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Abstract 

This study investigates the role and value of distributed rainfall for the runoff generation of a mesoscale catchment 

(20 km2). We compare the performance of three hydrological models at different periods and show that a 

distributed model driven by distributed rainfall yields only to improved performances during certain periods. These 10 

periods are dominated by convective storms that are typically characterized by higher spatial and temporal 

variabilities compared to stratiform precipitation events that dominate the rainfall generation in winter. Motivated 

by these findings we develop a spatially adaptive model that is capable to dynamically adjust its spatial structure 

during runtime to represent the varying importance of distributed rainfall within a hydrological model without 

losing predictive performance compared to a spatially distributed model. Our results highlight that adaptive 15 

modeling might be a promising way to better understand the varying relevance of distributed rainfall in 

hydrological models as well as reiterate that it might be one way to reduce computational times. They furthermore 

show that hydrological similarity concerning the runoff generation does not necessarily mean similarity for other 

dynamic variables such as the distribution of soil moisture. 

  20 
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1 Introduction 

“How important are spatial patterns of precipitation for the runoff generation at the catchment scale?” –  This is 

a key question for the application of hydrological models that has been addressed in several studies over the last 

three decades (e.g. Beven and Hornberger, 1982; Smith et al., 2004; Lobligeois et al., 2014). A frequently drawn 

conclusion is that semi-distributed or even lumped models driven by a single precipitation time series often 5 

outperform distributed models with respect to their ability to reproduce observed streamflow at the outlet of a 

catchment (e.g. Das et al., 2008). Although such findings are surely constrained by the fact that distributed models 

have more parameters that need to be identified, which makes model calibration much more challenging (Beven 

and Binley, 1992; Huang et al., 2019), they highlight the ability of the hydrological system to dissipate spatial 

gradients efficiently (e.g. Obled et al., 1994; Berkowitz and Zehe, 2020) 10 

 

In contrast to the above-mentioned finding that hydrological systems can efficiently dissipate spatial gradients, 

several other studies showed that information about the spatial variability of precipitation can significantly improve 

the predictive performance of hydrological models. For instance, Euser et al. (2015) highlighted that distributed 

models driven by distributed rainfall could reproduce the observed hydrograph of a 1600 km2 large catchment in 15 

Belgium with higher accuracy compared to spatially lumped model structures. Furthermore, Woods and Sivapalan 

(1999) showed that the interplay between spatial patterns of rainfall and soil saturation can substantially impact 

the runoff generation of a catchment when they analyzed average runoff rates in dependence of the spatial and 

temporal variability of the meteorological forcing and the catchment state. The relevance of these spatial patterns 

is thereby particularly high if the system is close to a threshold where different localized preferential flow processes 20 

start dominating (e.g. cracking soils: drying of soil; macropores: occurrence of earthworms) as discussed by Zehe 

et al. (2007). Spatial averaging of the system state or the meteorological forcing can hence lead to a 

misrepresentation of relevant spatial patterns, especially at more extreme conditions. 

 

Given the partly contradictory findings present in the literature, it appears reasonable to assume that the relevance 25 

of distributed rainfall is changing dynamically over time and depends on the interplay of the prevailing i) system 

state (e.g. catchment wetness), ii) on the system functional structure, determined by patterns of topography, land-

use, and geology, as well as on iii) the strength and spatial organization of the rainfall forcing. In consequence, it 

seems furthermore rational to hypothesize that also hydrological models should dynamically adapt their spatial 

structure to the prevailing context thereby reflecting the inherently dynamic nature of hydrological similarity 30 

(Loritz et al., 2018). 
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The idea that hydrological models should dynamically allocate their spatial resolution, as well as the associated 

representation of natural heterogeneity in time, is motivated by our previous work (Loritz et al. 2018). In this study, 

we highlighted that simulations of a distributed model consisting of 105 independent hillslopes were highly 

redundant to reproduce discharge or catchment storage changes of a mesoscale catchment within one hydrological 5 

year. Based on the Shannon entropy we identified periods where a rather small number of representative hillslopes 

was sufficient because most of them functioned largely similar within the chosen margin of error. However, during 

other periods up to 32 independent representations of hillslopes were required, which underlines that spatial 

variability of system properties, such as surface topography or soil types among the hillslopes can exert a stronger 

influence on the runoff generation at certain times as expected given the findings reported by other studies 10 

conducted in the same research environment (e.g. Fenicia et al., 2016; Loritz et al., 2017). It can, therefore, be 

argued that also distributed rainfall and corresponding distributed model structures are only of higher relevance 

during specific periods, while during other periods a compressed, spatially aggregated model structure may be 

sufficient. An implementation of such an adaptive spatial model resolution would ensure an appropriate spatial 

model complexity, defined based on the least amount of details about the system structure (e.g. the variability of 15 

topographic gradients) and catchment states that are sufficient to capture the relevant interactions with the spatial 

pattern of precipitation. Yet it would be as parsimonious as possible to avoid redundant computations, which again 

could be used to minimize computational costs (Clark et al., 2017). 

 

Moving to the event time scale instead of running continuous simulations is surely one-way to achieve such a 20 

dynamical allocation of the model space. This would entail running a set of models that differ with respect to their 

resolutions in space and time depending on the prevailing structure of the forcing and wetness state of a landscape. 

Yet, this introduces multiple new problems, for instance, how to infer the initial conditions of a catchment prior to 

a rainfall event given the degrees of freedom distributed models can offer (Beven, 2001). The latter is of 

considerable importance particularly during extremes resulting from high-intensity rainfall-runoff events, which 25 

can be strongly sensitive to the actual state of the system such as the spatial patterns of macropores (Zehe et al., 

2005) or of the antecedent soil water content (Zehe and Blöschl, 2004). 

 

A different avenue to implement a dynamically changing model resolution is adaptive clustering, as recently 

demonstrated for a spatially distributed conceptual (top-down) model by Ehret et al. (2020). This concept allows 30 

for continuous hydrological simulations, which use a higher spatial model resolution only at those time steps when 

it is necessary. The idea behind adaptive clustering is similar to adaptive time-stepping (e.g. Minkoff and Kridler, 
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2006). However, instead of reducing the time steps during times when large gradients prevail adaptive clustering 

increases or decreases the number of independent spatial model elements during times of high functional diversity. 

The general concept behind adaptive clustering is thereby not entirely new to environmental science and is already 

used for instance in hydrogeology under the term adaptive mesh here with the main focus to increase the resolution 

of gradients during times of high dynamics (Berger and Oliger, 1984). The main difference between the adaptive 5 

mesh and adaptive clustering approach is that instead of adjusting the actual numerical model grid during runtime 

adaptive clustering changes the number of hydrological response units (HRU) that are used (needed) to represent 

a catchment. This implies that also the degree of spatial heterogeneity of the catchment state (e.g. the wetness state, 

energy state, etc.) that is covered by the model is dynamically changing. 

 10 

While the idea of adaptive clustering is promising as it allows a minimum adequate representations of the spatial 

variability of a hydrological landscape, it has to our knowledge so far only been tested within a simple top-down 

model (Ehret et al. (2020)). It is thus of interest whether such a dynamic clustering is also feasible when using a 

physically based (bottom-up) model particularly as these models were specifically introduced to explore how 

system characteristics and driving gradients control hydrological dynamics (Freeze and Harlan, 1969). Here we 15 

will hence test and develop an adaptive clustering approach using straightforward physical reasoning and 

implement it into a distributed bottom-up model. The underlying objective is to exploit the value of adaptive 

clustering as a tool to better understand the temporal relevance of distributed precipitation for the runoff generation 

of a meso-scale catchment and as by-product reiterate that adaptive clustering could potentially be used to reduce 

computational times as already discussed in detail by Ehret et al. (2020). High computational times are thereby 20 

still one of the many reasons why bottom-up are rarely used on larger scales in an spatial explicit manner (Clark 

et al., 2017). For instance, Hopp and McDonnell (2009) used the HYDRUS 3D model (Simunek et al., 2016) and 

reported computational times ranging from 10 min up to 11 hrs when they simulated water fluxes and state 

variables at the Panola hillslope (area = 0.001250 km2 (25 m x 50 m); maximal soil depths = 4 m) for a simulation 

time of 15 days. A meaningful application of bottom-up models at relevant management scales (around 250 km2 25 

in south Germany e.g. Loritz, 2019), without a violation of important physical constraints (e.g. 10-2 - 101 m 

maximum vertical grid size for the Richards equation; Or et al., 2015; Vogel and Ippisch, 2008), would thus imply 

long computational times. This again strongly limits the number of feasible model runs to examine, for instance, 

different parameter sets (Beven and Freer, 2001). 

 30 

In this study, we test the hypothesis if adaptive clustering is a feasible approach to represent the spatial variability 

of rainfall in a hydrological bottom-up model at the lowest sufficient level of detail without losing predictive 
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performance compared to a fully distributed model. We test this hypothesis by introducing a clustering approach 

at the example of the model CATFLOW, which is applied to the 19.4 km2 large Colpach catchment using a gridded 

radar-based quantitative rainfall estimate by addressing the two following research questions: 

 

1. Does the model performance of a spatially aggregated model improve if it is distributed in space and driven 5 

by distributed rainfall? 

2. Can adaptive clustering be used to distribute a bottom-up model in space that it is capable to represent relevant 

spatial differences in the system state and precipitation forcing at the least sufficient resolution to avoid being 

highly redundant as a fully distributed model? 

2 Study area, hydrological model and meteorological data 10 

2.1 The Colpach catchment 

The 19.4 km2 Colpach catchment is located in northern Luxembourg and is a headwater catchment of the 256 km2 

large Attert experimental basin (Fig. 1). The prevailing geology of both catchments are Devonian schists of the 

Ardennes massif which are characterized by shallow, coarse-grained, and highly permeable soils (> 1 m; e.g. 

Jackisch et al., 2017; Juilleret et al., 2011). The steep hills of the Colpach are primarily forested and the elevation 15 

of the Colpach ranges from 265 to 512 m a.s.l.. Annual runoff coefficients varied around 50 % ± 7 % for the 2011- 

2017 period. Precipitation is evenly distributed across the seasons (vegetation and winter season), while the runoff 

generation has a distinct seasonal pattern as around 80 % of the annual discharge is being released between October 

and March (Seibert et al., 2017). The Colpach and its sub-catchments (e.g. Weierbach) have been used as study 

area in a series of scientific publications. We refer here to Pfister et al. (2018), Jackisch (2015) or Loritz et al. 20 

(2017) for more detailed system description (mean annual precip: 900 – 1000 mm yr-1; mean annual 

evapotranspiration: 450 – 550 mm yr-1; mean annual discharge: 450 – 550 mm yr-1; land-use: 65 % forest; 23 % 

agriculture; 2 % others; mean annual temperature: 9.1 °C). 
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Figure 1. a) map of the Colpach catchment (location northern Luxembourg), b) picture of a typical forested hillslope 

within the Colpach catchment, c) the Colpach river around 4 km north of the gauging station. 

2.2 The CATFLOW model 

The key elements of the CATFLOW Model (Maurer, 1997; Zehe et al., 2001) are 2d hillslopes which are 5 

discretized along a 2-dimensional cross-section using curvilinear orthogonal coordinates. Evapotranspiration is 

represented using an advanced SVAT (soil–vegetation–atmosphere transfer) approach based on the Penman-

Monteith equation, which accounts for tabulated vegetation dynamics, albedo as a function of soil moisture, and 

the impact of local topography on wind speed and radiation. Soil water dynamics are simulated based on the Darcy-
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Richards equation and surface runoff is represented by a diffusion wave approximation of the Saint Venant 

equations using an adaptive time stepping. Vertical and lateral preferential flow paths are represented as connected 

pathways containing an artificial porous medium with high hydraulic conductivity and very low retention. The 

hillslope module is designed to simulate infiltration excess runoff, saturation excess runoff, re-infiltration of 

surface runoff, lateral water flow in the subsurface, return flow, but cannot handle snowfall or snow accumulation. 5 

The latter means that CATFLOW should not be applied if snow is a dominated control, which is not the case in 

the Colpach catchment. The model core is written entirely in FORTRAN77 and the individual hillslopes can be 

run in parallel on different CPUs to assure low computation times and high performance of the numerical scheme. 

Up to date model descriptions can be found in Wienhöfer and Zehe (2014) or in Loritz et al. (2017). 

2.3 Model forcing and observed discharge 10 

Meteorological input data used here are recorded at a temporal resolution of 1 hr at two official meteorological 

stations by the “Administration des Services Techniques de l’Agriculture Luxembourg” at the locations “Roodt” 

and “Useldange”. The meteorological station “Roodt” measures rainfall within the catchment border (Fig. 2 a) and 

provided the precipitation input to the model of Loritz et al. (2017). The second station “Useldange” is located 

outside the catchment around 8 km west of the Colpach outlet measures air temperature, relative humidity, wind 15 

speed, and global radiation. These data are used as meteorological input (except for precipitation) in all model 

setups in this study. In other words, this means that all model setups in this study are forced by identical 

meteorological inputs except for the precipitation data (see section 3.1). Therefore, we cannot account for 

variations of the wind speed or the temperature within the Colpach catchment. A detailed description and analysis 

of the meteorological data can be found in Loritz et al. (2017). 20 

 

Quality checked discharge observations of the Colpach are provided by the Luxembourg Institute of Science and 

Technology (LIST) in a 15 min temporal resolution for the hydrological year 2013/14. The data was aggregated 

to an hourly temporal resolution and transformed to specific discharge given the catchment area of 19.4 km2. 

2.4 Spatially resolved precipitation data 25 

Besides the precipitation data from the ground station located in “Roodt”, we use a gridded quantitative 

precipitation estimate, which merges weather radar with rain gauge and disdrometer observations (Neuper and 

Ehret, 2019). The two used radar stations are located 40 to 70 km, respectively 24 to 44 km, away from the study 

site (Neuheilenbach; Germany, Wideumont, Belgium) and are operated by the German Weather Service (DWD) 

as well as by the Royal Meteorological Institute of Belgium (RMI). Both distances are within a range that the data 30 
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can be used at a high-resolution of 1x1 km2 as the signal is neither degraded by beam spreading nor impacted by 

partial blindness through cone of silence issues (e.g. Neuper and Ehret (2019)). The raw data, 10 min reflectivity 

data from single pol C-Band Doppler radar, were aggregated to hourly averages as well as filtered by static, 

Doppler clutter filters, and bright-band correction following Hannesen (1998). Second trip echoes and obvious 

anomalous propagation echoes were manually removed and the corrected data were used to create a pseudo plan 5 

position indicator data set at 1500 m above the ground. A more detailed description of how the reflectivity data 

was transformed to rainfall data, calibrated as well as validated against rain gauges and disdrometers can be found 

in the appendix. 

 

The chosen precipitation time series starts on the 1st of October 2013 and ends on the 30th of September 2014. 42 10 

grid cells (1 x 1 km2) of the precipitation field intersect with more than 50 % of their area with the Colpach 

catchment and are used in this study (Fig. 2 a). The weather radar measured an area-weighted mean of around 900 

mm yr-1 in the Colpach catchment for the selected period. This is in accordance with the reported climatic averages 

(900 - 1000 mm yr-1) of this region (Pfister et al., 2017). The maximum hourly precipitation difference between 

the grid cells in the study period is 14 mm hr-1 (August 2014) and the maximum annual precipitation difference 15 

between the grid cells is 95 mm yr-1 (Fig. 2 b). Temporally, the precipitation is evenly distributed over the year 

with around 50 % of rainfall in winter and 50 % of rainfall in summer with a short dry spell from mid-March to 

the end of April. There is a weak correlation between the mean elevation of the grid cells and the annual 

precipitation sums of 0.43. This implies that precipitation tends to be slightly higher in the northern parts of the 

catchment that are also characterized by higher altitudes (Fig. 2 a). 20 
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Figure 2. a) annual sums of the gridded precipitation field over the Colpach catchment for the hydrological year 2013/14 

as well as the location of the rainfall station “Roodt” which is used as precipitation input for the reference model (spatial 

resolution: 1 km2; coord. system WGS84), b) cumulated precipitation for each grid cell for the hydrological year 2013/14 

of the precipitation field (blue lines) and the corresponding mean of the precipitation field (dashed red line). 5 

3. Modeling approach 

In the following section, we give a short introduction to the different model setups we use in this study and refer 

to the corresponding subsection for more detailed descriptions of each setup. 

 

Reference model 10 

The spatially aggregated reference model (section 3.1) was designed and intensively tested in the Colpach 

catchment in a previous study (Loritz et al., 2017). This model serves as benchmark here to a) evaluate the other 

three models and b) provides the structural basis for them. Moreover, are the model deficits to simulate streamflow 

in the summer months of the reference model discussed in Loritz et al. (2017) one of the main motivations of this 

study (see section 3.2) apart from the finding of Loritz et al. (2018) that a suitable model structure needs to adapt 15 

its resolution in time. 

 

Model a 
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Model a (section 3.2) is identical to the reference model and hence also spatially aggregated. The only difference 

between the models is that it is driven by different precipitation data. This precipitation data is the area-weighted 

mean of the spatially resolved precipitation product described in section 2.4 and measured by a weather radar. The 

main reason for running model a is to exclude that already the quantitative differences between the precipitation 

data measured at the ground station “Roodt” and by the weather rainfall data result in a performance increase and 5 

not the spatial variability of the rainfall field. 

 

Model b 

The third model (model b; section 3.2) is a distributed version of the reference model. Model b is thereby distributed 

based on the resolution of the spatially resolved precipitation data and was designed to examine the role of 10 

distributed rainfall on the runoff generation in the Colpach catchment. It represents the Colpach with 42 spatial 

grids (1 x 1 km2). In each of these grids, we run a model similar to the reference model, however, driven with the 

specific precipitation data measured at this location by the weather radar. 

 

Model c 15 

Other than the three above mentioned non-adaptive models (reference model, model a, model b) we develop a 

third, spatially adaptive, model (model c; section 3.3). This model is capable to dynamically adapt its spatial model 

structure in time. To dynamically allocate its structure, it uses the spatial variability and the strength of the rainfall 

forcing as well as its fingerprint the catchment (model) state. The main goal is to show that we can achieve similar 

simulation results compared to model b, however, with a coarser dynamically adapting spatial model structure. We 20 

test this model at two selected rainfall-runoff events. 

3.1 Non-adaptive models – The reference model of Loritz et al. (2017) 

All simulations in this study are based on a spatially aggregated model structure (reference model), developed and 

extensively tested in the Colpach catchment in a previous study (Loritz et al., 2017). The general idea behind the 

proposed model concept (representative hillslope) is that a single bottom-up hillslope model reflects a meaningful 25 

compromise between classical top-down and bottom-up models (Hrachowitz and Clark, 2017; Loritz, 2019). This 

is the case as it allows that macroscopic model parameters can still be derived from available point measurements. 

The parameters of the model of Loritz et al. (2017) were hence, for the most part, derived directly from a large 

amount of field data, and the model was only afterward manually fine-tuned by further exclusively adjusting the 

spatial macropore density within a few trial and error runs to simulate the seasonal water balance of the Colpach 30 

catchment. The model simulations were tested against hourly discharge observations on an annual and seasonal 
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time scale (as well as against a sub-basin of the Colpach) and against hourly soil moisture observations (38 sensors 

in 10 and 50 cm depth), and hourly normalized sap flow velocities (proxy for transpiration; 30 sensors). The 

developed model structure agreed well with the dynamics of the observables and showed higher model 

performances as reported in other studies working with different top-down model setups in the same environment 

(Wrede et al., 2015). 5 

3.2 Non-adaptive models – Model a and b 

Despite the acceptable annual model performance of the reference model, it showed deficits to simulate the runoff 

response to a series of summer rainfall-runoff events. As discussed in Loritz et al. (2017), one possible explanation 

for the unsatisfying performance is that summer precipitation in the Colpach catchment is mainly driven by 

convective atmospheric conditions. These convective precipitation events are characterized by a much smaller 10 

spatial extent as well as by higher rainfall intensities compared to the stratiform and frontal precipitation events 

that dominate during winter (Neuper and Ehret, 2019). The insufficient model performance in summer could 

therefore likely be a consequence of the larger spatial gradients of the rainfall field compared to the winter season 

that cannot be accounted for in the original model of Loritz et al. (2017). In other words, this entails that a 

hydrological model, distributed at a sufficiently high spatial resolution, is required to capture the spatial variability 15 

of the precipitation field to satisfactorily simulate the runoff generation of the Colpach. One goal of this study is 

hence to test the hypothesis whether the performance deficiencies of the representative hillslope model (reference 

model) in summer are mainly caused by the inability of the setup to account for the spatial gradients of the 

precipitation field, rather than a result of important structural differences (e.g. soil, land-use, topography) within 

the Colpach catchment. 20 

 

To address the first research questions of this study: “Does the model performance of a spatially aggregated model 

improve if it is distributed in space and driven by distributed rainfall” we analyze simulations of two alternative 

model setups (model a and b) additional to the reference model from Loritz et al. (2017): 

 25 

Model a is identical to the reference model, however, driven by the area-weighted mean of the spatially resolved 

precipitation data described in section 2.4 (Fig. 2 b). We added model a to test if the performance difference 

between the reference model and our distributed model b is merely a result of quantitative differences between the 

different precipitation products measured either by a single ground station or by a weather radar. 

 30 

https://doi.org/10.5194/hess-2020-393
Preprint. Discussion started: 3 August 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

Model b is a spatially distributed version of the reference model. This means that all model parameters of the 

representative hillslope (reference model), as well as all other meteorological variables such as temperature or 

wind speed, are similar and the only two differences between the reference model and model b is that model b is 

spatially distributed as well as driven by different rainfall data. Model b is thereby distributed on the spatial 

resolution of the precipitation field similarity as done for instance by Prenner et al. (2018) and not following the 5 

traditional spatial discretization strategy of CATFOW based on a fixed number of hillslopes, inferred from surface 

topography or land-use. We justify this assumption based on the model validation in Loritz et al. 2017 and on a 

study conducted in the same research environment (Loritz et al., 2019) where we showed that different sub-basins 

of the Attert basin (the Colpach is a headwater catchment of the Attert catchment) have similar specific discharges 

as long as they are located in the same geological setting and are driven by a similar meteorological forcing (see 10 

also section 3.3.2). 

3.2.1 Model analysis 

We analyze the simulation performances of model a and b by calculating the Kling-Gupta efficiency (KGE; Kling 

and Gupta, 2009) between the hourly discharge simulations of the individual models against hourly observed 

discharge at different time scales (annual, seasonal, event scale). Model a and b are hence run for the hydrological 15 

year 2013-2014 with hourly printout times and differ only concerning the precipitation data they are driven with: 

- Model a: driven by an area-weighted mean of the spatially resolved precipitation data. 

- Model b: driven by 42 precipitation time series each reflecting a grid cell of the precipitation field 

shown in Fig. 2. 

To be able to compare the discharge of the spatially aggregated model a and the distributed model b with the 20 

observed discharge of the Colpach catchment and to account for the routing of the water from a specific location 

to the outlet, we added a simple lag function acting as channel network. The latter is based on the average distance 

of each grid cell to the outlet of the Colpach assuming a constant flow velocity of 1 m s-1. For model a, we simply 

average all distances to the outlet and shift the single discharge simulation accordingly. 

3.3 Spatially adaptive model – Model c 25 

To address the second research question of this study: “Can adaptive clustering be used to distribute a bottom-up 

model in space that it is capable to represent relevant spatial differences in the system state and precipitation 

forcing at the least sufficient resolution to avoid being highly redundant as a fully distributed model?” we develop 

a third model setup (model c). This spatially adaptive model setup is based on the distributed model b, however, is 

capable to dynamically adjust its spatial structure in time, as detailed in section 3.2.1 to 3.2.3. The underlying 30 
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adaptive clustering approach is based on straightforward physical arguments on how the spatial and temporal 

patterns of rainfall control the spatial pattern of the wetness state of a structural similar catchment. By structural 

similar, we mean that time-invariant properties of the catchment (time-invariant on the scale we are working on) 

like geology, topography or land-use that constrain the state space of a catchment are similarly distributed within 

potential hydrological sub-units of our catchment (e.g. sub-basins or hillslopes; see also section 3.2.2). We discuss 5 

the spatially adaptive model c for two selected rainfall-runoff events, which are characterized by distinctly different 

precipitation properties. By that, we examine the dynamic relationship between the spatio-temporal patterns of the 

rainfall forcing and its fingerprint the catchment state and show how they can be represented in a model. Full 

automation of the adaptive clustering approach and a test on a longer time scale is, however, beyond the scope of 

this study. The latter would provide only little more scientific inside (besides being technically challenging) how 10 

the variability of rainfall influences the state of a catchment and how this phenomenon can be used to dynamically 

allocate a model structure in time. 

3.3.1 Spatially adaptive modeling 

Spatially adaptive modeling or adaptive clustering is an approach to dynamically adjust the spatial structure of a 

hydrological model in time offering the possibility to reduce computational times as well as to find an appropriate, 15 

time-variant spatial model resolution (Ehret et al. 2020). The basic idea of adaptive clustering has been motivated 

within the work of Zehe et al. (2014) who stated that functional similarity in a catchment (or in a model) can 

emerge if different sub-units are structurally similar (e.g. topography, geology, land-use, etc.), are driven by a 

similar forcing and are at a similar state. The latter implies that the concept of hydrological similarity, which is 

frequently used as the basis to discretize a catchment in space (e.g. Wagener et al., 2007), cannot be time-invariant 20 

but needs to dynamically change in time as corroborated by Loritz et al. (2018). This is the case as the relevance 

and interaction of different spatial patterns of the catchment structure, state and forcing also vary in time (Woods 

and Sivapalan, 1999). A suitable discretization of a catchment into similar functional units needs hence to be time-

variant and one way to achieve such a dynamic model resolution is spatially adaptive modeling. 

 25 

Implementing adaptive clustering into a distributed model requires specific decision thresholds that define whether 

spatial differences in the structure, forcing and state of potential sub-units are so large, that they need a distributed 

representation. This entails that if differences between the structure, forcing, or state of two or more distributed 

model elements (here gridded models) are below these thresholds they are by definition similar which means that 

they can represent each other’s hydrological function. The entire idea that certain spatial model elements can 30 

represent other model elements and hence other areas of a catchment is not new and has been used frequently in 
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Hydrology since at least Sivapalan et al. (1987) where they introduced the concept of representative elementary 

areas. The main novelty of adaptive clustering is that hydrological similar model elements are dynamically grouped 

and split in the runtime of the model instead of running a constant number of functional similar elements for the 

entire simulation period (Ehret et al., 2020). 

3.3.2 Spatially adaptive modeling – similarity assumption 5 

Identifying periods when a given model element or hillslope can represent another one because it functions 

hydrologically similar is the main challenge of adaptive clustering. In this study, we subdivide the precipitation 

field, and the model states at each time step into equally distant bins (groups) and define those as similar if different 

precipitation grid cells (forcing) or different gridded hillslope models (states) occupy the same bin. This implies 

that they function similarly and can thus represent each other. To give an example, imagine if 50 % of the 10 

catchment area receives rainfall of around 1 mm hr-1 and 50 % around 2 mm hr-1. In this specific case, we would 

have two occupied forcing bins (precipitation groups). In the following, we explain our time-invariant similarity 

assumptions for the system structure as well as our time-variant similarity assumption of the catchment (model) 

state and the precipitation forcing. 

 15 

Time invariant similarity of the system structure 

The first step of our adaptive clustering approach requires the identification of hydrological response units (HRUs) 

that potentially act similar. A sufficient criterion for this is that their structural setup (e.g. geology, land-use, etc.) 

and their actual state (e.g. storage) are similar at a given time step. As already mentioned in section 3.2, our 

previous studies showed that different hydrological sub-units, in this case hillslopes, of the Colpach catchment, 20 

can be characterized by similar subsurface characteristics (integral filter properties). This implies a potential 

similar rainfall-runoff transformation when they are in a similar state. This is supported by our previous work 

(Loritz et al., 2017, 2019) which revealed that a sub-basin of the Colpach catchment (0.45 km2) and a neighboring 

catchment (30 km2) located in the same geological setting have almost identical specific discharges as long as they 

are at similar states and forced by comparable amounts of precipitation. This implies that the spatial variability of 25 

the system structure within the Colpach can be represented by a single spatially aggregated model and all grid cells 

of the precipitation field can thus be represented by the same model with the same model parameters as long as 

they are in the same state and driven by the same forcing. This entails, however, also that if we extend our research 

area to a catchment that is divided, for instance, into two geological settings that function hydrologically differently 

(regarding their filter properties) we would always need to run at least two structural different models where each 30 

of these models represents one of two geological settings. 
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Time variant similarity of the precipitation forcing 

The second decision threshold we need to identify defines the minimum difference at which we consider 

differences in the precipitation field as relevant for the runoff generation. Simply speaking, two structural similar 

hydrological units that are in the same state will only respond differently to an external forcing if the variability in 5 

the forcing has exceeded this threshold. Here, we picked a threshold of 1 mm hr-1 upon we consider differences 

between precipitation observations (grid cells) as relevant. We chose this threshold as it represents a reasonable 

difference upon which we expect that a hydrological landscape element might function differently than another in 

a humid environment. This means that only if the spatial differences in the precipitation field are above 1 mm hr-1 

do we drive model c with different precipitation inputs. 10 

 

Time variant similarity of the catchment state 

The third assumption is to identify a threshold upon which we consider that two model elements are in the same 

state. This means that we need to select a point in time after a spatially variable rainfall event (> 1 mm hr-1) when 

two or more models in the individual grid cells have “forgotten” the differences between them introduced by the 15 

interplay of the previous precipitation signal with drainage and evaporation dynamics. Here, we use the change in 

discharge over time (dQ dt-1; slope of the simulated hydrograph) to infer similar model states. By that, we expect 

that two or more gridded models are again in the same state if their runoff simulations change in a similar range 

(0.05 mm hr-1). As soon as this is the case and two or more gridded models are in the same state, we average their 

states (average saturation of each grid cell of the CATFLOW hillslope grid) and by that, aggregate the models 20 

back again into a single hillslope. The value of 0.05 mm hr-1 was picked as it reflects the desired precision of the 

adaptive model. 

3.3.3 Spatially adaptive modeling - model implementation 

As stated in section 3.3.2, we classified the entire Colpach catchment as hydrologically similar concerning the 

runoff generation as long as the different hydrological sub-units of the catchment are in the same state and receive 25 

a comparable forcing. This means that we start the simulation with one gridded hillslope to represent the entire 

catchment and continue in this mode as long as we have not detected a spatial difference in the precipitation field 

above the selected threshold of 1 mm hr-1 (Fig. 3, t=0). At each time step, we bin the precipitation input of the next 

time step and determine the number of allocated bins (P = number of precipitation bins). If more than one 

precipitation bin is occupied (P > 0) we increase the number of gridded models (M = no. of running gridded 30 

models) by running the same model in the same initial state, however, driven by different precipitation inputs. 
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Imagine a scenario where the Colpach catchment is represented by one hillslope (S = 1) and we observe a 

precipitation event where 50 % of the catchment receives no precipitation, 20 % 7 mm hr-1 and 30 % 8 mm hr-1 

(Fig. 3, t=1). This would mean that three precipitation bins are allocated (P = 3) and hence we need to increase 

the number of running models also to three (M = 3). After running these three models for one time step with the 5 

different precipitation inputs, we bin the model states (dQ dt-1). Let us assume we would identify two occupied 

model state bins, which means that two different model states (S = 2) are needed to represent the variability of 

catchment states. This could happen if the differences between the 7 mm hr-1 and 8 mm hr-1 rainfall intensity did 

not result in a significant difference in the discharge simulation of the two corresponding models. Following our 

approach, we aggregate the two models that are driven by 7 mm hr-1 and 8 mm hr-1 by averaging their states. We 10 

do this by averaging the relative saturation of the corresponding CATFLOW hillslope grids, which is 

straightforward in our study as they have the same width as well as lateral and vertical dimensions. In case that the 

hillslopes would not be structural similar this requires a weighted averaging of soil water contents to avoid a 

violation of mass conservation. After the aggregation of the models, we have two model states (S = 2) each 

representing 50 % of the catchment area.  15 

 

If there is no further rainfall occurring we wait until the gradients in system states have been depleted and the two 

running models have “forgotten” the difference in the past forcing and both predict similar dQ dt-1 values and 

aggregate the two models again two one gridded model. If rainfall continues in the next time step (P > 1) we need 

to check which model states (S) receive which forcing. For instance, given our hypothetical example, we know 20 

that after the last simulation step we needed two model states (S = 2) to represent our catchment. Each of these 

two states represents 50 % of the area of the catchment. At the next time step, we observe a precipitation event 

where 50 % of the catchment receives 8 mm hr-1and the other 50 % 3 mm hr-1 (Fig. 3, t = 2). In this case, we have 

to check if the two model states (S = 2) receive both precipitation inputs of 8 and 3 mm hr-1. Let us assume that 

one model state is receiving 80 % of the 8 mm hr-1 and 20 % of 3 mm hr-1 rainfall. The other model 20 % of the 8 25 

mm hr-1 and 80 % 3 mm hr-1. In this specific setting, we would need to run four models (M = 4) to account for the 

spatial variability of the model states and precipitation input, while each of those reflect a different combination 

of the model state and forcing in different parts of the catchment. At this stage, we again either wait until the 

internal differences have been dissipated to reduce the number of models or we increase the number of models in 

case that precipitation with larger spatial variability of P = 1 is continuing (Fig. 3, t = n). The maximum number 30 

of models we could require in our adaptive clustering approach depends on the maximum resolution of the 

precipitation input upon we divided the Colpach catchment and is 42 in our study. 
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3.3.4 Spatially adaptive modeling - model analysis 

To test our spatially adaptive model c against the observed discharge of the catchment, we route the simulated 

runoff contributions according to their location to the outlet by assuming a mean flow velocity of water within the 

channel network of 1 m s-1. However, as the same model can represent different grids with different locations we 

additionally need to calculate the average flow distances to the outlet of all grids a model is representing and shift 5 

the simulation by the average distance accordingly. We then take the area-weighted mean of every simulation at 

each time step. The performance of the adaptive model c is then measured by the KGE against the observed 

discharge and the area-weighted average of the distributed model b. The latter addresses our second research 

question and follows the logic that an appropriate adaptive model should lead to similar simulations as a fully 

distributed model, however, with fewer model elements. While we use CATFLOW as a model here, the proposed 10 

approach is not restricted to this model and can be used in any hydrological model that distributes a catchment into 

independent spatial units. 

 

 

Figure 3. Sketch of the spatial adaptive modeling described in section 3.3.3. The upper panel shows the precipitation 15 
forcing (blue) and the lower panel the model states (red). The numbers below the figures indicate how many 

precipitation (P), model state (S) bins (groups) are occupied and how many models (M) are running at the given time 

step. 
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4. Results 

In the following section, we investigate the precipitation field and compare the performance of the discharge 

simulations of the reference model, model a and b at the annual, seasonal, and event scale by comparing the 

simulations against hourly observed discharge data. We, furthermore, present the results of the adaptive modeling 

for two selected rainfall events and the spatial distribution of the precipitation forcing as well as the model states 5 

of model c for rainfall event I. 

4.1 Precipitation characteristics 

While rainfall sums are equally distributed between the winter (Oct. – Mar.) and vegetation season (Apr. – Sep.) 

in the selected hydrological year 2013/14 (Fig. 2 b), the rainfall intensities and the associated standard deviation 

(here used to measure the spatial variability of the precipitation field) of the precipitation field are in general higher 10 

in summer (Fig. 4 a & b). For instance, the five rainfall events with the highest rainfall intensities as well as the 

highest standard deviation in space were all observed in the summer season. Rainfall intensity and spatial 

variability are thereby strongly linked to each other which is reflected in their linear correlation of 0.82. The latter 

is no surprise as convective storms, which dominate the precipitation generation in summer, are typically 

characterized by higher spatial variabilities and higher rainfall intensities. This finding is surely neither surprising 15 

nor limited to the chosen research environment (e.g. Hrachowitz and Weiler, 2011; Wilson et al., 1979) but it 

confirms one of our initial assumptions that rainfall is spatially more diverse in the summer season compared to 

the winter months in the Colpach catchment. 

 

We selected two rainfall-runoff events to test the adaptive model c (Fig. 4, time of the events are indicated by the 20 

red horizontal bars). We chose the first event as it has the highest rainfall intensity of 19 mm hr-1 and the third-

highest spatial variability measured by the standard deviation of 3.8 mm hr-1 in the time series as well as a distinct 

runoff reaction. Rainfall event I was observed at the beginning of August, lasted for about 5 hrs and the highest 

spatial differences between the grid cells of 14 mm hr-1 was reached right at the beginning of the event (Fig. 5 and 

6). The rainfall event moved from west to east over the catchment and reached its maximum rainfall intensity after 25 

approximately 3 hrs. No rainfall had occurred before the event for a period of 102 hrs. We can hence assume that 

the catchment was in a moderately dry state before the event which is also indicated by soil moisture measurements 

presented in Loritz et al. (2017). 
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The second rainfall event was selected as it has distinctly different properties (low spatial variability, low intensity, 

longer duration) when compared to the first event. Event II has a maximum rainfall intensity of 5.8 mm hr-1 and a 

maximum spatial difference between the grid cells of 4 mm hr-1. The event lasted for around 15 hrs, there was no 

rainfall observed 20 hrs before the event but more than 36 mm of rainfall in the previous three days. We can hence 

assume that the soils in the catchment where rather wet which is again supported by the soil moisture measurements 5 

presented in Loritz et al. (2017). 
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Figure 4. a) average rainfall intensity of the precipitation field (mm hr-1), b) corresponding standard deviation of the 

precipitation field (mm hr-1), c) observed discharge of the Colpach catchment and the discharge simulation of the 

reference model as well as of the distributed model b. The two red bars highlight the location of the two selected rainfall-

runoff events used to test the adaptive clustering approach. 5 

4.2 Temporal dependency of the model performance 

The performances of the four model setups (reference model, model a, b and c) to simulate the observed discharge 

of the Colpach catchment measured by means of the KGE are shown in Tab. 1. If one compares the two spatially 

aggregated models that differ only with respect to their rainfall forcing the reference model outperforms model a 
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during the winter season and on the annual time scale while model a has a higher performance in the vegetation 

season (Apr. – Sep.). Both models are characterized by KGE values larger than 0.8 in the winter season and for 

the entire simulation period while the predictive performance drops in summer and is particularly low for the two 

rainfall-runoff events resulting even in negative KGE values. The differences between the KGE values (ΔKGE) 

between the two spatially aggregated models (reference model and model a) are low in winter, increase in summer, 5 

and are the highest for the convective rainfall event I. Here does the reference model only have a similar 

performance as the mean of the discharge time series indicated by a KGE value of -0.41 (please note that it is not 

zero as in the case when using the Nash-Sutcliff efficiency as shown by Knoben et al. (2019)). 

 

The observed discharge of the Colpach catchment, the discharge simulations of the reference model as well as the 10 

discharge simulation of the distributed model b are presented in Fig. 4 c. The visual comparison of the two models 

shows that the reference model has a lower runoff production during summer, which is particularly visible in 

August and September. Interestingly, the latter cannot be explained by the annual or seasonal precipitation sums 

as both models are driven by on average similar precipitation sums of around 900 mm yr-1 for the entire year and 

around 450 mm 6 month-1 in the summer season. Overall, model b has the highest predictive performance measured 15 

by means of the KGE in all five test periods (annual, winter, summer, and the two selected rainfall events) if 

compared to the two spatially aggregated models. The absolute differences between the model performances 

depend again on the selected period. For instance, for the entire simulation period, the reference model and model 

b have close to equal KGE values around 0.9 while the differences between the KGE values are in summer ΔKGE 

= 0.2 and for the spatially variable rainfall event I around ΔKGE = 0.7. 20 

 

Although model b has the highest KGE values for the two selected rainfall-runoff events, the general model 

performance is, given the KGE values of 0.29 and 0.1, still relatively low for both runoff events. The low 

performance can be explained by a general underestimation of the total runoff volume at both events (Fig. 7), while 

it seems that the shape of the hydrograph is simulated acceptable. The latter is supported by the fact that the 25 

distributed model b is capable to simulate the observed double peak at event I. Furthermore, we tested the addition 

of a direct runoff component by assuming that 10 % of the rainfall is directly added to the channel network instead 

of falling on the hillslopes. This model extension could be justified by sealed areas within the catchment, by 

precipitation that directly falls into the stream or on saturated areas like the riparian zone and increases the KGE 

of model b from 0.29 to 0.48 at event I. However, we do not update our model here as the main goal of this study 30 

is not to perform the best possible rainfall-runoff simulation but to investigate the role of the spatio-temporal 

patterns of the rainfall for the runoff generation of a mesoscale catchment. 
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Table 1. Model performances of the four model setups to simulate the observed discharge of the Colpach catchment, 

which are measured by using the Kling-Gupta efficiency (KGE) based on the hourly simulation and observation time 

steps. Performances are shown for the entire hydrological year (2013/2014), for the winter (Oct. – Mar.) and summer 

season (Apr. – Sep.) as well as for two selected summer rainfall-runoff events in July and August. 5 

 annual 

performance 

(KGE) 

winter 

performance 

(KGE) 

summer 

performance 

(KGE) 

rainfall 

event I 

(KGE) 

rainfall 

event II 

(KGE) 

 

reference model 

from Loritz et al. (2017) 

model a 

(spatially-aggregated) 

model b 

(distributed model) 

model c 

(adaptive model) 

 

0.88 

 

0.85 

 

0.91 

 

- 

 

 

0.88 

 

0.84 

 

0.89 

 

- 

 

 

0.52 

 

0.65 

 

0.73 

 

- 

 

 

-0.41 

 

-0.16 

 

0.29 

 

0.29 

 

-0.09 

 

-0.05 

 

0.1 

 

0.1 

 

 

4.3 Spatially adaptive modeling - simulation results 

The upper panel of Fig. 5 shows the binned precipitation field of rainfall event I. The precipitation field was binned 

based on the chosen bin width of 1 mm hr-1. The rainfall field allocates 0 bins (precipitation groups) at t = 0 (P = 

0), 12 bins at t = 1 (P = 12), 12 bins at t = 2 (P = 12), 3 bins at t = 3 (P = 3) and 2 bins at t = 4 (P = 2). The number 10 

of occupied bins indicates the spatial variability of the rainfall event at a given time step and would reach maximum 

spatial complexity if P equals 42. This means that if a high number of bins is allocated the forcing is spatially 

variable and respectively a higher number of models is needed to represent the spatial variability of the 

precipitation. The number of bins does, however, not specify how large the gradients are within the spatial 

precipitation field. For instance, if 50 % of a precipitation field is characterized by a rainfall amount of 20 mm hr-15 

1 and the other 50 % by 1 mm hr-1 the number of allocated bins is two although the absolute difference between 

the bins is large. 

 

The lower panels of Fig. 5 and Fig. 6 show the binning of the model states (S) of the adaptive model for each time 

step of event I. At t = 0, we run a single model representing the entire catchment with a single model state. At t = 20 

1, the precipitation starts and the spatial field is classified into 12 bins (P = 12). Following our approach, this 
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entails that we need to run 12 models (M = 12) at t = 1 to account for the spatial variability of the rainfall. After 

one simulation step, we estimate the number of model states by binning the slope of the discharge simulations of 

the 12 models resulting in two different model states (as two model state bins are occupied). Each of these states 

represents now a different part of the catchment with a different area (Fig. 6, lower panel). For instance, at t = 1 

around 76 % of the catchment area is represented by a model in a state where discharge changes below 0.05 mm 5 

hr-1 and 14 % between 0.05 and 0.1 mm hr-1. At t = 2, the precipitation field has again been classified into 12 bins 

but at this time step, the catchment is represented by two model states from the time step before. This means we 

need to check which combinations of states and precipitation input occur. In other words, which grids are 

represented by which state and are forced by which precipitation input. In this specific setting, we need to run 16 

models which is lower as the theoretical maximum (2 model states (S) x 12 precipitation bins (P) = 24 running 10 

models (M)) as not all model states are driven by all grouped precipitation inputs. Afterward, we again group the 

model states (S = 4) and continue until t = 4 after which no rainfall occurs and we again represent the entire 

catchment by a single model. In total, we were able to reduce the maximum number of gridded models from 42 to 

a maximum of 16 at rainfall event I and at the second event from 42 to 4 without a predictive performance loss in 

comparison to the distributed model b (Tab. 1). The latter is, besides the comparison of model c with the observed 15 

discharge, also shown by the high KGE values between the distributed model b and the adaptive model c of around 

0.98 at both events. 

4.4 Spatially adaptive modeling – dissipation of differences 

The dissipation timescale (memory timescale) at both events until the different hillslope models have “forgotten” 

the last forcing and are again in the same “runoff generation state” is relatively short. More specifically, already 20 

after 1 hr of no precipitation at event I and II the differences between the runoff generation of the hillslope models 

in model c are below the picked threshold of 0.05 mm hr-1. This means that our model c would represent the entire 

catchment with a single hillslope model until a new rainfall event (P > 1) occurs. This picture is quite different for 

the soil moisture distribution between the hillslopes, at least in deeper soil layers. For instance, Fig. 8 shows the 

soil moisture distribution of two hillslope models in 10 to 20 and 60 to 100 cm depth which either has received the 25 

highest amount of rainfall measured at a given grid cell at event I (30 mm, 5 hr-1) or the lowest (15 mm, 5 hr-1) for 

two different time steps during and after event I (t = 3 and t = 24; see Fig. 5). Both hillslope models started in a 

similar initial model state and Fig. 8 only shows the wetness of the soil matrix. The memory time scale of the 

topsoil correlates thereby quite well with the runoff generation and we observe the largest difference between the 

“wettest” model which has received the highest amount of rainfall and the “driest” model which has received the 30 

lowest amount of rainfall at t = 3 after the highest rainfall intensity (see Fig. 5). After 24 hrs, this difference persists 
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but it slowly dissipates and has almost completely disappeared after 48 hrs. In the deeper soil layer, the picture is 

different. During the event, we see no reaction to the rainfall forcing of the soil matrix and water bypasses these 

areas through preferential flow paths. However, 24 hrs after the first rainfall of event I the difference between the 

models regarding their soil moisture distributions in deeper layers is slowly increasing although there was no 

further rainfall. The latter means that by aggregating the different hillslope models, as done in our adaptive model 5 

c after only one hour of no rainfall, we delete the difference between the soil moisture distributions. As we use the 

mean to aggregate our models, we are, however, still conserving mass. The question remains of how important 

these differences are on longer time scales or for the root water uptake. 

 

Figure 5. Binned precipitation field (blue) and binned model states (orange) of the adaptive model (t = 0; August 3rd 10 
2014 15:00 CET); P = no. of allocated precipitation bins, S = no. of allocated model space bins, M = no. of running 

models at the given time step. The spatial distribution of the precipitation and the model states for event I are displayed 

in Fig. 6. 
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Figure 6. Spatial and temporal distribution of the precipitation field (upper panel) and the corresponding states of the 

actual model grids used by the adaptive model c (lower panel). The model state is estimated by the slope of the simulated 

discharge. The corresponding bins (groups) of the precipitation and model states are shown in Fig. 5. 

 5 

 

Figure 7. a) rainfall-runoff event I and b) rainfall-runoff event II. Blue bars in the upper panel show the average 

precipitation of the precipitation field for each time step (mm hr-1). The green curves in the lower panel represent a 

single gridded model of the distributed model b; red line the area-weighted mean of the distributed model; purple 

dashed line the area-weighted mean of the adaptive model and dashed blue line the observed specific discharge of the 10 
Colpach. 
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Figure 8. Relative soil moisture distributions for two gridded hillslope models of model b that received the lowest (orange 

curve) respectively the highest (blue curve) amount of rainfall during event I (15 mm 5 hr-1 and 30 mm 5 hr-1). Presented 

for time step t = 3 (during the event) and t = 24 (after the event).  

5. Discussion 5 

5.1 The role and value of distributed rainfall for hydrological models 

While the three non-adaptive model setups (reference model, model a, and b) perform equally well with respect to 

simulate the discharge of the Colpach catchment in the winter season, this is not the case in the summer season 

where the distributed model has higher KGE values as both spatially aggregated models. This corroborates our 

hypothesis stating that the predictive performance of the spatially aggregated reference model introduced by Loritz 10 

et al. (2017) increases if the model is distributed in space and driven by distributed rainfall. However, model b has 

still several deficiencies especially at the two selected rainfall-runoff events where it does underestimate the total 
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observed runoff volume. This indicates that there is still room for further improvements of the hydrological model 

to increase its predictive performance. 

 

Although the model comparison in this study is rather heuristic (e.g. we used only a single performance metric 

etc.), the findings highlight that the use of distributed rainfall is recommended during the summer season for 5 

simulations of the runoff generation of the Colpach. This insight is consistent with the findings of Euser et al. 

(2015) and Wilson et al. (1979) who showed similar results in a 1600 and 42 km2 large catchment. On the other 

hand, the winter performance of model b did not improve in comparison to the reference model. In line with these 

results, Obled et al. (1994) and Das et al. (2008) concluded that “the spatial variability of rainfall, although 

important, is not sufficiently organized in time and space to overcome the effects of smoothing and dampening 10 

when running off through this rural medium-sized catchment.”. Given the rather small size of the Colpach 

catchment and the fact that the use of distributed rainfall increased the performance during the summer, it seems 

that catchment size might not be the best indicator to decide if or if not a distributed hydrological model driven by 

distributed rainfall is needed. The higher relevance of spatially distributed precipitation for hydrological modeling 

in the summer months surely reflects the circumstance that also the average rainstorm size as well as the average 15 

rainfall intensities change between the seasons and are on average much higher during summer (Neuper and Ehret, 

2019). Given the changing meteorological regime, it seems reasonable to link the increasing relevance of 

distributed rainfall to these changes. The fact that average storm size over a catchment is a key indicator to identify 

the role of distributed precipitation on the runoff generation of a catchment was also pointed out by Nicótina et al. 

(2008). As the dominant rainfall generation mechanisms change during the hydrological year in many humid 20 

catchments from frontal to convective, it comes from a physical perspective, not as a surprise that also the relevance 

of distributed rainfall differs between the seasons or even between different rainfall-runoff events. 

 

The evaluation of the model performances highlights that the necessary spatial model structure does not only 

change between seasons but more importantly from rainfall event to rainfall event. This idea has already been 25 

highlighted by Watts and Calver (1991). They concluded that “the finest available definition of rainfall may be 

desirable for modeling…” of convective rainfall events while higher spatial model resolutions did not increase the 

predictive performance of their models during stratiform rainfall events. At first glance contradicting, Lobligeois 

et al. (2014) reported that the distribution of rainfall is in general of higher relevance in certain regions of France 

when they analyzed 3620 rainfall-runoff events of 181 mesoscale catchments. However, they also discussed that 30 

a substantial amount of rainfall-runoff events contradicted this general pattern, which shows that the distribution 

of rainfall can be of high importance in regions, even if the spatial precipitation patterns are usually not a dominant 
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control on the runoff formation. As such “rare” events are frequently linked to extremes, which are in turn beyond 

the realms of experience on what these landscapes have adapted to, they are of considerable importance despite 

their low occurrence in time (Loritz, 2019). 

5.2 Spatially adaptive modeling – as a tool to reduce redundant computations 

The proposed adaptive modeling approach is promising because the spatial adaptive model c performed similarly 5 

as the distributed model b, although it used a much smaller number of hillslopes. The maximum number of gridded 

model elements that were necessary to represent the variability of catchment states and precipitation was reduced 

by a factor of 2.5 for event I. The total gain in computational efficiency is however larger as most of the time less 

than 16 models are required to represent the catchments runoff generation. 

 10 

Clark et al. (2017) recognized computational times as mayor obstacle when using physically-based models for 

practical applications, as proposed in the landmark publication of Freeze and Harlan, (1969). The discussion about 

saving computational times with adaptive clustering is, however, challenging (Ehret et al., 2020) as the gain 

depends on the chosen model approach (e.g. numerical scheme), on the used hardware, the programming language, 

the compiler or on the number of printout times of a model to the hard-drive. Furthermore, the relevance of saving 15 

computational times of, for instance, 10 % depends on the absolute calculation time of a model and hence whether 

a model run needs 100 min or 100 d to be completed. A fair comparison would mean to setup a virtual environment 

and work under similar conditions, e.g. by using a virtual machine as well as using a fully automated adaptive 

clustering approach. Both is, however, beyond the scope of this study and we would like to point toward the study 

of Ehret et al. (2020) which discusses the potential of adaptive clustering with respect to computational times in 20 

detail. 

5.3 Spatially adaptive modeling – as a tool to better understand the dissipative nature of a hydrology 

In this study, we focus on the potential of adaptive modeling to examine when interactions between a variable 

precipitation forcing and a variable catchment state cause a variable runoff response and when these differences 

get “forgotten” due to the dissipative nature of hydrological systems. Our results show or reiterate that the 25 

relevance of distributed rainfall for hydrological modeling is dynamically changing in space and time. One way to 

account for this dynamically changing relevance is to run distributed models driven by distributed rainfall the 

entire time at the highest possible spatial resolution. Such an approach, sometimes referred to as hyper-resolution 
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modeling (e.g. Bierkens et al., 2015), would avoid cases in which we unnecessarily underestimate the needed 

(spatial) model complexity of a hydrological model (e.g. Fenicia et al., 2011b; Höge et al., 2018). However, this 

procedure may lead to a strong increase of uncertainty due to an increased number of model parameters (e.g. 

Beven, 1989), result in a general overestimation of the simulated spatial variability due to error propagations within 

the model as well as increase the number of redundant computations in a majority of the simulation period (Clark 5 

et al., 2017). The latter implies a vast amount of computations as the natural length scale (grid size) of water flow 

in the critical zone, which is frequently simulated by using the Darcy-Richards equation, should not exceed a 

lateral grid size of 10 m and vertical grid size below 1 m in homogeneous soils (Vogel and Ippisch, 2008). The 

same is true for simulating surface runoff with different diffusive wave approaches where typically much higher 

flow velocities occur compared to the subsurface which again requires high resolutions and small calculation time 10 

steps. Hyper-resolution modeling without a delineation of the underlying system in independent sub-units for 

parallelization is hence up-to-date constrained to rather small length scales, at least if applications shall not 

compromise the underlying physics. 

 

Physical constraints of small grid sizes and calculation time steps must not be a dead-end for applying bottom-up 15 

models on larger scales. This is because it is often found that different catchments in the same hydrological 

landscape function similarly despite the overwhelming small scale variability we often observe with point-scale 

measurements (e.g. Loritz et al., 2017). This entails a large potential to transfer information about model states 

from one catchment or hillslope to another (e.g. Hrachowitz et al., 2013) and offers the possibility to aggregate 

structurally similar sub-units of a system and simulate their functioning by a single representative, as long as they 20 

are in a similar state and driven by a similar forcing (e.g. Sivapalan et al., 1987; Zehe et al., 2014). The fact that 

hydrological systems are highly dissipative but constrained by there structure is thereby the key to explain the 

feasibility of this dynamic grouping as the unique characteristics of the forcing over an area do not prevail but are 

depleted or “forgotten” in a relatively short time, at least if the focus is on the runoff generation. Specifically, we 

found during both events that already after 1 hr of no rainfall the spatially adaptive model required only a single 25 

hillslope model to represent the diversity in the runoff generation between the models. While this finding is surely 

constrained by the chosen threshold, the picture is nevertheless quite different in deeper soil layers where the 

diversity of the rainfall forcing leads even after 24 hrs to increasing differences between the “driest” and “wettest” 

models. A part of the information about the different meteorological forcings between the two models is hence 

still stored in the model state after 24 hrs and has not yet been dissipated. The importance of those differences 30 

likely depends on the dominant runoff generation process. In the present case, they have a minor impact as model 
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b and c show similar average baseflow simulations 24 hrs after the rainfall event I and II although model c uses 

only a single hillslope model (difference smaller than 0.001 mm hr-1). 

 

While the structure of a catchment constraints its state space, its actual position therein is controlled by the 

meteorological forcing and by an attracting local thermodynamic equilibrium, a point where all driving gradients 5 

are depleted. As larger gradients dissipate faster than smaller ones if they are controlled by the same integral 

resistance properties, structural similar parts of a landscape will converge to the same state and thereby  “forget“ 

differences between their forcing and state. This convergence leads to the emergence of hydrological similarity in 

time (Loritz et al., 2018) and explains the changing relevance of distributed rainfall. This again is the theoretical 

ground that explains why adaptive modeling works in hydrological systems and not necessarily in meteorological 10 

systems as their chaotic nature can amplify state differences on longer time scales, instead of dissipating those 

(e.g. Lorenz, 1963). Our developed adaptive modeling approach is using this straightforward physical reasoning 

of the causal interplay between the precipitation forcing and the catchment state to dynamically allocate its model 

structure. It is built upon a well-established concept in hydrology, which states that individual observations or 

model states can represent each other if they are allocated to the same group (e.g. Wood et al., 1990). The related 15 

bin widths (grouping) can be selected either based on our physical understanding (Loritz et al., 2018) or identified 

based on a statistical analysis of the underlying distribution (of for instance the precipitation data; e.g. Gong et al., 

2014; Scott, 1979). The general approach is strongly motivated by the idea that a spatially homogeneous field can 

be compressed to a single time series without losing information about the spatial pattern of rainfall. This is, 

however, not the case if the spatial field is highly variable where a compression to a single observation reduces 20 

the information provided to a hydrological model and hence can average out extremes and potentially relevant 

spatial constellations (e.g. Loritz et al., 2018; Weijs et al., 2013). Spatially adaptive modeling can, therefore, be 

used as a tool to analyze the relevance of certain spatial detail in a hydrological model as well as to better 

understand the dissipative nature of hydrology. 

6. Conclusions 25 

In this study, we try to better understand the role and value of distributed precipitation data for the runoff generation 

of a mesoscale catchment. We compare the model performances of three hydrological models at different periods 

and show that a distributed model driven by distributed rainfall yields only to improved performances during 

certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable to 

dynamically adjust its spatial model structure in time. This model is capable to represent the varying importance 30 
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of distributed rainfall within a hydrological model without losing performance compared to a spatially distributed, 

gridded model. Our results confirm that spatially adaptive modeling might be a) one way to reduce computational 

times as already shown by Ehret et al. (2020), b) can be used to better understand the varying importance of spatial 

state and forcing differences in hydrological models and c) highlight that similarity between the runoff generation 

of two hillslopes does not necessarily mean similarity between other state variables (e.g. soil moisture in deeper 5 

soil layers). 

 

The main findings of this study are: 

1) The importance of distributed rainfall on hydrological modeling is given by the natural variability of 

rainfall dynamically changing in time. In consequence, there cannot be a time-invariant answer to the 10 

question “How important are spatial patterns of precipitation for the runoff generation at the catchment 

scale?” nor to any related question which deals with an “optimal” spatial discretization of a hydrological 

landscape within a model. 

2) Spatially adaptive modeling is a feasible way to account for the changing importance of distributed 

rainfall within a hydrological model and at the same time can be used to better understand the interplay 15 

of the rainfall forcing, the catchment structure, and its state. 

3) The tested catchment is organized in a manner that spatial differences between the precipitation forcing 

are effectively “forgotten”. This entails that gradients, which drive runoff, are effectively dissipated in a 

relatively short period. This period might, however, be quite different for other fluxes and state variables 

depending on the dominant runoff generation process. 20 
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Appendix A: Detailed description of the distributed rainfall data. 

The distributed precipitation data used in this study is based on single-polarization C-band Doppler radar 

measurements. The mainly used radar data is from the radar located in Neuheilenbach, Germany and operated by 

the German Weather Service (DWD). The raw volume data set has an azimuthal resolution of 1° and a radial 

resolution of 500 m. The -3dB beamwidth of the antenna is 1°. The radar site is between 40 and 70 km away from 5 

the study area. This means that the resolution is yet neither significantly degraded by the beam spreading, nor 

partial blinded through cone of silence issues. During the period from the 1st of October 2013 to the 27th of March 

2014, the radar in Neuheilenbach was out of service due to maintenance issues. We hence used data from a radar 

located in Wideumont, Belgium in this period. The radar in Wideumont is operated by the Royal Meteorological 

Institute of Belgium (RMI) and is also a C-band Doppler radar with the same technical specifications as the radar 10 

of the DWD. The distance between radar site in Wideumont and the study area is between 24 to 44 km. Thus, the 

same statements about the resolution, which were made in the case of the data from Neuheilenbach, also apply to 

the radar data of Wideumont. 

 

The data was quality controlled and a correction was performed. The particular raw data was at first filtered by a 15 

static clutter filter and then also by a Doppler clutter filter. Subsequently, a bright-band correction (Hannesen, 

1998) was applied. Occasional contamination of the data by second trip or anaprop echoes was removed by using 

approaches of Bückle (2009) and Neuper (2009). Specific attenuation corrections were not applied. Furthermore, 

the data was carefully quality checked by an experienced radar meteorologist and operational weather forecaster, 

who even spends his spare time watching radar pictures. From the corrected data a pseudo PPI (plan position 20 

indicator) data set at 1500m above ground was created and afterward an adequate (based on the synoptic situation) 

reflectivity-rain rate relation (Z-R relation) was applied to compute the precipitation rate (e.g. Fabry, 2015). In the 

last step, the distributed precipitation fields were checked against quality-controlled rain gauges and if necessary 

manually corrected. 

  25 
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