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Abstract. The Soil Moisture Active Passive (SMAP) Level-4 Surface Soil Moisture and Root-Zone Soil Moisture (L4) 17 

product provides global estimates of surface soil moisture (SSM) and root-zone soil moisture (RZSM) via the 18 

assimilation of SMAP brightness temperature (Tb) observations into the Catchment Land Surface Model (CLSM). 19 

Here, using in-situ measurements from 2474 sites in mainland China, we evaluate the performance of soil moisture 20 

estimates from L4 and from a baseline “open-loop” (OL) simulation of CLSM without Tb assimilation. Using random 21 

forest regression, the efficiency of the L4 data assimilation (DA) system (i.e., the performance improvement in L4 22 

relative to OL) is attributed to 8 control factors related to the land surface modelling (LSM) and radiative transfer 23 

modeling (RTM) components of the L4 system. Results show that 77% of the 2287 9-km EASE grid cells in mainland 24 

China that contain at least one ground station exhibit an increase in the Spearman rank correlation skill (R) with in-25 

situ measurements for L4 SSM compared to that of OL, with an average R increase of approximately 14% (ΔR = 26 

0.056). RZSM skill is improved for about the same percentage of 9-km EASE grid cells, but the average R increase 27 

for RZSM is only 7% (ΔR = 0.034). Results further show that the SSM DA efficiency is most strongly related to the 28 

error in Tb observation space, followed by the error in precipitation forcing and microwave soil roughness. For RZSM 29 

DA efficiency, the three dominant control factors remain the same, although the importance of soil roughness exceeds 30 

that of the Tb error. For the skill of the L4 and OL estimates themselves, the top control factors are the precipitation 31 

error and the SSM-RZSM coupling strength error (in descending order of factor importance for ROL), both of which 32 

are related to the LSM component of the L4 system. Finally, we find that the L4 system can effectively filter out errors 33 

in precipitation. Therefore, future development of the L4 system should focus on improving the characterization of the 34 

SSM-RZSM coupling strength.  35 

 36 

Keywords. SMAP Level 4, soil moisture, data assimilation, attribute analysis, random forest regression  37 

1 Introduction 38 

Soil moisture modulates water and energy feedbacks between the land surface and the lower atmosphere by 39 

determining the partitioning of incoming net radiation into latent and sensible heat (Seneviratne et al., 2010, 2013). 40 

High-quality, global-scale soil moisture products have become increasingly available in recent years (Gruber et al., 41 

2020). In particular, the L-band NASA Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 2010; 42 

Piepmeier et al., 2017) has significantly improved the skill of available, global-scale soil moisture products. However, 43 

the SMAP observations contain temporal data gaps and are only representative of conditions within the top 5 cm of 44 

the vertical soil moisture column. To address these limitations, the SMAP Level-4 Surface and Root-Zone Soil 45 

Moisture (L4) algorithm assimilates SMAP brightness temperature (Tb) observations into the NASA Catchment Land 46 

Surface Model (CLSM) to derive an analysis of surface (0–5 cm) and root-zone (0–100 cm) soil moisture estimates 47 

with global, 3-hourly coverage (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019).  48 
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However, the performance of a land data assimilation (DA) system is sensitive to its parameterization and requires 49 

careful assessment. For instance, Reichle et al. (2008) demonstrate that DA based on incorrect assumptions of modeling 50 

and observation errors can degrade soil moisture estimates, compared with the case of not performing any DA. 51 

Theoretically, the optimality of DA can be evaluated using so-called innovations, or observations-minus-forecast 52 

residuals; however, an investigation of the innovations alone is often insufficient to determine if the soil moisture 53 

analysis is optimal (Crow and Van Loon, 2006).  54 

Recently, Dong et al. (2019a) proposed a novel statistical framework for evaluating the performance of a soil moisture 55 

DA system. Specifically, they demonstrated that the relative skill of surface soil moisture (SSM) estimates acquired 56 

with and without DA can be estimated using the ratio of their correlations with just one noisy but independent ancillary 57 

remote sensing product. This approach was applied to the SMAP L4 system using ASCAT soil moisture retrievals.  58 

Their results show that the added value of SMAP DA is closely related to both rain gauge and vegetation density. 59 

However, due to the limited availability of independent root-zone soil moisture (RZSM) products for performing 60 

statistical error estimation, this method is only applicable for SSM estimates.  61 

Relative to SSM, the efficiency of assimilating land surface observations to improve RZSM is complicated by model 62 

structural error that affects the ability of the DA to update unobserved model states. For instance, Kumar et al. (2009) 63 

identified the surface–root zone coupling strength, which is the result of a model-dependent representation of processes 64 

related to the partitioning of rainfall into infiltration, runoff, and evaporation components, as an important factor for 65 

determining RZSM improvement associated with the assimilation of SSM retrievals. Their synthetic experiments 66 

suggest that – faced with unknown true subsurface physics – overestimating the surface–root zone coupling in the land 67 

model is a more robust strategy for obtaining skill improvements in the root zone than under-estimating the coupling. 68 

Likewise, Chen et al. (2011) suggested that their Soil and Water Assessment Tool significantly under-predicts the 69 

magnitude of vertical soil water coupling in the Cobb Creek Watershed in southwestern Oklahoma, USA, and this lack 70 

of coupling impedes the ability of DA to effectively update deep-layer soil moisture, groundwater flow and surface 71 

runoff. In the context of the present paper, the evaluation of L4 RZSM estimates has been limited to relatively few 72 

SMAP core validation and sparse network sites (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019). With 73 

such limited sample sizes, the RZSM skill of the L4 product at the global scale remains uncertain. 74 

The primary objective of this study is to determine the DA efficiency, i.e., performance improvement in DA results 75 

relative to the open-loop (OL) baseline of the L4 product, as a function of a variety of system aspects, including errors 76 

in CLSM forcing (e.g., precipitation), errors in key CLSM parameters (e.g., relating to vegetation), mean errors in 77 

CLSM structure (e.g., surface and root-zone coupling), and errors in the radiative transfer modeling (RTM) that links 78 

the modeled soil moisture and temperature estimates to the observed Tb.   79 

To this end, we first evaluate the performance of L4 SSM and RZSM estimates using a very large number (n = 2474) 80 

of soil moisture profile measurement sites (generally acquired at sub-surface depths between 10 and 50 cm) within 81 

mainland China. Next, the in-situ measurements are used to assess the DA efficiency of the L4 system, which is defined 82 
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as the skill difference between the L4 estimates and model-only estimates derived without SMAP Tb assimilation. 83 

Additionally, we apply a machine-learning technique to quantify by how much various control factors drive the spatial 84 

variations in the efficiency of the L4 system. In this way, we seek to prioritize future enhancements to the L4 system.  85 

2 Data and Methods 86 

This section briefly describes the SMAP L4 soil moisture product (Section 2.1), the extensive network of in-situ soil 87 

moisture observations over mainland China (Section 2.2) and the ancillary data sources and metrics used in the skill 88 

assessment (Sections 2.3 and 2.4). Next, we introduce the double instrumental variable (IVd) method employed to 89 

determine the errors in control factors that cannot be determined using ground observations (Section 2.5). Finally, we 90 

describe the random forest (RF) regression method used to identify the main factor(s) (out of the 8 control factors from 91 

both CLSM and RTM aspects) that affect the spatial variations in SMAP L4 DA efficiency and L4 performance 92 

(Section 2.6). 93 

2.1 SMAP L4 soil moisture product 94 

The SMAP L4 soil moisture product (version 4; Reichle et al., 2019) is generated by assimilating the SMAP L1C 95 

Radiometer half-orbit 36 km EASE-Grid brightness temperature (Tb) observations (Version 4 SPL1CTB; Chan et al., 96 

2016) into the CLSM. The SMAP Tb observations are assimilated at 3-h intervals using a spatially distributed, 24-97 

member ensemble Kalman filter (Reichle et al. 2017b). The surface meteorological forcing data are from the global 98 

Goddard Earth Observing System (GEOS) Forward Processing atmospheric analysis (Lucchesi, 2013), with 99 

precipitation corrected using the daily, 0.5-degree, gauge-based Climate Prediction Center Unified (CPCU) product 100 

(Xie et al. 2007). The L4 product provides global, 9-km, 3-hourly surface (0–5 cm) and root-zone (0–100 cm) soil 101 

moisture estimates along with related land surface fields and analysis diagnostics. For the present study, we aggregated 102 

all soil moisture estimates to daily-average (00:00 to 23:59 UTC) data. A baseline, model-only, ensemble CLSM 103 

simulation without the assimilation of SMAP Tb observations (but using the same perturbations as in the L4 system) 104 

is referred to as the “open-loop” (OL) run.  105 

The SMAP L4 assimilation system includes a zero-order “tau-omega” forward RTM (De Lannoy et al., 2013) that 106 

converts SSM and surface soil temperature into L-band brightness temperature estimates. Selected parameters of the 107 

L4 RTM, including microwave soil roughness parameters, a vegetation structure parameter, and the microwave 108 

scattering albedo, were calibrated using multi-angular L-band brightness temperature observations from the Soil 109 

Moisture Ocean Salinity (SMOS) mission (De Lannoy et al., 2014). The L4 RTM parameterizes microwave soil 110 

roughness as a function of SSM (De Lannoy et al., 2013, their equation B1). Here, we used this parameterization to 111 

compute the 2017-2018 time-averaged microwave soil roughness estimates as one potential indicator of DA efficiency 112 

(Section 2.3).  The necessary parameters were obtained from L4 “Land-Model-Constants” output Collection (last 113 

access: 8 July 2020; DOI: https://doi.org/10.5067/KGLC3UH4TMAQ; Reichle et al., 2018a). The L4 “Analysis-114 

Update-Data” output Collection includes RTM predictions of Tb and the assimilated SMAP Tb observations (last 115 

access: 8 July 2020; DOI: https://doi.org/10.5067/60HB8VIP2T8W; Reichle et al., 2018b). 116 
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To avoid the impact of seasonality, we performed our analysis using anomaly time series, derived by subtracting a 117 

seasonally-varying (daily) climatology from each raw time series. The climatology of a given time series was obtained 118 

by sampling the mean value of all soil moisture estimates that fall within a 31-day moving window centered on a 119 

particular day-of-year. Moreover, L4 estimates of land latent heat flux (LE), land sensible heat flux (SH) and the 120 

climatological LAI inputs to CLSM and the RTM, were obtained from the L4 “Geophysical-Data” output Collection 121 

(last access: 6 April 2020; DOI: https://doi.org/10.5067/KPJNN2GI1DQR; Reichle et al., 2018c). These datasets were 122 

also used to compute control factors to explain spatial variations in the DA efficiency of the L4 system (Section 2.3).  123 

2.2 Soil moisture validation data 124 

In-situ soil moisture measurements during 2017 and 2018 were collected from a national network of Chinese 125 

Automatic Soil Moisture Observation Stations (CASMOS) maintained by the Chinese Meteorological Administration 126 

(CMA). In total, soil moisture measurements from 2474 separate stations arrayed across mainland China, and covering 127 

different land use types, were collected. At each CASMOS site, frequency domain reflectometry-based instruments 128 

were used to record hourly volumetric soil moisture content within the following vertical depth ranges: 0–10, 10–20, 129 

20–30, 30–40, and 40–50 cm below the surface. These hourly estimates (at multiple depths) were then aggregated into 130 

daily values and linearly averaged (vertically) to produce 0-10 cm (SSM) and 0-50 cm (RZSM) in situ soil moisture 131 

measurements – which were subsequently used to validate the L4 and OL SSM (0-5 cm) and RZSM (0-100 cm) 132 

estimates. Note that Spearman correlation rather than Pearson correlation is used for L4 and OL validation, in order to 133 

avoid impact of outliers in the time series and prior assumptions about soil moisture distributions. 134 

Ground observations falling within the same 9-km EASE grid were averaged for comparisons against the collocated 135 

9-km L4 and OL soil moisture estimates. A total of 2287 individual 9-km EASE grid cells within mainland China are 136 

included in the analysis. Among them, 92.35% of grid cells contain one in-situ site, 7.26% contain two sites, 7 grid 137 

cells contain three sites, and the remaining two grid cells contain four and five sites respectively.  138 

2.3 Explanatory data products 139 

As discussed above, our hypothesis is that the efficiency of the SMAP L4 system will be sensitive to the ability of the 140 

ensemble-based L4 analysis in filtering errors that exist in the OL (that is, CLSM), in the model forecast Tb (that is, 141 

the RTM), and in the SMAP Tb observations. We therefore considered two separate categories of factors that 142 

potentially control spatial variations in DA efficiency. The factors are summarized in Table 1. 143 

The first category represents a range of factors known to affect the skill of soil moisture estimates derived from LSM 144 

(in this case, CLSM). The five control factors in this category are: i) the error in precipitation forcing, ii) the error in 145 

(input) LAI, iii) the error in (output) LE, iv) the magnitude of mean error in CLSM SSM-RZSM coupling strength, 146 

and v) the presence of vertical variability in soil properties (defined as the difference in clay fraction across the vertical 147 

soil profile). Note that such variability represents a potential source of error because CLSM assumes that soil texture 148 

and the associated soil parameters are vertically homogeneous within the soil column, with the exception of some 149 
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surface-layer moisture transport parameters. The soil texture information is from Harmonized World Soil Database 150 

(HWSD) v1.2.  151 

The second category contains three factors that affect radiative transfer modeling (RTM) and therefore DA updates. 152 

These include: i) estimates of the joint error in SMAP Tb observations and RTM Tb simulations, ii) the magnitude of 153 

microwave soil roughness, and iii) the magnitude of LAI (as a proxy for the vegetation optical depth at microwave 154 

frequencies, which modulates the sensitivity of the observed Tb to SSM conditions).  155 

The control factors take a variety of forms. Some factors are based on estimates of the errors fed into the L4 system as 156 

(e.g., the error in CLSM rainfall forcing data). Other factors consist of the magnitude of the variable itself (e.g., the 157 

vertical variability of clay fraction). Note that LAI is used in both ways: LAI error is used to predict OL performance 158 

(because LAI is an important input into CLSM) while mean LAI is used to explain DA performance (because increased 159 

LAI is associated with decreased soil moisture information content in microwave observations).  160 

Note that the LAI used in the L4 system is a climatology derived from satellite observations of the Normalized 161 

Difference Vegetation Index. Therefore, to indicate the magnitude by which each grid cell’s LAI typically deviates 162 

from its long-term climatology, we use the temporal standard deviation of anomaly time series of the benchmark LAI 163 

(from SPOT VGT product) as a measure of the error in the LAI used in L4. Owing to the lack of reference Tb 164 

observations at similar satellite overpass times and locations, Tb errors are gauged using the time series standard 165 

deviation of the observation-minus-forecast (O‐F) Tb residuals, which indicate the typical misfit between the model 166 

forecast Tb and the (rescaled) SMAP Tb observations.  This metric measures the total error in Tb observation space. 167 

The exact data sets and the metrics utilized for evaluating these 8 control factors are summarized in Table 1. 168 
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2.3.1 Gauge-based precipitation gridded product 171 

Errors in the GEOS precipitation data used to force the CLSM within the SMAP L4 system were estimated via 172 

Spearman’s rank correlation with available rain-gauge observations. These network observations are based on an 173 

analysis of ∼2400 rain gauge stations distributed unevenly over mainland China. Recently, the China Gauge-based 174 

Daily Precipitation Analysis (CGDPA) with a spatial resolution of 0.25°×0.25° based on this network was constructed 175 

and has been made operational over mainland China. CGDPA uses a modified interpolation method of climatology-176 

based optimal interpolation (OI) with topographic correction proposed by Xie et al. (2007). In this process, daily 177 

precipitation climatology over mainland China is optimized and is rebuilt using the 30-year average precipitation 178 

observations from ∼2400 gauges of the period 1971–2000 (Shen et al., 2010). CGDPA is shown to have smaller bias 179 

and root mean square error than the CPCU product used in L4, which is based on fewer than 400 gauge sites over 180 

mainland China (Shen et al., 2015). 181 

2.3.2 FLUXCOM LE estimates 182 

The FLUXCOM ensemble of global land-atmosphere energy fluxes was used to evaluate the error of the L4 LE 183 

estimates. This ensemble merges energy flux measurements from FLUXNET eddy covariance towers with remote 184 

sensing and meteorological data based on a machine learning method to estimate global gridded net radiation, latent 185 

and sensible heat and their related uncertainties (Jung et al., 2019). The resulting FLUXCOM database has a 0.0833° 186 

spatial resolution when applied using MODIS remote sensing data. The monthly energy flux data of all ensemble 187 

members, as well as the ensemble estimates from the FLUXCOM initiative, are freely available (CC4.0 BY license) 188 

from the Data Portal (http://fluxcom.org/), while the daily- and 8-day FLUXCOM products are available upon request 189 

from dataset provider Martin Jung. To calculate the LE error, we’ve collected the daily, high spatial resolution 190 

FLUXCOM product and extracted the estimates where in-situ soil moisture sites located. 191 

2.3.3 SPOT VGT LAI 192 

The data set used as a benchmark for assessing leaf area index (LAI) errors present in the SMAP L4 analysis was 193 

derived from SPOT/VEGETATION and PROBA-V LAI products (version 2) that are generated every 10 days at 194 

spatial resolution of 1 km. The SPOT LAI version 2 product capitalizes on the development and validation of already 195 

existing products: CYCLOPES version 3.1 and MODIS collection 5 and the use of neural networks (Baret et al., 2013; 196 

Verger et al., 2008). The version 2 products are derived from top of canopy daily (S1-TOC) reflectances instead of 197 

normalized top of canopy 30-day composited reflectances as in the version 1. Compared to version 1, the compositing 198 

step is performed at the biophysical variable level instead of reflectance level. This ensures reduced sensitivity to 199 

missing observations and avoids the need for a BRDF model. 200 

2.3.4 HWSD soil texture  201 

The HWSD attribute database (v1.2) is a 30 arc-second raster database with 15773 different soil-mapping units. It 202 

provides information on the standardized soil parameters for topsoil (0–30cm) and subsoil (30-100 cm) separately. In 203 
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this study, we use the difference of clay fractions between topsoil (0-30cm) and the aggregated 0-100cm layer to 204 

measure the vertical clay fraction variation at each 9-km grid cell. 205 

2.4 Vertical coupling metric 206 

The RZSM time series generally show decreased temporal dynamics relative to SSM. As a result, overestimated SSM-207 

RZSM coupling tends to spuriously increase the (correlation-based) similarity of SSM and RZSM time series, and 208 

thereby, overestimate RZSM temporal variability. Therefore, analogous to Kling-Gupta efficiency (Gupta et al., 2009), 209 

we defined the SSM-RZSM coupling strength (CP) as: 210 

 CP = 1-√(R-1)
2
 + (α-1)

2
 (1) 

where R is the Spearman’s rank correlation between SSM and RZSM, and α is the ratio of temporal standard deviation 211 

of SSM to that of RZSM. A CP value of one represents the extreme case where RZSM is identical to SSM, i.e., a 212 

strongly coupled case. Likewise, a CP of zero represents the opposing case of completely uncoupled time series. Cases 213 

with negative CP do not exist. 214 

Observed CP (CPobs) was based on comparisons between 0-10 cm “surface” estimates and 0-50 cm “root-zone” in situ 215 

observations and used as a benchmark. In contrast, SMAP L4 CP estimates (CPOL) was based on the comparison of 0-216 

5 cm “surface” estimates and 0-100 cm “root-zone” estimates. Therefore, the surface versus root-zone storage contrast 217 

in the observation time series is less than that of the L4 estimates. This will likely cause the observed correlation 218 

between surface and root-zone time series to be systematically higher than the analogous vertical correlation 219 

calculation for L4 estimates. However, this bias is partially corrected for by the second term in Eq. (1) – since the 220 

observed α ratio will, by the same token, tend to be smaller (i.e. closer to one) than α sampled from the L4 analysis. 221 

Such ability to compensate for vertical depth differences is a key reason we apply CP, rather than simple correlation, 222 

as a vertical coupling strength metric. Nevertheless, it should be noted that our main interest here lies in describing 223 

spatial variations in (CPOL - CPobs) and care should be taken when interpreting raw (CPOL - CPobs) differences as an 224 

absolute measure of L4 vertical coupling bias. 225 

2.5 Double instrumental variable (IVd) method 226 

The benchmark data set of FLUXCOM LE described above contains error that is (likely) of a similar order of 227 

magnitude as the L4 LE dataset it is applied to evaluate. Therefore, in an attempt to correct for the impact of this error, 228 

the LE error used here as a control factor is obtained via a double instrumental variable (IVd; Dong et al., 2019b) 229 

analysis approach that minimizes the spurious impact of random errors in benchmark data sets. As shown in Dong et 230 

al. (2019b), for the evaluation of two time series with auto-correlation in both of them, IVd is more robust than single 231 

instrumental variable based algorithm, therefore we apply IVd to evaluate the LE error. 232 
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IVd is a modified version of triple collocation (TC) analysis. In TC analysis (McColl et al., 2014), geophysical 233 

variables obtained from three independent sources (x, y and z) are assumed to be linearly related to the true signal P 234 

as: 235 

 x = αxP + Bx+εx (2) 

where the αx is a scaling factor; Bx is a temporal constant bias and εx is zero-mean random error. 236 

As opposed to the TC method, IVd uses only two independent products (x, y) to characterize geophysical data product 237 

errors. This method introduces two instrumental variables (I and J, i.e., It = αxPt-1 + Bx + εxt-1, Jt = αyPt-1 + By + εyt-1), 238 

which are based on the lag-1 (day) time series (at day t) of x and y, respectively. Therefore, assuming that the errors of 239 

two independent products are serially white, the covariance between instrumental variables and products can be written 240 

as follows: 241 

 CIx = αx
2 LPP (3) 

 CJy = αy
2LPP (4) 

where C represents the covariance of the subscript products. For instance, CIx represents the covariance of x and its 242 

instrumental variable I. Variable LPP is the lag-1 auto-covariance of the true signal. Combining Eqs. (3) and (4), the 243 

scaling ratio sivd of the two products x and y can be written as: 244 

 

sivd = √
CIx

CJy
 

(5) 

Based on Eq. (5), their correlation with truth can be estimated as: 245 

 
RPx 
2 = 

Cxysivd

Cxx
 (6) 

 
RPy
2  = 

Cxy

Cyysivd
 (7) 

In this way, the error in the L4 LE (measured by IVd-based correlation with truth) can be estimated robustly using the 246 

FLUXCOM LE product described in Section 2.3.2.  247 
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2.6 Random forest regression 248 

A random forest (RF) regression approach was used to rank and quantify the importance of the 8 control factors 249 

introduced above (Table 1) for describing spatial patterns in DA efficiency for both SSM and RZSM estimates. The 250 

RF method is a supervised learning algorithm based on an averaged ensemble of decision trees (Breiman, 2001). Unlike 251 

linear regression approaches, RF can capture non-linear interactions between the features and the target. In addition, 252 

the normalization (or scaling) of data is not necessary in RF application. Another advantage of the RF algorithm is that 253 

it can readily measure the relative importance of each feature on the estimates, which makes it highly suitable for an 254 

attribution analysis.  Therefore, based on the output of RF, key control factors determining the efficiency of SMAP 255 

DA were evaluated and ranked. The RF estimates are based on a 10-fold cross-validation approach.  256 

3 Results 257 

3.1 Validation of SMAP L4 and OL estimates of SSM and RZSM anomalies 258 

Figure 1 maps validation results (i.e., anomaly Spearman’s rank correlation with in-situ observations, R) for SMAP L4 259 

and associated OL soil moisture estimates. The skill patterns for OL and L4 are, in general, quite spatially consistent. 260 

Both are characterized by an increasing trend of SSM estimation skill moving from northwest to southeast China (Fig. 261 

1a and 1b). In relative terms, the L4 product surpasses the baseline OL’s SSM skill within 77% of the 2287 9-km 262 

EASE grid cells containing ground observations – with a mean R increase of ΔR = 0.056 [-] and mean relative 263 

improvement versus ROL of 14%.  264 

Similar spatial patterns are observed for RZSM skill. As with SSM, generally higher consistency with in-situ RZSM 265 

measurements is found in southeast China relative to northern China.  However, relative to SSM, the added value of 266 

SMAP data assimilation (i.e. L4) is reduced for RZSM and the mean relative R improvement falls to 7% (ΔR = 0.034 267 

[-]) (compare Fig. 1e and 1f). This is not surprising since assimilated SMAP Tbs are primarily sensitive to soil moisture 268 

conditions in the surface (0-5 cm) layer. 269 
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 270 

Figure 1: OL (a, b) and L4 (c, d) skills (R values) for SSM (left column) and RZSM (right column). DA efficiency (ΔR = RL4 271 
- ROL) for (e) SSM and (f) RZSM. Blue (red) colors in (e) and (f) indicate grid cells where L4 estimates are better (worse) 272 
than OL. Non-significant differences (based on a 1000-member bootstrapping analysis) are colored grey. The lower left inset 273 
in each subplot indicates the frequency of binned R-values across all 9-km EASE grid cells containing ground observations.  274 

 275 

3.2 Spatial distribution of potential factors controlling SMAP L4 DA performance  276 

As described in Section 2.3, we selected 8 control factors that potentially influence the skill of SMAP L4 soil moisture 277 

estimates. Using the attribution analysis described in Section 2.6, these factors will be used to explain the spatial 278 

https://doi.org/10.5194/hess-2020-407
Preprint. Discussion started: 9 September 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

variations in skill and DA efficiency seen in Fig. 1. As a first step, this section examines the spatial patterns inherent 279 

in the 8 control factors. Errors in the CLSM precipitation forcing are relatively higher in northern and northwestern 280 

areas of China (Fig. 2a), where the gauge density is generally more sparse than southern China. Among the factors 281 

representing CLSM structural errors, a pre-dominantly negative bias is observed in SSM-RZSM coupling strength 282 

generally across China (i.e., lower CPOL compared to CPobs), while a very small number of grid cells show a positive 283 

coupling strength bias in eastern China (dark green dots in Fig. 2b). This is expected since at the coarse resolution, the 284 

model’s vertical coupling strength should be much less than at any single point. In addition, this may be partly 285 

attributed to the layer depths differences, since CLSM represents surface and root-zone depths of 0-5 cm and 0-100 286 

cm, whereas the corresponding in-situ observations represent the 0-10 cm and 0-50 cm layers, and it can be expected 287 

that CPOL should thus be smaller than CPobs. In addition, the vertical variability of the clay fraction seems to show little 288 

spatial variation across mainland China (Fig. 2c). With respect to CLSM LAI error, regions in southern China that 289 

have generally higher LAI show larger standard deviation in SPOT LAI time series (Fig. 2d and 2h). The IVd-based 290 

estimates of SMAP L4 LE error, which represent a potential control factor for water-balance errors in CLSM, generally 291 

show low-level of error across mainland China (Fig. 2e).  292 

For O-F Tb residuals describing RTM-related error, a higher standard deviation of O-F Tb residuals is observed in the 293 

North China Plain (Fig. 2f), which is very consistent in spatial distribution with areas displaying the highest and most 294 

significant SSM prediction improvement (Fig. 1c). This is expected, as mentioned above, because O-F Tb residuals 295 

are the basis for the soil moisture corrections (or increments) that are applied in the DA system as part of the L4 296 

analysis. The 2017-2018 mean of soil roughness and the 2017-2018 mean LAI show higher values in southwest and 297 

southeast China (Fig. 2g-h).  298 
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 299 

Figure 2: Factors potentially influencing SMAP L4 performance over mainland China: (a) CLSM precipitation error 300 
measured by the Spearman’s rank correlation between CLSM precipitation and ground observations; (b) SSM-RZSM 301 
coupling strength error (CPOL minus CPobs); (c) clay fraction variation (difference) across the soil profile; (d) error in LAI 302 
input to L4; (e) IVd-based error of LE from L4; (f) Tb error; (g) L4 microwave soil roughness; (h) climatology mean of LAI 303 
input to L4. 304 
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 305 

3.3 Attribution of SMAP L4 versus OL performance to control factors 306 

3.3.1 Attribution using random forest regression 307 

As mentioned above, RF regression was used to identify the relative importance of our 8 control factors for determining 308 

the efficiency of SMAP L4 DA (i.e., ΔR = RL4 - ROL), and also L4 (RL4) and OL performances (ROL). To start, we first 309 

investigate the robustness of RF for predicting ΔR. To estimate the magnitude of randomness in the RF algorithm, we 310 

use 50 bootstrap runs. As shown in Fig. 3a, the 10-fold cross-validation test (228 validation samples) shows that the 311 

predicted and in-situ-based ΔR have a mean correlation of 0.72 and 0.46 for SSM and RZSM, respectively.  312 

Given the sampling errors of ΔR, which is based on a two-year validation period, and the relatively low spatial 313 

variability in RZSM skill (Figs. 1f), the performance of RF is acceptable. In addition, ground-measurement upscaling 314 

error is likely a significant contributor to unexplainable spatial variability for ΔR in Fig. 1. In fact, Chen et al. (2016) 315 

found large spatial variability in the ability of point-scale SSM ground observations to describe grid cell-scale SSM 316 

dynamics. In-situ observations sites associated with larger upscaling errors will introduce a spurious low bias into 317 

sampled estimates of ΔR values (see Appendix B in Dong et al., 2020). Therefore, some of the ΔR spatial variability 318 

observed in Fig. 1 is unrelated to any aspect of the L4 system and is therefore unexplainable via the 8 control factors 319 

we have selected.  320 

 321 
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 322 

Figure 3: Attribution analysis of SMAP L4 DA efficiency: (a) Cross-validation of RF regression method in predicting DA 323 
efficiency ΔR= RL4 - ROL based on our 8 control factors (Table 1). Relative importance of 8 control factors determining 324 
spatial patterns in (b) DA efficiency (ΔR), (c) OL performance (ROL), and (d) L4 performance (RL4). Red (blue) bars 325 
represent predictor importance for SSM (RZSM). Error bars reflect the standard deviation from 50-member bootstrapping 326 
of the RF importance estimates. 327 

 328 

Based on the RF results, the Tb error is quantified as the most prominent factor in determining DA efficiency (i.e., ΔR 329 

= RL4 - ROL) – followed by precipitation error and microwave soil roughness (Fig. 3b). The RF-derived ranking of 330 

control-factor importance for RZSM is similar to that of SSM in that the same three factors are still the most 331 
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explanatory. However, in contrast to SSM, the importance of Tb error for RZSM decreased dramatically from >30% 332 

to ~15%. Other modeling error sources (e.g., the vertical variability of soil properties) have only very limited impact 333 

on SMAP DA improvement. 334 

As seen in Fig. 3c, for the OL performance (ROL), the most important factors identified by RF include precipitation 335 

error, SSM-RZSM coupling error, and Tb error (microwave soil roughness) for SSM (RZSM). Note that although the 336 

Tb error is identified as third important factor for ROL in SSM skill, this is an instance where there is correlation (poorer 337 

skill happens to coincide with higher Tb error), but this does not imply a causal relationship. Specifically, it is normal 338 

that Tb (O-F) errors are higher where the OL performs worse, but a high Tb error is not the cause of a low OL 339 

performance.  The same applies to the relationship between microwave soil roughness and OL skill for RZSM 340 

estimation. The SMAP L4 system is able to reduce the predominant impact of precipitation errors on both SSM and 341 

RZSM estimation skill, rendering SSM-RZSM coupling error the most important factor for RL4 (Fig. 3d). In addition, 342 

in the L4 system, the high vegetation density effect on SSM and RZSM estimation is clearly reduced, as the fourth 343 

most important factor of LAI is replaced by Tb error. 344 

The qualitative rankings provided by the RF analysis in Fig. 3 are relatively robust to our particular choice of 345 

benchmark data set to define the ‘error’ of various control variables. For instance, we replaced the CGDPA 346 

precipitation benchmark with the CMORPH-merge product (Version 1, last access: 6 April 2020; DOI: 347 

https://doi.org/10.25921/w9va-q159; Xie et al., 2019), which is the 0.1 degree merging product of CMORPH and 348 

observations from more than 30,000 automatic weather stations in mainland China. For this case, the predictive power 349 

of the regression model established by the RF is not affected (similar to Fig. 3a), and the qualitative rankings of the 350 

precipitation error in ROL and RL4 are not impacted (similar to Fig. 3c-d). 351 

 352 

3.3.2 Attribution using box plot comparisons 353 

As stated in Section 2.5, the RF method is adept at summarizing the impact of multiple (co-varying) control factors 354 

simultaneously in the established regression model and thus provides more comprehensive insights than the 355 

examination of how the target variable (DA improvement) fluctuates with each individual control factor. However, it 356 

does not allow the investigation of the sign of the relationship between DA improvement and each control factor – 357 

which is important for understanding exactly how each factor influences the DA system. In addition, since the net 358 

impact of various factors can enhance DA efficiency by either degrading the OL or enhancing the ability of DA to add 359 

more value, it is important to decompose the source of variations in ΔR. Therefore, in addition to examining how 360 

SMAP DA efficiency, i.e., ΔR = RL4 - ROL, varies as a function of the most prominent control factors identified in the 361 

above Section 3.3.1 (i.e., Tb error, precipitation forcing, and microwave soil roughness), we also examine how 362 

precipitation error as a control factor affects the OL performance, i.e., ROL. 363 
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To minimize the uncertainty caused by large errors in each of the control factors, we exclude samples with errors 364 

(separately for each control factor) ranking above the 80th percentile in the following analysis. The relationship 365 

between Tb errors and L4 DA efficiency is straightforward:  higher Tb errors are associated with higher ΔR, with ΔR 366 

generally larger for SSM than for RZSM (Fig. 4a-b). 367 

 368 

Figure 4: SMAP L4 DA efficiency (ΔR = RL4 - ROL) as a function of Tb error for (a) SSM and (b) RZSM. Samples with Tb 369 
error ranking above the 80th percentile are excluded from the analysis. 370 

 371 

For precipitation, this decomposition is illustrated in Fig. 5. Note that, as expected, low-quality precipitation tends to 372 

degrade the skill (i.e., correlation versus ground observations) of OL SSM and RZSM estimates (see Fig. 5a-b). This 373 

degradation provides an enhanced opportunity for SMAP L4 DA to provide added value. As a result, ΔR tends to be a 374 

proportional function of precipitation skill (i.e., higher precipitation skill leads to lower ΔR, see Fig. 5c-d). This inverse 375 

relationship is a well-known tendency for land data assimilation systems (Liu et al., 2011; Bolten and Crow, 2012; 376 

Dong et al., 2019a). Precipitation quality has a diminished impact on RZSM estimation skill compared to SSM 377 

estimation skill. This is expected since RZSM is (essentially) the result of applying a low-pass time series filter to 378 

precipitation. As such, it is less sensitive to high-frequency errors in precipitation products than SSM is.  379 
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 380 

 381 

Figure 5: OL performance (ROL) as a function of precipitation forcing skill R for (a) SSM and (b) RZSM. SMAP L4 DA 382 
efficiency (ΔR = RL4 - ROL) as a function of precipitation skill for (c) SSM and (d) RZSM. Samples with precipitation skill 383 
ranking below the 20th percentile are excluded from the analysis.  384 

 385 

Figure 6 is analogous to Fig. 4 but shows skill differences ΔR as a function of microwave soil roughness. Similar to 386 

Tb errors, it is as expected that this control factor of microwave soil roughness has little impact on the OL performance, 387 

except that ROL shows slight decreasing tendency with increasing soil roughness (not shown). Given the fact that the 388 
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OL does get worse with increasing roughness, there is more room for improvement as the roughness increases, which 389 

makes it plausible that ΔR increases with increasing soil roughness (see Fig. 6a-b). 390 

 391 

Figure 6: As in Fig. 4 but for ΔR as a function of microwave soil roughness. 392 

 393 

Besides the above three control factors that dominate the DA efficiency, we also examine the top factor that affects 394 

SMAP L4 performance, i.e., vertical-coupling errors (Fig. 7). As expected, larger (absolute) bias in SSM-RZSM 395 

coupling in CLSM tends to be associated with degraded OL estimates of both SSM and RZSM (see Figs. 7a-b), 396 

although the analysis does not prove such a causal relationship. Similar to precipitation errors above, decreased OL 397 

skill (seen on the left-hand-side of the figures) provides an opportunity for increased DA efficiency – which is clearly 398 

seen in Fig. 7. However, such increases are much larger for SSM than for RZSM.  399 

For RZSM, SSM-RZSM coupling bias represents a double-edged sword. While such bias leads to an enhanced 400 

opportunity to improve upon a degraded OL, it should also hamper the ability of DA to transfer SSM increments into 401 

the root-zone – particularly when, like here, the bias reflects the lack of vertical coupling in the model (Kumar et al., 402 

2009). This means that some of the opportunity presented by the larger OL RZSM errors is squandered by sub-optimal 403 

DA. As a result, the increase in RZSM DA efficiency associated with biased SSM-RZSM coupling (Fig. 7d) is smaller 404 

than the analogous increase in SSM DA efficiency (Fig. 7c). 405 
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 406 

 407 

Figure 7: As in Fig. 5 but for ROL and ΔR as a function of SSM-RZSM coupling error indicated by the CP difference (ΔCP 408 
= CPOL - CPobs). 409 

 410 

For the three strongest control factors that determine DA efficiency ΔR, i.e., Tb error, precipitation error and 411 

microwave soil roughness, we further conducted paired one-way analysis of variance (not shown). Results indicates 412 

that for each of the five binned groups separated by each of the above-mentioned three control factors, the inter-group 413 

difference in ΔR caused by each control factor is significant (p<0.01) for both SSM and RZSM. In addition, except for 414 
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the groups with lowest mean ΔR in Fig. 4a and Fig. 6a, the averages of ΔR from all groups are significantly higher 415 

than 0 (p<0.01). 416 

As expected, precipitation error is the dominant factor for explaining the skill of the OL estimates. In contrast, the 417 

SSM-RZSM coupling error is the dominant factor for explaining the skill of the L4 results, which shows DA is able to 418 

correct for precipitation errors. 419 

4 Conclusions  420 

The SMAP L4 algorithm assimilates L-band Tb observations into the Catchment Land Surface Model, to provide 421 

surface and root-zone soil moisture estimates (i.e., SSM, RZSM) with global, 3-hourly coverage at 9-km resolution. 422 

The performance of the L4 soil moisture estimates compared to a baseline model-only simulation (OL) is influenced 423 

by multiple control factors associated with the land surface modelling (LSM) and radiative transfer modeling (RTM) 424 

components of the L4 system. In this study, we assess the performance of SMAP L4 DA system using the 2 years of 425 

in-situ soil moisture profile observations at 2474 sites across mainland China. We apply a random forest (RF) 426 

regression to identify the dominant factors that control the spatial distribution of the DA efficiency (defined as the skill 427 

difference between the L4 and OL estimates of SSM and RZSM as measured by their Spearman rank correlation with 428 

in-situ measurements). Results show that L4 improves SSM prediction skill by 14% on average, with over 77% of the 429 

2287 9-km EASE grid cells showing an increase in Spearman’s rank correlation with in-situ observations. Similarly 430 

widespread but smaller improvements are also observed in RZSM, with averaged R improvement of 7%.   431 

Based on the RF regression analysis, the added value of SMAP L4 DA for SSM is primarily determined by Tb error 432 

(measured by standard deviation of O-F Tb residuals), followed by microwave soil roughness and daily precipitation 433 

error. These three factors are also the most prominent factors controlling SMAP DA improvement for RZSM, albeit 434 

with the Tb error being the least important of these three factors for RZSM DA efficiency.  435 

Generally, the OL performance clearly decreases with increasing precipitation error, whereas for L4 performance 436 

precipitation error is not identified as the most dominant control factor. This indicates that the L4 system is able to 437 

correct for errors in precipitation forcing. In addition, our results demonstrate that SMAP DA contributes the most 438 

added value for cases where CLSM underestimates SSM-RZSM vertical coupling strength. However, due to the 439 

difference in top-layer soil depth between the in-situ observations (10 cm) and the L4 analysis (5 cm), it is unclear 440 

whether or not the observed SSM-RZSM coupling strength biases are real in an absolute sense – or simply reflect 441 

inconsistencies in the depth of modelled versus observed SSM and RZSM time series. Nevertheless, it is worth 442 

stressing that, despite the ambiguity with regards to their absolute magnitude/sign, relative variations in apparent SSM-443 

RZSM coupling biases explain a significant amount of the observed spatial variation in L4 performance. Therefore, 444 

this finding clearly underpins the importance of properly specifying SSM-RZSM coupling strength in CLSM as a way 445 

to improve the SMAP L4 product.  446 
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For SMAP L4 SSM skill, the next-most important factors (after SSM-RZSM coupling) are the precipitation error, the 447 

Tb error and microwave soil roughness (Fig. 3d). For L4 RZSM skill, the next-most important factors (after SSM-448 

RZSM coupling) are the precipitation error, the Tb error and the LE error, with the latter two factors of comparable 449 

importance (Fig. 3d). To enhance the L4 performance, additional focus should thus be placed on improving the model’s 450 

characterization of the partitioning of the available energy into latent and sensible heat (LE error) and the microwave 451 

radiative transfer modeling (Tb error). 452 
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