). Data collected 

by Environment and Climate Change Canada at the Fort Simpson A climate station show that 

MAAT has increased by approximately 0.05°C/year since 1950, with warming most pronounced 

during the winter. Scotty Creek drains a 152 km2 area dominated by peatlands with peat 

accumulations ranging between 2 and 8 m overlying a clay and silt rich glacial till (McClymont 455 

et al., 2013).  The Scotty Creek drainage basin occupies one of many peatland-dominated 

lowlands of the Taiga Plains, and as such its landscape is dominated by complexes containing 

tree-covered peat plateaus overlying permafrost alongside treeless and permafrost free collapse 

scar wetlands. Such plateau-wetland complexes are separated by channel fens that collectively 

function as the basin drainage network (Hayashi et al., 2004; Quinton et al., 2009). This type of 460 

land cover not only dominates the lowlands of the Taiga Plains but is also found extensively 

throughout northwestern Canada and across the circumpolar subarctic (Olefeldt et al., 2016).   
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3. Methods 

3.1 Geomatics Methods 

To place Scotty Creek into a regional context, geomatics methods were applied to both 

zones of discontinuous permafrost within the Taiga Plains to quantify the areas occupied by each 

of the major land covers of all areas identified as peatland-dominated lowland. Multispectral 530 

Landsat 8 imagery (30 m resolution; Figure 2a) was acquired across an area of over 300,000 km2 

totalling 70 Landsat scenes. Of these, 59 scenes were used to construct the base of the mosaic 

and 11 were used as secondary data to patch and minimize cloud cover. The 59 primary scenes 

were acquired in 2017 and 2018 while the 11 secondary scenes were acquired between 2013 and 

2016 as data of suitable quality was unavailable during the preferred time period. Acquiring 535 

imagery during the snow-free season was prioritized and as such, all 70 Landsat tiles were 

acquired in June, July, or August, rendering the coniferous forest cover seasonally comparable 

and allowing for a more streamlined mosaicking process. A colour infrared mosaic (Landsat 8 

bands 5, 4, 3 displayed as R, G, B; Figure 2b) was created across the study region in ArcGIS 

(ESRI, Redlands, California) using a Lambert Conformal Conic projection. The mosaic dataset 540 

was colour balanced and the boundary was amended to the Taiga Plains ecozone including the 

delineations dividing the sporadic and extensive discontinuous zones (Brown et al., 2002).  
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 560 
Figure 2: A summary of the regional geomatics methods used over a 2 km x 2 km sample 
area. Two main workflows are highlighted: the datasets used to map probable peatland-
dominated terrain and the methods used to determine fractional forested area within those 
peatland-dominated areas. (a) Multispectral Landsat 8 imagery; (b) false-colour infrared 
Landsat 8 imagery; (c) Natural Resources Canada saturated soils dataset; (d) Northern 565 
Circumpolar Soil Carbon Database (NCSCD) fractional area of organic soils; (e) 
probable peatland-dominated terrain; (f) unsupervised classification identifying land 
covers within peatland-dominated terrain; (g) coniferous forest cover within peatland-
dominated terrain.   

 570 

To determine the current distribution of the peatland-dominated lowlands that contain the 

same type of terrain as observed at Scotty Creek (i.e. plateau-wetland complexes separated by 

channel fens), two complementary products were used in the ArcGIS suite of programs. First, a 

Natural Resources Canada saturated soils dataset (Figure 2c; Natural Resources Canada 2017) 

was selected to isolate areas that were wetland-dominated and likely representative of the 575 

plateau-wetland complexes targeted in this study. Next, the Northern Circumpolar Soil Carbon 

Database (NCSCD) (Figure 2d; Bolin Centre for Climate Research 2013) was selected to 

determine whether the highlighted wetland-dominated areas are also likely to represent peatland-

dominated areas.  

The saturated soils dataset is part of a larger digital cartographical project of Natural 580 

Resources Canada, CanVec. The CanVec dataset is a vector format dataset, which can be 
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downloaded by province/territory or Canada-wide and includes over 60 features organized into 8 590 

themes, including land features. Land features in this dataset, such as the distribution of saturated 

soils, were originally digitized at a scale of 1:50000 (Natural Resources Canada 2017). The 

NCSCD is also a polygon database developed by the Bolin Centre for Climate Research through 

synthesizing data from numerous regional and national soil maps alongside field-data collected 

across Canada, USA, Russia, and the European Union. The NCSCD includes data on the 595 

fractional coverage of different soil types and stored soil organic carbon (Hugelius et al., 2013a; 

Hugelius et al., 2013b). In the present study, the layer containing information on the fractional 

coverage of soil types was used. While the original format of the NCSCD is a vector of 

delineated zones, gridded data is also available at resolutions varying from 0.012° to 1° 

(Hugelius et al., 2013b). The NCSCD is comprised of a circumarctic dataset as well as country-600 

wide and regional datasets, including one of Canada (Hugelius et al., 2013b).  

The NCSCD is a widely used dataset (Olefeldt et al., 2014; Gibson et al., 2018; 

Stofferahn et al., 2019; etc.) but the zones do not map specific locations of peatland-dominated 

terrain (Figure 2d). The locations of peatlands is helpful for work in regions such as the Taiga 

Plains, where the landscape is a patchwork of both organic and mineral terrain. The saturated 605 

soils dataset and the NCSCD were then both masked to the Taiga Plains boundaries in ArcGIS, 

where over 26,000 saturated soil polygons and 572 NCSCD zones were contained within the 

study region. The saturated soils dataset was mapped to display probable peatland terrain across 

the study region (Figure 2c). The areas of each saturated soil polygon were calculated alongside 

the areas for each NCSCD zone using the boundaries in the dataset. As the fractional coverage 610 

product from the NCSCD was used in this study, the fractional area of probable peatland terrain 

within the same NCSCD zone was calculated. The fractional areas of organic soils reported in 
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the NCSCD were then compared to the fractional areas of probable peatland terrain from the 

saturated soils dataset within the same NCSCD zone boundary (Figure 2e).  

The Landsat mosaic dataset (Figure 2b) was then combined with the resultant product 615 

displaying peatland terrain (Figure 2e). An unsupervised land cover classification was 

subsequently completed on the Landsat mosaic across the areas identified by the saturated soils 

and NCSCD datasets to identify and classify the land covers within these peat plateau-wetland 

complexes (Figure 2f). The first iteration of the unsupervised classification (Iso Cluster 

classification approach) targeted 50-75 classes (72 created). The original 72 classes were then 620 

aggregated into 12 final classes within the peatland terrain outlined across the Taiga Plains study 

region. The final 12 aggregated classes include: coniferous (dense and sparse), mixed (dense and 

sparse), and broad leaf forests stands (dense and sparse), collapse scar, fen, open water, bare 

ground, cloud, and cloud shadow.  

Forested peatlands are particularly indicative of landscape change in this region (Quinton 625 

et al., 2010; Baltzer et al., 2014; Chasmer & Hopkinson 2017) and as such, identifying the 

forested areas within the already identified peatland-dominated terrain was the focus of the 

Landsat classification. Specifically, the proportion of coniferous forested area within the total 

peatland area was quantified across the region’s latitudinal span (Figure 2g). Fractional 

coniferous forested area was selected rather than total forested area to account for the observed 630 

spatial differences in peatland distribution across the Taiga Plains. For each degree of latitude, a 

bin was created for fractional forested area and the median was calculated alongside upper (i.e. 

75th percentile) and lower (i.e. 25th percentile) quartiles. This data was plotted as a function of 

latitude across the Taiga Plains ecozone. This generated a dataset of forest cover across the 
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peatland-dominated regions of interest that was subsequently complemented by field data 

collected in the Scotty Creek basin to guide the proposed conceptual framework. 650 

3.2 Scotty Creek Imagery 

To help capture examples of the stages of the transitioning landscape, imagery was 

collected using a Remotely Piloted Aircraft System (RPAS) across the Scotty Creek basin

 to represent how each of these illustrated trajectory stages manifests on the landscape in 

a peat plateau and collapse scar wetland-dominated environment. The RPAS imagery (0.5 m 655 

resolution) was collected in the summer of 2018 using an eBee Plus equipped with a senseFly 

SODA 3D mapping camera and all image processing was completed in Pix4DMapper. 

Imagery for Scotty Creek, including aerial photographs from 1947, 1970, and 1977, 

IKONOS satellite imagery from 2000, and Worldview satellite imagery from 2010 and 2018 

were used to quantify the area occupied by peat plateaus, collapse scar wetlands and channel fens 660 

in each of these years. The aerial photographs (0.5-1.2 m resolution) and IKONOS imagery (4 m 

resolution) were previously classified and the results were presented in Quinton et al., (2011). 

Carpino et al., (2018) completed the land cover classifications for the 2010 Worldview imagery 

and Disher (2020) classified the 2018 Worldview imagery. Collectively, these images document 

the land cover change at the Scotty Creek basin over the period 1947 to 2018.  665 

3.3 Hydrological Data 

A comprehensive archive of hydrometeorological measurements was used in this study to 

examine the temporal variation in hydrological characteristics as land cover transition from one 

stage to another. The form and hydrological function of the major land cover types of permafrost 

plateau, collapse scar, and channel fen are well understood from numerous studies at Scotty 670 

Creek since the 1990s (Quinton et al., 2019). Field studies and monitoring at Scotty Creek over 
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this period have also provided firsthand accounts of how permafrost thaw changes land covers 855 

(Quinton et al., 2019). In the present study, we examined how runoff, evapotranspiration, and 

water storage are affected as land cover changes. In addition, we examined the precipitation data 

collected from 2008 to 2019 (Geonor, Model T200B) in relation to the three hydrological 

components listed above to gain insights into how changes in land cover affect the water balance 

for each stage in the land cover transition. These stages will be presented in detail in section 4.2. 860 

The Geonor precipitation data include both rain and snow measurements logged at 30 minute 

intervals (Table 1). Monitoring of discharge from Scotty Creek by the Water Survey of Canada 

began in 1996. For this study, annual basin runoff (mm year-1) between 1996 and 2015 was 

calculated and used in the basin runoff component of the conceptual framework (Table 1) 

(Connon et al., 2014; Haynes et al., 2018).  Given that this period of discharge monitoring 865 

coincided with a period of considerable climate warming and documented land cover change at 

Scotty Creek, the trend in calculated runoff over the period of record reflects a shift from a 

permafrost plateau-dominated landscape to one increasingly influenced by hydrologically-

connected wetlands. Therefore, the temporal trend of runoff from the Scotty Creek basin is 

driven by permafrost thaw-induced land cover change (Connon et al., 2014; Haynes et al., 2018). 870 
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Table 1: Annual precipitation (2008-2019), basin runoff (1996-2015; Connon et al., 
2014; Haynes et al., 2018), evapotranspiration (2013-2016; Warren et al., 2018), and 
residual storage values are presented (mm year-1) for two distinct transitional landscape 
stages at Scotty Creek: a landscape dominated by forest and a patchwork landscape of 875 
near-equal forest and treeless wetland land covers.  

 FOREST > WETLAND FOREST » WETLAND 
PRECIPITATION  493 493 

RUNOFF 149 215 
EVAPOTRANSPIRATION 206 255 

RESIDUAL STORAGE 138 23 

 

Recent work by Warren et al., (2018) examined evapotranspiration (ET) for forests, 

wetlands, and the integrated landscape within the Scotty Creek watershed between 2013 and 

2016. Daily ET values (mm day-1) reported by Warren et al., (2018) were converted to annual 880 

ET (mm year-1) for the purpose of the conceptual framework water balance in the present work 

(Table 1). The different land covers monitored by Warren et al., (2018) are representative of the 

land cover end-members identified in our conceptual framework. Therefore, the annual ET 

values based on the data collected by Warren et al., (2018) for the black spruce forests, open 

collapse scar wetlands and the integrated landscape were associated with the appropriate stage 885 

along our proposed trajectory of change. Stages of the trajectory for which representative 

measurements were not collected are interpolated between the land cover end-members for 

which ET was measured.  

Given the insignificant changes in annual precipitation over the period of measurement 

(Connon et al., 2014; Haynes et al., 2018), annual storage was calculated as the residual of 890 

annual precipitation inputs, and annual evapotranspiration and runoff outputs for the conceptual 

framework water balance (Table 1).   
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3.4 Radiation Fluxes  

Four meteorological stations at Scotty Creek were selected for use in this study (Figure 

3). This included a station installed in a collapse scar wetland in 2004 (hereafter “wetland 895 

station”) followed by a second station on a densely forested peat plateau in 2007 (hereafter 

“dense forest station”). The radiation flux data from these two stations are representative of the 

collapse scar wetland and permafrost plateau land cover types, respectively. Two additional 

stations located on forested plateaus were also used to represent tree canopy densities different 

from that of the dense forest station. These stations were installed on a sparsely forested peat 900 

plateau in 2015 (hereafter “sparse forest station”) and a forested plateau with a canopy of 

intermediate density between that of the dense and sparse stations in 2014 (hereafter 

“intermediate forest station”). All radiation measurements were made below the tree canopy at a 

height of 2 m above the ground surface. Four component radiation data were collected at the 

dense forest, sparse forest, and wetland meteorological stations, while only shortwave radiation 905 

was collected at the intermediate forest station. The reader is directed to Haynes et al., (2019) for 

full descriptions of the radiation instrumentation within the Scotty Creek basin. Radiation was 

measured every minute, and averaged and recorded every 30 minutes from which daily (24 

hourly) averages were computed. The daily averages were then used to compute annual average 

radiation for each station. While these computations defined some of the variability of radiation 910 

fluxes among land cover types, they do not account for flux variations over short temporal and 

spatial scales (Webster et al., 2016). To address these, the daily average four component 

radiation data from each station were compared on a monthly time step. The monthly averages 

were calculated and compared across the land covers represented by each of the four 

meteorological stations using a one-way analysis of variance (ANOVA) with Tukey post-hoc test 915 
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(a = 0.05), thereby testing the effect of land cover on monthly shortwave and longwave 

incoming and outgoing radiation. 

 
Figure 3: Worldview 2 satellite image (a) and oblique aerial photographs (b, c) over 
Scotty Creek, Northwest Territories. The satellite image also shows the locations of the 920 
Dense Forest Station (DFS), Sparse Forest Station (SFS), Wetland Station (WS) and 
Intermediate Forest Station (IFS) micrometeorological stations. The oblique aerial 
photographs show the land cover types that dominate lowlands with discontinuous 
permafrost in the Taiga Plains including peat plateau (permafrost), collapse scar wetland, 
and channel fen.  925 

4. Results and Discussion 

4.1 Peatland and Forest Occurrence 

The type of peatland-dominated terrain composed of peat plateau-wetland complexes 

separated by channel fens as described for Scotty Creek, occupy approximately 35% of the 

discontinuous permafrost zones of the Taiga Plains (Figure 4a). Large peatland clusters are 930 

located in lowland areas with high histel or histosol soil percentages. In the extensive-

discontinuous permafrost zone, peatlands are clustered to the west near to the Mackenzie River, 
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and are largely absent from the eastern portion of the study area in the region bounded by Great 940 

Bear Lake to the north and the Taiga Shield to the east. In the sporadic-discontinuous zone 

however, the peatland clusters are more longitudinally dispersed. 

  
Figure 4: Predicted distribution of peatland-dominated terrain in the discontinuous 
permafrost zone of the Taiga Plains (a). Peatland-dominated terrain was mapped using a 945 
saturated soils dataset (Natural Resources Canada 2017) (a) and compared to the NCSCD 
(Bolin Centre for Climate Research 2013) (b). Contains information licensed under the 
Open Government Licence – Canada. 

 
Comparing the fractional areas of probable peatland terrain from the saturated soils 950 

dataset to the NCSCD showed the saturated soils dataset was more likely to overstate the 

distribution of probable peatland terrain compared to the NCSCD maps. Approximately 20% of 

the fractional areas were exact matches between the two datasets, 20% were lower in the 

Deleted: region

Deleted: area955 

Deleted: distribution of these 

Deleted: is
Deleted:  We estimate that approximately 35% of the discontinuous 
permafrost zone within the Taiga Plains ecozone is composed of 
landscapes with high peatland coverage. 960 

Deleted: 
Formatted: Line spacing:  single

Deleted: .
Deleted: determined

Deleted: ),
Deleted: ), and Landsat 8 Data from the United States 965 
Geological Survey.

Deleted: As changes to forested landcovers have been used as an 
indicator of broader landscape change in this region (Baltzer et al. 
2014; Chasmer & Hopkinson 2017), forested peatlands, including 
forested peat plateaus in plateau-wetland complexes and forested 970 
permafrost-free wetlands were plotted as a function of latitude 
(Figure 3). A latitudinal trend in landcover percentage is apparent 
within the identified areas of high peatland coverage.



 

 
 

21 

saturated soils dataset, and 60% were higher in the saturated soils dataset. However, despite 

these disagreements, 79% of the fractional areas determined using the saturated soils dataset 975 

were within 15% of the fractional areas in the NCSCD. This suggests that using the Natural 

Resources Canada saturated soils dataset may be an appropriate method of mapping probable 

peatland terrain in the Taiga Plains on a finer scale (Figure 4a) compared to the broad zones 

presented by the NCSCD (Figure 4b). Only 11 of the 572 NCSCD zones (~2%) had 

disagreements over 25% when comparing the fractional areas between both datasets. The 980 

majority of these zones of disagreement were located along the Slave River, in the far southeast 

of the Taiga Plains study region.  

A latitudinal trend in land cover percentage was found for the mapped peatland-

dominated terrain (Figure 5). Along the boundary between the extensive-discontinuous and 

sporadic-discontinuous permafrost zones near the centre of the study region, collapse scar 985 

wetland features are most prevalent. Median fractional forest cover in peatlands (i.e. peat 

plateaus or treed wetlands) reaches its minimum value of 33% within the 61º N bin, near the 

latitude of Scotty Creek. The proportion of forested peatlands remains relatively low throughout 

the transitional zone between sporadic and extensive discontinuous permafrost (approximately 

61º to 62º N) where the median forest cover does not exceed 34%. The widespread occurrence of 990 

collapse scars suggest that permafrost thaw and the resulting processes of ground surface 

subsidence and inundation are particularly active in this zone compared to the extensive 

discontinuous permafrost zone to the north and the sporadic discontinuous permafrost zone to the 

south, where the fractional forested areas are higher.  
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Figure 5: Median forested peatland area expressed as a fraction of the total peatland area 1015 
and plotted as a function of latitude. The dark grey area represents the range in the 
proportion of the landscape occupied by forested peatland (i.e. fractional forested area) 
between the 25th percentile and 75th percentile. The lighter grey area indicates the range 
in the proportion of landscape underlain by permafrost (i.e. fractional permafrost area) as  
indicated by Brown et al., (2002).  1020 

 

The median proportion of forested peatlands in the extensive-discontinuous zone (63º to 

66º N) ranges from approximately 35 to 45%, indicating that permafrost thaw is less prevalent 

over the landscape than in the transition zone immediately to the south. However, the median 

fractional forested area is at its greatest (52%) south of the transition in the sporadic-1025 

discontinuous zone (59º to 60º N), where about half of the peatland area is forest covered. 

Expansion of forest cover in this zone, especially in the areas of north-eastern British Columbia 

and north-western Alberta, has been reported by others (e.g. Zoltai 1993, Carpino et al., 2018).  

A pattern of forest expansion over permafrost-free terrain is consistent with the observation of a 

northward-moving southern limit of permafrost reported by Kwong and Gan (1994) and with the 1030 

process of tree re-establishment following permafrost thaw-induced partial drainage of wetlands 

described by Haynes et al., (2020).  
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4.2 Conceptual Framework of Land Cover Change 

From the remote sensing and field-based hydrological studies at Scotty Creek since the 

mid-1990s, key insights into incremental land cover changes initiated by permafrost thaw have 1130 

emerged. Using this knowledge as a foundation, the present study examines both the 

hydrological and radiation regimes of each incremental stage and the land cover changes over the 

larger region in which permafrost thaw is known to be widely occurring and within which the 

southern edge of permafrost is migrating northward (Kwong & Gan, 1994). From this approach, 

a new conceptual framework is presented (Figure 6), which describes permafrost thaw-induced 1135 

land cover change in the peatland-dominated regions of the discontinuous permafrost zone. The 

land cover change occurring simultaneously (to varying degrees) at Scotty Creek and 

latitudinally across the wider Taiga Plains region can be categorized into seven distinct land 

cover stages, the first and last of which are forest cover, with the difference being that the former 

overlies permafrost and the latter does not. The stages are as follows: (I) Forested permafrost 1140 

plateaus; (II) Forested permafrost plateaus with small, isolated collapse scars; (III) Forested 

permafrost plateaus with larger, interconnected wetlands; (IV) Wetland complexes with small 

plateau islands; (V) Wetland complexes with hummock development and tree establishment; 

(VI) Hummock growth with forest establishment; and (VII) Forested peatlands (Figure 6). In the 

following sections, the biophysical, hydrological and radiation regimes of each of these stages 1145 

are presented and discussed, drawing on several investigations in the region.  

Deleted: to return to newly unsaturated areas (Zoltai 1993; Camill 
1999). ¶
Plateau-Wetland Complex Landscape Trajectory¶
The evolution of peat plateau-collapse scar wetland complexes over 1150 
time can be represented by seven phases

Deleted: scar wetlands

Deleted: small-scale 

Deleted: Afforested wetlands (Figure 4). A sequence of 
hydrological processes and energetic mechanisms occurs to initiate 1155 
landscape change and drive the landscape along the proposed 
spectrum of transition. As permafrost thaw commences, a landscape 
dominated by forested plateaus and underlain by permafrost (Figure 
4I) transitions to one with small, suprapermafrost taliks (Connon et 
al. 2018) and isolated collapse scar bogs begin to emerge (Figure 4II; 1160 
Quinton et al. 2011). As permafrost thaw and talik development 
continues, the previously isolated collapse scars expand (Figure 4III; 
Devoie et al. 2019) and become interconnected with surrounding 
wetlands (Connon et al. 2015). As permafrost thaw continues, 
wetlands proliferate and become increasingly connected, creating a 1165 
landscape dominated by widespread wetland complexes with only 
isolated plateau islands (Figure 4IV; Baltzer et al.
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Figure 6: (Bottom) Proposed conceptual framework of landscape trajectory including a 1170 
space-for-time substitution for changes to both permafrost and land cover. Conceptual 
diagrams are presented to illustrate landscape change with the support of RPAS imagery 
collected in the Scotty Creek basin. The conceptual framework is presented alongside the 
processes that initiate the trajectory’s progression. (a) Relative changes to local water 
balances of measured Scotty Creek basin runoff, evapotranspiration and residual storage 1175 
with unchanging precipitation are summarized and presented over the trajectory of 
landscape change based on the proportion of forested vs. wetland area. (b) Relative 
changes to local energy balances are presented using data collected from sub-canopy 
meteorological stations installed at Scotty Creek. (c) Changes to relative land cover 
proportions are presented using historical aerial photographs and recent acquisitions of 1180 
satellite imagery over the Scotty Creek basin.  
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4.2.1 Biophysical Characteristics 1225 

The present study found that the early land cover stages presented in Figure 6 are more 

prevalent at the higher latitudes of the study region and the later stages at the lower latitudes. 

Considering that permafrost thaw is more advanced in the lower latitudes and that the southern 

limit of permafrost is advancing northward (Kwong & Gan, 1994), it is reasonable to expect that 

the more advanced stages presently characterising the lower latitudes will, in the future, 1230 

characterise the higher latitudes, assuming a continuation of climate warming induced permafrost 

thaw. Approaching a change in latitude through the study region as analogous to a change in land 

cover stage, or more specifically, to a change in time, is supported by studies that examined land 

cover change over the last half-century at Scotty Creek (Chasmer & Hopkinson, 2017; Quinton 

et al., 2019) and along a north to south transect extending from Scotty Creek to northeastern 1235 

British Columbia (Carpino et al., 2018).  

The Scotty Creek basin, located near the northern limit of sporadic discontinuous 

permafrost (Figure 1) is characterised mainly by stages III and IV. However, examples of all 

seven stages can be found in local areas at Scotty Creek. For this reason, the long term 

monitoring and research programs at Scotty Creek involving each of these land cover types 1240 

contributes detailed information on their form and functioning, and on their transition from one 

to another. For example, permafrost thaw changes a landscape dominated by forested plateaus 

(Figure 6I) to one with small, suprapermafrost taliks (Connon et al., 2018) and isolated collapse 

scars (Figure 6II; Quinton et al., 2011). Continued thaw expands isolated collapse scars (Figure 

6III; Devoie et al., 2019) enabling them to coalesce to form interconnected wetlands (Connon et 1245 

al., 2015), a process that then leads to a landscape of expansive wetlands dotted with isolated 

plateau “islands” (Figure 6IV; Baltzer et al., 2014; Chasmer & Hopkinson 2017). Since the 

process of wetland expansion removes peat plateaus, a land cover type that impounds wetlands 

Moved (insertion) [12]
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same time period (Quinton et al. 2010). As of 2018, the headwaters 
of the Scotty Creek basin were comprised of approximately 40% 
forested permafrost plateau, 45% treeless wetland (13% collapse scar 1285 
wetland and 32% channel fen), and 13% afforested wetland (Disher 
2020). These results indicate that the proportional area of peat 
plateau, and thus permafrost terrain, has continued to decline since 
previous analyses (Quinton et al. 2010; Baltzer et al. 2014; Connon et 
al. 2014; Carpino et al. 2018). While permafrost thaw-induced forest 1290 
loss continues rapidly at Scotty Creek, forest re-establishment is also 
occurring in the form of afforested wetlands (Disher 2020). As such, 
these results are also indicative of the fact that the transition from one 
stage of the trajectory to the next is not instantaneous and can occur 
to varying degrees within a local site such as Scotty Creek. ¶1295 
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and obstructs drainage (Connon et al., 2014), this process enables the landscape drain more 

efficiently (Haynes et al., 2018). As wetlands drain, hummock micro-topography develops in 

their relatively drier interiors (Figure 6V; Haynes et al., 2020), which allows black spruce to 

colonise the wetlands on the relatively dry hummock surfaces (Figure 6VI; Iversen et al., 2018; 1300 

Dymond et al., 2019). Continued drainage and drying of wetlands enables the expansion of their 

hummocky terrain and therefore of their tree cover (Eppinga et al., 2007; Iversen et al., 2018) 

until the landscape returns to a more continuous forest cover (Figure 6VII; Carpino et al., 2018). 

However, the forest cover in this final stage is permafrost-free and for that reason, the conceptual 

framework presented in Figure 6 stands in contrast to those presented by Zoltai (1993) and 1305 

Camill (1999) in which the re-emergence of a forest cover relies on the re-emergence of the 

underlying permafrost. According to Zoltai (1993), forest re-emerges because permafrost 

displaces the overlying ground surface upward, resulting in the development of an unsaturated 

layer suitable for tree establishment. By contrast, the tree establishment described in Figure 6 

results not from the re-emergence of permafrost, but from its continued thaw over the landscape, 1310 

a process that dewaters wetlands (Connon et al., 2014; Haynes et al., 2018) to the extent suitable 

for tree establishment (Haynes et al., 2020).  

The land cover transition depicted in Figure 6 involving wetland drainage and forest re-

establishment occurs in less than half a century as indicated by analysis of historical imagery for 

Scotty Creek. By contrast, the process of forest re-growth enabled by the re-establishment of 1315 

permafrost occurs over a much longer time frame of several centuries (Zoltai, 1993; Treat and 

Jones, 2018). At Scotty Creek, the early stages of Figure 6 (i.e. stages I, II) represent the changes 

observed between 1947 and 2000 over which time the tree-covered area decreased from 

approximately 70% to approximately 50% (Quinton et al., 2011). The fraction of forested land 

above permafrost-free terrain cover is unknown for this period but assumed to be negligible 1320 
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based on land cover descriptions for this region (e.g. NWWG, 1988; Zoltai 1993; Robinson & 

Moore, 2000). This period therefore generated a concomitant rise in the cover of wetlands over 

the landscape (i.e. 30 to 50%) since permafrost thaw transitions the tree covered plateaus to 

collapse scars and channel fens, as confirmed by analysis of archived imagery (Chasmer et al., 

2010).  By 2018, tree-covered peat plateaus decreased to 40%, and treeless wetlands occupied 1325 

45% of the land cover (13% collapse scars and 32% channel fens) (Disher 2020). These studies 

indicate that permafrost thaw and the resulting processes have both removed forest as a result of 

thaw-induced subsidence and inundation of plateau surfaces, and more recently, enabled forest 

re-establishment in the form of treed wetlands (Haynes et al., 2020; Disher et al., 2021). 

However, the dominant land cover transition at Scotty Creek is still from forest (peat plateau) to 1330 

wetland as a result of permafrost thaw, resulting in a net forest loss, a process that will continue 

until the later stages of Figure 6 are reached (i.e. stages VI, VII), at which point there will be a 

net forest gain. 

 The sequence of land cover stages following permafrost thaw observed at Scotty Creek 

and depicted in Figure 6 is supported by vegetation successional changes described in the 1335 

literature for wetlands as they age. For example, aquatic Sphagnum species, notably S. riparium, 

are the first to occupy the inundated margins between thawing permafrost plateaus and 

developing collapse scars (Garon-Labrecque et al., 2015; Pelletier et al., 2017). Such recent 

areas of collapse are easily identified on high-resolution RPAS imagery by the distinct bright 

green colour of S. riparium (Figure 6II, III, IV; Gibson et al., 2018; Haynes et al., 2020). These 1340 

wetland-plateau edges may also be identified by bare peat or moats of water (Zoltai 1993). As 

collapse scars expand, lawn species, such as S. angustifolium, and hummock species, such as S. 

fuscum, emerge, particularly in the drier interior of wetlands (Zoltai 1993; Camill 1999; Pelletier 

et al., 2017). Hummock species, mainly S. fuscum, first emerge near the centre of collapse scars, 
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and expand outward over time (Camill 1999; Loisel & Yu 2013). Much like S. riparium, S. 

fuscum is also easily identified in high-resolution imagery, where S. fuscum is distinguished by 

its russet colour (Figure 6V) (Haynes et al., 2020). As the density of the S. fuscum hummocks 

increases, imagery and ground-based observations indicate the presence of young black spruce 1405 

trees (Liefers & Rothwell 1987; Haynes et al., 2020), first on isolated hummocks (Figure 6VI) 

but eventually as widespread afforestation (Figure 6VII; Camill 2000; Ketteridge et al., 2013).  

4.2.2 Radiation Flux Characteristics  

The Scotty Creek basin is a microcosm of its larger regional setting since it contains each 

of the land cover stages of the conceptual framework in Figure 6. As such, the micro-1410 

meteorological measurements made at Scotty Creek for different land cover types provide insight 

into how energy regimes change as one land cover stage transitions to the next. Both incoming 

and outgoing shortwave radiation peak at the middle stages (IV, V), where treeless collapse scars 

predominate. Annual incoming and outgoing shortwave radiation is lowest at the dense forest 

station, which represents the initial stage (I). Likewise, incoming and outgoing annual longwave 1415 

radiation are greatest in the early (I, II) and late stages (VI, VII) and lowest in the wetland-

dominated middle stages (IV, V).  

Statistically significant differences were found between stations for incoming (Figure 7a) 

and outgoing (Figure 7b) shortwave and incoming longwave radiation (Figure 7c), while there 

was no statistical differences between stations for outgoing longwave (Figure 7d). However, 1420 

Tukey post-hoc tests revealed variability between the two shortwave components in terms of 

which groups showed these significant differences. As the four meteorological stations fall along 

a gradient of forest density from treeless wetland to a densely forested plateau, no significant 

differences in incoming shortwave radiation were ever found between stations only one rank 
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apart on that gradient. As such, measurements indicate average monthly incoming shortwave 

radiation is significantly greater at the wetland compared to both the intermediate forest (p < 

0.05) and the dense forest (p < 0.05), while no significant difference exists between wetland and 

the sparse forest. However, the dense forest receives significantly less incoming shortwave 1570 

radiation than both the wetland (p < 0.05) and the sparse forest (p < 0.05), but this station is not 

significantly different from the intermediate forest.  

No significant differences in outgoing shortwave radiation exist between any of the 

forested plateau stations but all are significantly different from the wetland. Specifically, 

outgoing shortwave radiation recorded at the wetland station is significantly greater than the 1575 

sparse forest (p < 0.05), intermediate forest (p < 0.05), and dense forest stations (p < 0.05). The 

differences between the wetland station and the forested plateau stations are also increasingly 

significant with increasing tree density.  There was a statistically significant difference between 

the three stations (intermediate forest omitted due to lack of measurements) for incoming 

longwave radiation, while no statistically significant differences were observed in the outgoing 1580 

longwave radiation component. The only significant difference in incoming longwave was 

observed between the wetland and dense forest (p < 0.05). No significant differences exist 

between the sparse forest and the wetland or dense forest.  

The comparison among the plateau stations of contrasting tree canopy densities provides 

insight into the permafrost thaw-induced progression of radiation regimes as plateaus transition 1585 

to wetlands, a process involving the gradual thinning and eventual loss of the tree canopy. 

Wright et al., (2009) demonstrated that small-scale changes to the tree canopy density can 

increase insolation to the ground in localized areas leading to thaw depressions in the active layer 

and water flows toward such depressions from their surroundings. Such areas of preferential 
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thaw therefore develop elevated soil moisture contents, and since soil thermal conductivity 1685 

increases with its moisture content, the preferential thaw process is reinforced. This is suggested 

as the mechanism driving the transition from stage I to II in the trajectory (Quinton et al., 2019). 

This feedback is present in the initial stages of the trajectory, and is often associated with talik 

formation and expansion into collapse scars due to localized permafrost loss (Chasmer & 

Hopkinson 2017; Connon et al., 2018). Such thaw can extend to the base of the active layer in 1690 

which case further thaw results in permafrost loss, ground surface subsidence, waterlogging of 

the ground surface, local tree mortality, and therefore further thinning of the overlying tree 

canopy and consequently more insolation at the ground surface. These processes and feedback 

mechanisms are critical in the generation of collapse scars in stage III. 

Differing ground surface properties, particularly albedo, can amplify the differences in 1695 

incoming shortwave radiation among the land covers. However, the difference in mean albedo 

during the snow-free season (May-September) below the plateau canopies is less than 5% and 

displays a small increasing gradient as the canopy becomes more dense (sparse: 0.111, 

intermediate: 0.127, dense: 0.147). The mean wetland albedo (0.145) during the snow-free 

season is also similar to the plateau surfaces and most closely resembles the surface albedo of the 1700 

dense plateau. The greatest contrast in albedo occurs during the period of several weeks while 

snow still covers the plateaus but is absent on the adjacent wetlands (Connon et al., Submitted). 

This contrast in albedo is also evident in Figure 7b, which shows that following winter, outgoing 

shortwave radiation from the wetland increases before the forested stations. Helbig et al., 

(2016b) attributed their observed increase in landscape albedo in this late winter/spring period to 1705 

the permafrost thaw-induced conversion of forest (lower albedo) to wetland (higher albedo), and 

suggested that this could lead to a regional cooling effect during this time of the year. However, 

that study implicitly assumed that the wetlands were a final land cover stage rather than an 
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incremental step toward the re-establishment of forest as depicted in the conceptual framework 

presented in Figure 6.   
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Figure 7: Sub-canopy daily total (MJ/m2/day) incoming shortwave (a), outgoing shortwave (b), incoming longwave (c), and 
outgoing longwave (d) at the four meteorological stations. Each station represents a distinct land cover: dense forest (2007-2019), 1725 
intermediate forest (2014-2019), sparse forest (2015-2018), and treeless wetland (2004-2019). The boxes represent the 25th and 
75th percentile, while the whiskers represent the range of the data. The notches on each box indicate the confidence interval (a = 
0.05) around the mean while the statistical differences between meteorological stations have been presented in the upper left of 
each plot as determined by one-way ANOVA. Significant p values have been highlighted with bold text. 
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4.2.3 Hydrological Characteristics 1730 

 As the land covers presented in the conceptual framework transition from one to the 

next, hydrological processes also change (Figure 6a). In the early stages (I, II), a relatively large 

proportion of hydrological inputs from the atmosphere are stored in collapse scars due to their 

impoundment by the permafrost on their margins (Connon et al., 2014). Evapotranspiration from 

the landscape is relatively low given the high proportion of forest and relatively low transpiration 1735 

by the black spruce that dominates the plateau canopies (Warren et al., 2018). In the early land 

cover stages (I, II) when forests predominate, understorey vegetation provide the pathway for 

evapotranspiration (Chasmer et al., 2011). The incremental change in land covers presented in 

Figure 6 involves biophysical changes that affect the partitioning of precipitation into storage or 

runoff. By stage III to IV wetlands are interconnected and rapidly expanding, the storage of 1740 

water on the landscape reaches its minimum level while runoff from the landscape is maximized 

(Figure 6a). This increased runoff is enabled by the removal of permafrost barriers (Haynes et 

al., 2018) and areal expansion of runoff contributing areas resulting in greater hydrological 

connectivity and therefore drainage of the landscape (Connon et al., 2014). These observations 

coincide with a period of steady, unchanging annual precipitation; therefore precipitation does 1745 

not account for elevated basin runoff (Connon et al., 2014). A decrease in landscape drainage 

then follows in the subsequent stages as the transient runoff contributions from “captured” 

collapse scars diminishes as the importance of evapotranspiration increases as the wetlands 

become the predominant land cover (IV, V). The increase in evapotranspiration is due to 

increases in evaporation from areas occupied by standing water and saturated or near-saturated 1750 

wetland vegetation, including Sphagnum mosses, with losses due to transpiration driven by shrub 

vegetation (Warren et al., 2018). In the advanced stages (VI, VII) evapotranspiration would 

decrease as a result of the drier wetland surfaces as hummock microtopography replaces 
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saturated Sphagnum lawns. The treed (afforested) wetlands (VII) have not been studied to the 1835 

same degree as peat plateaus or collapse scar wetlands (Haynes et al., 2020; Disher et al., 2021) 

and therefore ground based hydrological data specific to these features are lacking.  

5. Conclusions 

The discontinuous permafrost zone of the Taiga Plains exemplifies a landscape in 

transition. Coupling a broad-scale mapping initiative with the detail of site-specific data 1840 

collected in the Scotty Creek basin demonstrates a permafrost thaw-induced land cover 

transition. This transition is incremental and involves distinct land cover stages. The first and last 

of these is a continuous forest cover, although in the first stage the forest is underlain by 

permafrost while in the last stage it is not. Unlike traditional concepts of land cover change in 

peatland dominated regions of discontinuous permafrost in which forest re-establishment occurs 1845 

over centuries and is constrained by the rate of permafrost re-development, the concept presented 

here described forest re-establishment within decades and resulting from continued permafrost 

thaw, a process which allows wetlands to de-water sufficiently for tree growth. Each land cover 

stage has characteristic biophysical, hydrological and micro-meteorological features.  

The proposed conceptual framework of landscape evolution describes the transitions 1850 

occurring across the Taiga Plains in peat plateau-collapse scar wetland complexes like Scotty 

Creek. This study also identifies the applicability of this conceptual framework across a large 

region of the Canadian north. We establish the likely pattern of change across these peat plateau-

collapse scar wetland complexes and project their future trajectory by combining long-term field 

observations with analyses of contemporary and historical imagery. It is proposed that, while 1855 

permafrost thaw-induced land cover changes have previously been dominated by a transition 

from forest to wetland, this transition is not permanent and forested land covers are likely to 
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return over time, although unlikely to be underlain by permafrost. This research improves the 

understanding of how peat plateau-collapse scar wetland complexes in the Taiga Plains may be 

impacted by ongoing permafrost thaw and these results may also be of relevance to other 

peatland-rich permafrost environments across the circumpolar north.  
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