
1 

 

The benefit of brightness temperature assimilation for the SMAP 1 

Level-4 surface and root-zone soil moisture analysis over 2 

mainland China 3 

Jianxiu Qiu1,2, Jianzhi Dong3, Wade T. Crow3, Xiaohu Zhang4,5, Rolf H. Reichle6, Gabrielle J. M. 4 

De Lannoy7 
5 

1Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun 6 

Yat-sen University, Guangzhou, 510275, China 7 

2Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China 8 

3USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA  9 

4National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, 10 

China 11 

5Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, China 12 

6Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA 13 

7Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium 14 

Correspondence to: Jianxiu Qiu (qiujianxiu@mail.sysu.edu.cn)  15 



2 

 

Abstract. The Soil Moisture Active Passive (SMAP) Level-4 (L4) product provides global estimates of surface soil 16 

moisture (SSM) and root-zone soil moisture (RZSM) via the assimilation of SMAP brightness temperature (Tb) 17 

observations into the Catchment Land Surface Model (CLSM). Here, using in-situ measurements from 2474 sites in 18 

mainland China, we evaluate the performance of soil moisture estimates from the L4 data assimilation (DA) system 19 

and from a baseline “open-loop” (OL) simulation of CLSM without Tb assimilation. Using random forest regression, 20 

the efficiency of the L4 DA system (i.e., the performance improvement in DA relative to OL) is attributed to eight 21 

control factors related to the CLSM and as well as tau-omega radiative transfer model (RTM) components of the L4 22 

system. Results show that the Spearman rank correlation (R) for L4 SSM with in-situ measurements increases for 77% 23 

of the in-situ measurement locations (relative to that of OL), with an average R increase of approximately 14% (ΔR = 24 

0.056). RZSM skill is improved for about 74% of the in-situ measurement locations, but the average R increase for 25 

RZSM is only 7% (ΔR = 0.034). Results further show that the SSM DA skill improvement is most strongly related to 26 

the difference between the RTM-simulated Tb and the SMAP Tb observation, followed by the error in precipitation 27 

forcing and microwave soil roughness h. For the RZSM DA skill improvement, these three dominant control factors 28 

remain the same, although the importance of soil roughness exceeds that of the Tb simulation error, as the soil 29 

roughness strongly affects the ingestion of DA increments and further propagation to the subsurface. For the skill of 30 

the L4 and OL estimates themselves, the top two control factors are the precipitation error and the SSM-RZSM 31 

coupling strength error, both of which are related to the CLSM component of the L4 system. Finally, we find that the 32 

L4 system can effectively filter out errors in precipitation. Therefore, future development of the L4 system should 33 

focus on improving the characterization of the SSM-RZSM coupling strength.  34 

 35 

Keywords. SMAP Level 4, soil moisture, data assimilation, attribute analysis, random forest regression  36 

1 Introduction 37 

Soil moisture modulates water and energy feedback between the land surface and the lower atmosphere by determining 38 

the partitioning of incoming net radiation into latent and sensible heat (Seneviratne et al., 2010, 2013). High-quality, 39 

global-scale soil moisture products have become increasingly available in recent years. In particular, the L-band NASA 40 

Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 2010; Piepmeier et al., 2017) has significantly 41 

improved the skill of available, global-scale soil moisture products. However, the SMAP observations contain temporal 42 

data gaps and are only representative of conditions within only the first 5 cm of the vertical soil moisture column 43 

(Entekhabi et al., 2010). To address these limitations, the SMAP Level-4 Surface and Root-Zone Soil Moisture (L4) 44 

algorithm assimilates SMAP brightness temperature (Tb) observations into the NASA Catchment Land Surface Model 45 

(CLSM) to derive an analysis of surface (0–5 cm) and root-zone (0–100 cm) soil moisture estimates with global, 3-46 

hourly coverage (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019).  47 

However, the performance of a land data assimilation (DA) system is sensitive to the DA parameterization and requires 48 

careful assessment. For instance, Reichle et al. (2008) demonstrate that DA based on incorrect assumptions of modeling 49 

errors and observation errors can degrade soil moisture estimates, compared with the case of not performing DA, which 50 

is commonly referred to as the “open-loop” (OL) baseline. Theoretically, the optimality of DA can be evaluated using 51 
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so-called “innovations”, or observation-minus-forecast residuals; however, an investigation of the innovations alone 52 

is often insufficient to determine if the soil moisture analysis is optimal, as the innovations are affected by multiple 53 

factors (Crow and Van Loon, 2006).  54 

Recently, Dong et al. (2019a) proposed a novel statistical framework for evaluating the performance of a soil moisture 55 

DA system. Specifically, they demonstrated that the relative skill of surface soil moisture (SSM) estimates acquired 56 

with and without DA can be estimated using the ratio of their correlations with just one noisy but independent ancillary 57 

remote sensing product. This approach was applied to the SMAP L4 system using Advanced Scatterometer soil 58 

moisture retrievals.  Their results show that the benefit of SMAP DA is closely related to densities of both rain gauge 59 

and vegetation. Generally, higher rain gauge density indicates lower error in precipitation forcing, and lower vegetation 60 

density indicates higher background model performance - both conditions lead to reduced SMAP DA benefit. However, 61 

due to the limited availability of independent root-zone soil moisture (RZSM) products for performing statistical error 62 

estimation, this method is only applicable for SSM estimates.  63 

Relative to SSM, the efficiency of assimilating land surface observations to improve RZSM is complicated by model 64 

structural error that affects the ability of the DA to update unobserved model states. For instance, Kumar et al. (2009) 65 

identified the surface–root zone coupling strength, which is the result of a model-dependent representation of processes 66 

related to the partitioning of rainfall into infiltration, runoff, and evaporation components, as an important factor for 67 

determining RZSM improvement associated with the assimilation of SSM retrievals. Their synthetic experiments 68 

suggest that, faced with unknown true subsurface physics, overestimating the surface–root zone coupling in the land 69 

model is a more robust strategy for obtaining skill improvements in the root zone than under-estimating the coupling. 70 

Likewise, Chen et al. (2011) suggested that the Soil and Water Assessment Tool significantly under-predicts the 71 

magnitude of vertical soil water coupling in the Cobb Creek Watershed in southwestern Oklahoma, USA, and this lack 72 

of coupling impedes the ability of DA to effectively update soil moisture in deep layers, groundwater flow and surface 73 

runoff. In the context of the present paper, the evaluation of L4 RZSM estimates has been limited to SMAP core 74 

validation and sparse network sites (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 2019). With such limited 75 

validation sites, the RZSM skill of the L4 product at the global scale remains uncertain. 76 

The primary objective of this study is to assess the DA skill improvement, i.e., the performance improvement in DA 77 

results relative to the OL baseline of the L4 product, and to further determine how DA skill improvement varies as a 78 

function of the major aspects in the system. As mentioned above, the modeling portion of the L4 system consists of 79 

two components: land surface modelling (LSM) and radiative transfer modelling (RTM). Therefore, we select control 80 

factors from each of the two components. For the LSM component, the errors can be attributed to potential factors 81 

including: 1) model input forcing errors of a) precipitation and b) LAI; 2) model structure errors in a) characterizing 82 

SSM-RZSM coupling strength and b) the presence of vertical variability in soil properties; 3) model output error of 83 

LE. For the RTM component, errors are characterized by: 1) DA innovation, i.e., SMAP-observed minus RTM-84 

simulated Tb; 2) the environmental factors that complicate the DA analysis when assimilating Tb observations, which 85 

include the magnitude of a) microwave soil roughness and b) LAI. These eight control factors from the above-86 

mentioned five aspects determine the crucial aspects of both the LSM and RTM components in the L4 system and are 87 

readily quantifiable using remote sensing products. Thus, they are selected to investigate the mechanism underlying 88 

the L4 improvement observed in this study. 89 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL083398#grl59145-bib-0028
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Therefore, to achieve the two major objectives, we first evaluate the performance of L4 SSM and RZSM estimates 90 

using 2474 sites in mainland China with soil moisture profile measurements (generally acquired at sub-surface depths 91 

between 10 and 50 cm) during the two-year period of 2017 to 2018. Next, the in-situ measurements are used to assess 92 

the DA skill improvement of the L4 system, which is defined as the skill difference between the L4 estimates and the 93 

OL baseline. Additionally, we apply a machine-learning technique to quantify by how much the eight potential control 94 

factors drive the spatial variations in the efficiency of the L4 system. In this way, we seek to prioritize future 95 

enhancements to the L4 system.  96 

2 Data and Methods 97 

In this section, we briefly describe the SMAP L4 soil moisture product (Section 2.1), the network of in-situ soil 98 

moisture observations in mainland China (Section 2.2), the above-mentioned control factors and ancillary data sources 99 

(Section 2.3), and the vertical coupling metric used in the skill assessment (Section 2.4). Next, we introduce the double 100 

instrumental variable (IVd) method employed to determine the errors in control factors that cannot be determined using 101 

ground observations (Section 2.5). Finally, we describe the random forest (RF) regression method used to identify the 102 

main factor(s) (out of the eight control factors from both CLSM and RTM aspects) that affect the spatial variations in 103 

SMAP L4 DA skill improvement and L4 performance (Section 2.6). 104 

2.1 SMAP L4 soil moisture product 105 

The SMAP L4 soil moisture product (version 4; Reichle et al., 2019) is generated by assimilating the SMAP L1C 106 

Radiometer half-orbit 36 km Equal-Area Scalable Earth (EASE) Grid Tb observations (Version 4 SPL1CTB; Chan et 107 

al., 2016) into the CLSM. The SMAP Tb observations are assimilated at 3-h intervals using a spatially distributed, 24-108 

member ensemble Kalman filter (Reichle et al. 2017b). The surface meteorological forcing data are from the global 109 

Goddard Earth Observing System (GEOS) Forward Processing atmospheric analysis (Lucchesi, 2013), with 110 

precipitation corrected using the daily, 0.5-degree, gauge-based Climate Prediction Center Unified (CPCU) product 111 

(Xie et al. 2007). The L4 product provides global, 9-km, 3-hourly surface (0–5 cm) and root-zone (0–100 cm) soil 112 

moisture estimates along with related land surface fields and analysis diagnostics. For the present study, we aggregate 113 

all soil moisture estimates to daily averaged (00:00 to 23:59 UTC) data. The OL baseline is a model-only, ensemble 114 

CLSM simulation without the assimilation of SMAP Tb observations but otherwise using the same configuration, 115 

including perturbations, as in the L4 system (Reichle et al., 2020).  116 

The SMAP L4 assimilation system includes a zero-order “tau-omega” forward RTM (De Lannoy et al., 2013) that 117 

converts SSM and surface soil temperature into L-band brightness temperature estimates. Select parameters of the L4 118 

RTM, including the: microwave soil roughness parameter h, vegetation structure parameterτ, and the microwave 119 

scattering albedo ω, are calibrated using multi-angular L-band brightness temperature observations from the Soil 120 

Moisture Ocean Salinity (SMOS) mission (De Lannoy et al., 2014). The L4 RTM parameterizes microwave soil 121 

roughness as a function of SSM (De Lannoy et al., 2013, their equation B1). Here, we use this parameterization to 122 

compute the 2017-2018 daily averaged microwave soil roughness estimates as one potential indicator of DA skill 123 

improvement (Section 2.3).  The necessary parameters are obtained from L4 “Land-Model-Constants” output 124 
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Collection (last access: 8 July 2020; DOI: https://doi.org/10.5067/KGLC3UH4TMAQ; Reichle et al., 2018a). The L4 125 

“Analysis-Update-Data” output Collection includes RTM predictions of Tb and the assimilated SMAP Tb observations 126 

(last access: 8 July 2020; DOI: https://doi.org/10.5067/60HB8VIP2T8W; Reichle et al., 2018b). 127 

To avoid the impact of seasonality, we perform our analysis using anomaly time series, derived by subtracting a 128 

seasonally varying (daily) climatology from each raw time series. The climatology of a given time series is obtained 129 

by sampling the mean value of all soil moisture estimates that fall within a 31-day moving window centered on a 130 

particular day-of-year. Moreover, L4 estimates of land latent heat flux (LE), land sensible heat flux (SH) and the 131 

climatological LAI inputs to CLSM and the RTM, are obtained from the L4 “Geophysical-Data” output Collection 132 

(last access: 6 April 2020; DOI: https://doi.org/10.5067/KPJNN2GI1DQR; Reichle et al., 2018c). These datasets are 133 

also used to compute control factors to explain spatial variations in the DA skill improvement of the L4 system (Section 134 

2.3).  135 

2.2 Soil moisture validation data 136 

In-situ soil moisture measurements during 2017 and 2018 are collected from a national network of Chinese Automatic 137 

Soil Moisture Observation Stations (CASMOS) maintained by the Chinese Meteorological Administration (CMA; 138 

Han et al., 2017). In total, soil moisture measurements from 2474 separate stations array across mainland China, and 139 

covering different land use types, are collected. At each CASMOS site, frequency domain reflectometry-based 140 

instruments (DNZ1, DNZ2, and DNZ3) are used to record hourly volumetric soil moisture content within the following 141 

vertical depth ranges: 0–10, 10–20, 20–30, 30–40, and 40–50 cm below the surface. These hourly estimates (at multiple 142 

depths) are then aggregated into daily values and linearly averaged (vertically) to produce 0-10 cm (SSM) and 0-50 143 

cm (RZSM) in situ soil moisture measurements – which are subsequently used to validate the L4 and OL SSM (0-5 144 

cm) and RZSM (0-100 cm) estimates. Note that Spearman correlation rather than Pearson correlation is used for L4 145 

and OL validation because Pearson correlation assumes linear consistency of the underlying variables and is more 146 

sensitive to outliers. By employing Spearman’s rank correlation, we avoid introducing ad-hoc thresholds and do not 147 

exclude soil moisture outliers. Nonetheless, we repeat the analysis based on Pearson correlation (not shown) and find 148 

that the results are qualitatively consistent with the results using Spearman’s correlation. 149 

Ground observations within the same 9-km EASE grid were averaged for comparisons against the collocated 9-km L4 150 

and OL soil moisture estimates. A total of 2287 individual 9-km EASE grid cells within mainland China are included 151 

in the analysis. Among them, 92.35% of grid cells contain one in-situ site, 7.26% contain two sites, 7 grid cells contain 152 

three sites, and the remaining two grid cells contain four and five sites respectively. Figure 1 shows the number of in-153 

situ CASMOS sites within each 9-km EASE grid. 154 
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 155 

Figure 1: The number of in-situ CASMOS sites within each 9-km EASE grid across mainland China. 156 

 157 

2.3 Explanatory data products 158 

As discussed above, our hypothesis is that the efficiency of the SMAP L4 system will be sensitive to the ability of the 159 

ensemble-based L4 analysis in filtering errors that exist in CLSM, the RTM forecast Tb, and the assimilated SMAP 160 

Tb observations. We therefore consider two separate categories of factors that potentially control spatial variations in 161 

DA skill improvement. The factors are summarized in Table 1. 162 

The first category represents a range of factors known to affect the skill of soil moisture estimates derived from the 163 

LSM (in this case, CLSM). The five control factors in this category are: 1) the error in precipitation forcing, 2) the 164 

error in (input) LAI, 3) the error in (output) LE, 4) the magnitude of mean error in CLSM SSM-RZSM coupling 165 

strength, and 5) the presence of vertical variability in soil properties (defined as the difference in clay fraction across 166 

the vertical soil profile). Note that such variability represents a potential source of error because, with the exception of 167 

some surface-layer moisture transport parameters, CLSM assumes soil texture and associated soil parameters are 168 

vertically homogeneous within the soil column. However, the Harmonized World Soil Database (HWSD) often 169 

captures distinct vertical variations in soil properties. Therefore, since it is largely neglected by CLSM, the magnitude 170 

of vertical heterogeneity in soil texture may be an effective proxy for overall CLSM soil moisture accuracy. In addition, 171 

note that since LH and SH are generally (strongly) anti-correlated, it is not appropriate to include both in a single 172 

random forest analysis – since including both would yield biased (high) regression weights for LH and SH. 173 

The second category contains three factors that affect radiative transfer modeling (RTM) and therefore DA updates. 174 

These include: 1) estimates of the DA innovation, namely difference between SMAP Tb observations and RTM Tb 175 

simulations, 2) the magnitude of microwave soil roughness, and 3) the magnitude of LAI (as a proxy for the vegetation 176 

optical depth at microwave frequencies, which modulates the contribution of surface soil to the observed Tb).  177 
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The control factors take a variety of forms. Some factors are based on estimates of the errors fed into the L4 system, 178 

namely: 1) the error in CLSM rainfall forcing data; 2) error in SSM-RZSM coupling strength; 3) vertical variability of 179 

clay fraction; 4) SMAP L4 LAI error; 5) output LE error; 6) Tb error. Other factors consist of the magnitude of the 180 

variable itself, namely the magnitude of microwave soil roughness and annual mean LAI. Note that LAI is used in 181 

both ways: LAI error is used to predict OL performance (because LAI is an important input into CLSM), while mean 182 

LAI is used to explain DA performance (because increased LAI is associated with decreased soil moisture information 183 

in microwave observations).  184 

Note that the LAI used in the L4 system is a merged climatology from Moderate Resolution Imaging Spectroradiometer 185 

(MODIS) and Geoland data based on satellite observations of the Normalized Difference Vegetation Index (Mahanama 186 

et al., 2015; Reichle et al., 2017a). Therefore, to indicate the magnitude by which the LAI of each grid cell typically 187 

deviates from its long-term climatology, we use the temporal standard deviation for the anomaly time series of a 188 

benchmark LAI time series as a measure of the error in the LAI value used in the L4 system. This benchmark LAI is 189 

from the SPOT-Vegetation (SPOT VGT) product and includes inter-annual variations (Section 2.3.3). Owing to the 190 

lack of reference Tb observations at similar satellite overpass times and locations, Tb errors are gauged using the time 191 

series standard deviation of the observation-minus-forecast (O‐F) Tb residuals, which indicate the typical misfit 192 

between the model forecast Tb and the rescaled SMAP Tb observations. This rescaling process ensures zero-mean 193 

differences between Tb observations and forecasts and involves a seasonal multiyear-mean bias correction, which 194 

makes sure that the DA only corrects for errors in short-term and inter-annual variations and not for errors in the 195 

climatological seasonal cycles of the modeled soil moisture or other land surface fields.  The standard deviation of the 196 

O-F Tb residuals measures the total error in Tb observation space.  197 

The exact data sets and the metrics utilized for evaluating all eight control factors are summarized in Table 1. 198 
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Table 1 Benchmark data sets and metrics used for evaluating control factors of SMAP L4  199 

Factor category Control factor Dataset/Benchmark Temporal resolution Spatial resolution 
Data 

range 
Metrics 

LSM 

Precipitation error Rain gauge (CGDPA) daily 0.25° 
2017-

2018 
Spearman’s rank correlation R 

SSM-RZSM coupling 

strength error 
CASMOS daily NA 

2017-

2018 
ΔCP (see Section 2.4) 

Vertical variability of 

clay fraction 
HWSD NA 9 km NA 

Difference in clay fraction between  

topsoil (0-30 cm) and root-zone (0-

100 cm) layers  

SMAP L4 LAI error SPOT-VGT LAI 10 d 1 km 
2017-

2018 

Temporal standard deviation of 

SPOT VGT LAI anomaly 

LE error FLUXCOM daily (1/120) ° 
2017-

2018 
IVd-based R 

RTM 

Tb error SMAP L4 daily 9 km 
2017-

2018 

Temporal standard deviation of O‐F 

Tb residuals 

Microwave soil 

roughness 
SMAP L4 daily 9 km 

2017-

2018 

Temporal average based on  De 

Lannoy et al. (2013) 

Annual mean LAI 
MODIS/Geoland-based 

product 
daily 9 km 

2017-

2018 
Climatological mean 

200 
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2.3.1 Gauge-based precipitation gridded product 201 

Errors in the precipitation data used to force the CLSM within the SMAP L4 system are estimated via Spearman’s 202 

rank correlation with available rain-gauge observations. These network observations are based on an analysis of ∼2400 203 

rain gauge stations distributed across mainland China (Shen et al., 2015). Recently, the China Gauge-based Daily 204 

Precipitation Analysis (CGDPA) with a spatial resolution of 0.25°×0.25° based on this network was constructed and 205 

has been made operational over mainland China (last access: 28 April 2020; 206 

http://data.cma.cn/data/cdcdetail/dataCode/SEVP_CLI_CHN_PRE_DAY_GRID_0.25.html). CGDPA uses a 207 

modified version of climatology-based optimal interpolation (OI) with topographic correction proposed by Xie et al. 208 

(2007). In this process, the daily precipitation climatology over mainland China is optimized and rebuilt using the 30-209 

year average precipitation observations from ∼2400 gauges of the period 1971–2000 (Shen et al., 2010). CGDPA is 210 

shown to have smaller bias and root mean square error (for instance, 13.51 mm day-1 vs. 17.02 mm day-1 for 211 

precipitation of 25.0–50.0 mm day-1) than the CPCU product used in the SMAP L4 system, which is based on fewer 212 

than 400 gauge sites over mainland China (Shen et al., 2015). 213 

2.3.2 FLUXCOM LE estimates 214 

The FLUXCOM ensemble of global land-atmosphere energy fluxes is used to evaluate error in L4 LE estimates. This 215 

ensemble merges energy flux measurements from FLUXNET eddy covariance towers with remote sensing and 216 

meteorological data based on four broad categories of machine learning method (namely tree-based methods, 217 

regression splines, neural networks, and kernel methods) to estimate global gridded net radiation, latent and sensible 218 

heat and their related uncertainties (Jung et al., 2019). The resulting FLUXCOM database has a 0.0833° spatial 219 

resolution when applied using MODIS remote sensing data. The monthly energy flux data of all ensemble members, 220 

as well as the ensemble estimates from the FLUXCOM initiative, are freely available (CC4.0 BY license) from the 221 

Data Portal (http://fluxcom.org/), while the daily- and 8-day FLUXCOM products are available upon request from 222 

dataset provider Martin Jung (last access: 14 April 2020). To calculate the LE error, we collected the daily, high spatial 223 

resolution FLUXCOM product and extracted the LE estimates where in-situ soil moisture sites are located. 224 

2.3.3 SPOT VGT LAI 225 

The data set used as a benchmark for assessing leaf area index (LAI) errors present in the SMAP L4 analysis is derived 226 

from the SPOT/VEGETATION and PROBA-V LAI products (version 2) that generated every 10 days (at best) with a 227 

spatial resolution of 1 km. The SPOT LAI version 2 product GEOV2 is provided by the Copernicus Global Land 228 

Service (last access: 15 April 2020; https://land.copernicus.eu/global/products/LAI; Baret et al., 2013). It capitalizes 229 

on the development of already existing products: CYCLOPES version 3.1 and MODIS collection 5 based on neural 230 

networks (Baret et al., 2013; Verger et al., 2008). Compared to version 1, the version 2 products are derived from top 231 

of canopy daily reflectances, which ensures reduced sensitivity to missing observations and avoids the need for a 232 

bidirectional reflectance distribution function model. 233 

2.3.4 HWSD soil texture  234 

http://fluxcom.org/
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The soil texture information is from the HWSD attribute database (v1.2; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), 235 

which is a 30 arc-second raster database with 15773 different soil-mapping units worldwide. It provides information 236 

on the standardized soil parameters for topsoil (0–30cm) and subsoil (30-100 cm) separately. In this study, we use the 237 

difference of clay fractions between topsoil (0-30cm) and the aggregated 0-100cm layer to measure the vertical clay 238 

fraction variation at each 9-km grid cell. 239 

2.4 Vertical coupling metric 240 

The RZSM time series generally show decreased temporal dynamics relative to SSM. As a result, overestimated SSM-241 

RZSM coupling tends to spuriously increase the (correlation-based) similarity of SSM and RZSM time series, and 242 

thereby, overestimate RZSM temporal variability. Therefore, analogous to Kling-Gupta efficiency (Gupta et al., 2009), 243 

we define the SSM-RZSM coupling strength (CP) as: 244 

 CP = 1-√(R-1)
2
 + (α-1)

2
 (1) 

where R is the Spearman’s rank correlation between SSM and RZSM, and α is the ratio of temporal standard deviation 245 

of SSM to that of RZSM. The CP estimation is based on anomaly time series of both SSM and RZSM. A CP value of 246 

one represents the extreme case where RZSM is identical to SSM, i.e., a strongly coupled case. Likewise, a CP of zero 247 

represents the opposing case of completely uncoupled time series. Cases with negative CP do not exist in this study. 248 

Observed CP (CPobs) was based on comparisons between 0-10 cm “surface” and 0-50 cm “root-zone” in-situ 249 

observations and used as a benchmark. In contrast, CP estimates of OL (CPOL) was based on the comparison of 0-5 cm 250 

“surface” and 0-100 cm “root-zone” estimates. Therefore, the surface versus root-zone storage contrast in the 251 

observation time series is less than that of the L4 estimates. This will likely cause the observed correlation between 252 

surface and root-zone time series to be systematically higher than the analogous vertical correlation calculation for L4 253 

estimates. However, this bias is partially corrected for by the second term in Eq. (1) – since the observed α ratio will, 254 

by the same token, tend to be smaller (i.e. closer to one) than α sampled from the L4 analysis. Such ability to 255 

compensate for vertical depth differences is a key reason we apply CP, rather than simple correlation, as a vertical 256 

coupling strength metric. Nevertheless, it should be noted that our main interest here lies in describing spatial variations 257 

in (CPOL - CPobs) and care should be taken when interpreting raw (CPOL - CPobs) differences as an absolute measure of 258 

L4 vertical coupling bias. 259 

2.5 Double instrumental variable (IVd) method 260 

The benchmark data set of FLUXCOM LE described above contains error that is assumed to be of a similar order of 261 

magnitude as the L4 LE dataset it is applied to evaluate. Therefore, in an attempt to correct for the impact of this error, 262 

the LE error used here as a control factor is obtained via a double instrumental variable (IVd; Dong et al., 2019b) 263 

analysis approach that minimizes the spurious impact of random errors in benchmark data sets. As shown in Dong et 264 

al. (2019b), for the evaluation of two time series containing autocorrelated errors, IVd is more robust than a single 265 

instrumental variable based algorithm, therefore we apply IVd to evaluate the LE error. 266 
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IVd is a modified version of triple collocation (TC) analysis. In TC analysis (McColl et al., 2014), geophysical 267 

variables obtained from three independent sources (xt, yt and zt) at time t are assumed to be linearly related to the true 268 

signal Pt as: 269 

  xt = αxPt + Bx+εx,t (2) 

where the αx is a scaling factor; Bx is a temporal constant bias and εx,t is zero-mean random error. 270 

As opposed to the TC method, IVd uses only two independent products (x, y) to characterize geophysical data product 271 

errors. This method introduces two instrumental variables I, which is the lag-1 time series of x, and J, which is the lag-272 

1 time series of y, respectively.  273 

  It = αxPt-1 + Bx + εx,t-1 (3) 

  Jt = αyPt-1 + By + εy,t-1 (4) 

Therefore, assuming that the errors of two independent products are serially white, the covariance between instrumental 274 

variables and products can be written as follows: 275 

 CIx = αx
2 LPP (5) 

 CJy = αy
2LPP (6) 

where C represents the covariance of the subscript products. For instance, CIx represents the covariance of x and its 276 

instrumental variable I. Variable LPP is the lag-1 auto-covariance of the true signal. Combining Eqs. (5) and (6), the 277 

scaling ratio sivd of the two products x and y can be written as: 278 

 

sivd = √
CIx

CJy

 (7) 

Based on Eq. (7), their correlation with truth can be estimated as: 279 

 
RPx 

2 = 
Cxysivd

Cxx

 (8) 
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RPy

2  = 
Cxy

Cyysivd

 (9) 

In this way, the error in the L4 LE (measured by IVd-based correlation with truth) can be estimated robustly using the 280 

FLUXCOM LE product described in Section 2.3.2.  281 

2.6 Random forest regression 282 

A random forest (RF) regression approach is used to rank and quantify the importance of the eight control factors 283 

introduced above (Table 1) for describing spatial patterns in DA skill improvement for both SSM and RZSM estimates. 284 

The RF method is a supervised learning algorithm based on an averaged ensemble of decision trees (Breiman, 2001). 285 

Unlike linear regression approaches, RF can capture non-linear interactions between the features and the target. In 286 

addition, the normalization (or scaling) of data is not necessary in RF application. Another advantage of the RF 287 

algorithm is that it can readily measure the relative importance of each feature on the estimates, which makes it highly 288 

suitable for an attribution analysis. Therefore, based on the output of RF, key control factors determining the skill 289 

improvement of SMAP DA are evaluated and ranked. The RF estimates are based on a 10-fold cross-validation 290 

approach.  291 

3 Results 292 

3.1 Validation of SMAP L4 and OL estimates of SSM and RZSM anomalies 293 

Figure 2 maps validation results (i.e., anomaly Spearman’s rank correlation with in-situ observations, R) for SMAP L4 294 

and associated OL soil moisture estimates. The skill patterns for OL and L4 are, in general, quite spatially consistent. 295 

Both are characterized by an increasing trend of SSM estimation skill moving from northwest to southeast China (Fig. 296 

2a and 2b) that matches the increasing density of the rain gauge network. In relative terms, the L4 product surpasses 297 

the baseline OL’s SSM skill for 77% of the 2287 9-km EASE grid cells containing ground observations – with a mean 298 

R increase of ΔR = 0.056 [-] and mean relative improvement versus ROL of 14%.  299 

Similar spatial patterns are observed for RZSM skill. As with SSM, generally higher consistency with in-situ RZSM 300 

measurements is found in southeast China relative to northern and northwestern China.  However, relative to SSM, the 301 

benefit of SMAP data assimilation (i.e., L4) is reduced for RZSM and the mean relative R improvement is only 7% 302 

(ΔR = 0.034 [-]) (compare Fig. 2e and 2f). This reduction is expected since assimilated SMAP Tbs are primarily 303 

sensitive to soil moisture conditions in the surface (0-5 cm) layer. 304 
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 305 

Figure 2: OL (a, b) and L4 (c, d) skills (R values) for SSM (left column) and RZSM (right column). DA skill improvement 306 
(ΔR = RL4 - ROL) for (e) SSM and (f) RZSM. Blue (red) colors in (e) and (f) indicate grid cells where L4 estimates are better 307 
(worse) than OL. Non-significant differences (based on a 1000-member bootstrapping analysis) are shaded grey. The lower 308 
left inset in each subplot indicates the frequency of binned R-values across all 9-km EASE grid cells containing ground 309 
observations.  310 

 311 

3.2 Spatial distribution of potential factors controlling SMAP L4 DA performance  312 

As described in Section 2.3, we select eight control factors that potentially influence the skill of SMAP L4 soil moisture 313 

estimates. Using the attribution analysis described in Section 2.6, these factors are used to explain the spatial variations 314 
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in skill and DA skill improvement seen in Fig. 2. As a first step, this section examines the spatial patterns inherent in 315 

the eight control factors. Errors in the CLSM precipitation forcing are relatively higher in northern and northwestern 316 

areas of China (Fig. 3a), where the gauge density is generally sparser than in southern China. Among the factors 317 

representing CLSM structural errors, a pre-dominantly negative bias is observed in SSM-RZSM coupling strength 318 

generally across China (i.e., lower CPOL compared to CPobs), while a very small number of grid cells show a positive 319 

coupling strength bias in eastern China (dark green dots in Fig. 3b). This is expected since the coupling strength 320 

generally decreases with coarser resolution, i.e., the vertical coupling strength of model is assumed much lower than 321 

that of any single site. In addition, this may be partially attributed to layer depth differences, since CLSM represents 322 

surface and root-zone depths of 0-5 cm and 0-100 cm, respectively, whereas the corresponding in-situ observations 323 

represent the 0-10 cm and 0-50 cm layers. Therefore, CPOL is likely to be systematically smaller than CPobs. In addition, 324 

the vertical variability of the clay fraction seems to show little spatial variation across mainland China (Fig. 3c). With 325 

respect to CLSM LAI error, regions in southern China that have generally higher LAI show larger standard deviations 326 

in SPOT LAI time series (Fig. 3d and 3h). The IVd-based estimates of SMAP L4 LE error, which represent a potential 327 

control factor for water-balance errors in CLSM, generally show a low level of error across mainland China (Fig. 3e).  328 

For O-F Tb residuals describing RTM-related error, a higher standard deviation of O-F Tb residuals is observed in the 329 

North China Plain (Fig. 3f), which is very consistent in spatial distribution with areas displaying the highest and most 330 

significant SSM prediction improvement (Fig. 2c). This is expected, as mentioned above, because O-F Tb residuals 331 

are the basis for the soil moisture corrections (or increments) that are applied in the DA system as part of the L4 332 

analysis. The 2017-2018 mean of soil roughness shows a relatively scattered spatial pattern (Fig. 3g), while the 2017-333 

2018 mean LAI shows higher values in southwest and southeast China (Fig. 3h).  334 
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 335 

Figure 3: Factors potentially influencing SMAP L4 performance over mainland China: (a) CLSM precipitation error 336 
measured by the Spearman’s rank correlation between CLSM precipitation and ground observations; (b) SSM-RZSM 337 
coupling strength error (CPOL minus CPobs); (c) clay fraction variation (difference) across the soil profile; (d) error in LAI 338 
input to L4; (e) IVd-based error of LE from L4; (f)  O-F Tb standard deviation; (g) L4 microwave soil roughness; (h) 339 
climatology mean of LAI input to L4. The last row shows factors that consist of the magnitude of the variable itself, while 340 
the other rows show factors based on estimates of the errors that are fed into the L4 system. 341 
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 342 

3.3 Attribution of SMAP L4 versus OL performance to control factors 343 

3.3.1 Attribution using random forest regression 344 

As mentioned above, RF regression is used to identify the relative importance of our eight control factors for 345 

determining the improvement of SMAP L4 DA (i.e., ΔR = RL4 - ROL) and also RL4 and ROL. We first investigate the 346 

robustness of RF for predicting ΔR. To estimate the magnitude of randomness in the RF algorithm, we use 50 bootstrap 347 

runs. As shown in Fig. 4a, the 10-fold cross-validation test (228 validation samples) shows that the predicted and in-348 

situ-based ΔR have a mean correlation of 0.72 and 0.46 for SSM and RZSM, respectively. In Fig. 4a, the mean and 349 

median of the cross-validation correlation are shown in black circle and black line respectively within the boxes, while 350 

the second and third quartiles of the cross-validation correlation are shown as the edges of boxes.  351 

Given the sampling errors of ΔR, which is based on a two-year validation period, and the relatively low spatial 352 

variability in RZSM skill (Figs. 2f), the performance of RF is acceptable. In addition, ground-measurement upscaling 353 

error is likely a significant contributor to unexplainable spatial variability for ΔR in Fig. 2. In fact, Chen et al. (2016) 354 

found large spatial variability in the ability of point-scale SSM ground observations to describe grid cell-scale SSM 355 

dynamics. In-situ observations sites associated with larger random point-to-grid upscaling errors will introduce a 356 

spurious low bias into sampled estimates of ΔR values (see Appendix B in Dong et al., 2020). Therefore, part of the 357 

ΔR spatial variability observed in Fig. 2 is unrelated to any aspect of the L4 system and, therefore, unexplainable via 358 

our eight selected control factors.  359 

Independent representativeness errors have an equal impact on both the L4 and OL skill assessments and should 360 

therefore not bias the relative skill assessments of L4 versus OL, particularly when these assessments are based on 361 

averaging across multiple grid cells. This holds if the location of ground-based measurements sites (within a footprint) 362 

is purely random. For the systematic sampling errors, we analyze the site “representativeness” using the 500m MODIS 363 

Land Cover product (MCD12Q1 v6) in 2017, IGBP dataset. First, we take the land cover (LC) type of the MODIS 364 

grid cell where a given in-situ site is located as the ground-based LC type. Next, we search all the MODIS grid cells 365 

that fall within the SMAP 9km EASE grid cell where this in-situ site is located. The latter area consists of about 20 x 366 

20 = 400 MODIS grid cells. We calculate the fraction of these 400 MODIS grid cells that have the same LC type as 367 

the ground-based LC and define this fraction as the site representativeness. We find that 52% of the 2474 sites have 368 

site representativeness higher than 50%. When we use only these sites for the RF attribute analysis, the top three factors 369 

controlling skill improvement (RL4 – ROL), L4 skill (RL4),  and OL skill (ROL) are still the same, although the 370 

precipitation error becomes the top influencer for RL4 (not shown). 371 

 372 

 373 
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 374 

Figure 4: Attribution analysis of SMAP L4 DA skill improvement: (a) Cross-validation of RF regression method in 375 
predicting DA skill improvement ΔR= RL4 - ROL based on our eight control factors (Table 1). Relative importance of eight 376 
control factors determining spatial patterns in (b) DA skill improvement (ΔR), (c) OL performance (ROL), and (d) L4 377 
performance (RL4). Red (blue) bars represent predictor importance for SSM (RZSM). Error bars reflect the standard 378 
deviation from 50-member bootstrapping of the RF importance estimates. 379 

 380 

Based on the RF results, the Tb error is quantified as the most prominent factor in determining DA skill improvement 381 

(i.e., ΔR = RL4 - ROL) – followed by precipitation error and microwave soil roughness (Fig. 4b). The RF-derived ranking 382 

of control-factor importance for RZSM is similar to that of SSM in that the same three factors are still the most 383 

explanatory. However, relative to SSM, the importance of Tb error for RZSM decreased dramatically from >30% to 384 
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~15%. Other modeling error sources (e.g., the vertical variability of soil properties) have only very limited impacts on 385 

SMAP DA improvement. 386 

As seen in Fig. 4c, for the OL performance (ROL), the most important factors identified by RF include precipitation 387 

error, SSM-RZSM coupling error, and Tb error (microwave soil roughness) for SSM (RZSM). Note that although the 388 

Tb error is identified as third-most important factor for ROL in SSM skill, this is an instance where correlation (i.e., 389 

poorer skill happens to coincide with higher Tb error) does not imply a causal relationship. Specifically, it is expected 390 

that Tb (O-F) errors are higher in areas where the OL performs worse, but a high Tb error is not the cause of a low OL 391 

performance. The same argument applies to the relationship between microwave soil roughness and OL skill for RZSM 392 

estimation. To retain the consistency with analysis of RL4 and avoid the misconnection between RTM-related factors 393 

and ROL, the bars representing the importance of RTM-related factors to ROL are set semi-transparent in Fig. 3c. The 394 

SMAP L4 system is able to reduce impact of precipitation errors on both SSM and RZSM estimation skill, rendering 395 

SSM-RZSM coupling error the most important factor for RL4 (Fig. 4d). In addition, in the L4 system, the high 396 

vegetation density effect on SSM and RZSM estimation is clearly reduced, as the fourth-most important factor of LAI 397 

magnitude is replaced by Tb error. 398 

The qualitative rankings provided by the RF analysis in Fig. 4 are relatively robust to our particular choice of the 399 

benchmark data set to define the ‘error’ of various control variables. For instance, we replace the CGDPA precipitation 400 

benchmark with the Climate Prediction Center Morphing (CMORPH) merged product (Version 1, last access: 6 April 401 

2020; DOI: https://doi.org/10.25921/w9va-q159; Xie et al., 2019), which is the 0.1 degree merging product of 402 

CMORPH and observations from more than 30,000 automatic weather stations in mainland China. In this case, the 403 

predictive power of the regression model established by the RF is not affected (similar to Fig. 4a), and the qualitative 404 

rankings of the precipitation error in ROL and RL4 are not impacted (similar to Fig. 4c-d). 405 

3.3.2 Attribution using box plot comparisons 406 

As stated in Section 2.5, the RF method is adept at summarizing the impact of multiple (co-varying) control factors 407 

simultaneously in the established regression model, and thus provides more comprehensive insights than the 408 

examination of how the target variable (DA improvement) fluctuates with each individual control factor. However, it 409 

does not allow the investigation of the sign of the relationship between DA improvement and each control factor – 410 

which is important for understanding how each factor influences the DA system. In addition, since the net impact of 411 

various factors can enhance DA skill improvement by either degrading the OL or enhancing the ability of DA to add 412 

more value, it is important to decompose the source of variations in ΔR. Therefore, in addition to examining how 413 

SMAP DA skill improvement, i.e., ΔR = RL4 - ROL, varies as a function of the most prominent control factors identified 414 

above in Section 3.3.1 (i.e., Tb error, precipitation forcing error, and microwave soil roughness). We also examine 415 

how precipitation error as a control factor affects the OL performance, i.e., ROL. 416 

To minimize the uncertainty caused by large errors in each of the control factors, we exclude samples with errors 417 

(separately for each control factor) ranking above the 80th percentile in the following analysis. The relationship 418 

between Tb errors and L4 DA skill improvement is straightforward:  higher Tb errors are associated with higher ΔR, 419 

with ΔR generally larger for SSM than for RZSM (Fig. 5a-b). 420 
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 421 

Figure 5: SMAP L4 DA skill improvement (ΔR = RL4 - ROL) as a function of Tb error for (a) SSM and (b) RZSM. Samples 422 
with Tb error ranking above the 80th percentile are excluded from the analysis. 423 

 424 

For precipitation, this decomposition is illustrated in Fig. 6. Note that, as expected, low-quality precipitation tends to 425 

degrade the skill (i.e., correlation versus ground observations) of OL SSM and RZSM estimates (see Fig. 6a-b). This 426 

degradation provides an enhanced opportunity for SMAP L4 DA to provide benefit. As a result, ΔR tends to be a 427 

proportional function of precipitation skill (i.e., higher precipitation skill leads to lower ΔR, see Fig. 6c-d). This inverse 428 

relationship is a well-known tendency for land data assimilation systems (Liu et al., 2011; Bolten and Crow, 2012; 429 

Dong et al., 2019a). Precipitation quality has a diminished impact on RZSM estimation skill compared to SSM 430 

estimation skill. This is expected since RZSM is (essentially) the result of applying a low-pass time series filter to 431 

precipitation. As such, it is less sensitive to high-frequency errors in precipitation products than SSM is.  432 
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 433 

 434 

Figure 6: OL performance (ROL) as a function of precipitation forcing skill R for (a) SSM and (b) RZSM. SMAP L4 DA skill 435 
improvement (ΔR = RL4 - ROL) as a function of precipitation skill for (c) SSM and (d) RZSM. Samples with precipitation 436 
skill ranking below the 20th percentile are excluded from the analysis.  437 

 438 

Figure 7 is analogous to Fig. 5 but shows skill differences ΔR as a function of microwave soil roughness. Similar to 439 

Tb errors, it is as expected that this control factor of microwave soil roughness has little impact on the OL performance, 440 

except that ROL shows slight decreasing tendency with increasing soil roughness (not shown). Given the fact that the 441 
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OL does get worse with increasing roughness, there is more room for improvement in areas with higher soil roughness, 442 

which makes it plausible that ΔR increases with increasing soil roughness (see Fig. 7a-b). 443 

 444 

Figure 7: As in Fig. 5 but for ΔR as a function of microwave soil roughness. 445 

 446 

Besides the above three control factors that dominate the DA skill improvement, we also examine the top factor that 447 

affects SMAP L4 performance, i.e., vertical-coupling errors (Fig. 8). As expected, larger (absolute) bias in SSM-RZSM 448 

coupling in CLSM tends to be associated with degraded OL estimates of both SSM and RZSM (see Figs. 8a-b), 449 

although the analysis does not prove such a causal relationship. Similar to precipitation errors above, decreased OL 450 

skill (seen on the left-hand-side of the figures) provides an opportunity for increased DA skill improvement – which 451 

is clearly seen in Fig. 8. However, such increases are much larger for SSM than for RZSM.  452 

For RZSM, SSM-RZSM coupling bias exerts both positive and negative effects on estimation accuracy. While such 453 

bias leads to an enhanced opportunity to improve upon a degraded OL, it should also hamper the ability of DA to 454 

transfer SSM increments into the root-zone – particularly when, like here, the bias reflects the lack of vertical coupling 455 

in the model (Kumar et al., 2009). This means that some of the opportunity presented by the larger RZSM errors in 456 

OL is squandered by sub-optimal DA. As a result, the increase in RZSM DA skill improvement associated with biased 457 

SSM-RZSM coupling (Fig. 8d) is smaller than the analogous increase in SSM DA skill improvement (Fig. 8c). 458 
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 459 

 460 

Figure 8: As in Fig. 6 but for ROL and ΔR as a function of SSM-RZSM coupling error indicated by the CP difference (ΔCP 461 
= CPOL - CPobs). 462 

 463 

For the three strongest control factors that determine DA skill improvement ΔR, i.e., Tb error, precipitation error and 464 

microwave soil roughness, we further conducted paired one-way analysis of variance. Results indicates that for each 465 

of the five binned groups separated by each of the above-mentioned three control factors, the inter-group difference in 466 

ΔR caused by each control factor is significant (p<0.01) for both SSM and RZSM. In addition, except for the groups 467 

with lowest mean ΔR in Fig. 5a and Fig. 7a, the averages of ΔR from all groups are significantly higher than 0 (p<0.01). 468 
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4 Conclusions 469 

The SMAP L4 algorithm assimilates L-band Tb observations into the Catchment Land Surface Model to provide 470 

surface and root-zone soil moisture estimates (i.e., SSM, RZSM) with global, 3-hourly coverage at 9-km resolution. 471 

The performance of the L4 soil moisture estimates compared to a baseline model-only simulation (OL) is influenced 472 

by multiple control factors associated with CLSM and the tau-omega RTM components of the L4 system. In this study, 473 

we assess the performance of SMAP L4 DA system using two years of in-situ soil moisture profile observations at 474 

2474 sites across mainland China. We apply a random forest (RF) regression to identify the dominant factors (from a 475 

pre-defined list) that control the spatial distribution of the DA skill improvement (defined as the skill difference 476 

between the L4 and OL estimates of SSM and RZSM as measured by their Spearman rank correlation with in-situ 477 

measurements). Results show that L4 improves SSM prediction skill by 14% on average, with over 77% of the 2287 478 

9-km EASE grid cells showing an increase in Spearman’s rank correlation with in-situ observations. Similarly, 479 

widespread, though smaller, improvements are observed in RZSM, with averaged R improvement of 7%.   480 

Based on the RF regression analysis, the benefit of SMAP L4 DA for SSM is primarily determined by Tb error 481 

(measured by standard deviation of O-F Tb residuals), followed by microwave soil roughness and daily precipitation 482 

error. These three factors are also the most prominent factors controlling SMAP DA improvement for RZSM, albeit 483 

with the Tb error being the least important of these three factors for RZSM DA skill improvement.  484 

Generally, the OL performance clearly decreases with increasing precipitation error, whereas for L4 performance 485 

precipitation error is not identified as the most dominant control factor. This indicates that the L4 system is able to 486 

correct for errors in precipitation forcing. In addition, our results demonstrate that SMAP DA contributes the most 487 

benefit for cases where CLSM underestimates SSM-RZSM vertical coupling strength. However, due to the difference 488 

in top-layer soil depth between the in-situ observations (10 cm) and the L4 analysis (5 cm), it is unclear whether or not 489 

the observed SSM-RZSM coupling strength biases are real in an absolute sense – or simply reflect inconsistencies in 490 

the depth of modelled versus observed SSM and RZSM time series. Nevertheless, it is worth stressing that, despite the 491 

ambiguity about their absolute magnitude/sign, relative variations in apparent SSM-RZSM coupling biases explain a 492 

significant amount of the observed spatial variation in L4 performance. Therefore, this finding clearly underpins the 493 

importance of properly specifying SSM-RZSM coupling strength in CLSM as a way to improve the SMAP L4 product.  494 

For SMAP L4 SSM skill, the next-most important factors (after SSM-RZSM coupling) are the precipitation error, the 495 

Tb error and microwave soil roughness (Fig. 4d). For L4 RZSM skill, the next-most important factors (after SSM-496 

RZSM coupling) are the precipitation error, the Tb error and the LE error, with the latter two factors of comparable 497 

importance (Fig. 4d). To enhance the L4 performance, additional focus should thus be placed on improving the model’s 498 

characterization of the microwave radiative transfer modeling (Tb error), together with the partitioning of the available 499 

energy into latent and sensible heat (LE error). 500 

Some of our RF analysis results fall squarely within expectation; for instance, the OL skill is predominately determined 501 

by precipitation error, and L4 skill improvement (i.e., RL4 - ROL) is mostly determined by Tb error. On the other hand, 502 

there are also some more surprising results. For instance, we found that SSM-RZSM coupling error and precipitation 503 

error have a comparable impact on OL. For L4 skill, however, the impact of SSM-RZSM coupling error exceeds that 504 

of precipitation error. More specifically, L4 DA contributes the most benefit for cases where CLSM underestimates 505 
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SSM-RZSM vertical coupling strength. These findings could be used for L4 product development. In addition, this 506 

study pinpoints that the L4 skill improvement is not heavily impacted by LAI magnitude, which gives confidence for 507 

using the L4 product over densely vegetated areas. 508 
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