
Reply to Referee #1 interactive comment 

The author assesses the performance of the surface and root-zone soil moisture (SSM and 

RZSM) estimates by SMAP Level-4 DA system using an open loop (OL) simulations and two 

years in situ profile soil moisture observations at 2474 sites over mainland China. The anomaly 

Spearman’s rank rather than Pearson correlation coefficient is calculated for comparisons and 

evaluations. In the following, to evaluate the efficiency of SMAP L4 DA system, the author 

chooses eight factors and uses methods of random forest regression and box plot comparisons 

to do the attribution analysis. Results show the improvement of SSM and RZSM estimates 

through the increased anomaly with in situ measurements, compared to OL based results. Three 

factors namely the standard deviation of the observation-minus-forecast Tb residuals, errors 

in precipitation forcing data and microwave soil roughness parameter H are found dominantly 

affecting the efficiency for SSM and RZSM estimates by SMAP Level-4 DA system. Furthermore, 

the SSM-RZSM coupling strength characterizing the surface to subsurface physics in CLSM is 

evaluated based on in situ measurements and OL and DA estimates.  

Although it is enough to understand what ‘went on’, the scientific and English language is 

imprecise in various places as well as some cited information. I have given some examples 

below and labeled some in the attachment, but the authors should go throughout the entire 

manuscript carefully, and check that the descriptions and citations are as exact as possible. On 

the other hand, the author often uses different tenses in a paragraph even in one sentence, 

making presentations a bit messy. Additionally, too many brackets are used to present 

information. Please do the appropriate revisions, as a reader, I tend to get accurate information 

rather than having a hesitation on whether I shall ignore/keep the information, and thereby 

guess how does each step be carried on and may lose interest. I am sorry. I would say, maybe 

some main contents are ignored by the reviewer because of the weak presentation. 

We sincerely thank the reviewer for the constructive and thoughtful comments.  

Many of the reviewer’s comments are, unfortunately, based on misunderstandings.  We 

apologize if the original text was not sufficiently clear. To address the comments, we 

have undertaken major revisions of the text, including a careful revision of the 

imprecise expressions and the tenses throughout the manuscript. 

Major comments: 

1.  In line 77, please specify key CLSM parameters and give the reason why you choose 

these parameters. 

The accuracy of CLSM simulated soil moisture is affected by a range of vegetation and 

soil parameters. For example, Dong et al. (2019) demonstrated that soil moisture DA 

within the CLSM system is strongly affected by LAI. Therefore, LAI is used here to 

represent the error impacts from vegetation.  

In addition, root-zone soil moisture dynamics are controlled by their connection with 

the surface soil moisture, soil hydraulic properties, and soil water transport. The bulk 

relationship between root-zone and surface soil moisture can be captured by vertical 



coupling strength of soil moisture (Kumar et al., 2009).  

Therefore, this study uses LAI and surface-rootzone coupling strength to characterize 

the error impacts from vegetation and soil parameters on CLSM. We have further 

clarified this in the revised manuscript.  

[1] Dong, J., Crow, W.T., Reichle, R., Liu, Q., Lei, F., and Cosh, M.: A global 

assessment of added value in the SMAP Level 4 soil moisture product relative to its 

baseline land surface model, Geophys. Res. Lett., 46, 6604-6613, 

doi:10.1029/2019GL083398, 2019. 

[2] Kumar, S.V., Reichle, R.H., Koster, R.D., Crow, W.T., and Peters-Lidard, C.D.: Role 

of subsurface physics in the assimilation of surface soil moisture observations, J. 

Hydrometeorol., 10, 1534-1547, doi:10.1175/2009JHM1134.1, 2009. 

 

2.  In line 105, please clarify whether the OL run is conducted in this study? In line 29, 

I am sorry I cannot understand, what does “error in Tb observation space” mean? 

Please also explicitly clarify Tb error. In line 108-111, please clarify/specify 

“microwave soil roughness parameters, a vegetation structure parameter, and the 

microwave scattering albedo”. “Soil roughness parameters” are used throughout the 

paper but without explaining what they are. Does it refer to both h and N, or s and L, 

or others? Additionally, please keep the cited information correct (equation A1 instead 

of B1). Please carefully check throughout the manuscript. 

Yes, the OL run is conducted in this study.  

Tb error refers to the difference between Tb observations from SMAP sensor and the 

Tb simulations obtained via the tau-omega radiative transfer model.  

The microwave soil roughness parameters refers to parameter h that accounts for soil 

dielectric properties that vary at the subwavelength scale, the vegetation structure 

parameter refers to the nadir vegetation opacity τ, and the microwave scattering albedo 

ω refers to the single-scattering albedo defined as the fractional power scattered within 

the vegetation layer. 

We have further explained these expressions in the revised manuscript. In addition, we 

have checked throughout the manuscript and make corresponding corrections. 

 

3.  In line 120, LH and SH are mentioned. LH error is seen, please if possible, give the 

reason why SH error is disregarded. 

Note that note that since LH and SH are generally (strongly) anti-correlated, it is not 

appropriate to include both in a single random forest analysis – since including both 

would yield biased (high) regression weights for LH and SH. We have further clarified 

this in the corresponding paragraph of Section 2.3 in the revised manuscript.  

 



4.  In line 127, if possible, please give the figure plotting the distribution of CASMOS 

as new Fig. 1. 

We have added a separate figure showing the distribution of CASMOS as new Fig. 1. 

 

5.  In line 133-134, I cannot be convinced by the described reason about the use of 

Spearman correlation rather than Pearson correlation. Could you explain more? 

Wikipedia says that the Spearman correlation concerns the rank and Pearson 

correlation the mean. Do you calculate Pearson correlation based results? Please give 

the definition of outliers excluded in this study. In line 144-147, please clarify why these 

five control factors are chosen, and why the difference in clay fraction across the 

vertical can be used to quantify vertical variability in soil properties. 

Note that Pearson correlation assumes the linear consistency of underlying variables. 

However, this assumption may be adversely affected by outliers. To avoid ad-hoc 

thresholds, we do not exclude any soil moisture outliers and employ Spearman’s rank 

correlation, which is less sensitive to such outliers. Nonetheless, we repeat the analysis 

based on Pearson correlation (see Figs. 1-2 below). The Pearson-based results are 

quantitatively consistent with the results using Spearman’s correlation. We have further 

clarified this in the corresponding paragraph of Section 2.2 in the revised manuscript.  



 

Fig. 1 Same content as in Fig. 2 of the manuscript, except that the correlation between 

in-situ soil moisture measurements and SMAP is measured using Pearson correlation. 



 

Fig. 2 Same content as in Fig. 4 of the manuscript, except that the correlation between 

in-situ soil moisture measurements and SMAP is measured using Pearson correlation. 

The above response also applies to the Major comment #7 from Reviewer #2.  

 

Re. the comment about the choice of the control factors: As mentioned in the abstract, 

the modeling portion of the SMAP L4 system consists of two components: land surface 

modelling (LSM) and radiative transfer modeling (RTM). Therefore, we select control 

factors from each of the two components. 

For the LSM component, the errors can be attributed to potential factors including: 1) 

model input forcing errors of a) precipitation and b) LAI; 2) model structure errors in 

a) characterizing SSM-RZSM coupling strength and b) the presence of vertical 

variability in soil properties; 3) model output error of LE.  

For the RTM component, errors are characterized by: 1) DA innovation, i.e., SMAP-

observed minus RTM-simulated Tb; 2) the environmental factors that complicate the 

DA analysis when assimilating Tb observations, which include the magnitude of a) 



microwave soil roughness and b) LAI.  

These eight control factors from the above-mentioned five aspects determine the crucial 

aspects of both the LSM and RTM components in the L4 system and are readily 

quantifiable using remote sensing products. Thus, they are selected to investigate the 

mechanism underlying the L4 improvement observed in this study. We have further 

clarified this in the corresponding paragraph of Section 1 in the revised manuscript. 

The above response also applies to the Major comment #1 by Reviewer #2 and Major 

comment #1 by Reviewer #3.  

 

Re. the comment about the difference in clay fraction across the vertical: With the 

exception of some surface-layer moisture transport parameters, CLSM assumes soil 

texture and associated soil parameters are vertically homogeneous within the soil 

column. However, the Harmonized World Soil Database (HWSD) often captures 

distinct vertical variations in soil properties. Therefore, since it is largely neglected by 

CLSM, the magnitude of vertical heterogeneity in soil texture may be an effective proxy 

for overall CLSM soil moisture accuracy. We have further clarified this in the 

corresponding paragraph of Section 2.3 in the revised manuscript. 

 

6.  In Table 1, please clarify why different LAI products are used? What is the 

relationship between these two LAI datasets? Why does SMAP L4 LAI be used for LSM 

rather than RTM, which simulates Tb that is used for comparisons to SMAP Tb. 

The inherent LAI in SMAP L4 system is merged from a MODIS/Geoland-based data 

product (Mahanama et al., 2015; Reichle et al., 2017).  

To correctly characterize error in LAI of SMAP L4, we use LAI product from an 

entirely independent source, i.e. from the SPOT satellite. The prominent difference 

between SMAP L4 LAI and SPOT LAI is that the former uses an LAI climatology from 

the period 1999-2011, while the latter is the actual LAI time series with inter-annual 

variation.  

Note that besides the LAI from SMAP L4 system, we only use one external LAI product 

of SPOT VGT. We have correctly listed both LAI datasets in Table 1, and further 

clarified in Section 2.3: “Note that the LAI used in the L4 system is a merged 

climatology from Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Geoland data based on satellite observations of the Normalized Difference Vegetation 

Index (Mahanama et al., 2015; Reichle et al., 2017a)”. 

[1] Mahanama, S. P., and Coauthors: Land boundary conditions for the Goddard Earth 

Observing System model version 5 (GEOS-5) climate modeling system–Recent 

updates and data file descriptions. NASA/TM-2015-104606, Vol. 39, 55 pp. NASA 

Goddard Space Flight Center, Greenbelt, MD. Available at 

https://ntrs.nasa.gov/search.jsp?R=20160002967, 2015. 



[2] Reichle, R. H., and Coauthors: Assessment of the SMAP Level‐4 surface and root‐

zone soil moisture product using in situ measurements. J. Hydrometeorol. 18(10), 

2621–2645, 10.1175/JHM-D-17-0063.1, 2017. 

The above response also applies to Major comment #5 by Reviewer #2. 

 

7.  In line 153, why is there a joint error in SMAP Tb observations and RTM Tb 

simulations? Sorry if I misunderstood something, what does “joint” mean? How do you 

quantify this joint error and what is the rationality behind? 

The expression of “joint” is meant to refer to the combined error in the SMAP Tb 

observations and RTM Tb simulations. The DA innovation is estimated by subtracting 

the SMAP Tb observations from RTM Tb simulations. In the revised manuscript, we 

have modified this expression as “1) estimates of the DA innovation, namely difference 

between SMAP Tb observations and RTM Tb simulations”. 

 

8.  In line 154, “the magnitude of LAI (as a proxy for the vegetation optical depth at 

microwave frequencies, which modulates the sensitivity of the observed Tb to SSM 

conditions)”. The description is inaccurate. LAI should be as a proxy for the estimation 

of vegetation optical depth. Please clarify how vegetation optical depth modulates the 

sensitivity of the observed Tb to SSM conditions, it is hard to make the audience 

understand who does not be familiar with the zero-order RTM. 

We thank the reviewer for bringing this to our attention. In the revised manuscript, we 

have clarified this expression. 

 

9.  In line 156-160, please make expressions precise. You give “e.g.,” may I ask what 

else do you use, please list every item as accurate as possible, as such, readers and the 

author are on the same page. In line 160, I fully doubt “because increased LAI is 

associated with decreased soil moisture information content in microwave 

observations”, is it true? How do you explain, for example, when vegetation is mature, 

the soil experiences drying and wetting processes? Please make expressions accurate. 

In line 156-160, the first category of factors addresses errors fed into the L4 system 

include: 1) error in CLSM rainfall forcing data; 2) error in SSM-RZSM coupling 

strength; 3) vertical variability of clay fraction; 4) SMAP L4 LAI error; 5) output LE 

error; 6) Tb error. The second category of factors is based on the magnitude of the 

variable itself and include microwave soil roughness and annual mean LAI. We have 

made it clearer in the revised manuscript.  

Regarding to the comment for Line 160, please see our reply to Major comment #8.  

 

10.  In line 204-205, please clarify the reason. 



We have clarified why using the difference in clay fraction across the vertical soil 

profile, i.e., the clay fraction difference between topsoil and deep-layer soil to quantify 

vertical variability in soil properties. Please see our reply to Major comment #5.  

 

11.  In line 210, why the anomaly SSM and RZSM are not used for Eq. 1, because in 

previous it is mentioned that anomaly Spearman’s rank correlation is calculated with 

in-situ observations. 

Indeed, the anomaly SSM and RZSM are used in the Eq. 1. We have made it clearer in 

the revised manuscript. 

 

12.  In line 214, “Cases with negative CP do not exist.” I have litter doubt whether the 

in situ measurements will show that α is greater than 2.0, then CP can be negative? 

Please confirm this. 

Based on the in-situ measurements during our 2-year study period, we do not observe 

any negative CP.  

 

13.  In line 227, please explicitly clarify “error” in FLUXCOM LE. Does this error 

refer to the uncertainties mentioned in line 186? 

The FLUXCOM LE product is generated via merging energy flux measurements from 

FLUXNET eddy covariance towers with remote sensing and meteorological data. The 

error of FLUXCOM LE could stem from each data source and also from the merging 

process. This error also refers to the uncertainties mentioned in Line 186.   

 

14.  In line 235, please clarify “three independent sources (x, y and z)”, does it refer to 

geographic location or one of the variables mentioned in your study? Please also 

explicitly explain two instrumental variables I and J. I did not see the time information 

mentioned in Eq. 2. Please is “(I and J, i.e., It = αxPt-1 + Bx + εxt-1, Jt = αyPt-1 + By 

+ εyt-1)” important in the calculation, if so, please list it as an independent equation. 

Please clarify ε_(xt-1) or do you mean ε_(x,t-1)? Additionally, too much information is 

listed in brackets, shall readers ignore/keep this information? Please do revisions. 

In Line 235, the expression of “three independent sources (x, y and z)” refer to any of 

three geophysical variables that are not linearly correlated in each of their time series.  

The instrumental variable I refer to the lag-1 time series of variable x, and instrumental 

variable J refer to the lag-1 time series of variable y. 

To be clearer, we have listed the following equation originally listed in the bracket: It = 

αxPt-1 + Bx + εx,t-1, Jt = αyPt-1 + By + εy,t-1 as new Eqs. (3) and (4). In addition, εxt-1 and 

εyt-1 have been more precisely denoted as εx,t-1 and εy,t-1 respectively.  



In correspondence with Eqs. (3) and (4), the Eq. (2) have been shown with time 

information, which is xt = αxPt + Bx + εx,t 

In addition, in the revised manuscript content within the brackets are rearranged to be 

clearer to readers in Section 2.5.  

 

15.  In line 255, “based on the output of RF”, as a reviewer, I do not know more about 

RF, what are inputs for RF? I think the introduction of RF is too general and not 

informative. Please do revisions. Taking this paragraph as a case, past and present 

tenses are mixed used. Please do revisions. 

As a machine learning based regression approach, RF uses the selected eight control 

factors as regressors to estimate, or regress the DA improvement (i.e., the difference of 

OL and DA soil moisture accuracy) for both SSM and RZSM estimates. Therefore, the 

input for RF is our eight control factors (see Table 1) that cover two perspectives of L4, 

and the output of RF is the DA improvement in L4 SSM and RZSM sampled at 2474 

sites. Note that, by training the eight control factors to capture observed DA 

improvement, RF can also summarize the relative importance of each control factor in 

controlling the L4 DA improvement. 

In addition, we have revised tenses throughout the manuscript.  

 

16.  In Fig. 1a-d, what is the maximum value for R? Can it reach 0.9? If not, please 

adjust the scalar. Please rewrote the caption of Fig.1. 

The maximum of R in original Fig. 1a-d can reach to approximately 0.9, so their 

common maximum have not been adjusted. 

 

17.  In line 261, “an increasing trend of SSM estimation skill moving from northwest to 

southeast China”, if possible, please write a short sentence to explain the reason. 

The reason for the observed “an increasing trend of SSM estimation skill moving from 

northwest to southeast China” is most likely due to the similar spatial pattern of gauge 

density. We have briefly explained this in the revised manuscript.  

 

18.  In line 280-281,” Errors in the CLSM precipitation forcing are relatively higher in 

northern and northwestern areas of China (Fig. 2a), where the gauge density is 

generally more sparse than southern China.” I agree with this point. But I am sorry if 

I misunderstood. The magnitude of precipitation on the northwestern part may be 

smaller than on the southern part, as such, there is a possibility that errors may present 

a reverse trend, is this a case? Please confirm. 

By comparing the gauge density of northern and southern China, we can clearly observe 



that the former is sparser than the latter, which inevitably results in higher interpolating 

error of precipitation forcing in northern China. 

 

19.  Figure 2g, please revise the title as “soil roughness parameter *”. In Fig. 2h, the 

maximum value of LAI is 2.0 m2/m2, please confirm. Fig. 2f, please revise the title as 

“the standard deviation of O-F Tb residuals”. I think the meaning of “O-F Tb residuals” 

is different from Tb error itself. 

We have revised the titles of the subplot as suggested.  

The maximum of annual mean LAI is higher than 2.0 m2/m2. In the original manuscript, 

we set the colorbar maximum to be 2.0 m2/m2, so that the spatial difference in LAI 

magnitude can be easily observed in Fig. 2h. We have recovered the colorbar maximum 

of 4.0 m2/m2 and change the colormap to be nonlinear to reconcile the two issues. In 

addition, it should be noted that the SMAP LAI time series during growing season 

frequently exceed 4.0 m2/m2 as expected, whereas our Fig. 2h shows the annual mean 

LAI covering both growing and non-growing seasons and hence shows lower 

maximum value of LAI. 

 

20.  In line 297-298, “The 2017-2018 mean of soil roughness and the 2017-2018 mean 

LAI show higher values in southwest and southeast China (Fig. 2g-h).” The sentence 

is not informative. Please revise. 

We have revised the original expression as: “The 2017-2018 mean of soil roughness 

shows a relatively scattered spatial pattern (Fig. 3g), while the 2017-2018 mean LAI 

shows higher values in southwest and southeast China (Fig. 3h)”.  

 

21.  In line 335-336, OL run does not implement DA, why “Tb error (microwave soil 

roughness)” are involved. Please clarify. I am sorry if I misunderstood something. 

Indeed, the OL run does not involve the implementation of DA, and its errors are 

therefore not related to Tb error or microwave soil roughness. We had tried to explain 

this point in the subsequent text of original manuscript, which stated that the observed 

high correlation between OL skill and these two factors does not imply causality. 

However, showing the feature importance of Tb error and microwave soil roughness to 

the OL skill (ROL) in original Fig. 3c seems to be misleading anyway. Therefore, to 

avoid confusion, we set the bars that represent RTM-related feature importance to be 

semi-transparent in original Fig. 3c. 

 

22.  In line 389, “OL does get worse with increasing roughness, there is more room for 

improvement as the roughness increases”, please clarify whether the increase of 

roughness is physically reasonable. 



In this context, we are not implying to increase soil roughness, which would be 

physically implausible, as it is a function of soil moisture. The logic should be that in 

areas with higher soil roughness, the possibility of improving OL skill is higher. We 

have further clarified this point in the revised manuscript. 

 

23.  In line 441, “it is unclear whether or not the observed SSM-RZSM coupling strength 

biases are real in an absolute sense – or simply reflect inconsistencies in the depth of 

modelled versus observed SSM and RZSM time series”. I am sorry, I am confused 

whether the coupling strength based on in situ measurements can represent the real? 

Ideally, when comparing the SSM-RZSM coupling strength of in-situ measurement and 

that of CLSM, SSM and RZSM data for identical depths from both in-situ 

measurements and CLSM should be used. However, the depth of first-layer SSM 

measurement is 0~10cm, which is thicker than CLSM SSM of 0~5cm. This discrepancy 

could inherently result in higher fluctuation of CLSM SSM simulation than that of SSM 

measurement, and consequently lower SSM-RZSM coupling of CLSM simulation 

(CPOL) than that of measurement (CPobs). Therefore, we cannot conclude that the 

observed lower CPOL compared to CPobs is due to the negative bias of SSM-RZSM 

coupling strength, or the depth inconsistencies of CLSM modelled versus observed 

SSM and RZSM time series.  

 

24.  In Conclusions, the second and fourth paragraphs have duplicate content. Please 

do revisions. 

We have removed the duplication in the revised manuscript. 

 

25.  In line 451-452, “the partitioning of the available energy into latent and sensible 

heat (LE error) and the microwave radiative transfer modeling (Tb error).” is not 

informative. 

We have revised the original expression as follows: “…additional focus should thus be 

placed on improving the model’s characterization of the microwave radiative transfer 

modeling (Tb error), together with the partitioning of the available energy into latent 

and sensible heat (LE error).” 

 

Minor comments: 

1.  Please give the full name for abbreviations when they appear for the first time. The 

examples are SPOT VGT and EASE. Please carefully check throughout the manuscript. 

We have carefully checked the first-time abbreviations and made corresponding 

revisions throughout the manuscript. 



 

2.  In line 216, SMAP L4 CP estimates (CPOL), please confirm. You mentioned SMAP 

L4 is the assimilation experiment. 

We have revised the original expression as “CP estimates of OL (CPOL)…” 

 

3.  Please confirm the use of RTM-related, R-values, and so on throughout the whole 

paper, as well as the use of “their” and “our”. 

We have carefully checked those occurrences and made corresponding revisions 

throughout the manuscript. 

 

Re. the comments in the annotated manuscript pdf file:  

We have made corresponding revisions in the manuscript. 

 

  



Reply to Referee #2 interactive comment 

The paper evaluates the data assimilation efficiency of SMAP brightness temperature data by 

updating the root-zone soil moisture with CLSM (the Catchment Land Surface Model) model 

and an RTM model (radiative transfer modeling). The result of soil moisture filed delta_R 

increments then identifies substantial factors that control this data assimilation efficiency, such 

as precipitation error and SSM-RZSM coupling strength error. I appreciate the motivation of 

this paper, and its conclusion and inference are probably attractive to the L-band TB data 

assimilation community. However, I cannot agree on the methodology part of this paper, and I 

don’t think the findings would help with the further development of RZSM DA improvements.  

We thank the reviewer for the constructive criticisms and helpful comments.  

Note that the results using Pearson and Spearman’s correlation are qualitatively 

consistent, as will be detailed in our response to Major comment #7.  

We would also like to clarify that SMAP L4 is the only operational global DA system 

that assimilates L-band Tb and provides near-real-time root-zone soil moisture 

information. However, SMAP L4 has been mainly evaluated across sparse in-situ sites 

and SMAP cal/val sites (mainly in the US, Europe and Australia) and factors affecting 

its accuracy are still largely unknown, which is particularly true for RZSM.  

Therefore, based on soil moisture observations from 2474 in-situ sites in China, this is 

the first study that comprehensively quantifies the SMAP L4 SSM and RZSM skill 

improvements and their major error sources, and further identifies the key priorities for 

future L4 development. For instance, SSM-RZSM coupling strength is identified as the 

most important factor in determining the L4 RZSM accuracy. Therefore, the appropriate 

representation of SSM-RZSM coupling strength should be considered as a priority for 

developing next generation of L4 system. 

Additionally, we would like to point out that LSMs, RTMs and different variants of DA 

algorithms typically share similar structures. Therefore, our findings are not limited to 

the SMAP L4 system but are expected to be transferable for diagnosing and improving 

general soil moisture DA systems and enhancing their RZSM accuracies. We have 

added more emphasis on these aspects in the revised manuscript. 

 

Major comments:  

1. Line 23 & Line 75-79, Line 144 & Line 152: how do the authors select these eight 

control factors?  

Re. the comment about the choice of the control factors: We provide the same response 

to Major comment #5 by Reviewer #1. For easy reference, please see below: 

As mentioned in the abstract, the modeling portion of the SMAP L4 system consists of 

two components: land surface modelling (LSM) and radiative transfer modeling (RTM). 

Therefore, we select control factors from each of the two components. 



For the LSM component, the errors can be attributed to potential factors including: 1) 

model input forcing errors of a) precipitation and b) LAI; 2) model structure errors in 

a) characterizing SSM-RZSM coupling strength and b) the presence of vertical 

variability in soil properties; 3) model output error of LE.  

For the RTM component, errors are characterized by: 1) DA innovation, i.e., SMAP-

observed minus RTM-simulated Tb; 2) the environmental factors that complicate the 

DA analysis when assimilating Tb observations, which include the magnitude of a) 

microwave soil roughness and b) LAI.  

These eight control factors from the above-mentioned five aspects determine the crucial 

aspects of both the LSM and RTM components in the L4 system and are readily 

quantifiable using remote sensing products. Thus, they are selected to investigate the 

mechanism underlying the L4 improvement observed in this study. We have further 

clarified this in the corresponding paragraph of Section 1 in the revised manuscript. 

 

2. Line 80, please show which part of the paper corresponds to each sentence. For 

instance, “Next, the in-situ measurements…” As I see, only figure 1 is about the in-situ 

measurements.  

In the revised manuscript, we have specifically clarified which section of the paper 

corresponds to each sentence of the guidance paragraph in original Line 80-85.  

To be clearer, we have added an illustrative figure showing the spatial distribution of 

in-situ sites as new Fig. 1 in the revised manuscript.  

 

3. Still, Line 80-81, the soil moisture profile measurements from CMA networks can 

reach 100 cm. please refer to: Han Shuai, Shi Chunxiang, Jiang Lipeng, Zhang Tao, 

Liang Xiao, Jiang Zhiwei, Xu Bin, Li Xianfeng, Zhu Zhi, Lin Hongjin. The Simulation 

and Evaluation of Soil Moisture Based on CLDAS[J]. Journal of Applied 

Meteorological Science, 2017, 28(3): 369-378. I suggest the authors separate the sites 

that contain measurements with 100 cm and the rest in the analysis.  

We have included the suggested reference in the revised manuscript.  

Re. the comment about separating the sites with 100 cm measurements: According to 

the in-situ measurements data provider, constrained by soil profile condition, only a 

fraction of 2474 sites have complete soil moisture measurements up to 100 cm. In 

addition, in the SMAP L4 validation procedure using SMAP core validation sites, 

although a few of the sparse-network sites have deeper-layer measurements (typically 

in the 80 cm to 100 cm range), Reichle et al. (2019) used measurements from sensors 

placed within 50 cm from the surface, as they found the spotty in-situ measurements 

time series at the deeper depths of relatively little use. Therefore, we routinely used in-

situ data only down to 50 cm to evaluate the RZSM estimates of L4 and OL.  

[1] Reichle, R. H., Liu, Q., Koster, R. D., Crow, W. T., De Lannoy, G. J., Kimball, J. S., 



and Kolassa, J.: Version 4 of the SMAP Level‐4 soil moisture algorithm and data 

product, J. Adv. Model Earth Sy., 11(10), 3106-3130, doi:10.1029/2019MS001729, 

2019. 

 

4. Section 2.2, the repetitiveness of in-situ soil moisture measurements is questionable. 

Line 128, the atmospheric elements such as air temperature, humidity, etc. of these 

stations cover different land-use types. When it comes to soil moisture, due to high 

spatial difference, the in–situ soil moisture profile measurements may vary a lot to the 

station outside. In standard, all these CMA stations should only have grassland or bare 

soil land types. Other land covers are impossible, and this affects precipitation, 

evaporation, draining, etc., as authors said in Line 144-146. The scale mismatch 

between CLSM outputs and in-situ measurement would exceed the accuracy indicates 

in the evaluation.  

We thank the reviewer for the insight into the CMA data.  

For the random point-to-grid upscaling errors of sampling, we agree that using in-situ 

soil moisture data to validate the large-scale L4 product is challenged by spatial 

representativeness error. However, as demonstrated in Dong et al. (2020), the 

representativeness error is essentially random and can be averaged out when sampled 

across multiple sites. Therefore, it mainly affects the absolute soil moisture evaluation 

metrics, and has no impacts on the relative accuracy. Given that this study is mainly 

interested in the relative accuracy of OL and L4 data and approximately 2474 sites have 

been used, representativeness error is expected to have a minor impact on our 

conclusions.  

For the systematic sampling errors, we analyze the site “representativeness” using the 

500m MODIS Land Cover product (MCD12Q1 v6) in 2017, IGBP dataset. First, we 

take the land cover (LC) type of the MODIS grid cell where a given in-situ site is 

located as the ground-based LC type. Next, we search all the MODIS grid cells that fall 

within the SMAP 9km EASE grid cell where this in-situ site is located. The latter area 

consists of about 20 x 20 = 400 MODIS grid cells. We calculate the fraction of these 

400 MODIS grid cells that have the same LC type as the ground-based LC and define 

this fraction as the site representativeness. Fig. 1 shows a histogram of the site 

representativeness of all 2474 sites used. Similar results were found for 2018 (not 

shown). 



 

Fig. 1 Site representativeness of all 2474 sites. See text above for details. 

 

It shows 59% of sites have site representativeness higher than 40%, and this fraction is 

52% for site representativeness higher than 50%, and 46% for site representativeness 

higher than 60%. When we only use sites with site representativeness higher than 50% 

for the RF attribute analysis, the top 3 factors controlling skill improvement (RL4 – ROL) 

L4 skill (RL4),  and OL skill (ROL) are still the same, although the precipitation error 

becomes the top influencer for RL4 (Fig. 2).  



 

Fig. 2 Same content as in Fig. 4 of the manuscript, except that we use sites with site 

representativeness higher than 50%. 

 

We have further clarified this in Section 3.3.1 of the revised manuscript.  

[1] Dong, J., Crow, W.T., Tobin, J. K., Cosh, H. M., Bosch, D. D., Starks, J. P., Seyfried, 

M., and Collins, H. C. Comparison of microwave remote sensing and land surface 

modeling in surface soil moisture climatology estimation, Remote Sens. Environ., 242, 

111756, doi :10.1016/j.rse.2020.111756, 2020. 

 

5. Line 161, Table 1 & Line 192, could we use the same LAI data? As well as the rainfall 

data.  

Re. the comment about LAI dataset: We provide the same response to Major comment 

#6 by Reviewer #1, for easy reference, please see below: 

The inherent LAI in SMAP L4 system is merged from a MODIS/Geoland-based data 



product (Mahanama et al., 2015; Reichle et al., 2017).  

To correctly characterize error in LAI of SMAP L4, we use LAI product from an 

entirely independent source, i.e. from the SPOT satellite. The prominent difference 

between SMAP L4 LAI and SPOT LAI is that the former uses an LAI climatology from 

the period 1999-2011, while the latter is the actual LAI time series with inter-annual 

variation.  

Note that besides the LAI from SMAP L4 system, we only use one external LAI product 

of SPOT VGT. We have correctly listed both LAI datasets in Table 1, and further 

clarified in Section 2.3: “Note that the LAI used in the L4 system is a merged 

climatology from Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Geoland data based on satellite observations of the Normalized Difference Vegetation 

Index (Mahanama et al., 2015; Reichle et al., 2017a)”. 

[1] Mahanama, S. P., and Coauthors: Land boundary conditions for the Goddard Earth 

Observing System model version 5 (GEOS-5) climate modeling system–Recent 

updates and data file descriptions. NASA/TM-2015-104606, Vol. 39, 55 pp. NASA 

Goddard Space Flight Center, Greenbelt, MD. Available at 

https://ntrs.nasa.gov/search.jsp?R=20160002967, 2015. 

[2] Reichle, R. H., and Coauthors: Assessment of the SMAP Level‐4 surface and root‐

zone soil moisture product using in situ measurements. J. Hydrometeorol. 18(10), 

2621–2645, 10.1175/JHM-D-17-0063.1, 2017. 

 

Re. the comment about rainfall dataset: The result of precipitation error presented in 

the manuscript only involves rain gauge (CGDPA) data, other rainfall data are used to 

prove the robustness of analysis results from CGDPA. 

 

6. Line 248, what is the DA efficiency? Line 309, it says “the efficiency of SMAP L4 DA 

(i.e., R = RL4 - ROL)”. The data efficiency is not that simple, indeed. Please refer to 

(Nearing et al. 2018) for the definition of data assimilation efficiency, or provide where 

this “the efficiency of SMAP L4 DA (i.e., R = RL4 - ROL)” comes from in citations. 

Nearing, G., Yatheendradas, S., Crow, W., Zhan, X., Liu, J., & Chen, F. (2018). The 

Efficiency of Data Assimilation. Water Resources Research, 54, 6374-6392.  

We have changed “DA efficiency” to “DA skill improvement”, which is a more precise 

terminology for quantifying RL4 and ROL differences.   

 

7. Figure 1 & Section 3.1, one of the conclusions in this paper that RZSM is improved 

by assimilating brightness temperature. Figure 1 & Section 3.1 are the only evidence 

to support this view, which is vital to the following paragraphs. By any two datasets, 

the increased correlation coefficient is hard to address improvement. unRMSE, bias, 

and other characters shall also be accounted as SMAP evaluate its soil moisture 



products. As in Line 52-54, "observations-minus-forecast residuals" may not be 

sufficient, but it doesn’t mean it is unnecessary. Besides, Spearman’s rank correlation 

coefficient is very loose in statistics. Pearson correlation can assess linear relationships 

hypothesized in ordinary DA filters. Line 133-134 is not solid for support the advantage 

of Spearman’s and it should clarify what the outliers are. 

We thank the reviewer for the constructive comments. We would like to clarify that the 

goal of this manuscript is not to prove increased RZSM accuracy, but to evaluate L4 

RZSM and understand the mechanism that controls L4 RZSM accuracy.  

Nonetheless, it is indeed our finding that L4 DA system improves OL RZSM accuracy, 

which is supported by evaluation sampled from 2474 sites at p = 0.05 significance level 

(based on a 1000-member bootstrapping analysis). However, as stated in the abstract, 

that we do agree the improvements in RZSM is slight (ΔR = 0.034, or 7% in relative 

term) over 74% of soil moisture in-situ sites. Moreover, this statistically significant 

improvement in RZSM – albeit small – is also true for metrics of ubRMSE (2.3% 

decrease in relative term over 65% of in-situ sites). We have further clarified this in the 

revised manuscript. 

 

Re. the comment on using Spearman’s rank correlation vs. Pearson correlation: We 

provide the same response to Major comment #5 by Reviewer #1, which is reproduced 

here for easy reference: 

Note that Pearson correlation assumes the linear consistency of underlying variables. 

However, this assumption may be adversely affected by outliers. To avoid ad-hoc 

thresholds, we do not exclude any soil moisture outliers and employ Spearman’s rank 

correlation, which is less sensitive to such outliers. Nonetheless, we repeat the analysis 

based on Pearson correlation (see Figs. 1-2 below). The Pearson-based results are 

quantitatively consistent with the results using Spearman’s correlation. We have further 

clarified this in the corresponding paragraph of Section 2.2 in the revised manuscript.  

  



 

Fig. 3 Same content as in Fig. 2 of the manuscript, except that the correlation between 

in-situ soil moisture measurements and SMAP is measured using Pearson correlation. 



 

Fig. 4 Same content as in Fig. 4 of the manuscript, except that the correlation between 

in-situ soil moisture measurements and SMAP is measured using Pearson correlation. 

 

Minor comments:  

1. Line 1, please clarify what is the added value, is it a correlation coefficient or DA 

efficiency? The term "added value of … soil moisture…" is misleading because the 

study is based on delta_R, not soil moisture increment.  

We have changed the term “added value” to “benefit” in the revised manuscript.  

 

2. Line 25, it should be "Spearman’s rank correlation coefficient" instead of "Spearman 

rank correlation skill". Skill is more sophisticated.  

We have revised this expression into “Spearman’s rank correlation” in the revised 

manuscript. 

 



3. Line 27, "the same percentage" is not clear.  

We have revised this expression into specific number of “74%” in the revised 

manuscript.  

 

4. Line 172-174, a citation is needed.  

We have added the following reference in original Line 174 of the manuscript. 

[1] Shen, Y. and Xiong, A.: Validation and comparison of a new gauge‐based 

precipitation analysis over mainland China, Int. J. Climatol., 36(1), 252-265, 

doi:10.1002/JOC.4341, 2015. 

 

5. Line 258, clarify what kind of anomalies it is. 

We defined anomaly in Line 117-118: “…we performed our analysis using anomaly 

time series, derived by subtracting a seasonally-varying (daily) climatology from each 

raw time series.” To avoid redundancy, we did not repeat this again in original Line 258 

or the following Section.  

  



Reply to Referee #3 interactive comment 

In this study, Qiu et al assess the performance of SMAP L4 DA system using 2 years of in-situ 

soil moisture profile observations at 2474 sites across mainland China. They then apply a 

random forest (RF) regression to identify the dominant factors (preselected by the authors) that 

control the spatial distribution of the data assimilation efficiency. This is an interesting study 

that could potentially lead to improvement in the SMAP L4 data assimilation system. I have 

annotated a pdf document with some suggestions as an attempt to help. In particular it would 

be interesting to try to justify more the choice of the studied dominant factors and then to discuss 

perspectives, what can be built upon this study? Without such proper discussion I have the 

feeling that the conclusion of the study is a bit weak (but you may want to prove me wrong!) 

with outcomes we could have guessed beforehand (e.g. precipitation is the dominant factor for 

explaining the skill of the OL results).  

Please also note the supplement to this comment: https://hess.copernicus.org/preprints/hess-

2020-407/hess-2020-407-RC3-supplement.pdf 

 

We sincerely thank Dr. Albergel for his constructive comments.  

Re. the comment about the choice of the control factors: We provide the same response 

to Major comment #5 by Reviewer #1 and Major comment #1 by Reviewer #2. For 

easy reference, please see below: 

As mentioned in the abstract, the modeling portion of the SMAP L4 system consists of 

two components: land surface modelling (LSM) and radiative transfer modeling (RTM). 

Therefore, we select control factors from each of the two components. 

For the LSM component, the errors can be attributed to potential factors including: 1) 

model input forcing errors of a) precipitation and b) LAI; 2) model structure errors in 

a) characterizing SSM-RZSM coupling strength and b) the presence of vertical 

variability in soil properties; 3) model output error of LE.  

For the RTM component, errors are characterized by: 1) DA innovation, i.e., SMAP-

observed minus RTM-simulated Tb; 2) the environmental factors that complicate the 

DA analysis when assimilating Tb observations, which include the magnitude of a) 

microwave soil roughness and b) LAI.  

These eight control factors from the above-mentioned five aspects determine the crucial 

aspects of both the LSM and RTM components in the L4 system and are readily 

quantifiable using remote sensing products. Thus, they are selected to investigate the 

mechanism underlying the L4 improvement observed in this study. We have further 

clarified this in the corresponding paragraph of Section 1 in the revised manuscript. 

 

Re. the comment about discussing the possible application of this study’s conclusion: 

It should be noted that, among the RF analysis results of this study, there are conclusions 

https://hess.copernicus.org/preprints/hess-2020-407/hess-2020-407-RC3-supplement.pdf
https://hess.copernicus.org/preprints/hess-2020-407/hess-2020-407-RC3-supplement.pdf


that fall squarely within expectation; for instance, the OL skill is predominately 

determined by precipitation error, and L4 skill improvement (i.e., RL4 - ROL) is mostly 

determined by Tb error. On the other hand, there are also some more surprising results. 

For instance, we found that SSM-RZSM coupling error and precipitation error have a 

comparable impact on OL. For L4 skill, however, the impact of SSM-RZSM coupling 

error exceeds that of precipitation error. More specifically, L4 DA contributes the most 

benefit for cases where CLSM underestimates SSM-RZSM vertical coupling strength. 

These findings could be used for L4 product development. In addition, this study 

pinpoints that the L4 skill improvement is not heavily impacted by LAI magnitude, 

which gives confidence for using the L4 product over densely vegetated areas. We have 

further clarified this in Section 4 of the revised manuscript. 

 

Re. the comments in the annotated manuscript pdf file: We have made corresponding 

revisions in the manuscript. 

Specifically, regarding the comment of adding one time series in Section 3.1, please see 

the time series in figure below.  

 

 
Fig. 1 The time series of gauge-based precipitation CGDPA (Pobs), SMAP L4 forcing 

precipitation (PSMAP), and anomaly time series of in-situ soil moisture measurements 

(SMobs), SMAP L4, OL, and SMAP L3 at site-collocated grid cell for: (a) SSM, (b) 

RZSM. 
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Abstract. The Soil Moisture Active Passive (SMAP) Level-4 Surface Soil Moisture and Root-Zone Soil Moisture (L4) 16 

product provides global estimates of surface soil moisture (SSM) and root-zone soil moisture (RZSM) via the 17 

assimilation of SMAP brightness temperature (Tb) observations into the Catchment Land Surface Model (CLSM). 18 

Here, using in-situ measurements from 2474 sites in mainland China, we evaluate the performance of soil moisture 19 

estimates from the L4 data assimilation (DA) system and from a baseline “open-loop” (OL) simulation of CLSM 20 

without Tb assimilation. Using random forest regression, the efficiency of the L4 data assimilation (DA) system (i.e., 21 

the performance improvement in L4 DA relative to OL) is attributed to eight8 control factors related to the land surface 22 

modelling (CLSM) and as well as tau-omega radiative transfer model modeling (RTM) components of the L4 system. 23 

Results show that 77% of the 2287 9-km EASE grid cells in mainland China that contain at least one ground station  24 

exhibit an increase in the Spearman rank correlation skill (R) for L4 SSM with in-situ measurements increases for 77% 25 

of the in-situ measurement locations for L4 SSM compared(relative to that of OL), with an average R increase of 26 

approximately 14% (ΔR = 0.056). RZSM skill is improved for about the same percentage74% of the in-situ 27 

measurement locations9-km EASE grid cells, but the average R increase for RZSM is only 7% (ΔR = 0.034). Results 28 

further show that the SSM DA efficiency skill improvement is most strongly related to the difference betweenerror in 29 

the RTM-simulated Tb observation spaceand the SMAP Tb observation, followed by the error in precipitation forcing 30 

and microwave soil roughness h. For the RZSM DA efficiencyskill improvement, these three dominant control factors 31 

remain the same, although the importance of soil roughness exceeds that of the Tb simulation error, as the soil 32 

roughness strongly affects the ingestion of DA increments and further propagation to the subsurface. For the skill of 33 

the L4 and OL estimates themselves, the top two control factors are the precipitation error and the SSM-RZSM 34 

coupling strength error (in descending order of factor importance for ROL), both of which are related to the CLSM 35 

component of the L4 system. Finally, we find that the L4 system can effectively filter out errors in precipitation. 36 

Therefore, future development of the L4 system should focus on improving the characterization of the SSM-RZSM 37 

coupling strength.  38 

 39 

Keywords. SMAP Level 4, soil moisture, data assimilation, attribute analysis, random forest regression  40 

1 Introduction 41 

Soil moisture modulates water and energy feedbacks between the land surface and the lower atmosphere by 42 

determining the partitioning of incoming net radiation into latent and sensible heat (Seneviratne et al., 2010, 2013). 43 

High-quality, global-scale soil moisture products have become increasingly available in recent years (Gruber et al., 44 

2020). In particular, the L-band NASA Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 2010; 45 

Piepmeier et al., 2017) has significantly improved the skill of available, global-scale soil moisture products. However, 46 

the SMAP observations contain temporal data gaps and are only representative of conditions within only the top first 47 

5 cm of the vertical soil moisture column (Entekhabi et al., 2010). To address these limitations, the SMAP Level-4 48 

Surface and Root-Zone Soil Moisture (L4) algorithm assimilates SMAP brightness temperature (Tb) observations into 49 

the NASA Catchment Land Surface Model (CLSM) to derive an analysis of surface (0–5 cm) and root-zone (0–100 50 
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cm) soil moisture estimates with global, 3-hourly coverage (Reichle et al., 2017a; Reichle et al., 2017b; Reichle et al., 51 

2019).  52 

However, the performance of a land data assimilation (DA) system is sensitive to its the DA parameterization and 53 

requires careful assessment. For instance, Reichle et al. (2008) demonstrate that DA based on incorrect assumptions 54 

of modeling errors and observation errors can degrade soil moisture estimates, compared with the case of not 55 

performing any DA, which is commonly referred to as the “open-loop” (OL) baseline. Theoretically, the optimality of 56 

DA can be evaluated using so-called “innovations”, or observations-minus-forecast residuals; however, an 57 

investigation of the innovations alone is often insufficient to determine if the soil moisture analysis is optimal, as the 58 

innovations are affected by multiple factors (Crow and Van Loon, 2006).  59 

Recently, Dong et al. (2019a) proposed a novel statistical framework for evaluating the performance of a soil moisture 60 

DA system. Specifically, they demonstrated that the relative skill of surface soil moisture (SSM) estimates acquired 61 

with and without DA can be estimated using the ratio of their correlations with just one noisy but independent ancillary 62 

remote sensing product. This approach was applied to the SMAP L4 system using Advanced ScatterometerASCAT 63 

soil moisture retrievals.  Their results show that the added valuebenefit of SMAP DA is closely related to densities of 64 

both rain gauge and vegetation density. Generally, higher rain gauge density indicates lower error in precipitation 65 

forcing, and lower vegetation density indicates higher background model performance - both conditions lead to reduced 66 

SMAP DA benefit. However, due to the limited availability of independent root-zone soil moisture (RZSM) products 67 

for performing statistical error estimation, this method is only applicable for SSM estimates.  68 

Relative to SSM, the efficiency of assimilating land surface observations to improve RZSM is complicated by model 69 

structural error that affects the ability of the DA to update unobserved model states. For instance, Kumar et al. (2009) 70 

identified the surface–root zone coupling strength, which is the result of a model-dependent representation of processes 71 

related to the partitioning of rainfall into infiltration, runoff, and evaporation components, as an important factor for 72 

determining RZSM improvement associated with the assimilation of SSM retrievals. Their synthetic experiments 73 

suggest that, – faced with unknown true subsurface physics, – overestimating the surface–root zone coupling in the 74 

land model is a more robust strategy for obtaining skill improvements in the root zone than under-estimating the 75 

coupling. Likewise, Chen et al. (2011) suggested that their the Soil and Water Assessment Tool significantly under-76 

predicts the magnitude of vertical soil water coupling in the Cobb Creek Watershed in southwestern Oklahoma, USA, 77 

and this lack of coupling impedes the ability of DA to effectively update deep-layer soil moisture in deep layers, 78 

groundwater flow and surface runoff. In the context of the present paper, the evaluation of L4 RZSM estimates has 79 

been limited to relatively few SMAP core validation and sparse network sites (Reichle et al., 2017a; Reichle et 80 

al., 2017b; Reichle et al., 2019). With such limited sample sizesvalidation sites, the RZSM skill of the L4 product at 81 

the global scale remains uncertain. 82 

The primary objective of this study is to determine assess the DA efficiencyskill improvement, i.e., the performance 83 

improvement in DA results relative to the open-loop (OL) baseline of the L4 product, and to further determine how 84 

DA skill improvement varies as a function of the major a variety of system aspects in the system., As mentioned above, 85 

the modeling portion of the L4 system consists of two components: land surface modelling (LSM) and radiative transfer 86 

modelling (RTM). Therefore, we select control factors from each of the two components. For the LSM component, 87 

the errors can be attributed to potential factors including: 1) model input forcing errors of a) precipitation and b) LAI; 88 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL083398#grl59145-bib-0028
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2) model structure errors in a) characterizing SSM-RZSM coupling strength and b) the presence of vertical variability 89 

in soil properties; 3) model output error of LE. For the RTM component, errors are characterized by: 1) DA innovation, 90 

i.e., SMAP-observed minus RTM-simulated Tb; 2) the environmental factors that complicate the DA analysis when 91 

assimilating Tb observations, which include the magnitude of a) microwave soil roughness and b) LAI. These eight 92 

control factors from the above-mentioned five aspects determine the crucial aspects of both the LSM and RTM 93 

components in the L4 system and are readily quantifiable using remote sensing products. Thus, they are selected to 94 

investigate the mechanism underlying the L4 improvement observed in this study.including errors in CLSM forcing 95 

(e.g., precipitation), errors in key CLSM parameters (e.g., relating to vegetation), mean errors in CLSM structure (e.g., 96 

surface and root-zone coupling), and errors in the radiative transfer modeling (RTM) that links the modeled soil 97 

moisture and temperature estimates to the observed Tb.   98 

To this endTherefore, to achieve the two major objectives, we first evaluate the performance of L4 SSM and RZSM 99 

estimates using a very large number (n = 2474) of sites in mainland China with soil moisture profile measurements 100 

sites (generally acquired at sub-surface depths between 10 and 50 cm) within mainland China, during the two-year 101 

period of 2017 to 2018. Next, the in-situ measurements are used to assess the DA efficiencyskill improvement of the 102 

L4 system, which is defined as the skill difference between the L4 estimates and the OL baselinemodel-only estimates 103 

derived without SMAP Tb assimilation. Additionally, we apply a machine-learning technique to quantify by how much 104 

various the eight potential control factors drive the spatial variations in the efficiency of the L4 system. In this way, 105 

we seek to prioritize future enhancements to the L4 system.  106 

2 Data and Methods 107 

In tThis section, we briefly describes the SMAP L4 soil moisture product (Section 2.1), the extensive network of in-108 

situ soil moisture observations over in mainland China (Section 2.2), and the above-mentioned control factors and 109 

ancillary data sources (Section 2.3), and the vertical coupling metrics used in the skill assessment (Section s 2.3 and 110 

2.4). Next, we introduce the double instrumental variable (IVd) method employed to determine the errors in control 111 

factors that cannot be determined using ground observations (Section 2.5). Finally, we describe the random forest (RF) 112 

regression method used to identify the main factor(s) (out of the eight8 control factors from both CLSM and RTM 113 

aspects) that affect the spatial variations in SMAP L4 DA efficiency skill improvement and L4 performance (Section 114 

2.6). 115 

2.1 SMAP L4 soil moisture product 116 

The SMAP L4 soil moisture product (version 4; Reichle et al., 2019) is generated by assimilating the SMAP L1C 117 

Radiometer half-orbit 36 km Equal-Area Scalable Earth (EASE) -Grid brightness temperature (Tb) observations 118 

(Version 4 SPL1CTB; Chan et al., 2016) into the CLSM. The SMAP Tb observations are assimilated at 3-h intervals 119 

using a spatially distributed, 24-member ensemble Kalman filter (Reichle et al. 2017b). The surface meteorological 120 

forcing data are from the global Goddard Earth Observing System (GEOS) Forward Processing atmospheric analysis 121 

(Lucchesi, 2013), with precipitation corrected using the daily, 0.5-degree, gauge-based Climate Prediction Center 122 

Unified (CPCU) product (Xie et al. 2007). The L4 product provides global, 9-km, 3-hourly surface (0–5 cm) and root-123 
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zone (0–100 cm) soil moisture estimates along with related land surface fields and analysis diagnostics. For the present 124 

study, we aggregated all soil moisture estimates to daily -averaged (00:00 to 23:59 UTC) data. The OLA baseline is 125 

a , model-only, ensemble CLSM simulation without the assimilation of SMAP Tb observations (but otherwise using 126 

the same configuration, including perturbations, as in the L4 system (Reichle et al., 2020) is referred to as the “open-127 

loop” (OL) run.  128 

The SMAP L4 assimilation system includes a zero-order “tau-omega” forward RTM (De Lannoy et al., 2013) that 129 

converts SSM and surface soil temperature into L-band brightness temperature estimates. Selected parameters of the 130 

L4 RTM, including the: microwave soil roughness parameters h, a vegetation structure parameterτ, and the microwave 131 

scattering albedo ω, were are calibrated using multi-angular L-band brightness temperature observations from the Soil 132 

Moisture Ocean Salinity (SMOS) mission (De Lannoy et al., 2014). The L4 RTM parameterizes microwave soil 133 

roughness as a function of SSM (De Lannoy et al., 2013, their equation B1). Here, we used this parameterization to 134 

compute the 2017-2018 daily averagedtime-averaged microwave soil roughness estimates as one potential indicator 135 

of DA efficiency skill improvement (Section 2.3).  The necessary parameters were are obtained from L4 “Land-Model-136 

Constants” output Collection (last access: 8 July 2020; DOI: https://doi.org/10.5067/KGLC3UH4TMAQ; Reichle et 137 

al., 2018a). The L4 “Analysis-Update-Data” output Collection includes RTM predictions of Tb and the assimilated 138 

SMAP Tb observations (last access: 8 July 2020; DOI: https://doi.org/10.5067/60HB8VIP2T8W; Reichle et al., 2018b). 139 

To avoid the impact of seasonality, we performed our analysis using anomaly time series, derived by subtracting a 140 

seasonally -varying (daily) climatology from each raw time series. The climatology of a given time series was is 141 

obtained by sampling the mean value of all soil moisture estimates that fall within a 31-day moving window centered 142 

on a particular day-of-year. Moreover, L4 estimates of land latent heat flux (LE), land sensible heat flux (SH) and the 143 

climatological LAI inputs to CLSM and the RTM, were are obtained from the L4 “Geophysical-Data” output 144 

Collection (last access: 6 April 2020; DOI: https://doi.org/10.5067/KPJNN2GI1DQR; Reichle et al., 2018c). These 145 

datasets were are also used to compute control factors to explain spatial variations in the DA efficiencyskill 146 

improvement of the L4 system (Section 2.3).  147 

2.2 Soil moisture validation data 148 

In-situ soil moisture measurements during 2017 and 2018 were are collected from a national network of Chinese 149 

Automatic Soil Moisture Observation Stations (CASMOS) maintained by the Chinese Meteorological Administration 150 

(CMA; Han et al., 2017). In total, soil moisture measurements from 2474 separate stations arrayed across mainland 151 

China, and covering different land use types, were are collected. At each CASMOS site, frequency domain 152 

reflectometry-based instruments were (DNZ1, DNZ2, and DNZ3) are used to record hourly volumetric soil moisture 153 

content within the following vertical depth ranges: 0–10, 10–20, 20–30, 30–40, and 40–50 cm below the surface. These 154 

hourly estimates (at multiple depths) were are then aggregated into daily values and linearly averaged (vertically) to 155 

produce 0-10 cm (SSM) and 0-50 cm (RZSM) in situ soil moisture measurements – which were are subsequently used 156 

to validate the L4 and OL SSM (0-5 cm) and RZSM (0-100 cm) estimates. Note that Spearman correlation rather than 157 

Pearson correlation is used for L4 and OL validation because, in order to avoid impact of outliers in the time series 158 

and prior assumptions about soil moisture distributions. Pearson correlation assumes linear consistency of the 159 
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underlying variables and is more sensitive to outliers. By employing Spearman’s rank correlation, we avoid introducing 160 

ad-hoc thresholds and do not exclude soil moisture outliers. Nonetheless, we repeat the analysis based on Pearson 161 

correlation (not shown) and find that the results are qualitatively consistent with the results using Spearman’s 162 

correlation. 163 

Ground observations falling within the same 9-km EASE grid were averaged for comparisons against the collocated 164 

9-km L4 and OL soil moisture estimates. A total of 2287 individual 9-km EASE grid cells within mainland China are 165 

included in the analysis. Among them, 92.35% of grid cells contain one in-situ site, 7.26% contain two sites, 7 grid 166 

cells contain three sites, and the remaining two grid cells contain four and five sites respectively. Figure 1 shows the 167 

number of in-situ CASMOS sites within each 9-km EASE grid. 168 

 169 

Figure 1: The number of in-situ CASMOS sites within each 9-km EASE grid across mainland China. 170 

 171 

2.3 Explanatory data products 172 

As discussed above, our hypothesis is that the efficiency of the SMAP L4 system will be sensitive to the ability of the 173 

ensemble-based L4 analysis in filtering errors that exist in the OL (that is, CLSM), in the model RTM forecast Tb (that 174 

is, the RTM), and in the assimilated SMAP Tb observations. We therefore considered two separate categories of factors 175 

that potentially control spatial variations in DA efficiencyskill improvement. The factors are summarized in Table 1. 176 

The first category represents a range of factors known to affect the skill of soil moisture estimates derived from the 177 

LSM (in this case, CLSM). The five control factors in this category are: i1) the error in precipitation forcing, ii2) the 178 

error in (input) LAI, iii3) the error in (output) LE, iv4) the magnitude of mean error in CLSM SSM-RZSM coupling 179 

strength, and v5) the presence of vertical variability in soil properties (defined as the difference in clay fraction across 180 

the vertical soil profile). Note that such variability represents a potential source of error because, with the exception of 181 

some surface-layer moisture transport parameters, CLSM assumes that soil texture and the associated soil parameters 182 
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are vertically homogeneous within the soil column, with the exception of some surface-layer moisture transport 183 

parameters. However, the Harmonized World Soil Database (HWSD) often captures distinct vertical variations in soil 184 

properties. Therefore, since it is largely neglected by CLSM, the magnitude of vertical heterogeneity in soil texture 185 

may be an effective proxy for overall CLSM soil moisture accuracyThe soil texture information is from Harmonized 186 

World Soil Database (HWSD) v1.2. In addition, note that since LH and SH are generally (strongly) anti-correlated, it 187 

is not appropriate to include both in a single random forest analysis – since including both would yield biased (high) 188 

regression weights for LH and SH. 189 

The second category contains three factors that affect radiative transfer modeling (RTM) and therefore DA updates. 190 

These include: i1) estimates of the DA innovation, namely difference between joint error in SMAP Tb observations 191 

and RTM Tb simulations, ii2) the magnitude of microwave soil roughness, and iii3) the magnitude of LAI (as a proxy 192 

for the vegetation optical depth at microwave frequencies, which modulates the contribution of surface soil to 193 

sensitivity of the observed Tb to SSM conditions).  194 

The control factors take a variety of forms. Some factors are based on estimates of the errors fed into the L4 system as 195 

(e.g., namely: 1) the error in CLSM rainfall forcing data; 2) error in SSM-RZSM coupling strength; 3) vertical 196 

variability of clay fraction; 4) SMAP L4 LAI error; 5) output LE error; 6) Tb error). Other factors consist of the 197 

magnitude of the variable itself, (namely the magnitude of microwave soil roughness and annual mean LAIe.g., the 198 

vertical variability of clay fraction). Note that LAI is used in both ways: LAI error is used to predict OL performance 199 

(because LAI is an important input into CLSM), while mean LAI is used to explain DA performance (because increased 200 

LAI is associated with decreased soil moisture information content in microwave observations).  201 

Note that the LAI used in the L4 system is a merged climatology from Moderate Resolution Imaging Spectroradiometer 202 

(MODIS) and Geoland data based on derived from satellite observations of the Normalized Difference Vegetation 203 

Index (Mahanama et al., 2015; Reichle et al., 2017a). Therefore, to indicate the magnitude by which each grid cell’sthe 204 

LAI of each grid cell typically deviates from its long-term climatology, we use the temporal standard deviation for 205 

theof anomaly time series of the a benchmark LAI (from SPOT VGT product)time series as a measure of the error in 206 

the LAI value used in the L4 system. This benchmark LAI is from the SPOT-Vegetation (SPOT VGT) product and 207 

includes inter-annual variations (Section 2.3.3). Owing to the lack of reference Tb observations at similar satellite 208 

overpass times and locations, Tb errors are gauged using the time series standard deviation of the observation-minus-209 

forecast (O‐F) Tb residuals, which indicate the typical misfit between the model forecast Tb and the (rescaled) SMAP 210 

Tb observations. This rescaling process ensures zero-mean differences between Tb observations and forecasts and 211 

involves a seasonal multiyear-mean bias correction, which makes sure that the DA only corrects for errors in short-212 

term and inter-annual variations and not for errors in the climatological seasonal cycles of the modeled soil moisture 213 

or other land surface fields.  This metrice standard deviation of the O-F Tb residuals measures the total error in Tb 214 

observation space.  215 

The exact data sets and the metrics utilized for evaluating allthese eight8 control factors are summarized in Table 1. 216 
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Table 1 Benchmark data sets and metrics used for evaluating control factors of SMAP L4  217 

Factor category Control factor Dataset/Benchmark Temporal resolution Spatial resolution 
Data 

range 
Metrics 

LSM 

Precipitation error Rain gauge (CGDPA) daily 0.25° 
2017-

2018 
Spearman’s rank correlation R 

SSM-RZSM coupling 

strength error 
CASMOS daily NA 

2017-

2018 
ΔCP (see Section 2.4) 

Vertical variability of 

clay fraction 
HWSD NA 9 km NA 

Difference in clay fraction between  

topsoil (0-30 cm) and root-zone (0-

100 cm) layers  

SMAP L4 LAI error SPOT-VGT LAI 10 d 1 km 
2017-

2018 

Temporal standard deviation of 

SPOT VGT LAI anomaly 

LE error FLUXCOM daily (1/120) ° 
2017-

2018 
IVd-based R 

RTM 

Tb error SMAP L4 daily 9 km 
2017-

2018 

Temporal standard deviation of O‐F 

Tb residuals 

Microwave soil 

roughness 
SMAP L4 daily 9 km 

2017-

2018 

Temporal average based on  De 

Lannoy et al. (2013) 

Annual mean LAI 
MODIS/Geoland-based 

product 
daily 9 km 

2017-

2018 
Climatological mean 

218 
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2.3.1 Gauge-based precipitation gridded product 219 

Errors in the GEOS precipitation data used to force the CLSM within the SMAP L4 system were are estimated via 220 

Spearman’s rank correlation with available rain-gauge observations. These network observations are based on an 221 

analysis of ∼2400 rain gauge stations distributed unevenly overacross mainland China (Shen et al., 2015). Recently, 222 

the China Gauge-based Daily Precipitation Analysis (CGDPA) with a spatial resolution of 0.25°×0.25° based on this 223 

network was constructed and has been made operational over mainland China (last access: 28 April 2020; 224 

http://data.cma.cn/data/cdcdetail/dataCode/SEVP_CLI_CHN_PRE_DAY_GRID_0.25.html). CGDPA uses a 225 

modified interpolation method ofversion of climatology-based optimal interpolation (OI) with topographic correction 226 

proposed by Xie et al. (2007). In this process, the daily precipitation climatology over mainland China is optimized 227 

and is rebuilt using the 30-year average precipitation observations from ∼2400 gauges of the period 1971–2000 (Shen 228 

et al., 2010). CGDPA is shown to have smaller bias and root mean square error (for instance, 13.51 mm day-1 vs. 17.02 229 

mm day-1 for precipitation of 25.0–50.0 mm day-1) than the CPCU product used in the SMAP L4 system, which is 230 

based on fewer than 400 gauge sites over mainland China (Shen et al., 2015). 231 

2.3.2 FLUXCOM LE estimates 232 

The FLUXCOM ensemble of global land-atmosphere energy fluxes was is used to evaluate the error of theerror in L4 233 

LE estimates. This ensemble merges energy flux measurements from FLUXNET eddy covariance towers with remote 234 

sensing and meteorological data based on a four broad categories of machine learning method (namely tree-based 235 

methods, regression splines, neural networks, and kernel methods) to estimate global gridded net radiation, latent and 236 

sensible heat and their related uncertainties (Jung et al., 2019). The resulting FLUXCOM database has a 0.0833° spatial 237 

resolution when applied using MODIS remote sensing data. The monthly energy flux data of all ensemble members, 238 

as well as the ensemble estimates from the FLUXCOM initiative, are freely available (CC4.0 BY license) from the 239 

Data Portal (http://fluxcom.org/), while the daily- and 8-day FLUXCOM products are available upon request from 240 

dataset provider Martin Jung (last access: 14 April 2020). To calculate the LE error, we’ve collected the daily, high 241 

spatial resolution FLUXCOM product and extracted the LE estimates where in-situ soil moisture sites are located. 242 

2.3.3 SPOT VGT LAI 243 

The data set used as a benchmark for assessing leaf area index (LAI) errors present in the SMAP L4 analysis was is 244 

derived from the SPOT/VEGETATION and PROBA-V LAI products (version 2) that are generated every 10 days (at 245 

best) with aat spatial resolution of 1 km. The SPOT LAI version 2 product GEOV2 is provided by the Copernicus 246 

Global Land Service (last access: 15 April 2020; https://land.copernicus.eu/global/products/LAI; Baret et al., 2013). It 247 

capitalizes on the development and validation of already existing products: CYCLOPES version 3.1 and MODIS 248 

collection 5 and the use ofbased on neural networks (Baret et al., 2013; Verger et al., 2008). The version 2 products 249 

are derived from top of canopy daily (S1-TOC) reflectances instead of normalized top of canopy 30-day composited 250 

reflectances as in the version 1. Compared to version 1, the version 2 products are derived from top of canopy daily 251 

reflectances, the compositing step is performed at the biophysical variable level instead of reflectance level. Thiswhich 252 

http://fluxcom.org/
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ensures reduced sensitivity to missing observations and avoids the need for a bidirectional reflectance distribution 253 

functionBRDF model. 254 

2.3.4 HWSD soil texture  255 

The soil texture information is from the The HWSD attribute database (v1.2; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), 256 

which is a 30 arc-second raster database with 15773 different soil-mapping units worldwide. It provides information 257 

on the standardized soil parameters for topsoil (0–30cm) and subsoil (30-100 cm) separately. In this study, we use the 258 

difference of clay fractions between topsoil (0-30cm) and the aggregated 0-100cm layer to measure the vertical clay 259 

fraction variation at each 9-km grid cell. 260 

2.4 Vertical coupling metric 261 

The RZSM time series generally show decreased temporal dynamics relative to SSM. As a result, overestimated SSM-262 

RZSM coupling tends to spuriously increase the (correlation-based) similarity of SSM and RZSM time series, and 263 

thereby, overestimate RZSM temporal variability. Therefore, analogous to Kling-Gupta efficiency (Gupta et al., 2009), 264 

we defined the SSM-RZSM coupling strength (CP) as: 265 

 CP = 1-√(R-1)
2
 + (α-1)

2
 (1) 

where R is the Spearman’s rank correlation between SSM and RZSM, and α is the ratio of temporal standard deviation 266 

of SSM to that of RZSM. The CP estimation is based on anomaly time series of both SSM and RZSM. A CP value of 267 

one represents the extreme case where RZSM is identical to SSM, i.e., a strongly coupled case. Likewise, a CP of zero 268 

represents the opposing case of completely uncoupled time series. Cases with negative CP do not exist in this study. 269 

Observed CP (CPobs) was based on comparisons between 0-10 cm “surface” estimates and 0-50 cm “root-zone” in in-270 

situ observations and used as a benchmark. In contrast, SMAP L4 CP estimates of OL (CPOL) was based on the 271 

comparison of 0-5 cm “surface” estimates and 0-100 cm “root-zone” estimates. Therefore, the surface versus root-272 

zone storage contrast in the observation time series is less than that of the L4 estimates. This will likely cause the 273 

observed correlation between surface and root-zone time series to be systematically higher than the analogous vertical 274 

correlation calculation for L4 estimates. However, this bias is partially corrected for by the second term in Eq. (1) – 275 

since the observed α ratio will, by the same token, tend to be smaller (i.e. closer to one) than α sampled from the L4 276 

analysis. Such ability to compensate for vertical depth differences is a key reason we apply CP, rather than simple 277 

correlation, as a vertical coupling strength metric. Nevertheless, it should be noted that our main interest here lies in 278 

describing spatial variations in (CPOL - CPobs) and care should be taken when interpreting raw (CPOL - CPobs) differences 279 

as an absolute measure of L4 vertical coupling bias. 280 

2.5 Double instrumental variable (IVd) method 281 

The benchmark data set of FLUXCOM LE described above contains error that is (likely)assumed to be of a similar 282 

order of magnitude as the L4 LE dataset it is applied to evaluate. Therefore, in an attempt to correct for the impact of 283 

this error, the LE error used here as a control factor is obtained via a double instrumental variable (IVd; Dong et al., 284 
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2019b) analysis approach that minimizes the spurious impact of random errors in benchmark data sets. As shown in 285 

Dong et al. (2019b), for the evaluation of two time series containingwith auto-correlated errorsion in both of them, IVd 286 

is more robust than a single instrumental variable based algorithm, therefore we apply IVd to evaluate the LE error. 287 

IVd is a modified version of triple collocation (TC) analysis. In TC analysis (McColl et al., 2014), geophysical 288 

variables obtained from three independent sources (xt, yt and zt) at time t are assumed to be linearly related to the true 289 

signal Pt as: 290 

  xt = αxPt + Bx+εx,t (2) 

where the αx is a scaling factor; Bx is a temporal constant bias and εx,t is zero-mean random error. 291 

As opposed to the TC method, IVd uses only two independent products (x, y) to characterize geophysical data product 292 

errors. This method introduces two instrumental variables (I, which is the lag-1 time series of x, and J, i.e., It = αxPt-1 293 

+ Bx + εxt-1, Jt = αyPt-1 + By + εyt-1), which is are based on the lag-1 (day) time series (at day t) of x and y, respectively.  294 

  It = αxPt-1 + Bx + εx,t-1 (3) 

  Jt = αyPt-1 + By + εy,t-1 (4) 

Therefore, assuming that the errors of two independent products are serially white, the covariance between instrumental 295 

variables and products can be written as follows: 296 

 CIx = αx
2 LPP (35) 

 CJy = αy
2LPP (46) 

where C represents the covariance of the subscript products. For instance, CIx represents the covariance of x and its 297 

instrumental variable I. Variable LPP is the lag-1 auto-covariance of the true signal. Combining Eqs. (35) and (46), the 298 

scaling ratio sivd of the two products x and y can be written as: 299 

 

sivd = √
CIx

CJy

 (57) 

Based on Eq. (57), their correlation with truth can be estimated as: 300 

 
RPx 

2 = 
Cxysivd

Cxx

 (68) 
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RPy

2  = 
Cxy

Cyysivd

 (79) 

In this way, the error in the L4 LE (measured by IVd-based correlation with truth) can be estimated robustly using the 301 

FLUXCOM LE product described in Section 2.3.2.  302 

2.6 Random forest regression 303 

A random forest (RF) regression approach was is used to rank and quantify the importance of the eight8 control factors 304 

introduced above (Table 1) for describing spatial patterns in DA efficiencyskill improvement for both SSM and RZSM 305 

estimates. The RF method is a supervised learning algorithm based on an averaged ensemble of decision trees (Breiman, 306 

2001). Unlike linear regression approaches, RF can capture non-linear interactions between the features and the target. 307 

In addition, the normalization (or scaling) of data is not necessary in RF application. Another advantage of the RF 308 

algorithm is that it can readily measure the relative importance of each feature on the estimates, which makes it highly 309 

suitable for an attribution analysis. Therefore, based on the output of RF, key control factors determining the 310 

efficiencyskill improvement of SMAP DA were are evaluated and ranked. The RF estimates are based on a 10-fold 311 

cross-validation approach.  312 

3 Results 313 

3.1 Validation of SMAP L4 and OL estimates of SSM and RZSM anomalies 314 

Figure 1 2 maps validation results (i.e., anomaly Spearman’s rank correlation with in-situ observations, R) for SMAP 315 

L4 and associated OL soil moisture estimates. The skill patterns for OL and L4 are, in general, quite spatially consistent. 316 

Both are characterized by an increasing trend of SSM estimation skill moving from northwest to southeast China (Fig. 317 

1a 2a and 1b2b) that matches the increasing density of the rain gauge network. In relative terms, the L4 product 318 

surpasses the baseline OL’s SSM skill within for 77% of the 2287 9-km EASE grid cells containing ground 319 

observations – with a mean R increase of ΔR = 0.056 [-] and mean relative improvement versus ROL of 14%.  320 

Similar spatial patterns are observed for RZSM skill. As with SSM, generally higher consistency with in-situ RZSM 321 

measurements is found in southeast China relative to northern and northwestern China.  However, relative to SSM, the 322 

added valuebenefit of SMAP data assimilation (i.e., L4) is reduced for RZSM and the mean relative R improvement 323 

falls tois only 7% (ΔR = 0.034 [-]) (compare Fig. 1e 2e and 1f2f). This reduction is not surprisingexpected since 324 

assimilated SMAP Tbs are primarily sensitive to soil moisture conditions in the surface (0-5 cm) layer. 325 
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 326 

Figure 12: OL (a, b) and L4 (c, d) skills (R values) for SSM (left column) and RZSM (right column). DA efficiencyskill 327 
improvement (ΔR = RL4 - ROL) for (e) SSM and (f) RZSM. Blue (red) colors in (e) and (f) indicate grid cells where L4 328 
estimates are better (worse) than OL. Non-significant differences (based on a 1000-member bootstrapping analysis) are 329 
shadedcolored grey. The lower left inset in each subplot indicates the frequency of binned R-values across all 9-km EASE 330 
grid cells containing ground observations.  331 

 332 

3.2 Spatial distribution of potential factors controlling SMAP L4 DA performance  333 

As described in Section 2.3, we selected eight8 control factors that potentially influence the skill of SMAP L4 soil 334 

moisture estimates. Using the attribution analysis described in Section 2.6, these factors arewill be used to explain the 335 
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spatial variations in skill and DA efficiency skill improvement seen in Fig. 12. As a first step, this section examines 336 

the spatial patterns inherent in the eight8 control factors. Errors in the CLSM precipitation forcing are relatively higher 337 

in northern and northwestern areas of China (Fig. 2a3a), where the gauge density is generally more sparsesparser than 338 

in southern China. Among the factors representing CLSM structural errors, a pre-dominantly negative bias is observed 339 

in SSM-RZSM coupling strength generally across China (i.e., lower CPOL compared to CPobs), while a very small 340 

number of grid cells show a positive coupling strength bias in eastern China (dark green dots in Fig. 2b3b). This is 341 

expected since the coupling strength generally decreases with at the coarser resolution, i.e., the model’s vertical 342 

coupling strength of model is assumed should be much less than atlower than that of any single pointsite. In addition, 343 

this may be partiallypartly attributed to the layer depths differences, since CLSM represents surface and root-zone 344 

depths of 0-5 cm and 0-100 cm, respectively, whereas the corresponding in-situ observations represent the 0-10 cm 345 

and 0-50 cm layers. Therefore, and it can be expected that CPOL should is likely to be systematicallythus be smaller 346 

than CPobs. In addition, the vertical variability of the clay fraction seems to show little spatial variation across mainland 347 

China (Fig. 2c3c). With respect to CLSM LAI error, regions in southern China that have generally higher LAI show 348 

larger standard deviations in SPOT LAI time series (Fig. 2d 3d and 2h3h). The IVd-based estimates of SMAP L4 LE 349 

error, which represent a potential control factor for water-balance errors in CLSM, generally show a low -level of error 350 

across mainland China (Fig. 2e3e).  351 

For O-F Tb residuals describing RTM-related error, a higher standard deviation of O-F Tb residuals is observed in the 352 

North China Plain (Fig. 2f3f), which is very consistent in spatial distribution with areas displaying the highest and 353 

most significant SSM prediction improvement (Fig. 1c2c). This is expected, as mentioned above, because O-F Tb 354 

residuals are the basis for the soil moisture corrections (or increments) that are applied in the DA system as part of the 355 

L4 analysis. The 2017-2018 mean of soil roughness shows a relatively scattered spatial pattern (Fig. 3g), while and the 356 

2017-2018 mean LAI shows higher values in southwest and southeast China (Fig. 23g-h).  357 
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 359 

Figure 23: Factors potentially influencing SMAP L4 performance over mainland China: (a) CLSM precipitation error 360 
measured by the Spearman’s rank correlation between CLSM precipitation and ground observations; (b) SSM-RZSM 361 
coupling strength error (CPOL minus CPobs); (c) clay fraction variation (difference) across the soil profile; (d) error in LAI 362 
input to L4; (e) IVd-based error of LE from L4; (f) Tb error O-F Tb standard deviation; (g) L4 microwave soil roughness; 363 
(h) climatology mean of LAI input to L4. The last row shows factors that consist of the magnitude of the variable itself, while 364 
the other rows show factors based on estimates of the errors that are fed into the L4 system. 365 
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 366 

3.3 Attribution of SMAP L4 versus OL performance to control factors 367 

3.3.1 Attribution using random forest regression 368 

As mentioned above, RF regression wasis used to identify the relative importance of our eight8 control factors for 369 

determining the efficiency improvement of SMAP L4 DA (i.e., ΔR = RL4 - ROL), and also L4 (RL4) and OL 370 

performances (ROL). To start, weWe first investigate the robustness of RF for predicting ΔR. To estimate the magnitude 371 

of randomness in the RF algorithm, we use 50 bootstrap runs. As shown in Fig. 3a4a, the 10-fold cross-validation test 372 

(228 validation samples) shows that the predicted and in-situ-based ΔR have a mean correlation of 0.72 and 0.46 for 373 

SSM and RZSM, respectively. In Fig. 4a, the mean and median of the cross-validation correlation are shown in black 374 

circle and black line respectively within the boxes, while the second and third quartiles of the cross-validation 375 

correlation are shown as the edges of boxes.  376 

Given the sampling errors of ΔR, which is based on a two-year validation period, and the relatively low spatial 377 

variability in RZSM skill (Figs. 1f2f), the performance of RF is acceptable. In addition, ground-measurement upscaling 378 

error is likely a significant contributor to unexplainable spatial variability for ΔR in Fig. 12. In fact, Chen et al. (2016) 379 

found large spatial variability in the ability of point-scale SSM ground observations to describe grid cell-scale SSM 380 

dynamics. In-situ observations sites associated with larger random point-to-grid upscaling errors will introduce a 381 

spurious low bias into sampled estimates of ΔR values (see Appendix B in Dong et al., 2020). Therefore, some part of 382 

the ΔR spatial variability observed in Fig. 1 2 is unrelated to any aspect of the L4 system and, therefore, is therefore 383 

unexplainable via the our eight selected8 control factors we have selected.  384 

Independent representativeness errors have an equal impact on both the L4 and OL skill assessments and should 385 

therefore not bias the relative skill assessments of L4 versus OL, particularly when these assessments are based on 386 

averaging across multiple grid cells. This holds if the location of ground-based measurements sites (within a footprint) 387 

is purely random. For the systematic sampling errors, we analyze the site “representativeness” using the 500m MODIS 388 

Land Cover product (MCD12Q1 v6) in 2017, IGBP dataset. First, we take the land cover (LC) type of the MODIS 389 

grid cell where a given in-situ site is located as the ground-based LC type. Next, we search all the MODIS grid cells 390 

that fall within the SMAP 9km EASE grid cell where this in-situ site is located. The latter area consists of about 20 x 391 

20 = 400 MODIS grid cells. We calculate the fraction of these 400 MODIS grid cells that have the same LC type as 392 

the ground-based LC and define this fraction as the site representativeness. We find that 52% of the 2474 sites have 393 

site representativeness higher than 50%. When we use only these sites for the RF attribute analysis, the top three factors 394 

controlling skill improvement (RL4 – ROL), L4 skill (RL4),  and OL skill (ROL) are still the same, although the 395 

precipitation error becomes the top influencer for RL4 (not shown). 396 

 397 
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 399 

Figure 34: Attribution analysis of SMAP L4 DA efficiencyskill improvement: (a) Cross-validation of RF regression method 400 
in predicting DA efficiencyskill improvement ΔR= RL4 - ROL based on our eight8 control factors (Table 1). Relative 401 
importance of eight8 control factors determining spatial patterns in (b) DA efficiencyskill improvement (ΔR), (c) OL 402 
performance (ROL), and (d) L4 performance (RL4). Red (blue) bars represent predictor importance for SSM (RZSM). Error 403 
bars reflect the standard deviation from 50-member bootstrapping of the RF importance estimates. 404 

 405 

Based on the RF results, the Tb error is quantified as the most prominent factor in determining DA efficiency skill 406 

improvement (i.e., ΔR = RL4 - ROL) – followed by precipitation error and microwave soil roughness (Fig. 3b4b). The 407 

RF-derived ranking of control-factor importance for RZSM is similar to that of SSM in that the same three factors are 408 

still the most explanatory. However, relativein contrast to SSM, the importance of Tb error for RZSM decreased 409 
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dramatically from >30% to ~15%. Other modeling error sources (e.g., the vertical variability of soil properties) have 410 

only very limited impacts on SMAP DA improvement. 411 

As seen in Fig. 3c4c, for the OL performance (ROL), the most important factors identified by RF include precipitation 412 

error, SSM-RZSM coupling error, and Tb error (microwave soil roughness) for SSM (RZSM). Note that although the 413 

Tb error is identified as third-most important factor for ROL in SSM skill, this is an instance where there is correlation 414 

(i.e., poorer skill happens to coincide with higher Tb error) , but this does not imply a causal relationship. Specifically, 415 

it is expectednormal that Tb (O-F) errors are higher in areas where the OL performs worse, but a high Tb error is not 416 

the cause of a low OL performance. The same argument applies to the relationship between microwave soil roughness 417 

and OL skill for RZSM estimation. To retain the consistency with analysis of RL4 and avoid the misconnection between 418 

RTM-related factors and ROL, the bars representing the importance of RTM-related factors to ROL are set semi-419 

transparent in Fig. 3c. The SMAP L4 system is able to reduce the predominant impact of precipitation errors on both 420 

SSM and RZSM estimation skill, rendering SSM-RZSM coupling error the most important factor for RL4 (Fig. 3d4d). 421 

In addition, in the L4 system, the high vegetation density effect on SSM and RZSM estimation is clearly reduced, as 422 

the fourth- most important factor of LAI magnitude is replaced by Tb error. 423 

The qualitative rankings provided by the RF analysis in Fig. 3 4 are relatively robust to our particular choice of the 424 

benchmark data set to define the ‘error’ of various control variables. For instance, we replaced the CGDPA 425 

precipitation benchmark with the Climate Prediction Center Morphing (CMORPH) -merged product (Version 1, last 426 

access: 6 April 2020; DOI: https://doi.org/10.25921/w9va-q159; Xie et al., 2019), which is the 0.1 degree merging 427 

product of CMORPH and observations from more than 30,000 automatic weather stations in mainland China. InFor 428 

this case, the predictive power of the regression model established by the RF is not affected (similar to Fig. 3a4a), and 429 

the qualitative rankings of the precipitation error in ROL and RL4 are not impacted (similar to Fig. 3c4c-d). 430 

3.3.2 Attribution using box plot comparisons 431 

As stated in Section 2.5, the RF method is adept at summarizing the impact of multiple (co-varying) control factors 432 

simultaneously in the established regression model, and thus provides more comprehensive insights than the 433 

examination of how the target variable (DA improvement) fluctuates with each individual control factor. However, it 434 

does not allow the investigation of the sign of the relationship between DA improvement and each control factor – 435 

which is important for understanding exactly how each factor influences the DA system. In addition, since the net 436 

impact of various factors can enhance DA efficiency skill improvement by either degrading the OL or enhancing the 437 

ability of DA to add more value, it is important to decompose the source of variations in ΔR. Therefore, in addition to 438 

examining how SMAP DA efficiencyskill improvement, i.e., ΔR = RL4 - ROL, varies as a function of the most prominent 439 

control factors identified in the above in Section 3.3.1 (i.e., Tb error, precipitation forcing error, and microwave soil 440 

roughness). W, we also examine how precipitation error as a control factor affects the OL performance, i.e., ROL. 441 

To minimize the uncertainty caused by large errors in each of the control factors, we exclude samples with errors 442 

(separately for each control factor) ranking above the 80th percentile in the following analysis. The relationship 443 

between Tb errors and L4 DA efficiencyskill improvement is straightforward:  higher Tb errors are associated with 444 

higher ΔR, with ΔR generally larger for SSM than for RZSM (Fig. 4a5a-b). 445 
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 446 

Figure 45: SMAP L4 DA efficiencyskill improvement (ΔR = RL4 - ROL) as a function of Tb error for (a) SSM and (b) RZSM. 447 
Samples with Tb error ranking above the 80th percentile are excluded from the analysis. 448 

 449 

For precipitation, this decomposition is illustrated in Fig. 56. Note that, as expected, low-quality precipitation tends to 450 

degrade the skill (i.e., correlation versus ground observations) of OL SSM and RZSM estimates (see Fig. 5a6a-b). This 451 

degradation provides an enhanced opportunity for SMAP L4 DA to provide added valuebenefit. As a result, ΔR tends 452 

to be a proportional function of precipitation skill (i.e., higher precipitation skill leads to lower ΔR, see Fig. 5c6c-d). 453 

This inverse relationship is a well-known tendency for land data assimilation systems (Liu et al., 2011; Bolten and 454 

Crow, 2012; Dong et al., 2019a). Precipitation quality has a diminished impact on RZSM estimation skill compared to 455 

SSM estimation skill. This is expected since RZSM is (essentially) the result of applying a low-pass time series filter 456 

to precipitation. As such, it is less sensitive to high-frequency errors in precipitation products than SSM is.  457 
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 458 

 459 

Figure 56: OL performance (ROL) as a function of precipitation forcing skill R for (a) SSM and (b) RZSM. SMAP L4 DA 460 
efficiencyskill improvement (ΔR = RL4 - ROL) as a function of precipitation skill for (c) SSM and (d) RZSM. Samples with 461 
precipitation skill ranking below the 20th percentile are excluded from the analysis.  462 

 463 

Figure 6 7 is analogous to Fig. 4 5 but shows skill differences ΔR as a function of microwave soil roughness. Similar 464 

to Tb errors, it is as expected that this control factor of microwave soil roughness has little impact on the OL 465 

performance, except that ROL shows slight decreasing tendency with increasing soil roughness (not shown). Given the 466 
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fact that the OL does get worse with increasing roughness, there is more room for improvement in areas with higher 467 

soil roughnessas the roughness increases, which makes it plausible that ΔR increases with increasing soil roughness 468 

(see Fig. 6a7a-b). 469 

 470 

Figure 67: As in Fig. 4 5 but for ΔR as a function of microwave soil roughness. 471 

 472 

Besides the above three control factors that dominate the DA efficiencyskill improvement, we also examine the top 473 

factor that affects SMAP L4 performance, i.e., vertical-coupling errors (Fig. 78). As expected, larger (absolute) bias 474 

in SSM-RZSM coupling in CLSM tends to be associated with degraded OL estimates of both SSM and RZSM (see 475 

Figs. 7a8a-b), although the analysis does not prove such a causal relationship. Similar to precipitation errors above, 476 

decreased OL skill (seen on the left-hand-side of the figures) provides an opportunity for increased DA efficiencyskill 477 

improvement – which is clearly seen in Fig. 78. However, such increases are much larger for SSM than for RZSM.  478 

For RZSM, SSM-RZSM coupling bias exerts both positive and negative effects on estimation accuracyrepresents a 479 

double-edged sword. While such bias leads to an enhanced opportunity to improve upon a degraded OL, it should also 480 

hamper the ability of DA to transfer SSM increments into the root-zone – particularly when, like here, the bias reflects 481 

the lack of vertical coupling in the model (Kumar et al., 2009). This means that some of the opportunity presented by 482 

the larger OL RZSM errors in OL is squandered by sub-optimal DA. As a result, the increase in RZSM DA 483 

efficiencyskill improvement associated with biased SSM-RZSM coupling (Fig. 7d8d) is smaller than the analogous 484 

increase in SSM DA efficiencyskill improvement (Fig. 7c8c). 485 
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 486 

 487 

Figure 78: As in Fig. 5 6 but for ROL and ΔR as a function of SSM-RZSM coupling error indicated by the CP difference 488 
(ΔCP = CPOL - CPobs). 489 

 490 

For the three strongest control factors that determine DA efficiencyskill improvement ΔR, i.e., Tb error, precipitation 491 

error and microwave soil roughness, we further conducted paired one-way analysis of variance (not shown). Results 492 

indicates that for each of the five binned groups separated by each of the above-mentioned three control factors, the 493 

inter-group difference in ΔR caused by each control factor is significant (p<0.01) for both SSM and RZSM. In addition, 494 
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except for the groups with lowest mean ΔR in Fig. 4a 5a and Fig. 6a7a, the averages of ΔR from all groups are 495 

significantly higher than 0 (p<0.01). 496 

As expected, precipitation error is the dominant factor for explaining the skill of the OL estimates. In contrast, the 497 

SSM-RZSM coupling error is the dominant factor for explaining the skill of the L4 results, which shows DA is able to 498 

correct for precipitation errors. 499 

4 Conclusions 500 

The SMAP L4 algorithm assimilates L-band Tb observations into the Catchment Land Surface Model, to provide 501 

surface and root-zone soil moisture estimates (i.e., SSM, RZSM) with global, 3-hourly coverage at 9-km resolution. 502 

The performance of the L4 soil moisture estimates compared to a baseline model-only simulation (OL) is influenced 503 

by multiple control factors associated with the Cland surface modelling (LSM) and the tau-omega radiative transfer 504 

modeling (RTM) components of the L4 system. In this study, we assess the performance of SMAP L4 DA system 505 

using twothe 2 years of in-situ soil moisture profile observations at 2474 sites across mainland China. We apply a 506 

random forest (RF) regression to identify the dominant factors (from a pre-defined list) that control the spatial 507 

distribution of the DA efficiencyskill improvement (defined as the skill difference between the L4 and OL estimates 508 

of SSM and RZSM as measured by their Spearman rank correlation with in-situ measurements). Results show that L4 509 

improves SSM prediction skill by 14% on average, with over 77% of the 2287 9-km EASE grid cells showing an 510 

increase in Spearman’s rank correlation with in-situ observations. Similarly, widespread, thoughbut smaller, 511 

improvements are also observed in RZSM, with averaged R improvement of 7%.   512 

Based on the RF regression analysis, the added valuebenefit of SMAP L4 DA for SSM is primarily determined by Tb 513 

error (measured by standard deviation of O-F Tb residuals), followed by microwave soil roughness and daily 514 

precipitation error. These three factors are also the most prominent factors controlling SMAP DA improvement for 515 

RZSM, albeit with the Tb error being the least important of these three factors for RZSM DA efficiencyskill 516 

improvement.  517 

Generally, the OL performance clearly decreases with increasing precipitation error, whereas for L4 performance 518 

precipitation error is not identified as the most dominant control factor. This indicates that the L4 system is able to 519 

correct for errors in precipitation forcing. In addition, our results demonstrate that SMAP DA contributes the most 520 

added valuebenefit for cases where CLSM underestimates SSM-RZSM vertical coupling strength. However, due to 521 

the difference in top-layer soil depth between the in-situ observations (10 cm) and the L4 analysis (5 cm), it is unclear 522 

whether or not the observed SSM-RZSM coupling strength biases are real in an absolute sense – or simply reflect 523 

inconsistencies in the depth of modelled versus observed SSM and RZSM time series. Nevertheless, it is worth 524 

stressing that, despite the ambiguity with regards toabout their absolute magnitude/sign, relative variations in apparent 525 

SSM-RZSM coupling biases explain a significant amount of the observed spatial variation in L4 performance. 526 

Therefore, this finding clearly underpins the importance of properly specifying SSM-RZSM coupling strength in 527 

CLSM as a way to improve the SMAP L4 product.  528 

For SMAP L4 SSM skill, the next-most important factors (after SSM-RZSM coupling) are the precipitation error, the 529 

Tb error and microwave soil roughness (Fig. 3d4d). For L4 RZSM skill, the next-most important factors (after SSM-530 
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RZSM coupling) are the precipitation error, the Tb error and the LE error, with the latter two factors of comparable 531 

importance (Fig. 3d4d). To enhance the L4 performance, additional focus should thus be placed on improving the 532 

model’s characterization of the microwave radiative transfer modeling (Tb error), together with the partitioning of the 533 

available energy into latent and sensible heat (LE error) and the microwave radiative transfer modeling (Tb error). 534 

Some of our RF analysis results fall squarely within expectation; for instance, the OL skill is predominately determined 535 

by precipitation error, and L4 skill improvement (i.e., RL4 - ROL) is mostly determined by Tb error. On the other hand, 536 

there are also some more surprising results. For instance, we found that SSM-RZSM coupling error and precipitation 537 

error have a comparable impact on OL. For L4 skill, however, the impact of SSM-RZSM coupling error exceeds that 538 

of precipitation error. More specifically, L4 DA contributes the most benefit for cases where CLSM underestimates 539 

SSM-RZSM vertical coupling strength. These findings could be used for L4 product development. In addition, this 540 

study pinpoints that the L4 skill improvement is not heavily impacted by LAI magnitude, which gives confidence for 541 

using the L4 product over densely vegetated areas. 542 
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