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Abstract 

This study identifies which factor, increased atmospheric CO2 concentration or local moisture deficit, dominates the temporal 

occurrence of hot extremes at the global scale. The wavelet decomposed GRACE Terrestrial Water Storage (TWS) is for the 

first time applied in examining the relationship between soil moisture (θ) and number of hot days in the hottest month (NHD). 10 

It reveals stronger θ-NHD relationships over larger areas than other commonly used soil moisture proxies (i.e., standardized 

precipitation index (SPI) and model derived product). During the study period 1985-2015, hot extreme occurrence with a 

dominant influence from increased atmospheric CO2 concentration is mainly observed in South America, Africa and Asia, 

while soil moisture deficit dominates the occurrence of hot extremes in larger areas, including parts of North America, West 

Europe, Australia, Southeast Asia and South Africa. Global action in reducing emissions will support combating hot extremes. 15 

In addition, important attention should be directed to address, e.g. by adaptive land management, the increasing moisture 

deficit in some regions. 

1 Introduction 

Intensification of hot extremes are expected to occur in many regions of the world under global warming (IPCC, 2012). The 

observed global warming is considered extremely likely associated with anthropogenic influences, particularly greenhouse gas 20 

emission (IPCC, 2013). An increase in atmospheric CO2 concentration as a consequence of emissions can cause an increase 

in extreme temperature (Min et al., 2013; Kim et al., 2016; Seneviratne et al., 2016; Baker et al., 2018). In addition, it has been 

proven that antecedent surface moisture deficit can exacerbate hot extremes (e. g., Durre et al., 2000; Seneviratne et al., 2006; 

Fischer et al., 2007; Perkins et al., 2012; Herold et al, 2016; Vogel et al., 2017; Liu et al., 2017). The physical mechanism is 

well understood as that deficit in soil moisture can reduce evaporative cooling and increase atmospheric heating (Seneviratne, 25 

2010; Alexander, 2011). However, it is not clear yet how the factor ‘local moisture deficit’ compares to ‘increased atmospheric 

CO2 concentration’ with respect to the temporal occurrence of hot extremes at a global scale. Identifying the dominant 

influencing factor for hot extreme occurrence improves our understanding of hot extreme events and consequently contribute 

to mitigating their negative impacts on the environment and society. 
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The standardized precipitation index (SPI) and modeling soil moisture products are commonly used in analyzing the 30 

relationship between soil moisture and hot extremes in previous studies (e.g., Koster et al., 2006; Lorenz et al., 2010; Perkins 

et al., 2015). Mueller and Seneviratne (2012) were the first to assess the relationship between hot extremes and SPI (indicating 

precipitation deficit) at a global scale. Hirschi et al. (2014) used a merged active/passive microwave soil moisture product and 

model-derived soil moisture, in comparison with SPI. They found that modelled soil moisture displayed a comparable coupling 

strength with hot extremes as the SPI-based analysis showed. The strength of the relationship appeared to be weaker when the 35 

remote sensing surface soil moisture was used.  

The Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage (TWS) provides data on water 

storage including groundwater, soil moisture, surface water, snow, and ice. A discrete wavelet decomposition method is 

capable to partition the total water storage into shallow and deep components (Andrew et al., 2017). Chen et al., (2019) reported 

that monthly air temperature anomalies show stronger relationship with wavelet decomposed GRACE TWS than with raw 40 

TWS. Here, we compare decomposed GRACE TWS with SPI and model-derived soil moisture in examining the relationship 

between soil moisture and the number of hot days in the hottest month (θ-NHD relationship).  

This study aims: 1) to examine the θ-NHD relationship at a global scale by using decomposed GRACE TWS, and based on 

the developed methodology; 2) to investigate which factor and where, increased atmospheric CO2 concentration or local 

moisture deficit, dominates the occurrence of hot extremes. 45 

2 Methodology 

2.1 Data and metrics 

The number of hot days is defined as the number of days per specific time interval (e.g., month, season, year) with a surface 

air temperature at 2 m height above the 90th-percentile. The percentile value is based on the distribution of the corresponding 

five consecutive days (e.g., to determine if a 15th June is a hot day, the 90th percentile is based on all days of 13th-17th June) of 50 

the entire temperature time series (Mueller and Seneviratne, 2012). In this study, the number of hot days in the hottest month 

(NHD) is examined based on the ECMWF reanalysis ERA-Interim daily maximum temperature data (Dee et al., 2011). For 

each grid cell, the hottest month is determined based on the monthly average daily maximum temperature for the time series 

1985-2015. Its geographical distribution is shown in Fig. 1.  

Atmospheric CO2 concentration is represented by an annual CO2 concentration time series averaged from monthly data 55 

(Keeling et al., 2001) of the Mauna Loa, Hawaii station. The data are provided by the Scripps Institution of Oceanography, 

USA.   

A reconstructed GRACE TWS dataset (Humphrey et al., 2017) from 1985 to 2015 provided by the Institute for Atmospheric 

and Climate Science, Eidgenössische Technische Hochschule Zurich (IAC ETH) is applied in this study. GRACE TWS has 

been decomposed into “approximate” (A1, A2, A3, A4) and “detail” (D1, D2, D3, D4) components by a wavelet method 60 

following Andrew et al. (2017). The structure of wavelet decomposition is shown in Fig. 2, taking a grid cell in Australia (30.5 
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S, 130.5 E) as an example. The sum of a series of approximate and the corresponding detail components equals to the raw 

signal (e.g., raw signal=D1+D2+A2=D1+D2+D3+A3). Each decomposition level represents a certain time scale: D1 (2-month), 

D2 (4-month), D3 (8-month), and A4 and D4 (≥ 16-month). Those decomposed components of different temporal scales reflect 

temporal dynamics of moisture at different depths. This is on the basis of the understanding that moisture at various soil depths 65 

has different response times to the climate system (Andrew et al., 2017; Chen et al., 2019). The original GRACE TWS data 

from 2003 to 2016 (Watkins et al., 2015; Wiese et al., 2019) provided by the Jet Propulsion Laboratory (JPL) are also applied 

in this study. Although the data period is too short to provide reliable statistical analysis, it provides a comparison for the 

reconstructed GRACE TWS. 

For relating the occurrence of hot extremes to soil moisture deficit, SPI (calculated from GPCC Reanalysis precipitation data, 70 

Schneider et al., 2015) and a land surface model derived soil moisture product (GLDAS_NOAH10_M.2.1, Rodell et al., 2004; 

Rui, 2011) are compared with GRACE TWS. GLDAS_NOAH θ and GRACE TWS are correlated with NHD in the concurrent 

month. 3-month SPI characterizing the precipitation deficits accumulated in the previous two months together with the hottest 

month itself (McKee et al., 1993) is applied, since soil moisture in the hottest month includes contributions from infiltration 

of precipitation in previous months. A 1°×1° spatial resolution is adopted for all datasets used in this study. Although the 75 

chosen resolution might be coarse for resolving detailed patterns of the θ-NHD relationship, it allows to investigate land surface 

and atmosphere coupling at synoptic scale, where water and heat exchanges between large air mass and land surface. 

2.2 Statistical analysis methods 

Relationships between NHD and the potential predictor variables are examined by the Pearson linear correlation. The t test 

statistic is used to evaluate the statistical significance of the correlation coefficient (r). For testing the linear relationship 80 

between time-series grid datasets, erroneous rejection of null hypothesis inevitably happens at individual grid cells for several 

reasons as described in Wilks (2016), leading to false discovery of significant relationship. To address this problem, the 

threshold for significant p-values (normally 0.05) should be adjusted to control the False Discovery Rate (FDR). This 

adjustment is done based on the distribution of p-values of all grid cells and a prescribed parameter αFDR which controls the 

level of the False Discovery Rate. An αFDR of 0.1 (=2αglobal, where αglobal =0.05) should be used for gridded atmospheric data, 85 

as it often has strong spatial correlation (Wilks, 2016). After this adjustment, the in this study used threshold values for testing 

significant linear relationships are 0.0092 for NHD-CO2, 0.0241 for NHD-SPI, 0.0235 for NHD-GLDAS_NOAH θ, and 

0.0191 for NHD-TWS.  

Stepwise multiple linear regression (Draper and Smith, 1998; Clow, 2010) is used to determine the significant (5% significance 

level assessed by an F-test) predictor variable in explaining NHD temporal variability for each grid cell. Next, the dominance 90 

analysis approach (Azen and Budescu, 2003) is applied to compare the relative importance (percentage of contribution is 

indicated by the coefficient of determination (R2)) of those selected variables to identify the dominant influencing factor. In 

the dominance analysis, the overall R2 of a predictor variable is calculated from all the possible subset regression models. The 
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predictor with highest conditional dominance (averaged from all sub-models) is identified as the largest contributor (dominant 

influencing factor) (Budescu, 1993; Azen and Budescu, 2003; Nimon and Oswald, 2013). 95 

3 Results and discussion 

3.1 Relationship between atmospheric CO2 concentration and hot extreme occurrence 

Previous studies show that intensity, frequency, and duration of hot extremes are increasing (e. g., Perkins et al., 2012; Kim et 

al., 2016; Johnson et al., 2018). In this study, NHD also shows an upward trend consistent with the increasing CO2 

concentration in the past 31 years (Fig. 3 (a)). The correlation coefficient (r) between the annual NHD and the CO2 100 

concentration at each grid cell is mapped in Fig. 3 (b). The relationships are particularly strong in the tropics and parts of North 

America, East Europe, and Central and East Asia. Regions with significant positive correlation account for 11.3% of the land 

area in total. 

3.2 Global θ-NHD relationship based on decomposed TWS 

Correlations between NHD versus SPI, GLDAS_NOAH θ, and TWS during 1985-2015 are compared in Fig. 4 (a-c). Similar 105 

spatial patterns of global θ-NHD relationship are observed. Strong θ-NHD relationships occur in most of the Americas, Europe, 

Australia, South Africa, East Asia, and Southeast Asia, which cover almost all of the areas with strong land-atmosphere 

coupling as identified in previous studies (e.g., Koster et al., 2006; Miralles et al., 2012; Schwingshackl et al., 2017; Donat et 

al. 2017, Chen et al., 2019). Significant negative correlations between NHD and SPI are observed for 25.5% of the land area, 

while NHD and GLDAS_NOAH θ are significantly correlated for 17.3% of the land area. This difference may be due to the 110 

fact that SPI, being used as a soil moisture proxy, reflects its influence on air temperature by soil-moisture dependent latent 

heat processes (evaporation and transpiration), in addition, it may reflect precipitation and air temperature coupling through 

weather systems (e.g., evaporation of rain water draws heat out of the near surface air).  

The total area of significant θ-NHD relationship increases, from 21.7% when the total terrestrial water storage is used, to 29.9% 

when the optimal decomposed TWS component at each grid cell is correlated to NHD (Fig. 4 (c-d)). This is likely because 115 

that a part of the terrestrial water storage is not directly accessible for evapotranspiration. From all soil moisture proxies, the 

decomposed GRACE TWS covers the largest land area with significant negative correlation with NHD (Fig. 4 (a-d)). It should 

be noted that only one TWS sub-component is used for Fig. 4 (d). The sum of all decomposed TWS components is expected 

to have a higher explanatory power for NHD temporal variability over a larger area.  

Results shown in the first column of Fig. 4 are based on the reconstructed GRACE TWS dataset (1985-2015). We did the same 120 

analysis for the original GRACE TWS data from 2003 to 2016 for comparison, and the results are shown in the second column 

of Fig. 4. Based on the 14-year data, strong θ-NHD relationships are also spatially distributed in most of the Americas, Europe, 

Australia, South Africa, East Asia, and Southeast Asia. In addition, the decomposed TWS (Fig. 4 (h)) shows significant 

correlation with NHD over a larger area than SPI (Fig. 4 (e)) and GLDAS_NOAH θ (Fig. 4 (f)). Although the period of 
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available original GRACE TWS data is relatively short at present, its contribution to this and related research will increase 125 

with the accumulation of data and improved GRACE resolution in the future.  

A significant negative θ-NHD correlation can reflect a causal relationship between hot extremes and soil moisture deficit, 

either way. If the correlation would indicate that high temperatures reduce soil moisture by increasing evapotranspiration, it 

would be more likely to happen via evaporation of surface moisture, rather than transpiration from deep root zone. This is 

because in the mid and low latitudes where the strong θ-NHD correlation occurs (Fig. 4), temperature in the hottest month is 130 

unlikely a limited factor for plant growth (Nemani et al., 2003). Under such a condition an increase in temperature does not 

increase transpiration. Indeed, it more likely reduces transpiration due to stomatal responses to an increase in vapour pressure 

deficit with temperature (Whitley et al., 2009; Wang et al., 2014). Since previous studies (Hirschi et al., 2014; Chen et al., 

2019) suggested that the coupling between air temperature and surface moisture is weak globally, the strong θ-NHD 

relationship more likely reflects the impact of soil moisture deficit on hot extremes. Indeed, it has already been suggested that 135 

hot extremes in Europe (Hirschi et al., 2011), Australia (Herold et al., 2016), and parts of the Americas and South Africa 

(Mueller and Seneviratne, 2012) are amplified by moisture deficit. In addition, a similar spatial pattern of significant NHD-

SPI correlation to those between NHD and other soil moisture indicators (Fig. 4), supports that the observed negative NHD 

correlation reflects soil moisture deficit enhanced occurrence of hot extremes. 

Fig. 5 shows the explanatory power (reflected by the regression R2) of different soil moisture proxies for NHD variability 140 

(1985-2015). The result is consistent with what is shown in Fig. 4 that SPI has stronger explanatory power for NHD variability 

for a larger land area than GLDAS_NOAH θ. The decomposed TWS shows the highest R2 among all soil moisture proxies. 

For testing the improvement, the adjusted R2 is applied, which takes into account the total number of explanatory variables (up 

to 5 for the decomposed TWS vs. 1 for other proxies) by including a penalty for having additional variables in the regression 

analysis. The decomposed TWS shows significant adjusted R2 for 33.4% of the land area. For 72.0% of this area the average 145 

adjusted R2 increases to 0.24 compared to the raw TWS average adjusted R2 (0.09). For 28.0% of this area the raw TWS shows 

a slightly higher average adjusted R2 (0.30) than that of the decomposed TWS (0.24). This result sheds light on the potential 

of decomposed GRACE TWS for hot extreme prediction. 

Areas having significant negative correlation between NHD and decomposed TWS components during 1985-2015 are shown 

in Figure 6. Those significant regions located in the central part of North America, the eastern part of South America, South 150 

Africa and South Asia have deeper plant rooting depths (Fan et al., 2017), where interannual variability (D4 and A4) of TWS 

seems to be more important than its seasonal variability (D1-D3) in explaining NHD temporal variability. This implies that 

plant water uptake from deeper soil plays an important role in θ‐NHD coupling. However, D4+A4 also show stronger 

correlation than D1+D2+D3 with NHD in areas without deep roots, including the northern and southeastern parts of South 

America, the southwestern part of North Asia, and Southeast Asia. This is because those regions have shallow groundwater 155 

table depth (Fan et al., 2013). It implies that in areas where groundwater is shallow, groundwater dependent ecosystems may 

contribute to heat mitigation, which is worthy of future investigation. 
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3.3 Relative importance of increased atmospheric CO2 concentration and local moisture deficit for hot extreme 

occurrence 

As shown above, both atmospheric CO2 concentration and soil moisture have influence on the occurrence of hot extremes. 160 

This study aims to reveal, which factor, increased atmospheric CO2 concentration or local moisture deficit, dominates hot 

extreme occurrence, and how this dominance varies spatially during the study period 1985-2015. The decomposed TWS is 

adopted to represent soil moisture in the dominance analysis. The results are mapped in Fig. 7, only the grid cells where the 

total explanatory power of atmospheric CO2 concentration and decomposed TWS is over 95% significance level are 

highlighted in color. That means in areas with gray colored grid cells other factors than increased atmospheric CO2 165 

concentration or local moisture deficit, may have a stronger influence on hot extreme occurrence. These factors may include 

variables such as ocean-atmosphere dynamics (e.g., Lorenzo and Mantua, 2016) and land use changes (e.g., Luo and Lau, 

2017). During 1985-2015, for 18.2% of the land area with significant regression R2, the occurrence of hot extremes is 

dominated by increased atmospheric CO2 concentration. In most previously identified regions with strong land moisture and 

air temperature coupling, including the northern areas of South America, the southern regions of North America, South Africa, 170 

West Europe, Southeast Asia, parts of East Asia and Australia, local moisture deficit shows very strong explanatory power for 

NHD temporal variability. It appears that local moisture deficit dominates the hot extreme occurrence for 40.6% of the land 

area with significant regression R2. It is interesting that by comparing the distribution of high-income and low-middle-income 

countries (Fig. 8) we can roughly see that hot extremes in most low-middle-income countries located in Africa, Asia, and 

South America are more sensitive to the factor of increased atmospheric CO2 concentration than to local moisture deficit, while 175 

in high-income areas, such as West Europe, North America and Australia, this is opposite.  

4 Conclusions 

This study identifies which factor, increased atmospheric CO2 concentration or local moisture deficit, is dominant in 

influencing the temporal occurrence of hot extremes at a global scale during 1985-2015. In parts of Africa, South America and 

Asia, the occurrence of hot extremes is more sensitive to increased atmospheric CO2 concentration than other areas. Local 180 

moisture deficit dominates hot extreme occurrence in regions with a total area twice as large as dominated by increased 

atmospheric CO2 concentration during the 31-year period investigated here, which is an important new realization. These 

regions, i.e., North America, West Europe, Australia, Southeast Asia, and South Africa are previously identified as having 

strong land-atmosphere coupling, which influences the moisture deficit-hot extreme links. Hence, those regions may mitigate 

some hot extremes by addressing the increasing moisture deficit by e.g. adaptive land management. We note that under 185 

continuing increase of greenhouse gas forcing, hot extremes are expected to be dominated by increased CO2 concentration 

over larger areas in the future. Hence, global measures for reducing emissions are essential in combating current and future 

expansion of hot extremes.  
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The dominance analysis approach is applied to quantify relative importance of increased atmospheric CO2 concentration and 

local moisture deficit to the occurrence of hot extremes during 1985-2015. The application of decomposed GRACE TWS in 190 

estimating the global distribution of hot extremes is here for the first time presented, it shows larger areas with significant θ-

NHD relationships and higher regression R2 in examining the occurrence of hot extremes than the other commonly used soil 

moisture proxies SPI and land surface model derived product. It suggests the potential of decomposed GRACE TWS as a 

useful soil moisture proxy in examining moisture-heatwave coupling. 
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Figure 1: Geographical distribution of most frequent occurring hottest month for the period 1985-2015. 

 335 

Figure 2: The structure of a discrete wavelet decomposition (an example from a grid cell in Australia (30.5 S, 130.5 E)).  
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Figure 3: (a) Standardized anomaly of global average NHD (land regions only) and atmospheric CO2 concentration. The 

standardized anomalies are calculated based on the mean and standard deviation derived from the full period 1985-2015. (b) 

Correlation coefficients (r) between annual NHD and CO2 concentration at each grid cell. Significant levels are denoted by black 340 
dots. No data is available for land area marked in white. 
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Figure 4: Correlations between NHD and (a) SPI; (b) GLDAS_NOAH θ; (c) raw TWS; and (d) the maximum r value of NHD versus 

any of the decomposed TWS components during 1985-2015 (based on reconstructed GRACE TWS data). Significant levels are 345 
denoted by black dots. No data is available for land area marked in white. The second column is same as the first column but for the 

period 2003-2016 (based on JPL GRACE TWS data). 
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Figure 5: Histogram of the explanatory power (significant regression R2) on NHD variability by using SPI, GLDAS_NOAH θ, raw 

TWS, and decomposed TWS during 1985-2015. 350 

 

 

Figure 6: Areas where significant negative correlation exists between NHD and moisture at shallower soil depth (D1+D2+D3) and 

deeper soil depth (D4+A4) represented by wavelet decomposition levels of TWS (1985-2015).  
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 355 

Figure 7: Spatial pattern of the total explanatory power of the joint influence of atmospheric CO2 concentration and soil moisture 

on hot extreme occurrences. The occurrence of hot extremes in areas marked with red cross symbols is dominated by increased 

atmospheric CO2 concentration, while in areas with blue colors it is dominated by local moisture deficit. Hot extreme occurrence in 

the grey areas are not significantly associated with either atmospheric CO2 concentration or soil moisture during the study period 

1985-2015. 360 

 

Figure 8: Distribution of high and low-middle-income countries. Income level information is available from the World Bank, 

(https://datahelpdesk.worldbank.org/knowledgebase/articles/906519). 
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