Interactive comment on “Investigating the impacts of biochar on water fluxes in tropical agriculture using stable isotopes” by Benjamin M. C. Fischer et al.

Pei Zhao
pzhaosl@yeah.net

Received and published: 21 August 2020

Thank you so much for inviting me as a reviewer for Fischer and colleagues’s work which use stable isotopes to investigate soil characteristics after addition of biochar and the effects on water use by rice plants. It indeed a very interesting study. The data need much hard work to get it. For me, however, there are three main concerns about this manuscript. Firstly, soil water taken by lysimeters were considered to be mobile water in the soil. This part of soil water was believed that it was not part of the water used by plants or crops (Brooks et al. 2010). The authors also did not give a very clear description for the soil water sampling in the text (start time, duration, still sample when it rain? how to sample when it was irrigated, and so on). Differ to the trees, the sampling depth of soil water in crop filed should change following the root growth. Secondly, there are several methods to calculated the proportion of plant water from each water pools. However, the authors seems to judge it more subjectively. I suggest to use a quantitative method to calculate the proportion of various pools in the plant water such as SIAR. Finally, 1 growing season field trial on the effects of biochar amendment on soil water, water uptake of rice plants at different growth stages did not well support the validity of the study and the observations. The effects of biochar on soil water changed over time. Minor comments: L220 applying an 800-mbar vacuum for 2 minutes. Please gave more information about soil water sampling. L221 waiting 1 hour before collecting the groundwater sample Whether 1 hour pumping will affect the ground water level? L273 method (ET = Kc*ETref) What is the difference for Kc or ETref between BC and C? L298 R<1 Should be “RR<1”? L554 we observed biochar amendments to create generally 2 % to 7 % higher soil 2 % to 7 % should be calculated in the Results part.
