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Abstract. The Soil Moisture Active Passive (SMAP) Level-4 (L4) product provides global estimates of surface soil 16 

moisture (SSM) and root-zone soil moisture (RZSM) via the assimilation of SMAP brightness temperature (Tb) 17 

observations into the Catchment Land Surface Model (CLSM). Here, using in-situ measurements from 2474 sites in 18 

mainland China, we evaluate the performance of soil moisture estimates from the L4 data assimilation (DA) system 19 

and from a baseline “open-loop” (OL) simulation of CLSM without Tb assimilation. Using random forest regression, 20 

the efficiency of the L4 DA system (i.e., the performance improvement in DA relative to OL) is attributed to eight 21 

control factors related to the CLSM and as well as tau-omega radiative transfer model (RTM) components of the L4 22 

system. Results show that the Spearman rank correlation (R) for L4 SSM with in-situ measurements increases for 77% 23 

of the in-situ measurement locations (relative to that of OL), with an average R increase of approximately 14% (ΔR = 24 

0.056). RZSM skill is improved for about 74% of the in-situ measurement locations, but the average R increase for 25 

RZSM is only 7% (ΔR = 0.034). Results further show that the SSM DA skill improvement is most strongly related to 26 

the difference between the RTM-simulated Tb and the SMAP Tb observation, followed by the error in precipitation 27 

forcing data and estimated microwave soil roughness parameter h. For the RZSM DA skill improvement, these three 28 

dominant control factors remain the same, although the importance of soil roughness exceeds that of the Tb simulation 29 

error, as the soil roughness strongly affects the ingestion of DA increments and further propagation to the subsurface. 30 

For the skill of the L4 and OL estimates themselves, the top two control factors are the precipitation error and the 31 

SSM-RZSM coupling strength error, both of which are related to the CLSM component of the L4 system. Finally, we 32 

find that the L4 system can effectively filter out errors in precipitation. Therefore, future development of the L4 system 33 

should focus on improving the characterization of the SSM-RZSM coupling strength.  34 
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1 Introduction 37 

Soil moisture modulates water and energy feedback between the land surface and the lower atmosphere by determining 38 

the partitioning of incoming net radiation into latent and sensible heat (Seneviratne et al., 2010, 2013). High-quality, 39 

global-scale soil moisture products have become increasingly available in recent years. In particular, the L-band NASA 40 

Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 2010; Piepmeier et al., 2017) has significantly 41 

improved the skill of available, global-scale soil moisture products. However, the SMAP observations contain temporal 42 

data gaps and are only representative of conditions within only the first 5 cm of the vertical soil moisture column 43 

(Entekhabi et al., 2010). To address these limitations, the SMAP Level-4 Surface and Root-Zone Soil Moisture (L4) 44 

algorithm assimilates SMAP brightness temperature (Tb) observations into the NASA Catchment Land Surface Model 45 

(CLSM) to derive an analysis of surface (0–5 cm) and root-zone (0–100 cm) soil moisture estimates with global, 3-46 

hourly coverage (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019).  47 

However, the performance of a land data assimilation (DA) system is sensitive to the DA parameterization and requires 48 

careful assessment. For instance, Reichle et al. (2008) demonstrate that DA based on incorrect assumptions of modeling 49 

errors and observation errors can degrade soil moisture estimates, compared with the case of not performing DA, which 50 

is commonly referred to as the “open-loop” (OL) baseline. Theoretically, the optimality of DA can be evaluated using 51 
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so-called “innovations”, or observation-minus-forecast residuals; however, an investigation of the innovations alone 52 

is often insufficient to determine if the soil moisture analysis is optimal, as the innovations are affected by multiple 53 

factors (Crow and Van Loon, 2006).  54 

Recently, Dong et al. (2019a) proposed a novel statistical framework for evaluating the performance of a soil moisture 55 

DA system. Specifically, they demonstrated that the relative skill of surface soil moisture (SSM) estimates acquired 56 

with and without DA can be estimated using the ratio of their correlations with just one noisy but independent ancillary 57 

remote sensing product. This approach was applied to the SMAP L4 system using Advanced Scatterometer soil 58 

moisture retrievals.  Their results show that the benefit of SMAP DA is closely related to densities of both rain gauge 59 

and vegetation. Generally, higher rain gauge density indicates lower error in precipitation forcing, and lower vegetation 60 

density indicates higher background model performance - both conditions lead to reduced SMAP DA benefit. However, 61 

due to the limited availability of independent root-zone soil moisture (RZSM) products for performing statistical error 62 

estimation, this method is only applicable for SSM estimates.  63 

Relative to SSM, the efficiency of assimilating land surface observations to improve RZSM is complicated by model 64 

structural error that affects the ability of the DA to update unobserved model states. For instance, Kumar et al. (2009) 65 

identified the surface–root zone coupling strength, which is the result of a model-dependent representation of processes 66 

related to the partitioning of rainfall into infiltration, runoff, and evaporation components, as an important factor for 67 

determining RZSM improvement associated with the assimilation of SSM retrievals. Their synthetic experiments 68 

suggest that, faced with unknown true subsurface physics, overestimating the surface–root zone coupling in the land 69 
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model is a more robust strategy for obtaining skill improvements in the root zone than under-estimating the coupling. 70 

Likewise, Chen et al. (2011) suggested that the Soil and Water Assessment Tool significantly under-predicts the 71 

magnitude of vertical soil water coupling in the Cobb Creek Watershed in southwestern Oklahoma, USA, and this lack 72 

of coupling impedes the ability of DA to effectively update soil moisture in deep layers, groundwater flow and surface 73 

runoff. In the context of the present paper, the evaluation of L4 RZSM estimates has been limited to SMAP core 74 

validation and sparse network sites (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019). With such limited 75 

validation sites, the RZSM skill of the L4 product at the global scale remains uncertain. 76 

The primary objective of this study is to assess the DA skill improvement of the L4 product, i.e., the performance 77 

improvement in L4 DA results relative to the OL baseline, and to further determine how DA skill improvement varies 78 

as a function of the major aspects in the system. As mentioned above, the modeling portion of the L4 system consists 79 

of two components: land surface modelling (LSM) and radiative transfer modelling (RTM). Therefore, we select 80 

control factors from each of the two components. For the LSM component, the errors can be attributed to potential 81 

factors including: 1) model input forcing errors of a) precipitation, b) leaf area index (LAI) and c) the presence of 82 

vertical variability in soil properties; 2) model structure errors in characterizing SSM-RZSM coupling strength; 3) 83 

model output error of LE. For the RTM component, errors are characterized by: 1) Tb innovation, i.e., SMAP-observed 84 

minus RTM-simulated Tb; 2) the environmental factors that complicate the DA analysis when assimilating Tb 85 

observations, which include the magnitude of a) microwave soil roughness and b) LAI. Figure 1 illustrates the 86 

conceptual relationship between these factors. Specifically, precipitation and LAI are selected since they have been 87 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL083398#grl59145-bib-0028
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proven important for SMAP L4 SSM accuracy in a previous study (Dong et al., 2019a). The presence of errors in the 88 

vertical variability of soil properties and SSM-RZSM coupling strength are selected because both factors control the 89 

propagation of soil moisture error from the surface soil layer to deeper layers, and we focus on both the SSM and 90 

RZSM retrieval accuracy. Error in CLSM LE output is selected because of its connection between the water and energy 91 

balance. Error in Tb innovation is selected because of its direct impact on the size of the DA update. Error in microwave 92 

soil roughness is selected owing to its high sensitivity to RTM accuracy. These eight control factors from the above-93 

mentioned five aspects determine the crucial aspects of both the LSM and RTM components in the L4 system and are 94 

readily quantifiable using remote sensing products. Thus, they are selected to investigate the mechanism underlying 95 

the L4 improvement observed in this study. 96 

 97 

Figure 1: Systematic connection in the DA framework, and the association between the eight selected factors in the 98 

analysis. 99 

 100 
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Therefore, to achieve the two major objectives, we first evaluate the performance of L4 SSM and RZSM estimates 101 

using 2474 sites in mainland China with soil moisture profile measurements (generally acquired at sub-surface depths 102 

between 10 and 50 cm) during the two-year period of 2017 to 2018. Next, the in-situ measurements are used to assess 103 

the DA skill improvement of the L4 system, which is defined as the skill difference between the L4 estimates and the 104 

OL baseline. Additionally, we apply a machine-learning technique to quantify by how much the eight potential control 105 

factors drive the spatial variations in the efficiency of the L4 system. In this way, we seek to prioritize future 106 

enhancements to the L4 system.  107 

2 Data and Methods 108 

In this section, we briefly describe the SMAP L4 soil moisture product (Section 2.1), the network of in-situ soil 109 

moisture observations in mainland China (Section 2.2), the above-mentioned control factors and ancillary data sources 110 

(Section 2.3), and the vertical coupling metric used in the skill assessment (Section 2.4). Next, we introduce the double 111 

instrumental variable (IVd) method employed to determine the errors in control factors that cannot be determined using 112 

ground observations (Section 2.5). Finally, we describe the random forest (RF) regression method used to identify the 113 

main factor(s) (out of the eight control factors from both CLSM and RTM aspects) that affect the spatial variations in 114 

SMAP L4 DA skill improvement and L4 performance (Section 2.6). 115 
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2.1 SMAP L4 soil moisture product 116 

The SMAP L4 soil moisture product (version 4; Reichle et al., 2019) is generated by assimilating the SMAP L1C 117 

Radiometer half-orbit 36 km Equal-Area Scalable Earth (EASE) Grid Tb observations (Version 4 SPL1CTB; Chan et 118 

al., 2016) into the CLSM. The SMAP Tb observations are assimilated at 3-h intervals using a spatially distributed, 24-119 

member ensemble Kalman filter (Reichle et al. 2017b). The surface meteorological forcing data are from the global 120 

Goddard Earth Observing System (GEOS) Forward Processing atmospheric analysis (Lucchesi, 2013), with 121 

precipitation corrected using the daily, 0.5-degree, gauge-based Climate Prediction Center Unified (CPCU) product 122 

(Xie et al. 2007). The L4 product provides global, 9-km, 3-hourly surface (0–5 cm) and root-zone (0–100 cm) soil 123 

moisture estimates along with related land surface fields and analysis diagnostics. For the present study, we aggregate 124 

all soil moisture estimates to daily averaged (00:00 to 23:59 UTC) data. The OL baseline is a model-only, ensemble 125 

CLSM simulation without the assimilation of SMAP Tb observations but otherwise using the same configuration, 126 

including perturbations, as in the L4 system (Reichle et al., 2021).  127 

The SMAP L4 assimilation system includes a zero-order “tau-omega” forward RTM (De Lannoy et al., 2013) that 128 

converts SSM and surface soil temperature into L-band brightness temperature estimates. Select parameters of the L4 129 

RTM, including the: microwave soil roughness parameter h, vegetation structure parameterτ, and the microwave 130 

scattering albedo ω, are calibrated using multi-angular L-band brightness temperature observations from the Soil 131 

Moisture Ocean Salinity (SMOS) mission (De Lannoy et al., 2014a). The L4 RTM parameterizes microwave soil 132 

roughness as a function of SSM (De Lannoy et al., 2013, their equation B1t would define outliers. Nonetheless, we 133 
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repeat the analysis based on Pearson correlation (not shown) and find that the results are qualitatively consistent with 134 

the results using Spearman’s correlation. 135 

Ground observations within the same 9-km EASE grid were averaged for comparisons against the collocated 9-km L4 136 

and OL soil moisture estimates. A total of 2287 individual 9-km EASE grid cells within mainland China are included 137 

in the analysis. Among them, 92.35% of grid cells contain one in-situ site, 7.26% contain two sites, 7 grid cells contain 138 

three sites, and the remaining two grid cells contain four and five sites respectively. Figure 2 shows the number of in-139 

situ CASMOS sites within each 9-km EASE grid. 140 

 141 

Figure 2: The number of in-situ CASMOS sites within each 9-km EASE grid across mainland China. 142 

 143 
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2.3 Explanatory data products 144 

As discussed above, our hypothesis is that the efficiency of the SMAP L4 system will be sensitive to the ability of the 145 

ensemble-based L4 analysis in filtering errors that exist in CLSM, the RTM forecast Tb, and the assimilated SMAP 146 

Tb observations. We therefore consider two separate categories of factors that potentially control spatial variations in 147 

DA skill improvement. The factors are summarized in Table 1. 148 

The first category represents a range of factors known to affect the skill of soil moisture estimates derived from the 149 

LSM (in this case, CLSM). The five control factors in this category are: 1) the error in precipitation forcing, 2) the 150 

error in (input) LAI, 3) the error in (output) LE, 4) the magnitude of mean error in CLSM SSM-RZSM coupling 151 

strength, and 5) the presence of vertical variability in soil properties (defined as the difference in clay fraction across 152 

the vertical soil profile). Note that such variability represents a potential source of error because, with the exception of 153 

some surface-layer moisture transport parameters, CLSM assumes soil texture and associated soil parameters are 154 

vertically homogeneous within the soil column. However, the Harmonized World Soil Database (HWSD; 155 

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) often captures distinct vertical variations in soil properties, which are 156 

neglected by CLSM. Therefore the magnitude of vertical heterogeneity in soil texture may be an effective proxy for 157 

overall CLSM soil moisture accuracy. HWSD is selected due to its extensive use in soil science (De Lannoy et al., 158 

2014b), and switching from HWSD to the high-resolution soil hydraulic and thermal properties dataset derived from 159 

Global Soil Dataset for Earth System Models and SoilGrids (Dai et al., 2019) does not qualitatively change our 160 

conclusion, or the importance ranking of vertical variability in soil properties (figure not shown).  In addition, given 161 
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the high specific surface area of clay and its high influence on soil structure and aggregation, the clay fraction is very 162 

important for soil moisture retention (Hillel, 1998), and thus clay fraction is chosen over silt and sand fractions in the 163 

analysis. Besides, note that since LH and SH are generally (strongly) anti-correlated, it is not appropriate to include 164 

both in a single random forest analysis – since including both would yield biased (high) regression weights for LH and 165 

SH. 166 

The second category contains three factors that affect radiative transfer modeling (RTM) and therefore DA updates. 167 

These include: 1) estimates of the Tb innovation, namely difference between SMAP Tb observations and RTM Tb 168 

simulations, 2) the magnitude of microwave soil roughness, and 3) the magnitude of LAI (as a proxy for the vegetation 169 

optical depth at microwave frequencies, which modulates the contribution of surface soil to the observed Tb).  170 

The control factors take a variety of forms. Some factors are based on estimates of the errors fed into the L4 system, 171 

namely: 1) the error in CLSM rainfall forcing data; 2) error in SSM-RZSM coupling strength; 3) vertical variability of 172 

clay fraction; 4) SMAP L4 LAI error; 5) output LE error; 6) error in Tb innovation. Other factors consist of the 173 

magnitude of the variable itself, namely the magnitude of microwave soil roughness and annual mean LAI. Note that 174 

LAI is used in both ways: LAI error is used to predict OL performance (because LAI is an important input into CLSM), 175 

while mean LAI is used to explain DA performance (because increased LAI is associated with decreased soil moisture 176 

information in microwave observations).  177 

Note that the LAI used in the L4 system is a merged climatology from Moderate Resolution Imaging Spectroradiometer 178 

(MODIS) and Geoland data based on satellite observations of the Normalized Difference Vegetation Index (Mahanama 179 
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et al., 2015; Reichle et al., 2017a). Therefore, to indicate the magnitude by which the LAI of each grid cell typically 180 

deviates from its long-term climatology, we use the temporal standard deviation for the anomaly time series of a 181 

benchmark LAI time series as a measure of the error in the LAI value used in the L4 system. This benchmark LAI is 182 

from the SPOT-Vegetation (SPOT VGT) product and includes inter-annual variations (Section 2.3.3). Owing to the 183 

lack of reference Tb observations at similar satellite overpass times and locations, errors in Tb innovation are gauged 184 

using the time series standard deviation of the observation-minus-forecast (O‐F) Tb residuals, which indicate the 185 

typical misfit between the model forecast Tb and the rescaled SMAP Tb observations. This rescaling process ensures 186 

zero-mean differences between Tb observations and forecasts and involves a seasonal multiyear-mean bias correction, 187 

which makes sure that the DA only corrects for errors in short-term and inter-annual variations and not for errors in 188 

the climatological seasonal cycles of the modeled soil moisture or other land surface fields.  The standard deviation of 189 

the O-F Tb residuals measures the total error in Tb observation space.  190 

The exact data sets and the metrics utilized for evaluating all eight control factors are summarized in Table 1. 191 
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Table 1 Benchmark data sets and metrics used for evaluating control factors of SMAP L4  192 

Factor category Control factor Dataset/Benchmark Temporal resolution Spatial resolution 
Data 

range 
Metrics 

LSM 

Precipitation 

error 
Rain gauge (CGDPA) daily 0.25° 

2017-

2018 

Spearman’s rank 

correlation R 

SSM-RZSM 

coupling strength 

error 

CASMOS daily NA 
2017-

2018 
ΔCP (see Section 2.4) 

Vertical 

variability of clay 

fraction 

HWSD NA 9 km NA 

Difference in clay 

fraction between  

topsoil (0-30 cm) and 

root-zone (0-100 cm) 

layers  

SMAP L4 LAI 

error 
SPOT-VGT LAI 10 d 1 km 

2017-

2018 

Temporal standard 

deviation of SPOT 

VGT LAI anomaly 

LE error FLUXCOM daily (1/120) ° 
2017-

2018 
IVd-based R 

RTM 

 Error in Tb 

innovation 
SMAP L4 daily 9 km 

2017-

2018 

Temporal standard 

deviation of O‐F Tb 

residuals 

Microwave soil 

roughness 
SMAP L4 daily 9 km 

2017-

2018 

Temporal average 

based on  De Lannoy et 

al. (2013) 

Annual mean 

LAI 

MODIS/Geoland-

based product 
daily 9 km 

2017-

2018 
Climatological mean 

193 
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2.3.1 Gauge-based precipitation gridded product 194 

Errors in the precipitation data used to force the CLSM within the SMAP L4 system are estimated via Spearman’s 195 

rank correlation with available rain-gauge observations. These network observations are based on an analysis of ∼2400 196 

rain gauge stations distributed across mainland China (Shen et al., 2015). Recently, the China Gauge-based Daily 197 

Precipitation Analysis (CGDPA) with a spatial resolution of 0.25°×0.25° based on this network was constructed and 198 

has been made operational over mainland China (last access: 28 April 2020; 199 

http://data.cma.cn/data/cdcdetail/dataCode/SEVP_CLI_CHN_PRE_DAY_GRID_0.25.html). CGDPA uses a 200 

modified version of climatology-based optimal interpolation (OI) with topographic correction proposed by Xie et al. 201 

(2007). In this process, the daily precipitation climatology over mainland China is optimized and rebuilt using the 30-202 

year average precipitation observations from ∼2400 gauges of the period 1971–2000 (Shen et al., 2010). CGDPA is 203 

shown to have smaller bias and root mean square error (for instance, 13.51 mm day-1 vs. 17.02 mm day-1 for 204 

precipitation of 25.0–50.0 mm day-1) than the CPCU product used in the SMAP L4 system, which is based on fewer 205 

than 400 gauge sites over mainland China (Shen et al., 2015). 206 

2.3.2 FLUXCOM LE estimates 207 

The FLUXCOM ensemble of global land-atmosphere energy fluxes is used to evaluate error in L4 LE estimates. This 208 

ensemble merges energy flux measurements from FLUXNET eddy covariance towers with remote sensing and 209 

meteorological data based on four broad categories of machine learning method (namely tree-based methods, 210 

regression splines, neural networks, and kernel methods) to estimate global gridded net radiation, latent and sensible 211 
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heat and their related uncertainties (Jung et al., 2019). The resulting FLUXCOM database has a 0.0833° spatial 212 

resolution when applied using MODIS remote sensing data. The monthly energy flux data of all ensemble members, 213 

as well as the ensemble estimates from the FLUXCOM initiative, are freely available (CC4.0 BY license) from the 214 

Data Portal (http://fluxcom.org/), while the daily- and 8-day FLUXCOM products are available upon request from 215 

dataset provider Martin Jung (last access: 14 April 2020). To calculate the LE error, we collected the daily, high spatial 216 

resolution FLUXCOM product and extracted the LE estimates where in-situ soil moisture sites are located. 217 

2.3.3 SPOT VGT LAI 218 

The data set used as a benchmark for assessing leaf area index (LAI) errors present in the SMAP L4 analysis is derived 219 

from the SPOT/VEGETATION and PROBA-V LAI products (version 2) that generated every 10 days (at best) with a 220 

spatial resolution of 1 km. The SPOT LAI version 2 product GEOV2 is provided by the Copernicus Global Land 221 

Service (last access: 15 April 2020; https://land.copernicus.eu/global/products/LAI; Baret et al., 2013). It capitalizes 222 

on the development of already existing products: CYCLOPES version 3.1 and MODIS collection 5 based on neural 223 

networks (Baret et al., 2013; Verger et al., 2008). Compared to version 1, the version 2 products are derived from top 224 

of canopy daily reflectances, which ensures reduced sensitivity to missing observations and avoids the need for a 225 

bidirectional reflectance distribution function model. 226 

http://fluxcom.org/
https://land.copernicus.eu/global/products/LAI
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2.3.4 HWSD soil texture  227 

The soil texture information is from the HWSD attribute database (v1.2; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), 228 

which is a 30 arc-second raster database with 15773 different soil-mapping units worldwide. It provides information 229 

on the standardized soil parameters for topsoil (0–30cm) and subsoil (30-100 cm) separately. In this study, we use the 230 

difference of clay fractions between topsoil (0-30cm) and the aggregated 0-100cm layer to measure the vertical clay 231 

fraction variation at each 9-km grid cell. 232 

2.4 Vertical coupling metric 233 

The RZSM time series generally show decreased temporal dynamics relative to SSM. As a result, overestimated SSM-234 

RZSM coupling tends to spuriously increase the (correlation-based) similarity of SSM and RZSM time series, and 235 

thereby, overestimate RZSM temporal variability. Therefore, analogous to Kling-Gupta efficiency (Gupta et al., 2009), 236 

we define the SSM-RZSM coupling strength (CP) as: 237 

 CP = 1-√(R-1)
2
 + (α-1)

2
 (1) 

where R is the Spearman’s rank correlation between SSM and RZSM, and α is the ratio of temporal standard deviation 238 

of SSM to that of RZSM. The CP estimation is based on anomaly time series of both SSM and RZSM. A CP value of 239 

one represents the extreme case where RZSM is identical to SSM, i.e., a strongly coupled case. Likewise, a CP of zero 240 

represents the opposing case of completely uncoupled time series. Cases with negative CP do not exist in this study. 241 
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Observed CP (CPobs) was based on comparisons between 0-10 cm “surface” and 0-50 cm “root-zone” in-situ 242 

observations and used as a benchmark. In contrast, CP estimates of OL (CPOL) was based on the comparison of 0-5 cm 243 

“surface” and 0-100 cm “root-zone” estimates. Therefore, the surface versus root-zone storage contrast in the 244 

observation time series is less than that of the L4 estimates. This will likely cause the observed correlation between 245 

surface and root-zone time series to be systematically higher than the analogous vertical correlation calculation for L4 246 

estimates. However, this bias is partially corrected for by the second term in Eq. (1) – since the observed α ratio will, 247 

by the same token, tend to be smaller (i.e. closer to one) than α sampled from the L4 analysis. Such ability to 248 

compensate for vertical depth differences is a key reason we apply CP, rather than simple correlation, as a vertical 249 

coupling strength metric. Nevertheless, it should be noted that our main interest here lies in describing spatial variations 250 

in (CPOL - CPobs) and care should be taken when interpreting raw (CPOL - CPobs) differences as an absolute measure of 251 

L4 vertical coupling bias. 252 

2.5 Double instrumental variable (IVd) method 253 

The benchmark data set of FLUXCOM LE described above contains error that is assumed to be of a similar order of 254 

magnitude as the L4 LE dataset it is applied to evaluate. Therefore, in an attempt to correct for the impact of this error, 255 

the LE error used here as a control factor is obtained via a double instrumental variable (IVd; Dong et al., 2019b) 256 

analysis approach that minimizes the spurious impact of random errors in benchmark data sets. As shown in Dong et 257 

al. (2019b), for the evaluation of two time series containing autocorrelated errors, IVd is more robust than a single 258 

instrumental variable based algorithm, therefore we apply IVd to evaluate the LE error. 259 
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IVd is a modified version of triple collocation (TC) analysis. In TC analysis (McColl et al., 2014), geophysical 260 

variables obtained from three independent sources (xt, yt and zt) at time t are assumed to be linearly related to the true 261 

signal Pt as: 262 

  xt = αxPt + Bx+εx,t (2) 

where the αx is a scaling factor; Bx is a temporal constant bias and εx,t is zero-mean random error. 263 

As opposed to the TC method, IVd uses only two independent products (x, y) to characterize geophysical data product 264 

errors. This method introduces two instrumental variables I, which is the lag-1 time series of x, and J, which is the lag-265 

1 time series of y, respectively.  266 

  It = αxPt-1 + Bx + εx,t-1 (3) 

  Jt = αyPt-1 + By + εy,t-1 (4) 

Therefore, assuming that the errors of two independent products are serially white, the covariance between instrumental 267 

variables and products can be written as follows: 268 

 CIx = αx
2 LPP (5) 

 CJy = αy
2LPP (6) 
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where C represents the covariance of the subscript products. For instance, CIx represents the covariance of x and its 269 

instrumental variable I. Variable LPP is the lag-1 auto-covariance of the true signal. Combining Eqs. (5) and (6), the 270 

scaling ratio sivd of the two products x and y can be written as: 271 

 

sivd = √
CIx

CJy

 (7) 

Based on Eq. (7), their correlation with truth can be estimated as: 272 

 
RPx 

2 = 
Cxysivd

Cxx

 (8) 

 
RPy

2  = 
Cxy

Cyysivd

 (9) 

In this way, the error in the L4 LE (measured by IVd-based correlation with truth) can be estimated robustly using the 273 

FLUXCOM LE product described in Section 2.3.2.  274 

2.6 Random forest regression 275 

A random forest (RF) regression approach is used to rank and quantify the importance of the eight control factors 276 

introduced above (Table 1) for describing spatial patterns in DA skill improvement for both SSM and RZSM estimates. 277 

The RF method is a supervised learning algorithm based on an averaged ensemble of decision trees (Breiman, 2001). 278 

Unlike linear regression approaches, RF can capture non-linear interactions between the features and the target. In 279 

addition, the normalization (or scaling) of data is not necessary in RF application. Another advantage of the RF 280 
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algorithm is that it can readily measure the relative importance of each feature on the estimates, which makes it highly 281 

suitable for an attribution analysis. Therefore, based on the output of RF, key control factors determining the skill 282 

improvement of SMAP DA are evaluated and ranked. The RF estimates are based on a 10-fold cross-validation 283 

approach.  284 

3 Results 285 

3.1 Validation of SMAP L4 and OL estimates of SSM and RZSM anomalies 286 

Figure 3 maps validation results (i.e., anomaly Spearman’s rank correlation with in-situ observations, R) for SMAP L4 287 

and associated OL soil moisture estimates. The skill patterns for OL and L4 are, in general, quite spatially consistent. 288 

Both are characterized by an increasing trend of SSM estimation skill moving from northwest to southeast China (Fig. 289 

3a and 3b) that matches the increasing density of the rain gauge network. In relative terms, the L4 product surpasses 290 

the baseline OL’s SSM skill for 77% of the 2287 9-km EASE grid cells containing ground observations – with a mean 291 

R increase of ΔR = 0.056 [-] and mean relative improvement versus ROL of 14%.  292 

Similar spatial patterns are observed for RZSM skill. As with SSM, generally higher consistency with in-situ RZSM 293 

measurements is found in southeast China relative to northern and northwestern China.  However, relative to SSM, the 294 

benefit of SMAP data assimilation (i.e., L4) is reduced for RZSM and the mean relative R improvement is only 7% 295 

(ΔR = 0.034 [-]) (compare Fig. 3e and 3f). This reduction is expected since assimilated SMAP Tbs are primarily 296 

sensitive to soil moisture conditions in the surface (0-5 cm) layer. 297 
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 298 

Figure 3: OL (a, b) and L4 (c, d) skills (R values) for SSM (left column) and RZSM (right column). DA skill improvement 299 

(ΔR = RL4 - ROL) for (e) SSM and (f) RZSM. Blue (red) colors in (e) and (f) indicate grid cells where L4 estimates are better 300 

(worse) than OL. Non-significant differences (based on a 1000-member bootstrapping analysis) are shaded grey. The lower 301 

left inset in each subplot indicates the frequency of binned R-values across all 9-km EASE grid cells containing ground 302 

observations.  303 
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 304 

3.2 Spatial distribution of potential factors controlling SMAP L4 DA performance  305 

As described in Section 2.3, we select eight control factors that potentially influence the skill of SMAP L4 soil moisture 306 

estimates. Using the attribution analysis described in Section 2.6, these factors are used to explain the spatial variations 307 

in skill and DA skill improvement seen in Fig. 3. As a first step, this section examines the spatial patterns inherent in 308 

the eight control factors. Errors in the CLSM precipitation forcing are relatively higher in northern and northwestern 309 

areas of China (Fig. 4a), where the gauge density is generally sparser than in southern China. Among the factors 310 

representing CLSM structural errors, a pre-dominantly negative bias is observed in SSM-RZSM coupling strength 311 

generally across China (i.e., lower CPOL compared to CPobs), while a very small number of grid cells show a positive 312 

coupling strength bias in eastern China (dark green dots in Fig. 4b). This is expected since the coupling strength 313 

generally decreases with coarser resolution, i.e., the vertical coupling strength of model is assumed much lower than 314 

that of any single site. In addition, this may be partially attributed to layer depth differences, since CLSM represents 315 

surface and root-zone depths of 0-5 cm and 0-100 cm, respectively, whereas the corresponding in-situ observations 316 

represent the 0-10 cm and 0-50 cm layers. Therefore, CPOL is likely to be systematically smaller than CPobs. In addition, 317 

the vertical variability of the clay fraction seems to show little spatial variation across mainland China (Fig. 4c). With 318 

respect to CLSM LAI error, regions in southern China that have generally higher LAI show larger standard deviations 319 

in SPOT LAI time series (Fig. 4d and 4h). The IVd-based estimates of SMAP L4 LE error, which represent a potential 320 

control factor for water-balance errors in CLSM, generally show a low level of error across mainland China (Fig. 4e).  321 
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For O-F Tb residuals describing RTM-related error, a higher standard deviation of O-F Tb residuals is observed in the 322 

North China Plain (Fig. 4f), which is very consistent in spatial distribution with areas displaying the highest and most 323 

significant SSM prediction improvement (Fig. 3c). This is expected, as mentioned above, because O-F Tb residuals 324 

are the basis for the soil moisture corrections (or increments) that are applied in the DA system as part of the L4 325 

analysis. The 2017-2018 mean of soil roughness shows a relatively scattered spatial pattern (Fig. 4g), while the 2017-326 

2018 mean LAI shows higher values in southwest and southeast China (Fig. 4h).  327 
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 328 

Figure 4: Factors potentially influencing SMAP L4 performance over mainland China: (a) CLSM precipitation error 329 

measured by the Spearman’s rank correlation between CLSM precipitation and ground observations; (b) SSM-RZSM 330 
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coupling strength error (CPOL minus CPobs); (c) clay fraction variation (difference) across the soil profile; (d) error in LAI 331 

input to L4; (e) IVd-based error of LE from L4; (f)  O-F Tb standard deviation; (g) L4 microwave soil roughness; (h) 332 

climatology mean of LAI input to L4. The last row shows factors that consist of the magnitude of the variable itself, while 333 

the other rows show factors based on estimates of the errors that are fed into the L4 system. 334 

 335 

3.3 Attribution of SMAP L4 versus OL performance to control factors 336 

3.3.1 Attribution using random forest regression 337 

As mentioned above, RF regression is used to identify the relative importance of our eight control factors for 338 

determining the improvement of SMAP L4 DA (i.e., ΔR = RL4 - ROL) and also RL4 and ROL. We first investigate the 339 

robustness of RF for predicting ΔR. To estimate the magnitude of randomness in the RF algorithm, we use 50 bootstrap 340 

runs. As shown in Fig. 5a, the 10-fold cross-validation test (228 validation samples) shows that the predicted and in-341 

situ-based ΔR have a mean correlation of 0.72 and 0.46 for SSM and RZSM, respectively. In Fig. 5a, the mean and 342 

median of the cross-validation correlation are shown in black circle and black line respectively within the boxes, while 343 

the second and third quartiles of the cross-validation correlation are shown as the edges of boxes.  344 

Given the sampling errors of ΔR, which is based on a two-year validation period, and the relatively low spatial 345 

variability in RZSM skill (Figs. 2f), the performance of RF is acceptable. In addition, ground-measurement upscaling 346 

error is likely a significant contributor to unexplainable spatial variability for ΔR in Fig. 3. In fact, Chen et al. (2016) 347 
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found large spatial variability in the ability of point-scale SSM ground observations to describe grid cell-scale SSM 348 

dynamics. In-situ observations sites associated with larger random point-to-grid upscaling errors will introduce a 349 

spurious low bias into sampled estimates of ΔR values (see Appendix B in Dong et al., 2020). Therefore, part of the 350 

ΔR spatial variability observed in Fig. 3 is unrelated to any aspect of the L4 system and, therefore, unexplainable via 351 

our eight selected control factors.  352 

Independent representativeness errors have an equal impact on both the L4 and OL skill assessments and should 353 

therefore not bias the relative skill assessments of L4 versus OL, particularly when these assessments are based on 354 

averaging across multiple grid cells. This holds if the location of ground-based measurements sites (within a footprint) 355 

is purely random. For the systematic sampling errors, we analyze the site “representativeness” using the 500m MODIS 356 

Land Cover product (MCD12Q1 v6) in 2017, IGBP dataset. First, we take the land cover (LC) type of the MODIS 357 

grid cell where a given in-situ site is located as the ground-based LC type. Next, we search all the MODIS grid cells 358 

that fall within the SMAP 9km EASE grid cell where this in-situ site is located. The latter area consists of about 20 x 359 

20 = 400 MODIS grid cells. We calculate the fraction of these 400 MODIS grid cells that have the same LC type as 360 

the ground-based LC and define this fraction as the site representativeness. We find that 52% of the 2474 sites have 361 

site representativeness higher than 50%. When we use only these sites for the RF attribute analysis, the top three factors 362 

controlling skill improvement (RL4 – ROL), L4 skill (RL4),  and OL skill (ROL) are still the same, although the 363 

precipitation error becomes the top influencer for RL4 (not shown). 364 
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 365 

Figure 5: Attribution analysis of SMAP L4 DA skill improvement: (a) cross-validation of RF regression method in predicting 366 

DA skill improvement ΔR= RL4 - ROL based on our eight control factors (Table 1). Relative importance of eight control 367 

factors determining spatial patterns in (b) DA skill improvement (ΔR), (c) OL performance (ROL), and (d) L4 performance 368 

(RL4). Red (blue) bars represent predictor importance for SSM (RZSM). Error bars reflect the standard deviation from 50-369 
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member bootstrapping of the RF importance estimates. Since RTM-related errors do not impact the SM skill in the OL 370 

simulation, the corresponding bars in panel (c) are shown as semi-transparent (see text for details). 371 

 372 

Based on the RF results, the Tb innovation is quantified as the most prominent factor in determining DA skill 373 

improvement (i.e., ΔR = RL4 - ROL) – followed by precipitation error and microwave soil roughness (Fig. 5b). The RF-374 

derived ranking of control-factor importance for RZSM is similar to that of SSM in that the same three factors are still 375 

the most explanatory. However, relative to SSM, the importance of Tb innovation for RZSM decreased dramatically 376 

from >30% to ~15%. Other modeling error sources (e.g., the vertical variability of soil properties) have only very 377 

limited impacts on SMAP DA improvement. 378 

As seen in Fig. 5c, for the OL performance (ROL), the most important factors identified by RF include precipitation 379 

error, SSM-RZSM coupling error, and Tb innovation (microwave soil roughness) for SSM (RZSM). Note that although 380 

the Tb innovation is identified as the third-most important factor for ROL in SSM skill, this is an instance where 381 

correlation (i.e., poorer skill happens to coincide with higher Tb innovation) does not imply a causal relationship. 382 

Specifically, it is expected that Tb innovations are higher in areas where the OL performs worse, but a high Tb 383 

innovation is not the cause of a low OL performance. The same argument applies to the relationship between 384 

microwave soil roughness and OL skill for RZSM estimation. To retain the consistency with the analysis of RL4 and 385 

avoid the misconnection between RTM-related factors and ROL, the bars representing the importance of RTM-related 386 

factors to ROL are set semi-transparent in Fig. 5c. The SMAP L4 system is able to reduce impact of precipitation errors 387 
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on both SSM and RZSM estimation skill, rendering SSM-RZSM coupling error the most important factor for RL4 (Fig. 388 

5d). In addition, in the L4 system, the high vegetation density effect on SSM and RZSM estimation is clearly reduced, 389 

as the fourth-most important factor of LAI magnitude is replaced by Tb innovation. 390 

The qualitative rankings provided by the RF analysis in Fig. 5 are relatively robust to our particular choice of the 391 

benchmark data set to define the ‘error’ of various control variables. For instance, we replace the CGDPA precipitation 392 

benchmark with the Climate Prediction Center Morphing (CMORPH) merged product (Version 1, last access: 6 April 393 

2020; DOI: https://doi.org/10.25921/w9va-q159; Xie et al., 2019), which is the 0.1 degree merging product of 394 

CMORPH and observations from more than 30,000 automatic weather stations in mainland China. In this case, the 395 

predictive power of the regression model established by the RF is not affected (similar to Fig. 5a), and the qualitative 396 

rankings of the precipitation error in ROL and RL4 are not impacted (similar to Fig. 5c-d). 397 

 398 

3.3.2 Attribution using box plot comparisons 399 

As stated in Section 2.5, the RF method is adept at summarizing the impact of multiple (co-varying) control factors 400 

simultaneously in the established regression model, and thus provides more comprehensive insights than the 401 

examination of how the target variable (DA improvement) fluctuates with each individual control factor. However, it 402 

does not allow the investigation of the sign of the relationship between DA improvement and each control factor – 403 

which is important for understanding how each factor influences the DA system. In addition, since the net impact of 404 

https://doi.org/10.25921/w9va-q159
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various factors can enhance DA skill improvement by either degrading the OL or enhancing the ability of DA to add 405 

more value, it is important to decompose the source of variations in ΔR. Therefore, in addition to examining how 406 

SMAP DA skill improvement, i.e., ΔR = RL4 - ROL, varies as a function of the most prominent control factors identified 407 

above in Section 3.3.1 (i.e., Tb innovation, precipitation forcing error, and microwave soil roughness). We also 408 

examine how precipitation error as a control factor affects the OL performance, i.e., ROL. 409 

To minimize the uncertainty caused by large errors in each of the control factors, we exclude samples with errors 410 

(separately for each control factor) ranking above the 80th percentile in the following analysis. The relationship 411 

between Tb innovations and L4 DA skill improvement is straightforward: higher Tb innovations are associated with 412 

higher ΔR, with ΔR generally larger for SSM than for RZSM (Fig. 6a-b). 413 

 414 

Figure 6: SMAP L4 DA skill improvement (ΔR = RL4 - ROL) as a function of Tb innovation for (a) SSM and (b) RZSM. 415 

Samples with Tb innovation ranking above the 80th percentile are excluded from the analysis. 416 
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 417 

For precipitation, this decomposition is illustrated in Fig. 7. Note that, as expected, low-quality precipitation tends to 418 

degrade the skill (i.e., correlation versus ground observations) of OL SSM and RZSM estimates (see Fig. 7a-b). This 419 

degradation provides an enhanced opportunity for SMAP L4 DA to provide benefit. As a result, ΔR tends to be a 420 

proportional function of precipitation skill (i.e., higher precipitation skill leads to lower ΔR, see Fig. 7c-d). This inverse 421 

relationship is a well-known tendency for land data assimilation systems (Liu et al., 2011; Bolten and Crow, 2012; 422 

Dong et al., 2019a). Precipitation quality has a diminished impact on RZSM estimation skill compared to SSM 423 

estimation skill. This is expected since RZSM is (essentially) the result of applying a low-pass time series filter to 424 

precipitation. As such, it is less sensitive to high-frequency errors in precipitation products than SSM is.  425 

 426 
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 427 

Figure 7: OL performance (ROL) as a function of precipitation forcing skill R for (a) SSM and (b) RZSM. SMAP L4 DA skill 428 

improvement (ΔR = RL4 - ROL) as a function of precipitation skill for (c) SSM and (d) RZSM. Samples with precipitation 429 

skill ranking below the 20th percentile are excluded from the analysis.  430 

 431 

Figure 8 is analogous to Fig. 6 but shows skill differences ΔR as a function of microwave soil roughness. Similar to 432 

Tb innovations, it is as expected that this control factor of microwave soil roughness has little impact on the OL 433 

performance, except that ROL shows slight decreasing tendency with increasing soil roughness (not shown). Given the 434 

fact that the OL does get worse with increasing roughness, there is more room for improvement in areas with higher 435 

soil roughness, which makes it plausible that ΔR increases with increasing soil roughness (see Fig. 8a-b). 436 
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 437 

Figure 8: As in Fig. 6 but for ΔR as a function of microwave soil roughness. 438 

 439 

Besides the above three control factors that dominate the DA skill improvement, we also examine the top factor that 440 

affects SMAP L4 performance, i.e., vertical-coupling errors (Fig. 9). As expected, larger (absolute) bias in SSM-RZSM 441 

coupling in CLSM tends to be associated with degraded OL estimates of both SSM and RZSM (see Figs. 8a-b), 442 

although the analysis does not prove such a causal relationship. Similar to precipitation errors above, decreased OL 443 

skill (seen on the left-hand-side of the figures) provides an opportunity for increased DA skill improvement – which 444 

is clearly seen in Fig. 9. However, such increases are much larger for SSM than for RZSM.  445 

For RZSM, SSM-RZSM coupling bias exerts both positive and negative effects on estimation accuracy. While such 446 

bias leads to an enhanced opportunity to improve upon a degraded OL, it should also hamper the ability of DA to 447 
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transfer SSM increments into the root-zone – particularly when, like here, the bias reflects the lack of vertical coupling 448 

in the model (Kumar et al., 2009). This means that some of the opportunity presented by the larger RZSM errors in 449 

OL is squandered by sub-optimal DA. As a result, the increase in RZSM DA skill improvement associated with biased 450 

SSM-RZSM coupling (Fig. 9d) is smaller than the analogous increase in SSM DA skill improvement (Fig. 9c). 451 

 452 

 453 
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Figure 9: As in Fig. 7 but for ROL and ΔR as a function of SSM-RZSM coupling error indicated by the CP difference (ΔCP 454 

= CPOL - CPobs). 455 

 456 

For the three strongest control factors that determine DA skill improvement ΔR, i.e., Tb innovation, precipitation error 457 

and microwave soil roughness, we further conducted paired one-way analysis of variance. Results indicates that for 458 

each of the five binned groups separated by each of the above-mentioned three control factors, the inter-group 459 

difference in ΔR caused by each control factor is significant (p<0.01) for both SSM and RZSM. In addition, except for 460 

the groups with lowest mean ΔR in Fig. 6a and Fig. 8a, the averages of ΔR from all groups are significantly higher 461 

than 0 (p<0.01). 462 

4 Conclusions 463 

The SMAP L4 algorithm assimilates L-band Tb observations into the Catchment Land Surface Model to provide 464 

surface and root-zone soil moisture estimates (i.e., SSM, RZSM) with global, 3-hourly coverage at 9-km resolution. 465 

The performance of the L4 soil moisture estimates compared to a baseline model-only simulation (OL) is influenced 466 

by multiple control factors associated with CLSM and the tau-omega RTM components of the L4 system. In this study, 467 

we assess the performance of SMAP L4 DA system using two years of in-situ soil moisture profile observations at 468 

2474 sites across mainland China. We apply a random forest (RF) regression to identify the dominant factors (from a 469 

pre-defined list) that control the spatial distribution of the DA skill improvement (defined as the skill difference 470 
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between the L4 and OL estimates of SSM and RZSM as measured by their Spearman rank correlation with in-situ 471 

measurements). Results show that L4 improves SSM prediction skill by 14% on average, with over 77% of the 2287 472 

9-km EASE grid cells showing an increase in Spearman’s rank correlation with in-situ observations. Similarly, 473 

widespread, though smaller, improvements are observed in RZSM, with averaged R improvement of 7%.   474 

Based on the RF regression analysis, the benefit of SMAP L4 DA for SSM is primarily determined by Tb innovation 475 

(measured by standard deviation of O-F Tb residuals), followed by microwave soil roughness and daily precipitation 476 

error. These three factors are also the most prominent factors controlling SMAP DA improvement for RZSM, albeit 477 

with the Tb innovation being the least important of these three factors for RZSM DA skill improvement.  478 

Generally, the OL performance clearly decreases with increasing precipitation error, whereas for L4 performance 479 

precipitation error is not identified as the most dominant control factor. This indicates that the L4 system is able to 480 

correct for errors in precipitation forcing. In addition, our results demonstrate that SMAP DA contributes the most 481 

benefit for cases where CLSM underestimates SSM-RZSM vertical coupling strength. However, due to the difference 482 

in top-layer soil depth between the in-situ observations (10 cm) and the L4 analysis (5 cm), it is unclear whether or not 483 

the observed SSM-RZSM coupling strength biases are real in an absolute sense – or simply reflect inconsistencies in 484 

the depth of modelled versus observed SSM and RZSM time series. Nevertheless, it is worth stressing that, despite the 485 

ambiguity about their absolute magnitude/sign, relative variations in apparent SSM-RZSM coupling biases explain a 486 

significant amount of the observed spatial variation in L4 performance. Therefore, this finding clearly underpins the 487 

importance of properly specifying SSM-RZSM coupling strength in CLSM as a way to improve the SMAP L4 product.  488 
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For SMAP L4 SSM skill, the next-most important factors (after SSM-RZSM coupling) are the precipitation error, the 489 

Tb innovation and microwave soil roughness (Fig. 5d). For L4 RZSM skill, the next-most important factors (after 490 

SSM-RZSM coupling) are the precipitation error, the Tb innovation error and the LE error, with the latter two factors 491 

of comparable importance (Fig. 5d). To enhance the L4 performance, additional focus should thus be placed on 492 

improving the model’s characterization of the microwave radiative transfer modeling (Tb innovation), together with 493 

the partitioning of the available energy into latent and sensible heat (LE error). 494 

Some of our RF analysis results fall squarely within expectation; for instance, the OL skill is predominately determined 495 

by precipitation error, which is in line with the previous studies using core validation site, sparse network sites and 496 

other microwave soil moisture datasets (Reichle et al., 2017a, 2021; Dong et al., 2019a), and L4 skill improvement 497 

(i.e., RL4 - ROL) is mostly determined by Tb innovation. On the other hand, there are also some more surprising results. 498 

For instance, we found that SSM-RZSM coupling error and precipitation error have a comparable impact on OL. For 499 

L4 skill, however, the impact of SSM-RZSM coupling error exceeds that of precipitation error. More specifically, L4 500 

DA contributes the most benefit for cases where CLSM underestimates SSM-RZSM vertical coupling strength. This 501 

is the first quantification of the impact of different DA aspects (including background model structure error and model 502 

input error) on DA performance. These findings could be used for L4 product development. In addition, this study 503 

pinpoints that the L4 skill improvement is not heavily impacted by LAI magnitude, which gives confidence for using 504 

the L4 product over densely vegetated areas. 505 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL083398#grl59145-bib-0028
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