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Abstract. This study examines characteristics of extreme events based on a high-resolution precipitation dataset (5-minute 

temporal resolution, 1x1 km spatial resolution) over an area of 1824 km2 covering the catchment of the river Wupper, North 10 

Rhine-Westphalia, Germany. Extreme events were sampled by a Peak Over Threshold method using several sampling 

strategies, all based on selecting an average of three events per year. A simple identification- and tracking algorithm for rain 

cells based on intensity threshold and fitting of ellipsoids, is developed for the study. Extremes were selected based on 

maximum intensities for 15-minute, hourly and daily durations and described by a set of 17 variables. The spatio-temporal 

properties of the extreme events are explored by means of a principal component analysis (PCA) and a cluster analysis for 15 

these 17 variables. We found that these analyses enabled us to distinguish and characterise types of extreme events useful for 

urban hydrology applications. The PCA indicated between 5 and 9 dimensions in the extreme event characteristic data. The 

cluster analyses identified four rainfall types: convective extremes, frontal extremes, mixed very extreme events and other 

extreme events, the last group consisting of events that are less extreme than the other events. The result is useful for selecting 

events of particular interest when assessing performance of e.g. urban drainage systems. 20 

1 Introduction 

Urban hydrological models of high quality are a required tool to make cities more resilient to pluvial flooding and pollution 

management. A key input parameter when modelling urban drainage systems is rainfall (Berndtsson and Niemczynowicz, 

1988; Schilling, 1991; Thorndahl et al., 2008; Vaes et al., 2001). A common way is to use a model including a rainfall-runoff 

component that uses rainfall input as either a long-term rainfall series or a design storm (Butler and Davies, 2011; Willems et 25 

al., 2012). For some applications rainfall data must be of high spatial and temporal resolution (Berndtsson and Niemczynowicz, 

1988; Einfalt et al., 2004; Ochoa-Rodriguez et al., 2015; Schilling, 1991). Schilling (1991) and Einfalt et al. (2004) have 

proposed resolution requirements of 1-5 minute temporal resolution and 1x1 kilometre spatial resolution. For planning and 

design purposes these reviews suggest that at least 10-20 years of data should be available. 

 30 
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Inference on properties of rainfall can be based upon two types of data: rain gauge and radar data. Both types of data have 

significant strengths and weaknesses. Rain gauge data require less data treatment compared to radar data, and measurements 

are often available for longer time periods. Rain gauges measure rainfall at ground level, which is the rainfall of interest in 

hydrological modelling (Thorndahl et al., 2016), and often have a temporal resolution of around 1 minute (Einfalt et al., 2004). 

A major weakness about rain gauge data is the lack of information on rainfall movement (mainly for convective events), spatial 5 

variation and coverage. Radar data, on the other hand, gives information about rainfall movement and spatial coverage 

(Thorndahl et al., 2016), and have significantly improved our understanding of how precipitation is formed (Collier, 1989). 

The weaknesses of radar data is that it is an indirect remote sensing measurement. Here rainfall intensities are inferred based 

on reflectivity with often very high uncertainties for high rainfall intensities. Furthermore, radar data is based on an 

instantaneous scan of volume high above ground that is then used to represent the average rainfall intensity during the entire 10 

sampling time. This can lead to aggregation errors and might not reflect the rainfall at ground level (Einfalt et al., 2004).  

 

Radar products have more recently become available in spatial and temporal resolution fulfilling the resolution requirement in 

urban hydrology, and has within the last 1-2 decades become more frequently used in urban hydrology along with increasing 

length of recording period (Thorndahl et al., 2016), in particular for online applications (Pedersen et al., 2016). However, a 15 

few datasets now have sufficient lengths and with sufficient tracking of software and hardware changes to the recordings to 

allow construction of ground-truth recordings of more than 10 years of continuous recordings. Such series have shown to be 

useful in showcasing spatial variability of return levels or other extreme event characteristics at grid cells level (e.g. 

Goudenhoofdt et al., 2017; Panziera et al., 2016, 2018). However, few studies have studied extreme event characteristics over 

the spatial extent of the events, and these are often limited to analysing area and intensity (Armon et al., 2020; Hamidi et al., 20 

2017; Thorndahl et al., 2014). Here we apply a broad range of spatio-temporal characteristics in order to develop an automatic 

classification scheme of different event types and provide a better understanding of actual precipitation processes. A improved 

typology of extreme events may allow classification schemes that improve now-casting of precipitation as shown in e.g. Olsson 

et al. (2015) and regional models with better predictive capabilities as shown for Denmark in Madsen et al. (2017).  

 25 

This study aims to quantify and describe spatial rainfall as a function of temporal and spatial dynamics, rainfall types and 

seasonal variation. A principal component analysis and clustering algorithm are applied to analyse selected event-descriptive 

variables and their internal correlation. The study describes rainfall extremes using spatio-temporal variables, in order to 

classify events according to meteorological origin and implication on urban drainage response.  
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2 Data and case area 

2.1 Case area  

The case area is a 38x48km rectangle (1824 km2) including the catchment of the river Wupper in North Rhine-Westphalia, 

Germany. It stretches from the Rhine lowland in southwest to the more hilly area in east, with steep valleys around the river 

Wupper. The elevation varies from 31 meters to 483 meters above sea level (see Figure 1). The mean annual precipitation in 5 

the area ranges from 770 mm to 1352 mm due to strong orographic effects with lowest precipitation in low lying areas and 

most precipitation in the highest elevated areas. Climatologically the area is close to the Atlantic Ocean. The prevailing weather 

conditions are warm and humid air coming from west into the Bergisches Land. The Bergisches Land is the first major barrier 

and causes orographic rainfall on the western side. In general the climate is mild with a wet and warm summer from May to 

September. Summer precipitation is increasingly dominated by convective thunderstorms while winter precipitation are caused 10 

by frontal events from a western direction (DWD, 2018; Klima.org, 2018; LANUV, 2018). Due in part to high urbanisation 

(city of Wuppertal has approximately 350.000 inhabitants and the whole area about 900.000), small-scale but highly intense 

convective rainfall may cause flash floods with significant damage potential. This was demonstrated on 29 May, 01 and 09 of 

June 2018, where such storms caused substantial flooding e.g. in the city centre of Wuppertal (and other municipalities as 

well) damaging buildings as well as significant infrastructure such as university buildings, gas stations, and a shopping centre. 15 

Nearly 900 action points from fire brigade, technical services and Wupperverband (The utility company of the area) were 

recorded and the reported damage sum in Wuppertal was about 1 Mio. € (the estimated total damage sum is about 7 Mio € for 

Wuppertal) (Wuppertal.de, 2018). Hence there is a recognised need for better understanding of spatio-temporal characteristics 

of extreme events in order to predict their occurrence and impact over the area.  

2.2 Data 20 

Radar data from the Deutsche Wetterdienst (DWD) Doppler C-band radar network was used in this study (5-minute temporal 

resolution, 1x1 km spatial resolution). The dataset comes from the Wupperverband and spans 13 years, from the 1st of 

November 2000 to the 1st of November 2013. The case area is within the range of the Essen radar and partly within the range 

of the Flechtdorf and Neuheilenbach radars (see Figure 1). The dataset is a weighted composition of the three radars (Einfalt 

and Lobbrecht, 2011). 25 

 

The dataset is post processed by hydro & meteo GmbH on behalf of the Wupperverband. Data is corrected with respect to 

blockage, clutter and attenuation. The reflectivity (Z) rainfall intensity (R) relationship is depended on the reflectivity, and can 

for convective rainfall be described as 𝑍 ൌ 256 ⋅ 𝑅ଵ.ସଶ. In the Wupperverband district the radar data is adjusted to rain gauge 

data on a daily basis, with a correction factor per gauge in a 1 km correction grid using inverse distance weighting. Rain gauge 30 

data is beforehand visually inspected and compared to nearby gauges in order to secure the quality. There are 60 rain gauges 

within the area of the Wupperverband. The post processed dataset have less than 5 % difference from annual ground truth 
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(Frerk et al., 2012). The probability for a difference of more than 5 mm between the corrected dataset and independent stations 

(stations not used for radar data adjustment) is 1.4 cases per station per year. The probability of a difference above 10 mm is 

0.1 cases per station per year (for the methodology, see Einfalt and Frerk, 2011). An analysis of the first 10 years of data shows 

that there is an underestimation of extreme events for short time steps, which is reduced for larger aggregation time steps. The 

underestimation for a 10 km2 pilot area were ranging from approximately 30% (5 minute time step) to 0% (daily time step) 5 

(Einfalt and Scheibel, 2015). 

3 Methodology 

3.1 Extreme events 

Extreme events are identified based on time series dataset and defined based on a Peak Over Threshold method (Coles, 2001). 

A Type II censoring is applied with a prefixed number of 39 extreme events, equal to an average of 3 events per year (Mikkelsen 10 

et al., 1995). Three types of extreme events are considered, 15-minute, 1-hour and 24-hour extreme events, based on the 

maximum average intensity for 15 minute, 1 hour or 24 hours respectively. The different temporal resolutions are selected to 

understand both convective (shorter temporal scale) and frontal (longer temporal scale) properties of extreme events. 

Convective events are high in intensity and often very local events develop in warm temperatures, whereas frontal events are 

spatially large events with large event depth and duration but often lower intensities than convective events (Doswell et al., 15 

2005). While 1-hour and 24-hour extreme events are commonly sampled to understand differences between convective and 

frontal activity, 15-minute extreme events are chosen to understand the difference between hourly and sub-hourly extremes, 

as datasets are often not accessible in sub-hourly resolution with sufficient record length. 

3.2 Spatial dependence in sampling of extreme events 

Typical extreme event definitions are based on time series of point data. To our knowledge there is no generally applied 20 

procedure to sample extreme events from multi-site or areal measurements such as radar data. Based on the time series dataset 

we examine four spatial scales to identify rain events in order to determine the number of grid cells that should be considered 

when selecting extreme events for further analyses. All methods identify the number of rain events in the data period, average 

length of rain events, average maximum number of grid cells registering each event, and seasonal distribution of rain events. 

The methods are suggested to avoid a subjective selection of extreme events for analysis. Independent of the number of grid 25 

cells used in the methods, the sampled extreme events are all analysed based on the full gridded dataset of the case area. The 

method therefore only determines which events that are analysed. The sampling strategies (SS) are listed below in order of 

increasing number of grid cells used in the selection process: 

SS1. Sampling from 1 grid cell 

SS2. Sampling from 5 grid cells (area of approximately 10x8km) 30 

SS3. Sampling from half of the case area 38x24km (every ninth grid cell) 
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SS4. Sampling from the entire case area 38x48km (every ninth cell) 

The strategies correspond to using between one and 187 cells out of the 1824 cells when selecting the extreme events. The 

spatial extend of each of the sampling strategies are indicated in Figure 2. 

 

SS1, Sampling from 1 grid cell 5 

The simplest sampling strategy is choosing one grid cell from which rain events are identified. In this case a grid cell in the 

middle of the catchment is chosen. Rain events separated by dry periods less than 24 hours apart are aggregated to one event 

in accordance with (Madsen et al., 2002, 2009). Rainfall intensities below 1mm/hr is considered dry. 

 

SS2, Sampling from 5 grid cells 10 

The second sampling strategy considers 5 grid cells in a spatially small area on the same side on the mountain as the 

predominant westerly wind direction. The spatial area of the sampling method represents a small typical urban catchment, the 

locations of rain gauges in a city or the size of a single grid cell in most climate models. Precipitation series from the five grid 

cells are merged into a combined precipitation series. Precipitation occurs when at least one of the locations measures rainfall 

and stops when all locations measures no rainfall (drizzle threshold of 1mm/hr). Events are aggregated using the same approach 15 

as when sampling from one grid cell (24 hour dry period).  

 

SS3, Sampling from half of the case area (every ninth grid cell) 

The third sampling strategy for rain events considers a larger part of the catchment. Here half of the catchment is considered, 

with a total size of 38x24 km. Every ninth grid cell in this area is selected, yielding a selection of 104 grid cells. Precipitation 20 

events are defined using the same approach as when sampling from 5 grid cells. 

 

SS4, Sampling from the entire case area (every ninth grid cell) 

The fourth sampling strategy concerns the entire catchment. Every ninth grid cell is selected and precipitation time series are 

merged with a 24-hour dry period between independent events. A total of 187 grid cells are considered.  25 

3.3 Data analysis 

3.3.1 Spatial variation 

Extreme events from five independent grid cells are sampled with SS1 to clarify how the change of the grid cell used in SS1 

impacts which extreme events are sampled. The grid cell from SS1 is used as a reference and compared to the four remaining 

grid cells from SS2 (see Figure 2) to identify the small-scale variability in sampled extreme events. All four grid cells are 30 

approximately 5 km from the reference grid cell. The extreme events sampled with SS1 for the five grid cells are compared 

calculating the number of concurrent events using the method outlined in section 3.3.3. 
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3.3.2 Seasonal variation 

The seasonal variation of occurrence of extreme events are analysed for 15-minute, 1-hour and 24-hour extreme events. 

Extreme events are sampled using SS1, but all of the five grid cells included in SS2 are analysed separately to test for local 

variations in the climate (see Figure 2). The analysis is based on four seasons: winter (December-February), spring (March-

May), summer (June-August) and fall (September-November).  5 

3.3.3 Spatial correlation 

The spatial correlation between 4950 pairs of grid cells (100 randomly selected grid cells) is calculated, applying the framework 

of spatial correlating structures by Mikkelsen et al. (1996). The spatial correlation is not calculated for all grid cells, as the 

correlation between neighbouring cells is very high and the benefit does not match the extra computational effort. The method 

calculates the spatial correlation by estimating the correlation of extreme events that are meteorologically dependent. The 10 

unconditional correlation coefficient ρ between a pair of grid cells (A and B) is calculated by identifying concurrent events. If 

it is assumed that the start (ts) and end (te) times of all events are known, concurrence between the i'th event at grid cell A, ZAi 

and the j'th event at grid cell B, ZBj is defined as: 

൛𝑍஺௜, 𝑍஻௝ൟ: ቂ𝑡௦௜ െ
ଵ

ଶ
∆𝑡, 𝑡௘௜ ൅

ଵ

ଶ
∆𝑡ቃ

஺
∩ ቂ𝑡௦௝ െ

ଵ

ଶ
∆𝑡, 𝑡௘௝ ൅

ଵ

ଶ
∆𝑡ቃ

஻
്⊘              (1) 

where Δt is a lag time introduced to ensure that events can be concurrent events though travelling time means that these events 15 

do not overlap in time. Δt was in this study set to 11 hours equal to the Δt used in Gregersen et al. (2013).  Based on the sample 

of concurrent events and the sample of not concurrent events in a pair of grid cells, the unconditional covariance is estimated 

as: 

𝐶𝑜𝑣ሼ𝑍஺, 𝑍஻ሽ ൌ 𝐶𝑜𝑣൛𝐸ሼ𝑍஺|Uሽ, 𝐸ሼ𝑍஻|𝑈ሽൟ ൅ 𝐸൛𝐶𝑜𝑣ሼ𝑍஺, 𝑍஻|𝑈ሽൟ              (2) 

where U is a stochastic variable which has the value of 1 for concurrent events and otherwise 0. 20 

Given by the definition of 𝐶𝑜𝑣൛𝐸ሼ𝑍஺|Uሽ, 𝐸ሼ𝑍஻|𝑈ሽൟ and 𝐸൛𝐶𝑜𝑣ሼ𝑍஺, 𝑍஻|𝑈ሽൟ in Mikkelsen et al. (1996), the unconditional 

correlation coefficient ρ can now be estimated by dividing the unconditional covariance with the standard deviation for the 

two grid cells. Following the procedure proposed by Gregersen et al. (2013) the data is hereafter divided into bins based on 

distance between stations and the average ρ for each bin is calculated in order to minimise noise in the data set. An exponential 

function is fitted to data, relating the distance between a pair of grid cells with the unconditional correlation coefficient ρ. The 25 

e-folding distance is then found as the distance where the unconditional correlation have decreased to 1/e, based on the fitted 

exponential function (Gregersen et al., 2013). 

3.4 Characterisation of events 

The three sets of 39 extreme events are characterised by 17 variables chosen to describe a variety of event properties (see Table 

1); these can be further aggregated into six categories: Duration, intensity, wet area coverage, depth, rain cell properties and 30 

movement. Rain cell properties and movement are described with a simple rain cell identification and tracking algorithm as 
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described below. The analysis to characterise the events are done considering the entire case area, analysing the gridded dataset 

in 5-min resolution for all timesteps covered by in the event. 

3.4.1 Rain cell identification 

Rain cells are identified in each time step by assigning an intensity threshold and an areal threshold. The intensity threshold is 

set to 25% of the maximum 5-minute intensity for the given event with a minimum threshold of 7 mm h-1. The areal threshold 5 

is set to a minimum coverage of 10 km2. The thresholds are set to align with well-known cell identification and tracking 

algorithms (Dixon and Wiener, 1993; Handwerker, 2002; Kyznarová and Novák, 2009; Peleg and Morin, 2012). The intensity 

threshold is chosen to be event varying to distinguish between different rain cell types (e.g. convective and front cells) and 

secure a high threshold for all events which result in a more stable tracking of a clear cell centre (Dixon and Wiener, 1993). 

Rain cells with an area below the areal threshold are disregarded to avoid noise in the overall tracking from multiple small 10 

cells (Dixon and Wiener, 1993). An ellipse is fitted to each of the identified rain cells, with the coordinates for the centroid, 

length of the axis and orientation in degrees between major axis and east-axis (Belachsen et al., 2017; Peleg and Morin, 2012).  

3.4.2 Rain cell tracking 

Various complex rain cell tracking algorithms can be found in the literature (Dixon and Wiener, 1993; Handwerker, 2002; 

Kyznarová and Novák, 2009). For describing the overall moving direction and velocity of each rain event this study has 15 

developed a simple tracking algorithm. Rain cell movement is recorded by linking the identified rain cells in each time step 

together in a simple tracking algorithm based on the position of the centroid. Tracking is based on the moving direction and 

velocity from last time step, which is used to predict the approximate position of the rain cell in the next time step. The rain 

cell with the centroid closest to the predicted position of the rain cells centroid is linked to the rain cell in the previous time 

step with no further evaluation of the fit. A maximum distance of 7.5 km, corresponding to a moving velocity of 25 m s-1, from 20 

the predicted position of the rain cell to the linked rain cell is applied. For new rain cells, the position of the rain cell in time 

step one is the predicted position of the rain cell in next time step. The tracking algorithm manages birth, tracking and death 

of rain cells. If splitting of a rain cell occurs, the algorithm will treat it as continuous tracking of the rain cell and a birth of a 

new rain cell. In case of merging of two rain cells, the algorithm will classify it a death of one rain cell and continue tracking 

of the other rain cell.  25 

3.5 Statistical analyses 

All statistical analyses are performed using normalised data, i.e. a transformation to ensure mean zero and variance one. All 

analyses are carried out in R using the build-in R Stats Package version 3.4.1 and cluster package 2.0.7-1 (Maechler et al., 

2019). 

https://doi.org/10.5194/hess-2020-397
Preprint. Discussion started: 1 September 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

3.5.1 Principal component analysis 

Principal Component Analysis (PCA) is used to determine the number of dimensions necessary to describe a dataset; here the 

number of the 17 variables used to characterize the events as described in Section 3.4 Characterisation of events. The 

eigenvector with the ith largest eigenvalue (λi) is noted the ith principal axis, where PCi represent the projection of data on the 

ith principal axis (Morrison, 1967). The percentage of the variance, which PCi describes, is calculated as the percentage of the 5 

sum of the eigenvalues based on the ith eigenvalue (Morrison, 1967).  

 

Two tests are applied to determine the number of dimensions necessary to describe data. The first test is an approximate test 

to estimate the number of significant PC’s based on the magnitude of the eigenvalues. The hypothesis tested is that the last 

k+1 to m eigenvalues are similar and therefore non-significant, where m is the total number of eigenvalues. The test is described 10 

in Lawley and Maxwell (1963) and Anderson (1984) as: 

𝐻଴: 𝜆ଵ ൒ ⋯ ൒ 𝜆௞ ൒ 𝜆௞ାଵ ൌ ⋯ ൌ 𝜆௠                 (3) 

The test statistic is defined as: 

𝑧ଶ ൌ െ𝑛 ∗ ln ቀ
∏ ఒ೔

೘
೔సೖశభ

ఒ෡೘షೖ ቁ                    (4) 

where 𝜆መ is defined as: 15 

𝜆መ ൌ  ∑ 𝜆/ሺ𝑚 െ 𝑘ሻ௠
௜ୀ௞ାଵ                     (5) 

 

The second test estimates the number of effective spatial degrees of freedom based on the eigenvalues and was proposed by 

Bretherton et al., (1999) as: 

𝑁௘௙௙ ൌ
൫∑ ఒ೔ 

೘
೔సభ ൯

మ

∑ ఒ೔ 
మ೘

೔సభ
                    (6) 20 

3.5.2 Cluster analysis 

Clustering is performed on the dataset to identify similarities between the events based on all variables. The K-means clustering 

algorithm presented by Hartigan (1975) and Hartigan and Wong (1979) is selected as partitioning clustering method. If l(i) 

describes the cluster where the event i is contained and l represents any cluster then D[i,l(i)] denotes the Euclidean distance 

between event i and cluster centre l(i) and similarly D[i,l] denotes the Euclidean distance between event i and the centre of 25 

any other cluster. Reallocation of events to another cluster is done if it decreases the error. 
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4 Results 

4.1 Spatial dependence in sampling of extreme events 

There is a relatively small decrease in number of events when increasing the number of grid cells considered in the sampling 

strategy. The largest decrease in number of events is found between SS1 (1 grid cells) and SS2 (5 grid cells), while a smaller 

decrease is found between SS2 and SS3/SS4 (half case area/full case area) (Table 2). In this study a drizzle threshold of 1 5 

mm/hr is applied, considering intensities below this threshold dry. If this threshold was not applied, and all grid cells considered 

should be completely without rainfall to separate events, a quite distinct reduction in number of events would be the case 

between SS2 and SS3/SS4. Not applying the drizzle threshold and considering more grid cells would result in meteorological 

independent events to be merged. The average event length increases with increasing number of grid cells considered, as a 

larger period of the time where an event moves over the case area is detected. Events which are merged when considering 10 

more grid cells are especially summer events, as the proportion of summer events is most affected by the increase in considered 

grid cells (Table 2).  The relatively small decrease in number of events, when considering an increasing number of grid cells, 

indicates that in a case area of this size all grid cells detect almost the same pool of events. From this, using SS1 for sampling 

extreme events seems valid for a case area of this size. A further advantage with SS1 is then the ability to use the theories for 

extreme precipitation developed for point measurements. The disadvantage of using SS1 as sampling strategy is that the 15 

method cannot identify the entire duration an event moves through the case area and that the true peak intensity of the event is 

often not found in the sampling point used to select the events. In order to accommodate for this a sampling strategy considering 

the entire case area must be used. To consider a larger area when sampling extreme events gridded data is needed. Here a 

spatial definition can be used to outline events, e.g. as done in various tracking algorithms, but this method gives a very 

different event definition from the one used for rain gauge data. In order to use the knowledge about extreme events from rain 20 

gauge data and be able to compare the results obtained to studies using rain gauge data, SS1 is chosen as the sampling strategy 

for this study. 

4.2 Data analysis 

4.2.1 Spatial variation 

The spatial variation in which extreme events are sampled are largest for 15-minute extremes and smallest for 24-hour extremes 25 

(see Table 3). When using SS1 the number of concurrent events between the reference cell (black, Figure 2) and the four 

surrounding grid cells (grey filled, Figure 2) increases with increasing sampling duration. Only approximately 47% for the 15-

minute events and 55% of the 1-hour extreme events are the same events for the four surrounding grid cells when comparing 

to the reference grid cell, while 80% of the 24-hour extreme events are the same (Table 3). This indicates a more localised 

spatial extent with lower sampling duration. The spatial variation shows that the localised structure of 15-min and 1-hour 30 

events results in a large differences in the sampled extreme events. A lower threshold could result in larger similarities in 

sampled extreme events between grid cells as the pool of event sampled from is very similar for all grid cells (see section 4.1 
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Spatial dependence in sampling of extreme events). It is believed that the most severe extreme events in the case area is 

sampled for all grid cells, even though the ranking could be different between the grid cells. While the pool of events to select 

extreme events from is very similar for the five analysed grid cells (see section 4.1 Spatial dependence in sampling of extreme 

events) the selected extreme events varies depended on how localised the sampled extreme events are. Samplings strategies 

were suggested based on the time series dataset for a better comparison with rain gauge data and SS1 was selected for further 5 

analysis as the best of the proposed sampling strategies. Still it is clear from the spatial variation that the selected grid cell has 

a large impact on which extreme event is sampled, increasing with decreasing event duration. Despite SS1 being the best 

sampling strategy using the method and statistics from rain gauge data, this strategy does not sample all events in the case area 

with intensities above a certain threshold and might not have the right composition of types of extreme events. Another 

approach could be to sample extreme events from each grid cells in the case area, as shown in (Goudenhoofdt et al., 2017; 10 

Panziera et al., 2018), but these papers do not propose a spatial definition of independent events and merging of non-

independent events in order to analyse spatio-temporal characteristics of events as proposed in this article. Other articles have 

suggested different methods to sample extreme events from gridded data, with no methods being similar and with very different 

definition of extremes (Armon et al., 2020; Hamidi et al., 2017; Panziera et al., 2016; Thorndahl et al., 2014). Common for the 

proposed event sampling strategies in these articles is a difficulty in defining the beginning and end of events, and no 15 

methodology to define a suitable number of events sampled or the extremity of the sampled events. Many papers have used 

various ways of event tracking (e.g. Denoeux et al., 1991; Kyznarová and Novák, 2009; Peleg and Morin, 2012). Tracking 

algorithms gives a clear definition of beginning and end of events, but lacks a methodology for extremity and suitable number 

of events to sample. This indicates that more work is needed in defining a methodology for sampling extreme events with a 

common sampling strategy and definition of extremity as known from rain gauge data in terms of Annual Maximum, Peak-20 

over-threshold and return periods.  

4.2.2 Seasonal variation 

The seasonal variation of occurrence of extreme events for each of the five grid cells used in SS2 can be seen in Figure 3. 

There is very little variation between the five grid cells in seasonal variation in occurrence of sampled extreme events. Between 

types of extreme events the difference in seasonal occurrence of extreme events is largest between 1-hour and 24-hour extreme 25 

events, and quite similar between 15-minute and 1-hour extreme events. 15-minute and 1-hour extreme events almost only 

occur in the summer while 24-hour extreme events are more uniformly distributed over the year. This corresponds well with 

the seasonal difference in precipitation in the area (ExUS, 2010; Quirmbach et al., 2012) and the expectance of differences in 

seasonal variation between different event types, convective vs. front events as shown in e.g. (Gregersen et al., 2013). 

4.2.3 Spatial correlation 30 

The spatial correlations calculated between 4590 pairs of grid cells for 15-minute, 1-hour and 24-hour extreme events are 

shown in Figure 4. The spatial correlation decreases with increasing separation distances between pairs of grid cells. The 
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spatial correlation for 15-minute and 1-hour extreme events decreases faster with distance than for the 24-hour extreme events 

and the 15-minute extreme events faster than the 1-hour extreme events. This indicates that 15-minute and 1-hour extreme 

events are more localised and small-structured events while the 24-hour extreme events are spatially larger events. This 

corresponds well with the results from Peleg et al. (2013). From the fitted exponential functions, the e-folding distances are 

calculated to be 5.7, 9.0 and 22.2 km for 15-min, 1-hour and 24-hour extreme events, respectively. Several studies have 5 

calculated the spatial correlation based on rain gauge data from a dense network of rain gauges around the world (e.g. Gregersen 

et al., 2013; Mandapaka and Qin, 2013; Peleg et al., 2013; Villarini et al., 2008). The reported results vary as a function of the 

local conditions, including climatic area, distances between rain gauges, spatial extent, sample size etc. Besides varying 

conditions these studies show 1-hour e-folding distances which are well aligned with the 1-hour e-folding distance in this 

study, except for one study (Villarini et al., 2008) which in general reported longer e-folding distances. The 24-hour e-folding 10 

distance in this study is in general shorter than what is found in other studies. Many of the studies have a small study area and 

few data points with long distances between. This increases the uncertainty of the estimated values, which could be the reason 

for the difference between the e-folding distance in this and other studies. The e-folding distance for 24-hour extreme events 

in this study is calculated based on grid points where large bins of data even for long separation distances are available. The 

e-folding distance of 22.2 km is less than half of the spatially extent of the case area. Another reasoning for shorter e-folding 15 

distances in this study could be that it focuses only on extreme events, while other studies calculates the spatial correlation for 

all events. Gregersen et al. (2013) is the only other study focusing solely on extreme events. Here the 1-hour e-folding distance 

is shorter (5 km vs. 9.0 km) and the 24-hour e-folding distance longer (37 km vs. 22.2 km) compared to this study, but the 

results show similar orders of magnitude. The differences between the study of Gregersen et al. (2013) and this study could 

perhaps be assigned to the limitations of using rain gauges or differences between a predominantly coastal climate and a more 20 

continental climate. Two studies identify spatial correlation for sub-hourly extremes; Peleg et al. (2013) calculate correlation 

distances of 6 and 9 km for 10-minute and 30-minute events respectively, while Villarini et al. (2008) get a correlation distance 

of approximately 20km for 15-minute events.  

4.3 Event characterisation 

Using sampling strategy SS1 15-minute, 1-hour and 24-hour extreme events are sampled. The sampled extreme events are 25 

described by the chosen 17 variables in the event analysis using the dataset within the case area illustrated in Figure 1 (left). 

The data for all sampled extreme events are shown in the supplementary material (Table A, Table B and Table C). For the 39 

sampled extreme events for each of the three event sampling durations, the 15-min events consists of 28 summer events (and 

11 non-summer events), the 1-hour event of 27 summer events and the 24-hour events of only 9 summer events. Differences 

between variables describing 1-hour and 24-hour extreme events are in particular pronounced for the variables Duration, 30 

Maximum 15 minute intensity and Maximum depth, which can be related to the differences between convective events and 

events within frontal systems. Differences between 15-minute and 1-hour extremes are small when comparing the 17 chosen 

variables which can be explained by the large overlap of 27 events sampled as both 15-min and 1-hour events. Difference 
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between 15-minute and 1-hour events are found in variables such as Ratio 15min and Ratio depth which indicates a larger 

variability within 15-minute events than 1-hour events. Ten events is sampled as both 15-minute, 1-hour and 24-hour extreme 

events; these are listed in Table 4. The results from the event characterisation, in relation with the results from the seasonal 

variation and spatial correlation indicate that the events sampled are representative for extreme events over the year in the area. 

The study focuses on properties of precipitation only and hence does not include e.g. temperature or atmospheric pressure. 5 

Such variables might be relevant as shown by (e.g. Lochbihler et al., 2017; Peleg et al., 2018), in particular if the purpose is to 

do simulations with a weather generator by conditioning it by the current state of the atmosphere. 

4.4 Statistical analyses 

4.4.1 Principal component analysis 

The PCA is calculated using the aggregated dataset of 15-minute, 1-hour and 24-hour extreme events. The combined dataset 10 

is normalised before the calculation of the PCA. In Table 5 the weighted composition of variables in each of the first nine PCs 

can be seen. PC1 and PC2 are influenced by most of the variables describing the means of the events. PC1 is positively 

influenced by variables such as Duration, Max depth and Mean cell lifetime and negatively influenced by Max 15min intensity, 

Max 1hr intensity, Ratio 15min and number of cells. PC2 is mostly influenced by Max 24hr intensity and the depth variables. 

PC3 can be summarised as the interaction between movement and spatial extent, positively influenced by Duration, and 15 

negatively by Mean velocity, Mean wet area and Max cell lifetime. PC4 describes the movement of the rain cells in the events 

and is mostly influenced by Standard deviation of direction and Mean direction. The two first PCs explain 53% of the total 

variance and the first nine PCs should be considered if 95% of the variance must be explained. Based on the eigenvalues 14 

PCs are significant when using the approximate test in Eq. (3-5). The alternative test suggests that there are 5.6 effective PCs. 

As such, five to nine dimensions should be, and up to 14 dimensions could be, considered in order to describe the variability 20 

of the events when considering both 1-hour and 24-hour extreme events.   

 

When projecting the 15-minute, 1-hour and 24-hour events into the two first PCs a clear clustering can be seen, with 15-minute 

and 1-hour extreme events as one cluster and 24-hour extreme events as another cluster, while there is no distinct difference 

between 15-minute and 1-hour extreme events (Figure 5, left). The distinction between the two clusters is determined by the 25 

PC1, where the 24-hour events have larger positive values than the 15-minute and 1-hour events. This indicates that the 

observed differences between convection dominated (15-minute and 1-hour) and front system (24-hour) extreme events can 

be described by scaling across the variables important for PC1. PC2 show a scaling in extremity with increasing value. When 

the combined dataset of extreme events is projected into PC1 and PC3, four 24-hour events are distinct from the rest of the 

events with very negative PC3 values. These events have short durations and large mean wet area as well as many rain cells 30 

and long maximum cell lifetime, together resulting in a negative PC3 value.   
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The seasonal variation of the sampled extreme events visualised by the two first PCs can be seen in Figure 6. A distinction 

between summer and non-summer events is seen, reflecting the difference in the seasonal variation between convection 

dominated (15-minute and 1-hour) and front system (24-hour) extreme events. From the results of the PCA it is clear that PC1 

describes the difference between the two main types of extreme events, PC2 the extremity and that PC3 and onwards mostly 

describes very specific features about few events (Table 5). It is furthermore seen that all variables helps describing the 5 

variability in the events and none are insignificant.  

4.4.2 Cluster analysis 

The K-means clustering algorithm is performed with a predefined number of two and four clusters based on the outcome of 

the PCA (Figure 7). Two clusters was selected to evaluate if the selected variables was able to distinguish between convective 

and front system events. The two clusters show a distinction between 15-minute and 1-hour events in one cluster and 24-hour 10 

extreme events (Figure 7 left). The first cluster primarily consist of 24-hour extreme events with few 15-minute and 1-hour 

extreme events and opposite in the second cluster. Dividing the data into three clusters separated the two most extreme events 

(top left corner in Figure 7) into a separate cluster, with the two other clusters similar to the clusters defined with a predefined 

number of two cluster (results not shown).  

 15 

When selecting four clusters, Cluster 1 is defined by very high maximum 15-minute, 1-hour and 24-hour intensities and large 

maximum depth, and may be characterised as convective activity within extreme frontal events (Figure 8). Cluster 1 consists 

of 2 known very extreme events on the dates; 19/06-2013 and 06/08-2007 (Figure 7 right). Cluster 2, consists mostly of 24-

hour events with characteristics such as long Duration, low Ratio between maximum and mean depth and low Maximum 1 

hour intensity (Figure 8). These events can be classified as extreme frontal events with little or no convective activity. Few 15-20 

minute and 1-hour extreme events are within this cluster; the ones present differ from the rest of the 15-minute and 1-hour 

extreme events by long Duration, and large Minimum and Mean depths. Cluster 3 consists of four 24-hour events which was 

separated on PC3 (see Figure 5, right) and are characterised by having low depths and large cell numbers (Figure 8). The events 

in Cluster 3 can be considered events that are not so pronounced extreme; i.e. events that are sampled as extreme but should 

not pose a problem with respect to flooding. The last cluster, Cluster 4, consists of 15-minute and 1-hour events and few 24-25 

hour extreme events and events sampled as in all sampling durations (Figure 7 right). Cluster 4 contains 77% of the sampled 

15-minute extremes and 74% of the sampled 1-hour extremes and are clearly convective extreme events with high intensities 

and low depths.  

 

Structures of clusters from 1 (all events in same cluster) to 117 (all events in separate clusters) was assessed by a hierarchical 30 

clustering with two methods (ward and average linkage), showing same overall clustering structures, though with minor 

differences between methods (see supplementary material Figure A). The hierarchical clustering was used to assess the 

possible number of clusters and also testing if a larger number of clusters contributed with more information. The analysis 
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supported both the amount of clusters analysed as well as the interpretation of the distinction between clusters obtained in the 

K-means clustering analysis. 

 

The results show that the combination of PCA and cluster analysis can be used to distinguish between convective, frontal and 

mixed events (Clusters 1, 4 and 2 respectively) when enough describing variables are considered to characterise the events in 5 

radar data. For the applicability a number of four clusters was found reasonable, yet these clusters was fitted using all 17 PCs 

and variables, as several PCs was found significant and no variables was disregarded.  

5 Conclusion 

The quantitative methods employed are able to distinguish between types of rainfall based on measured high-resolution 

extreme spatial rainfall. They are in line with the results from previous works where the understanding of spatial rainfall is 10 

described qualitatively. The quantitative analysis was possible due to the high quality high resolution data set of merged quality 

checked rain gauge and quality checked radar data. The virtues of highly accurate extreme intensities are thus combined with 

good spatial coverage which makes the results more credible than analysing radar data or gauge data only. The seasonal 

variation and spatial correlation of the analysed extreme events confirm a clear difference between 15-minute/1-hour extreme 

events and 24-hour extreme events which can be described as a distinction between convective and frontal events. The 15 

differences between 15-minute and 1-hour are however less pronounced than expected, both when considering the event 

selection and in the subsequent analyses of the spatio-temporal characteristics. Four sampling strategies for sampling spatial 

extreme events were analysed and it was found that it was necessary to sample extremes using a threshold for a small region 

in order to avoid long events with sub-events that are meteorologically independent. The analysis of spatial correlation showed 

that 15-minute and 1-hour extreme events are very local. It was shown that a least 50 % of sampled extreme events would 20 

change if another grid cell within a radius of approximately 5 km were chosen as sample point, with decreasing similarity in 

sampled extreme events with increasing distance between the compared grid cells. This study suggests that further 

development on a sampling strategy for sampling spatial extreme events is needed.  

 

Events were characterised by 17 variables giving a thorough description of the spatio-temporal variability of the events. All 25 

variables contribute with information about the analysed extreme events, even though there are correlations suggesting that 

not all dimensions are necessary. The PCA suggests five to nine dimensions necessary to describe the data, but up to 14 PCs 

were found significant, implying that most variables are relevant to consider. From the PCA and cluster analysis it was possible 

to distinguish between four different storm types: convective, frontal, mixed very extreme and borderline extreme events. 

Using more than four clusters made it difficult to interpret the results in a simple and applicable manner and appeared to mainly 30 

be due to overfitting of data rather than contribute to an overall understanding of spatial precipitation properties. 
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A simple rain cell identification and tracking algorithm was developed for the study to describe the overall tendency in rain 

cell lifetime, number, direction and velocity of extreme events. For the purpose of this study the relatively simple algorithm 

proved to be sufficient to give a realistic description of the related variables.  

The study contributes to the discussion on good practises of automatically identifying, defining and analysing single storm 

events in radar rainfall data sets. The methodology can be used to objectively classify rainfall events in spatial radar data based 5 

on measurable variables and, thus, act as a data filter for determining rainfall events of hydraulic and urban drainage interest. 
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Figure 1: Overview of the case area. Left: Gridded area represents the part of the catchment where time series data is produced. 
Right: Elevation in the Wupper catchment and distances from the three radars (Essen, Flechtdorf and Neuheilenbach) in the area. 
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Figure 2: Overview of the four sampling strategies: - SS1: Filled black cell, SS2: Black and grey filled cells, SS3: cells outlined in 
light grey and SS4: cells outlined in light and dark grey. 
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Table 1: Description of variables 

Category Variable Unit Description 
Duration Duration Hours From start to end with an extension of 2 hours in each end to consider the event 

in the entire case area. 
Intensity Max 15min mm hr-1 Maximum average intensity for 15 minutes. 
 Ratio 15min - Ratio between max 15 minute and mean 15 minute intensity. 
 Max 1h mm hr-1 Maximum average intensity for 1 hour. 
 Max 24h mm hr-1 Maximum average intensity for 24 hours. 
Wet Area Mean wet A - Average ratio of grid cells with precipitation above 1 mm/hr (wet cells) from 

each time step of the event. 
Depth Min depth mm Value of the grid cell with the lowest accumulated depth over the event duration 

in the case area. 
 Max depth mm Value of the grid cell with the highest accumulated depth over the event duration 

in the case area. 
 Mean depth mm Average depth considering all cells with a depth above 1 mm in the case area. 
 Ratio depth - Ratio between max depth and mean depth. 
Rain cell 
properties 

Cell num - Number of tracked rain cell in the rain event. 
Cell life hours Average lifetime of the rain cells in the event. 

 Cell life max hours Maximum lifetime of the longest living cell in the event 
Movement Mean vel m s-1 Mean rain cell velocity 
 Sd vel m s-1 Standard deviation of velocity. 
 Mean dir Degrees Mean moving direction of rain cells, compass degrees. 
 Sd dir Degrees Standard deviation of direction. 

 

Table 2: Results from the four sampling strategies described in Sect. 3.2 

Sampling 
strategy 

Number of 
events total 

Average 
event length 
[h] 

Average 
number of grid 
cells 

Proportion of 
events in winter 

Proportion of 
events in spring 

Proportion of 
events in 
summer 

Proportion of 
events in fall 

SS1 (1 grid 
cell) 

982 28.65 1.00 0.22 0.23 0.30 0.24 

SS2 (5 grid 
cells) 

942 37.49 4.21 0.23 0.24 0.29 0.25 

SS3 (half 
case area) 

938 52.89 61.33 0.23 0.26 0.26 0.24 

SS4 (total 
catchment) 

933 57.48 99.26 0.23 0.27 0.26 0.24 
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Figure 3: Seasonal variation in occurrence of extreme events for each of the five grid cells filled in Figure 2. 

 

Figure 4: Spatial correlation calculated for binned data of 100 grid cells, 4950 pairs. 
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Table 3: Comparison of extreme events sampled using SS1 for each of the five grid cells individually that is used in SS2. The grid 
cell from SS1 (black filled in Figure 2) is used as reference. 
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Table 4: Overview of the 10 events sampled as all types of extreme events (15-min, 1-hour and 24-hour extreme events). The numbers 10 
refer to the event numbers in the supplementary material. 

Date (LT) 15-min 1-hour 24-hour 
17-07-2001 4 3 2 
19-08-2002 7 6 6 
05-10-2002 8 7 7 
10-09-2004 13 12 14 
29-06-2005 16 16 19 
06-08-2007 21 22 25 
10-08-2010 26 29 30 
19-06-2013 36 36 37 
22-07-2013 37 37 38 
06-09-2013 39 39 39 

 
  

Name 162_176 167_178 163_181 159_180 158_174 

distance (S,E) [km] (0,0) (-5,2) (-1,5) (3,4) (4,-2) 

distance [km] 0.0 5.4 5.1 5.0 4.5 

Similar 15-min 39 15 (38%) 19 (49%) 18 (46%) 22 (56%) 
Similar 1-hour 39 19 (49%) 21 (54%) 23 (59%) 22 (56%) 
Similar 24-hour 39 31 (79%) 32 (82%) 30 (77%) 32 (83%) 

https://doi.org/10.5194/hess-2020-397
Preprint. Discussion started: 1 September 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

Table 5: Composition of variables for the first nine PC's in a combined PCA including both 15-min, 1-hour and 24-hour extreme 
events. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 
Duration 0.21 0.28 0.32 0.11 -0.14 -0.28 0.14 -0.40 0.04 

Max 15min intensity -0.33 0.28 -0.01 0.08 0.24 0.05 0.03 -0.09 0.19 

Ratio 15min -0.32 0.24 0.09 0.14 0.16 0.00 0.14 -0.30 0.43 

Max 1hr intensity -0.34 0.28 -0.11 0.04 0.20 -0.09 0.10 -0.01 -0.02 

Max 24hr intensity  -0.12 0.38 -0.22 -0.05 0.14 -0.07 -0.11 0.46 -0.13 

Mean wet area 0.22 0.11 -0.42 -0.12 -0.08 0.37 0.04 0.25 0.48 

Min depth 0.13 0.11 0.11 -0.41 0.68 0.02 -0.23 -0.08 -0.17 

Max depth 0.28 0.35 0.10 -0.01 -0.21 0.02 -0.03 -0.01 -0.05 

Mean depth 0.10 0.47 0.01 -0.04 -0.12 -0.14 0.04 0.16 -0.04 

Ratio depth 0.26 0.39 0.08 0.00 -0.18 -0.03 -0.03 0.09 -0.05 

Number of cells -0.34 -0.08 -0.12 0.17 -0.18 -0.35 0.19 0.26 0.05 

Mean cell lifetime 0.28 -0.01 -0.31 0.18 0.12 -0.40 -0.29 -0.13 0.27 

Max cell lifetime -0.15 0.16 -0.35 -0.32 -0.22 0.27 0.35 -0.37 -0.36 

Mean velocity 0.12 -0.02 -0.57 -0.01 0.01 -0.16 -0.11 -0.41 0.03 

Sd velocity 0.31 -0.03 0.11 0.18 0.27 0.31 0.50 0.04 0.25 

Mean direction 0.24 -0.04 -0.22 0.39 0.33 -0.20 0.45 0.12 -0.40 

Sd direction -0.07 0.13 -0.05 0.65 0.00 0.48 -0.41 -0.12 -0.26 

Proportion of variance 30% 23% 13% 8% 7% 4% 4% 4% 2% 

Prop. of variance cumulative 30% 53% 66% 74% 81% 85% 89% 93% 95% 
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Figure 5: Principal component analysis performed on 15-minute, 1-hour and 24-hour extreme events treated as a combined 
dataset. Numbers refer to the event numbers in the supplementary material. Events sampled as all types of extreme events (both as 5 
15-minute, 1-hour and 24-hour extreme events) are marked in black. 15-minute extreme events are marked in dark brown, 1-hour 
extreme events in light brown and 24-hour extreme events are marked in green. Left: Projection into Principal Component 1 
(PC1) and PC2. Right: Projection into PC1 and PC3. 

 
Figure 6: Projection of extreme events into the two first PC's for the combined dataset. Colours indicate season (winter, spring, 10 
summer and fall) and shape indicate extreme event type. 
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Figure 7: K-means cluster analysis performed on the combined dataset for 15-min, 1-hour and 24-hour data. Left: Pre-defined 
number of two clusters. Right: Pre-defined number of four clusters. 

 

 5 

Figure 8: Cluster composition of variables. Mean value for each variable over the events with each cluster. The mean values are 
normalised by the maximum mean value across clusters (scale between 0-1). Cluster numbers and colours refer to the clusters in 
Figure 7. 
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