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Abstract. The accuracy of quantitative precipitation estimation (QPE) over a given region and period is of vital importance

across multiple domains and disciplines. However, due to the intricate tempo-spatial variability and the intermittent nature of

precipitation, it is challenging to obtain QPE with adequate accuracy. This paper aims at simulating rainfall fields honoring

both the local constraints imposed by the point-wise rain-gauge observations and the global constraints imposed by the field

measurements obtained from weather radar. The conditional simulation method employed in this study is the modified phase5

annealing (PA), which is practically an evolution from the traditional simulated annealing (SA). Yet, unlike SA which im-

plements perturbations in the spatial field, PA implements perturbations in Fourier space, making it superior to SA in many

respects. PA is developed in two ways. First, taking advantage of the global characteristic of PA, the method is only used to

deal with global constraints, and the local ones are handed over to residual kriging. Second, except for the system tempera-

ture, the number of perturbed phases is also annealed during the simulation process, making the influence of the perturbation10

more global at initial phases and decreasing the global impact of the perturbation gradually as the number of perturbed phases

decreases. The proposed method is used to simulate the rainfall field for a 30-min-event using different scenarios: with and

without integrating the uncertainty of the radar-indicated rainfall pattern and with different objective functions.

Copyright statement. The authors retain the copyright of this article.

1 Introduction15

Quantitative precipitation estimation (QPE) over a given region and period is of vital importance across multiple domains and

disciplines. Yet the intricate temporal-spatial variability, together with the intermittent nature of precipitation in both space and

time, has hampered the accuracy of QPE (Kumar and Foufoula-Georgiou, 1994; Emmanuel et al., 2012; Cristiano et al., 2017).

The point-wise observations of precipitation measured by rain-gauges are accurate but only available at limited locations.

Meanwhile, precipitation-related measurements produced by meteorological radars have become standard outputs of weather20

1



offices in many places in the world. However, the problem with radar-based QPE is the non-guaranteed accuracy, which could

be impaired by various sources of errors, such as static/dynamic clutter, signal attenuation, anomalous propagation of the radar

beam, uncertainty in Z-R relationship, etc. (see Doviak and Zrnić, 1993; Collier, 1999; Fabry, 2015, for details). Despite the

various sources of errors, weather radar has been widely acknowledged as a valid indicator of precipitation patterns (e.g.,

Mendez Antonio et al., 2009; Fabry, 2015). Considering the pros and cons of the two most usual sources of precipitation25

information, the QPE obtained by merging the point-wise rain-gauge observations and the radar-indicated precipitation pattern

has become a research problem in both meteorology and hydrology (Hasan et al., 2016; Yan and Bárdossy, 2019).

In the context of merging radar and rain-gauge data, we consider two types of constraints: the local constraints imposed

by the point-wise rain-gauge observations and the global constraints imposed by the field measurement from weather radar.

This paper focuses on simulating surface rainfall fields conditioned on the two types of constraints. There exists a variety30

of geostatistical methods aiming at simulating conditional Gaussian fields with a given covariance function, such as turning

bands simulation, LU decomposition-based methods, sequential Gaussian simulation, etc. (see Deutsch et al., 1998; Chilès and

Delfiner, 2012; Lantuéjoul, 2013, for details). The common goal of these methods is to ensure that the simulated realizations

comply with the additional information available (Lauzon and Marcotte, 2019). The additional information could be observed

values of the simulated targets, measurements that are related linearly or non-linearly to the simulated targets, third- or higher-35

order statistics (Guthke and Bárdossy, 2017; Bárdossy and Hörning, 2017), etc.

The conditional simulation method used in this work is phase annealing (PA). It was first proposed in Hörning and Bárdossy

(2018) and is essentially a product of the general-purpose, meta-heuristics method, simulated annealing (SA) (Kirkpatrick et al.,

1983; Geman and Geman, 1984; Deutsch, 1992; Deutsch et al., 1994). It utilizes the sophisticated optimization scheme of SA

in the search for the global optimum. Yet, compared to SA, the distinction or evolvement of PA lies in that the perturbation, or40

swapping in the nomenclature of SA, is implemented in Fourier space. Or, to be more exact, the perturbation is implemented

on the phase component of the Fourier transform; while the power spectrum is preserved, such that the spatial covariance is

invariant at all iterations according to the well-known Wiener-Khinchin theorem (Wiener, 1930; Khintchine, 1934). Compared

to SA, PA alleviates the singularity problem, namely the undesired discontinuities or poor-embedding of the conditional points

within the neighborhood (Hörning and Bárdossy, 2018) and in general, PA has a much higher convergence rate compared to45

SA.

A remarkable feature of PA is that it is a global method: any perturbation imposed on the phase component is reflected

on the entire field. Yet admittedly, if the perturbation is implemented at lower frequencies where the corresponding wave

lengths are relatively large, the impact is more global and vice versa. The global characteristic of PA imparts it a valuable

methodology for global constraints. However, PA is found to be insufficient in the treatment of local constraints (Hörning and50

Bárdossy, 2018). Note that by local constraints, we refer primarily to point equality constraints, when the total number of the

constraints is far less than that of the grid points. In the algorithm of PA, the local constraints are normally ensured by inserting

a component measuring the dissimilarity between the simulated and the target values. On the other hand, one could argue that

if the information on the measurement error is explicitly known, then this piece of information could be considered in the
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simulation and the inability of PA in handling the local constraints can be utilized in turn. However, in the general case, the55

local constraints can only be approximated by PA.

Respecting the fact that the specialty of PA is the treatment of the global constraints, we separate the global from the local.

In particular, PA is only used to handle the global constraints, and local ones are handled separately by residual kriging at each

iteration. As an extension of PA, except for annealing the system temperature, the number of perturbed phases is annealed in

parallel to render the algorithm work more globally at initial phases of the simulation. The global impact of the perturbation is60

weakened as the number of perturbed phases decreases.

This paper is divided into six sections. After the general introduction, the methodology of PA is introduced in Section 2,

including three stages: pre-simulation, simulation, and post-simulation. Section 3 provides two options to integrate the uncer-

tainty of the radar-indicated rainfall pattern into the simulation. Section 4 introduces the study domain and the two types of

data used in this study. In Section 5, the proposed algorithm is used to simulate the rainfall field for a 30-min-event, where65

different simulation scenarios are applied. Section 6 ends this paper with conclusions.

2 Methodology

Figure 1 summarizes the procedure of simulating surface rainfall fields using the algorithm of PA, including three stages:

pre-simulation (PreSim), simulation (Sim) and post-simulation (PostSim). Each stage and the corresponding sub-stages are

described in the following subsections in the same sequence as shown in the flowchart.70

Figure 1. Flowchart of the procedure to simulate surface rainfall fields using the algorithm of PA.
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2.1 Pre-simulation

2.1.1 Distribution Function of Surface Rainfall

PA is embedded in Gaussian space. The direct output of the PA algorithm is a spatial field whose marginal distribution function

is standard normal; hence the distribution function of surface rainfall is essential to transform the simulated Gaussian fields

into rainfall fields of interest.75

The scenario is as follows: based on K rain-gauge observations and a regular grid of radar quantiles (representing the spatial

pattern of the rainfall field), the distribution function of surface rainfall is generated. The procedure was first introduced in Yan

and Bárdossy (2019) and we specify the modified version here.

(a) For all rain-gauge observations rk, the collocated quantiles in the radar quantile map U are determined and denoted as

uk. The two datasets are then sorted in ascending order, i.e., r1 ≤ ·· · ≤ rK and u1 ≤ ·· · ≤ uK .80

(b) Set the spatial intermittency u0, i.e. the quantile corresponding to zero precipitation. u0 is estimated as the ratio of the

number of zero-valued pixels to the total number of pixels in the domain of interest. If the small quantiles of the field are

properly sampled by the rain-gauges, one could use the smallest sampled quantile u1 to estimate u0:

u0 =

u1 if r1 = 0

u1/2 otherwise
(1)

where r1 is the smallest gauge observation corresponding to u1. If that is not the case, we propose to estimate u085

from the original radar displays in dBZ, namely a series of instantaneous maps of radar reflectivity within the relevant

accumulation time. A zero-valued pixel is defined when the maximum of the collocated pixel-values of these maps is

smaller than a given threshold (say 20 dBZ).

(c) Let G(r) denote the distribution function of surface rainfall to be estimated. A linear interpolation is applied for rainfall

values of less than the maximum recorded gauge observations, i.e., r ≤ rK :90

G(r) =
uk −uk−1
rk − rk−1

(r− rk−1) +uk−1 (2)

with rk−1, rk being the two nearest neighbors of r (rk−1 ≤ r ≤ rk), and uk−1,uk being the quantiles corresponding to

rk−1, rk, respectively.

(d) Extrapolate rainfall values r > rK . A modification is made here: the minimum of exponential and linear extrapolation is

used as the result, as expressed in Equation 3. We have learned from practice that the exponential extrapolation tends to95

over-estimate the rainfall extremes, so a linear component is used to restrict the extrapolation result.

G(r) = min

(
1− e−λr, uK −uK−1

rK − rK−1
(r− rK) +uK

)
(3)
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where, the only parameter λ of the exponential distribution is determined from the last pair (rK ,uK):

λ=−ln(1−uK)/rK (4)

It is recommended that the methodology described above is used to estimate the distribution function of accumulated rainfall,100

not rain intensity, because it is built on the assumption that rain-gauge observations can represent the ground truth. Yet, in

general, rain-gauges are considered to be poor in capturing the instantaneous rain intensity; while the measurement error

diminishes rapidly as the integration time increases (Fabry, 2015).

As we only use the radar-indicated spatial ranks, i.e. the scaled radar map following a uniform distribution in [0,1], there is

no requirement for the accuracy of the Z-R relation, given the monotonic relationship of the two quantities. One could use a105

Z-R relation at hand to transform radar reflectivity into rain intensity, and then make the accumulation. Nevertheless, a normal

quality control for radar data, as described in Section 4, is necessary to maintain the accuracy of radar-indicated spatial ranks.

2.1.2 Marginal Conversion to Gaussian

As PA is embedded in Gaussian space, all the constraints, including the point equality targets rk [mm] imposed by rain-gauges

and the quantile map U [−] imposed by weather radar, are converted to a standard normal marginal distribution by110

zk = Φ−1(G(rk)) for k = 1, · · · ,K (5)

Z? = Φ−1(U) (6)

where Φ−1 is the inverse of the standard normal distribution function and G is the distribution function of surface rainfall

obtained according to the procedure described in Section 2.1.1.

2.1.3 Objective Function115

We impose two kinds of constraints: local and global. As has been explained in the introduction, PA is a powerful method to

handle global constraints. In order not to interfere with the logic behind PA and to fulfill the point equality constraints (local

constraints) exactly, residual kriging is implemented at each iteration to obtain the observed values at rain-gauge locations.

Thus the objective function only needs to measure the fulfillment of the global constraints.

We impose two global constraints: field pattern and directional asymmetry. Note that both constraints are evaluated from the120

simulated Gaussian field and are compared with the radar-based Gaussian field Z?, as obtained in Equation 6. And we term

Z? the reference field, hereafter.

The first global constraint, field pattern, requires that the simulated field should be similar to the reference field. The simi-

larity of the two fields is quantified by the Pearson correlation coefficient:

ρZ,Z? =
cov(Z,Z?)

σZσ?Z
(7)125

In the ideal case, ρZ,Z? equals 1, and we use the difference, (1− ρZ,Z? ), to measure the distance from the ideal.
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The second global constraint is directional asymmetry, as given by

[A(h)]Z =
1

N(h)

∑
xi−xj≈h

(Φ(Z(xi))−Φ(Z(xj)))
3 (8)

where, [A(h)]Z (abbreviated as AZ , hereafter) is the asymmetry function evaluated from the simulated Gaussian field Z;

N(h) is the number of pairs fulfilling xi−xj ≈ h and Φ is the cumulative standard normal distribution function. Directional130

asymmetry was first introduced in Bárdossy and Hörning (2017) and Hörning and Bárdossy (2018). It is a third-order statistic

and the physical phenomenon revealed by this statistic could be significant for advection-dominant processes, such as storms.

We use the entire field to compute the directional asymmetry function and compare the simulated one with the reference

asymmetry function, i.e., the directional asymmetry function evaluated from the reference field, abbreviated as AZ? . There

exist multiple choices to define the distance of the two asymmetry functions, and we have used the L∞ norm, ‖AZ−AZ?‖L∞ .135

Different schemes could be used to combine the two components, linear or non-linear, and we have chosen the maximum

of the two components. Finally, the objective function we have used to quantify the fulfillment of the two global constraints is

expressed as:

O(Z) = max((1− ρZ,Z?), (w/Ascal) · ‖AZ −AZ?‖L∞) (9)

where w is the relative weight of the component directional asymmetry and Ascal, as expressed in Equation 10, is the scaling140

factor that scales the L∞ norm of the difference of the two asymmetry functions between 0 and 1.

Ascal =‖AZ?‖L∞ (10)

It is worth mentioning that the proposed methodology is flexible and any global statistic could be used to constrain the simulated

fields, and one could even combine several statistics in the objective function.

2.2 Simulation145

2.2.1 Stopping Criteria and Cooling Schedule

There are many choices of stopping criteria for an optimization algorithm, such as (a) the total number of iterations; (b) the

predefined value of the objective function; (c) the rate of decrease of the objective function; (d) the number of continuous

iterations without improvement; (e) the predefined threshold of the initial objective function value, and so forth. One could use

one criterion or combine several.150

As for the cooling schedule, the system temperature of PA decreases according to the cooling schedule as the optimization

process develops; the lower the system temperature, the less likely a bad perturbation is accepted. A bad perturbation occurs

when the perturbation does not decrease the objective function value. A reasonable cooling schedule is capable of preventing the

optimization from being trapped prematurely at a local minimum. Yet one should be aware that there is always a compromise

between the statistical guarantee of the convergence and the computational cost: the slower the temperature decreases, the155
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higher probability of the convergence; however, cooling slowly also means more iterations and therefore, higher computational

costs.

Comparative studies of the performance of SA using the most important cooling schedules, i.e., multiplicative monotonic,

additive monotonic and non-monotonic adaptive cooling, have been made by, e.g., Nourani and Andresen (1998), Martín and

Sierra (2009) and others. The results show that annealing works properly when the cooling curve has a moderate slope at the160

initial and central stages of the process and tends to have a softer slope at the final stage. Many cooling schedules satisfy these

conditions. As PA utilizes the optimization strategy of SA, the rules also apply for PA. Our choice of the cooling schedule is

the multiplicative monotonic one.

Specifically, we search for two parameters, the initial temperature T0 and the final temperature Tmin by decreasing the

temperature exponentially and discretely. At each fixed temperature, N perturbations, say 1000, are implemented and the165

corresponding acceptance rate and improvement rate are computed. The acceptance means the perturbation is being accepted

by the system and the system state is being updated, whether the perturbation brings improvement to the system; while the

improvement means the perturbation does decrease the objective function value. In short, a perturbation bringing improvement

must be an accepted perturbation, yet an accepted perturbation is not necessarily bringing improvement to the system. We refer

to the experiment as a temperature cycle, where N perturbations are being implemented and the two mentioned rates are being170

computed at a fixed temperature.

T0 is first set by starting a temperature cycle with an initial guess of T0. If the acceptance rate is lower than the predefined

limit, say 98%, then increase the temperature, and vice versa. The goal is to find a T0 with a relatively high acceptance rate.

Then, Tmin is set by decreasing T0 exponentially until the predefined stopping criterion is met. It is clear, in our case, that if

more iterations are implemented, better realizations (realizations with lower objective function values) could be produced, yet175

it is again a compromise between a satisfactory destination and the computational cost.

We note that from the determination of T0, the total number of temperature cycles m (to anneal T0 to Tmin) is recorded.

Thus the total number of perturbations is estimated as L=mN . A continuous cooling schedule is then computed from T0,

Tmin and L. The temperature at Iteration l is computed as

Tl = T0 ·αlT for l = 0, · · · ,L− 1 (11)180

where αT is the attenuation factor of the system temperature, given as

αT = exp

(
ln

(
Tmin

T0

)
/(L− 1)

)
(12)

In parallel with the temperature annealing we also anneal the number of phases being perturbed in Fourier space, starting

with a relatively large numberN0 (say 5% to 20% of the total number of valid Fourier phases) and decreasing all the way down

to 1. The number of phases to be perturbed at Iteration l is computed by185

Nl =N0 ·αlN for l = 0, · · · ,L− 1 (13)

where αN is the attenuation factor with respect to the number of perturbed Fourier phases. It is computed as

αN = exp(− ln(N0)/(L− 1)) (14)
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The logic behind annealing the number perturbed phases is to render the perturbation have a more global impact initially

when the distance from the destination is relatively large, and decrease the impact of the perturbation gradually as the opti-190

mization process develops.

2.2.2 Starter Generation

PA requires a starting Gaussian random field with the prescribed spatial covariance, abbreviated as starter. Various methods

could be used to generate such a random field, e.g. fast Fourier transformation for regular grids (Wood and Chan, 1994; Wood,

1995; Ravalec et al., 2000), turning band simulation (Journel, 1974), or the Cholesky transformation of the covariance matrix.195

Considering the fact that the gauge observations used in this work cannot provide enough information to derive the spatial

covariance, the radar-based Gaussian field, i.e. the reference field Z?, is used instead to derive the covariance.

It should be noted that, if fast Fourier transformation (FFT) is used to generate the starter, the inherent periodic property of

FFT should be treated with care. Specifically, the simulation should be embedded in a larger domain. The original domain is

enlarged in all directions by a finite range, i.e. the range bringing the covariance function from the maximum to approaching-200

zero. If covariance models with asymptotic ranges (e.g. exponential, Matérn, Gaussian covariances, etc) are employed, the

extension in domain size could be significant (Chilès and Delfiner, 2012).

2.2.3 PA Main Cycle

The starting point of PA is a Gaussian random field ZK with the prescribed spatial covariance, as described in Section 2.2.2.

Here a little modification, in our case, is that the values at the observational locations are fixed by residual kriging, as indicated205

by the subscript “K”. In particular, the procedure of residual kriging is explained in the following (Step 6). The procedure of

the PA algorithm applied in this paper is specified as follows:

1. The discrete Fourier transform (DFT) of ZK is computed as

ZK = F{ZK} (15)

2. The system temperature Tl and the number of perturbed phases Nl at Iteration l are computed by Equation 11 and 13.210

3. Nl vectors (un,vn) are generated, where n= 0, · · · ,Nl− 1. un,vn are randomly drawn from the two discrete uniform

distributions [1, · · · ,U ′] and [1, · · · ,V ′], respectively, whereU ′,V ′ are the highest frequencies considered for perturbation

in x- and y-direction, respectively. Note that zero frequencies in both directions should be excluded from the perturbation.

One could use the entire frequency range or select a sub-area to impose the perturbation.

4. Nl phases θn are randomly drawn from the uniform distribution, [−π,π).215

5. The Fourier coefficients at the selected locations (un,vn) and the corresponding symmetrical locations are expressed as

ZK [un,vn] = an + jbn (16)

ZK [U −un,V − vn] = an− jbn (17)
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where U,V are the number of grid points in x- and y-direction, respectively (also the highest frequencies in both direc-

tions). These coefficients are then updated in terms of the Fourier phases using θn; while the corresponding amplitudes220

remain unchanged:

ZK [un,vn]←
√
a2n + b2n · (cos(θn) + j sin(θn)) (18)

ZK [U −un,V − vn]←
√
a2n + b2n · (cos(θn)− j sin(θn)) (19)

The perturbed Fourier transform is denoted as Z̃ . The corresponding perturbed spatial random field is obtained by the

inverse DFT:225

Z̃ = F−1{Z̃} (20)

6. Due to the perturbation, Z̃ no longer satisfies the point equality constraints (note the removal of the subscript “K”). Thus

kriging is applied for the residuals zk − Z̃(xk), where zk are the point equality constraints defined in Equation 5. The

results of kriging, r, are superimposed on Z̃:

Z̃K = Z̃ + r (21)230

As kriging is a geostatistical method that depends only on the configuration of the data points, the weight matrix of

individual grid point does not change with iterations. One needs to compute the weight matrices for all the grid points

only once. Thus residual kriging is cheap to use and causes almost no additional computational cost.

7. Z̃K is then subject to the objective function defined in Equation 9. If O(Z̃K)<O(ZK), the perturbation is accepted.

Otherwise, the perturbation is accepted with the probability:235

P = exp

(
O(ZK)−O(Z̃K)

Tl

)
(22)

8. If the perturbation is accepted, the system state is updated, namely ZK , ZK and O(ZK) are replaced by Z̃K , Z̃K and

O(Z̃K), respectively.

9. If the stopping criterion is met, stop the optimization and ZK is a realization in Gaussian space, satisfying the predefined

optimization criterion; otherwise, go to Step 2.240

2.3 Post-simulation

The Gaussian field ZK is transformed into a rainfall field by:

R=G−1 (Φ(ZK)) (23)

where Φ is the cumulative standard normal distribution function andG−1 is the inverse of the distribution function of surface

rainfall, as obtained in Section 2.1.1. The resultant R is a realization of the surface rainfall field.245
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3 Uncertainty of Radar-indicated Rainfall Pattern

The two datasets, gauge observations rk and the collocated radar quantiles uk, are supposed to have the same rankings, namely

large gauge observations should correspond to large quantiles, and vice versa. Yet it is not always the case, which reveals the

conflict of radar and gauge data. To quantify the conflict, we employ (the Spearman’s) rank correlation ρS that measures the

monotonic relationship of two variables: the closer ρS to 1, the more accordance (or less conflict) of radar and gauge data.250

The conflict of the two could be partially explained by the fact that weather radar is measuring at some distance above the

ground (a few hundred to more than a thousand meters aloft). It is therefore reasonable to suspect the correctness of comparing

the ground-based rain-gauge observations with the collocated radar data by assuming the vertical descent of the hydrometeors.

In fact, hydrometeors are very likely to be laterally advected during their descent by wind, which occurs quite frequently

concurrently with precipitation. To take the possible wind-induced displacement into account, the procedure described in Yan255

and Bárdossy (2019) is adopted. Here we recall the procedure briefly in three steps.

(1) A rank correlation matrix ρSij is generated by (first) shifting the original radar quantile map U with all the vectors defined

by a regular grid hij , i.e., locations of all the grid cells in hij and (then) calculating the rank correlation between gauge

observations and the collocated radar quantiles in the shifted map. Note that the radar quantile map shifted by vector hij

(a certain grid cell in hij) is denoted as Uij .260

Both hij and ρSij have the same spatial resolution as U . The center of hij is (0,0), with the corresponding entry in ρSij
denoted as ρS00, meaning that zero shift is imposed on U . The farther a grid cell is from the center, the larger shift is

imposed on U . One should limit the number of grid cells in hij depending on the radar measurement height.

(2) A probability matrix P ij is generated from the rank correlation matrix ρSij :

P ij =

0 for ρSij ≤ ρS00

H(ρSij) otherwise
(24)265

where H is a monotonic function, such as power function, exponential function or logarithmic function, etc. The first

derivative (dH/dx) matters, as a large dH/dx means that more weights are assigned to those displacement vectors (or

shifted fields) producing a higher rank correlation. Our choice of function H is simply: H(x) = x2.

(3) The probability matrix P ij is scaled to ensure that the sum of all entries equals 1:

P ij =
Pij∑
i

∑
j Pij

(25)270

P ij quantifies the uncertainty of the radar-indicated rainfall pattern by giving the probability of individual shifted quan-

tile fields, in analogy with a probability mass function. The logic behind it is that only those displacement vectors

increasing the accordance of radar and gauge data are accepted and given strong probability.
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The method described above is built on the assumption that the entire field is displaced by a single vector. The simplification

applies to regions of small- to meso-scales with relatively flat topography, where a uniform wind field can be assumed. The275

extent of the domain in this work is 19km×19km (see Section 4 for details), the selection of the extent is limited by the gauge

data availability. With this spatial extent, quite often we could find dozens of displacement vectors that bring up the concordance

of radar and gauge data. If gauge data accessibility is not the limiting factor, one could enlarge the extent, provided that the

resultant probability matrix has some pattern (not a random field).

There are two options to integrate the uncertainty of the radar-indicated rainfall pattern, i.e. the information carried by the280

probability matrix Pij , into the simulation.

The first option: the expectation of the shifted quantile fields is computed using the probability matrix, and then the corre-

sponding Gaussian field is computed, as given in Equation 26. The result is used as the reference field when applying the PA

algorithm.

Z? = Φ−1

∑
i

∑
j

Pij ·Uij

 (26)285

The second option: those (marginal-converted) shifted quantile fields, Φ−1(U ij), bearing a positive probability are consid-

ered as reference fields and the algorithm described in Section 2 is applied independently for all these reference fields. The

results are multiple realizations of the surface rainfall field with different references, denoted as Rij . The estimate of the sur-

face rainfall field (with the uncertainty of the radar-indicated rainfall pattern integrated) is obtained as the expectation of these

realizations:290

R̄=
∑
i

∑
j

Pij ·Rij (27)

Both options are capable of producing estimates of the surface rainfall field with the uncertainty of the radar-indicated

rainfall pattern integrated, yet the results are distinct, as presented in Section 5: Application.

4 Study Domain and Data

The study domain is located in Baden-Würtemberg in the southwest of Germany. As shown in Figure 2, it is a square domain295

with the side length of 19km. The domain is discretized to a 39×39 grid with the spatial resolution of 500m×500m. A gauge

network consisting of 12 pluviometers is available within the domain, as denoted by the red dots in Figure 2.

The radar data used in this study is the raw data with 5min temporal resolution, measured by Radar Türkheim, a C-band

radar operated by the German Weather Service (DWD). Radar Türkheim is located about 45km from the domain center, as

denoted by the red star in Figure 2. The raw data are subject to a processing chain consisting of (1) clutter removal (Gabella and300

Notarpietro, 2002); (2) attenuation correlation (Krämer and Verworn, 2008; Jacobi and Heistermann, 2016); (3) re-projection

from polar to Cartesian coordinates and (4) clip the square data for the study domain. All these quality control steps are operated

under the environment wradlib, an open-source library for weather radar data processing (Heistermann et al., 2013).
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Figure 2. The elevation map of Baden-Würtemberg with the study domain marked by the red square, the rain-gauges marked by the red dots

and the site of Radar Türkheim marked by the red star.

5 Application

We select a 30-min event to apply the algorithm of PA. The event is selected not only due to the relatively prominent rain305

intensity reflected by the rain-gauge data, but more importantly, the event is properly captured by a few rain-gauges unevenly

distributed in the domain of interest, as shown by the red dots on the left panel in Figure 3. From the figure, it is clearly seen

that the sampled quantiles (indicated by the text in cyan) cover the entire range [0,1]: not only the small or large ones, but the

sampled quantiles are more or less evenly distributed. One might have noticed that the smallest sampled quantile is 0.53. Yet,

in this case, u0 = 0.26 (the spatial intermittency) and the quantile value 0.53 corresponds to the rainfall value 0.28mm after310

the re-ordering.

The conflict of radar and gauge data is obviously reflected in Figure 3 (left), for example, the collocation of 4.20mm rainfall

with the quantile 0.99, in contrast with the collocation of 8.24mm rainfall with the quantile 0.94. The rank correlation of the

gauge observations and the collocated radar quantiles is 0.601, as labeled in the title of the figure. The distribution function of

the surface rainfall field based on the two original datasets is shown by the black line on the right panel in Figure 3.315

However, using the algorithm described in Section 3 to evaluate the uncertainty of the radar-indicated rainfall pattern, one

can obtain multiple distribution functions of surface rainfall, as shown by the greyish lines on the right panel in Figure 3. Note

that only the distribution functions associated with those shifted fields possessing a positive probability (as indicated by the

probability matrix) are shown in the figure.
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Figure 3. (Left) Original radar quantile map [−] for the 30-min event 20170504 13:20 - 13:50, with the rain-gauge observations [mm]

labeled in yellow and the collocated radar quantiles labeled in cyan. (Right) Distribution functions of surface rainfall: Black - original radar

map with zero displacement; Greyish - radar maps with displacement; Red - the weighted average of the greyish lines.

Figure 4. (Left) The expected quantile map [−], with the rain-gauge observations [mm] labeled in yellow and the collocated radar quantiles

labeled in cyan. (Right) The expected rainfall field [mm].

With these distribution functions, one can transform the corresponding shifted quantile fields into rainfall fields, and with the320

probability matrix, the expectation of these rainfall fields can be computed, as shown on the right panel in Figure 4. Also with

the probability matrix, one can compute the expectation of the shifted quantile fields, as shown on the left panel in Figure 4.

From the expected quantile map, a tangible improvement in terms of the concordance of radar and gauge data is observed: the

rank correlation increases from 0.601 to 0.769, as labeled in the title of Figure 3 and 4.

It is noteworthy that the data-configuration, used in this work, is not good enough to maximize the performance of the325

proposed methodology, as the distribution of the rain-gauges is relatively centered in the middle. Thus we have to select events
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whose storm center is relatively centered according to the radar map. To enlarge the applicability, it is recommended that rain-

gauges are uniformly distributed in the domain of interest. In addition to the distribution of the rain-gauges, as shown in the

following, the effect of conditioning to gauge observations is local (in consistency with the terminology “local constraints”);

hence, with a denser network of rain-gauges, a good performance of the methodology is more guaranteed.330

We open up two simulation sessions, depending on the different objective functions used when applying the PA algorithm.

In the first session, the objective function contains only the component field pattern: O(Z) = 1− ρZ,Z? . In the second ses-

sion, the component directional asymmetry comes into play and the objective function expressed in Equation 9 is employed,

where the relative weight of the component directional asymmetry w equals 0.5. Technically, for both simulation sessions, the

optimization process stops when the objective function falls below 0.05.335

5.1 Simulation Session I

We present an evolution in terms of the simulation strategy, where the algorithm of PA is applied differently in 3 stages:

(1) using the original quantile map as the reference;

(2) using the expected quantile map as the reference, i.e., integrating the uncertainty of the radar-indicated rainfall pattern

via Option 1 in Section 3;340

(3) simulating independently using those shifted quantile maps with a positive probability as the reference and computing

the expectation, i.e., integrating the uncertainty of the radar-indicated rainfall pattern via Option 2 in Section 3.

Stage 1, simulating rainfall fields, using the original quantile map as the reference, means the uncertainty of the radar-

indicated rainfall pattern is not integrated. Figure 5 shows the mean of 100 such realizations on the left and the corresponding

standard deviation map on the right. The standard deviation map reflects the variability of different realizations and the pixel345

values, collocated with the rain-gauges, are zeros, as marked by the white points in Figure 5 (right), which shows the fulfillment

of the point equality constraints and the local effect of conditioning to the gauge observations. And this local effect is reflected

in all the standard deviation maps shown in the following.

Stage 2, simulating rainfall fields, using the expected quantile map as the reference, integrates the uncertainty of the radar-

indicated rainfall pattern via the first option, as described in Section 3. Similarly, the mean of 100 such realizations and the350

corresponding standard deviation map are shown in Figure 6. Comparing Figure 5 and 6, one could observe the displacements

of the peak-regions in both the rainfall and the standard deviation maps. Compared to Figure 5, a visible reduction in the

standard deviation is observed in Figure 6, showing the reduced estimation uncertainty by integrating the uncertainty of the

radar-indicated rainfall pattern.

Stage 3 involves a simulation strategy that is slightly more complicated than before. The simulation is applied independently355

using the shifted quantile map associated with a positive probability as the reference, and the single simulation cycle is applied

to all the components possessing a positive probability. Finally, the expectation of these realizations is computed and termed the

expected realization, hereafter. Yet the computational cost to obtain such an expected realization is much higher, as multiple
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Figure 5. (Results Stage 1) Mean and standard deviation of 100 realizations [mm], obtained using the original quantile map as the reference.

Figure 6. (Results Stage 2) Mean and standard deviation of 100 realizations [mm], obtained using the expected quantile map as the reference.

realizations are required to make up an expected realization, see Table 1 for details. Similarly, the mean of 100 expected

realizations and the corresponding standard deviation map are shown in Figure 7. Comparing Figure 6 and 7, the positions of360

the peak-regions remain unchanged in both the rainfall and the standard deviation maps. Yet compared to Figure 6, the reduction

in the standard deviation is remarkable in Figure 7, showing the further reduction in terms of the estimation uncertainty.

In addition, the mean-field and the standard deviation map of the results from Stage 3 are much smoother compared to the

other alternatives shown previously. Figure 8 displays four randomly selected expected realizations to show the similarity of

different expected realizations and the smoothness of individual expected realizations.365
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Figure 7. (Results Stage 3) Mean and standard deviation of 100 expected realizations [mm].

Figure 8. (Results Stage 3) Four randomly selected expected realizations [mm].
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5.2 Simulation Session II

In the previous session, the objective function only contains the component field pattern. In this session, the component direc-

tional asymmetry (abbreviated as asymmetry hereafter) comes into play in the objective function. It should be noted that the

evaluation cost of the objective function in Session II is higher than that in Session I, and so does the time needed to generate

a single realization if the same stopping criterion is used (see Table 1 for details).370

We still adopt the three-stage evolution when applying the PA algorithm as in Simulation Session I. The differences between

realizations from Session I and Session II do exist, but are not that remarkable. Therefore, in the presentation of the results from

Session II, we omit the results from Stage 1 and 2 and only display the results from Stage 3 in Figure 9 and 10 (both panels

on the right of each figure). The corresponding results from Session I are presented on the left just for the sake of comparison

and identifying the effect of adding the component asymmetry in the objective function. Comparing the two mean-fields in375

Figure 9, the distinction consists in the peak-values: the two have similar estimates for the peak-values of the large rain cell,

yet different estimates for that of the small cell. As for the comparison of the standard deviation maps in Figure 10, a slight

reduction in the standard deviation of Session II can be observed.

Figure 9. Mean of 100 expected realizations [mm] from Session I (left) and Session II (right).

From the results shown in Figure 9 and 10, the effect of adding the component asymmetry in the objective function seems

to be minor, which is due to the fact that the two components (field pattern and asymmetry) share a special relationship: high380

similarity in terms of the pattern between the reference and the simulated field suggests high similarity in the asymmetry of the

two as well. Yet, it does not work in reverse.

To show the capability of the proposed method in terms of fulfilling the component asymmetry, the mean of 100 simulated

asymmetry functions is displayed in the middle in Figure 11, in comparison with the reference asymmetry function (the one

evaluated from the reference field) on the left. As for the analysis of the asymmetry function: first, it is a symmetrical function385

with respect to the origin (0,0), see the formula given in Equation 8; second, the value of each pixel is obtained by (a) shifting

17



Figure 10. Standard deviation of 100 expected realizations [mm] from Session I (left) and Session II (right).

Figure 11. (Left) Reference asymmetry function. (Middle and Right) Mean and standard deviation of 100 simulated asymmetry functions.

Unit: [−]

the simulated field by the coordinate of the pixel and then (b) evaluating Equation 8 for the intersection of the shifted and

the original field. This statistic could be computed more efficiently in Fourier space by generalizing the approach presented

in Marcotte (1996). As shown in Figure 11, the extremes of the asymmetry functions for both the reference and the mean

simulated ones approach ±0.3. If one computes the asymmetry function for a spatial field obeying a multivariate Gaussian390

distribution, where symmetric behavior of the field is assumed, the function value approaches zero.

As shown in Figure 11, the reference and the mean asymmetry are barely distinguishable. The standard deviation map,

displayed on the right, reveals the small variability between the simulated asymmetry functions. Note that the presented asym-

metry functions are evaluated from realizations of Stage 1. But a similar standard, in terms of the fulfillment of the component

asymmetry, can be achieved by all the other results from Session II.395
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It is worth mentioning that a trick is played to reduce the computational cost substantially at a fairly low cost of the estimation

quality. In Section 3, when using multiple shifted quantile fields to produce the expected realization, one should be aware that

these individuals have fairly different contribution to the final estimate. By analyzing the Lorenz curve of the contribution of

these individuals (as shown in Figure 12), i.e. the weights indicated by the probability matrix, one could see that the lowest

several weights contribute very little to the accumulated total. Specifically, the top 9 weights (out of 23) contribute to 90% of400

the accumulated total; the top 13 contribute to 95%; the top 18 contribute to 99% and the top 19 contribute to 99.5%. Being

slightly conservative, we have chosen to use the top 19 contributors to produce the expected realization. Note that the top 19

weights should be scaled, such that the sum of them equals 1. We have tested this trick (using 19 to represent 23) on the results

from Session I (Stage 3). As expected, the difference between the expected realizations, obtained with and without playing the

trick, is tiny: with the maximum difference 0.050mm; the minimum difference−0.058mm and the mean difference 0.001mm.405

The results, shown in Figure 9 and 10, are produced by using the trick and it helps in saving the computational cost, see Table 1

for details.

Figure 12. Lorenz curve of the contribution of the individual shifted field, where the x-axis denotes the cumulative share of population

ordered by contribution from the lowest to the highest and the y-axis denotes the cumulative share of contribution.

Table 1. Mean time consumption to generate a realization and an expected realization (with and without playing the trick).

Realization Expected Realization Expected Realization

(trick) (no trick)

Session I 59 sec 18.6 min 22.6 min

Session II 119 sec 37.6 min 45.6 min

The above is based on the performance of a normal laptop.
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6 Conclusions

The focus of this paper is to simulate rainfall fields conditioned on the local constraints imposed by the point-wise rain-

gauge observations and the global constraints imposed by the field measurements from weather radar. The innovation of this410

work comes in three aspects. First, separate the global and local constraints. The global characteristic of PA imparts it a

powerful methods in handling the global constraints. Thus PA is only used to deal with the global constraints and the local

ones are handed over to residual kriging. The separation of different constraints makes the best use of PA and avoids its

insufficiency in terms of the fulfillment of the local constraints. Second, extend the PA algorithm. Except for annealing the

system temperature, the number of perturbed phases is also annealed during the simulation process, making the algorithm415

work more globally at initial phases. The global influence of the perturbation decreases gradually at iterations as the number

of perturbed phases decreases. Third, integrate the uncertainty of the radar-indicated rainfall pattern by (A) simulating using

the expectation of multiple shifted fields as the reference or (B) applying the simulation independently using multiple shifted

fields as the reference and combining the individual realizations as the final estimate.

The proposed method is used to simulate the rainfall field for a 30-min-event. The algorithm of PA is applied using different420

scenarios: with and without integrating the uncertainty of the radar-indicated rainfall pattern; with different objective functions.

The capability of the proposed method in fulfilling the global constraints, both the field pattern and the directional asymmetry,

is demonstrated by all the results. Practically, the estimates, obtained by integrating the uncertainty of the radar-indicated

rainfall pattern, show a reduced estimation variability. And obvious displacements of the peak-regions are observed compared

to the estimates, obtained without integrating the uncertainty of the radar-indicated rainfall pattern. As for the two options425

to integrate the uncertainty of the radar-indicated rainfall pattern, (B) seems to be superior to (A) in terms of the substantial

reduction in the estimation variability and the smoothness of the final estimates. As for the two simulation sessions using

different objective functions, the impact of adding the component directional asymmetry in the objective function does exist,

but is not that prominent. This is due to the special relationship between the two global constraints: high similarity in the field

pattern is the sufficient condition for high similarity in the directional asymmetry function (although the inverse is not true).430

Yet, compared to the results using the objective function containing solely the component field pattern, a slight reduction in

the estimation variability is observed from the results using the objective function containing also the component directional

asymmetry.

Data availability. Four basic datasets required for simulating the 30-min rainfall event are available at http://doi.org/10.6084/m9.figshare.11515395.v1.

The other files or figures archived under this link are secondary and generated based on the four basic datasets. The displays of the input data435

are provided in the python script inputDisplay.py.
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