
Dear Editor, 

We would like to thank you and the four referees for handling, respectively reviewing, our manuscript 

(MS). In line with our responses to the reviewers we carefully revised our MS as outlined below: 

- We restructured section 3 by splitting it into two sections. In section 3 we now exclusively introduce 

the model setups and in section 4 we explain the adaptive modeling in detail. We, furthermore, 

added a table to section 3 where we summarize the properties of the different model setups and 

added a new subsection where we explain how we test the model setups. 

- We carefully revised the discussion of our MS. This means that we now clearly discuss the 

limitations of our approach regarding the selected test periods and the chosen similarity metric. We, 

furthermore, added and discuss the proposed literature of the reviewers and finally have improved 

the connection of our work to the land surface community. 

- We added a second variable, namely Q, to group model states. 

- We changed Fig. 8 and added the soil moisture distribution after 48 hrs to highlight that different 

model elements are again in a similar state after 48 hrs of no rainfall. The latter as well as another 

new figure in the supplement showing the Shannon entropy of the distributed model b underpins 

that the model states of individual hillslopes are not drifting apart in the summer season. This means 

that there is no reason to assume that the spatially adaptive model c would fail if we would run it 

for the entire summer season in a fully automated manner. 

- We updated the KGE values of the reference model for rainfall event I and II in Tab. 2, which were 

incorrect due to a wrongly selected too long timing period. This does, however, not change the 

general pattern of the model results. 

- Additionally we add: 

o the measured rainfall at the ground station “Roodt” to Fig. 2b 

o  a table with the three components of the KGE to the supplement 

o the location of the distrometers and micro rainfall radars to the supplement 

o a new figure to the supplement showing how different binning widths influence the spatial 

resolution of the adaptive model c 

o added information about the numerical schemes used in CATFLOW 

- We removed the appendix and added a supplement to further increase the readably and structure of 

the MS. 

Enclosed we added the revised MS with track chances as well as our detailed responses to the four 

reviewer comments. Again we would like to thank you and the four referees for handling, respectively 

reviewing, our MS and look forward for your assessment. 

Yours sincerely, 

Ralf Loritz, on behalf of the Co-Authors 
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Abstract 

This study investigates the role and value of distributed rainfall for the runoff generation of a mesoscale catchment 

(20 km2). We compare the performance of three hydrological models at different periodsmodel setups and show 

that a distributed model setup driven by distributed rainfall yields only to improvedimproves the model 

performances during certain periods. These periods are dominated by convective summer storms that are typically 

characterized by higher spatial and spatio-temporal variabilities compared to stratiform precipitation events that 

dominate the rainfall generation in winter. Motivated by these findings we develop a spatially adaptive model that 

is capable toof dynamically adjustadjusting its spatial structure during runtime to representmodel execution. This 

spatially adaptive model allows representing the varying importancerelevance of distributed rainfall within a 

hydrological model without losing predictive performance compared to a spatiallyfully distributed model. Our 

results highlight that spatially adaptive modeling might be a promising way to better understandhas the potential 

to reduce computational times as well as improve our understanding of the varying relevancerole and value of 

distributed rainfall in precipitation data for hydrological models as well as reiterate that it might be one way to 

reduce computational times. They furthermore show that hydrological similarity concerning the runoff generation 

does not necessarily mean similarity for other dynamic variables such as the distribution of soil moisture. 

  



1 Introduction 

“How important are spatial patterns of precipitation for the runoff generation at the catchment scale?” –  This is 

a key question for the application of hydrological models that has been addressed in several studies over the last 

threepast decades (e.g. Beven and Hornberger, 1982; Smith et al., 2004; Lobligeois et al., 2014). A frequently 

drawn conclusion is that semi-distributed or even lumped models driven by a single precipitation time series often 

outperform distributed models with respect to their ability to reproduce observed streamflow at the outlet of a 

catchment (e.g. Das et al., 2008). Although the generality of such findings areis surely constrainedlimited by the 

fact that distributed models have more parameters that need to be identified, which makes model calibration much 

more challenging (Beven and Binley, 1992; Huang et al., 2019), they highlight the ability of the hydrological 

system to dissipate spatial gradients efficiently (e.g. Obled et al., 1994; Berkowitz and Zehe, 2020)(e.g. Obled et 

al., 1994). This is the case as hydrological processes are strongly dissipative but exhibit despite the non-linearity 

of surface and subsurface flow processes no chaotic behavior (Berkowitz and Zehe, 2020). 

 

In contrast to the above-mentioned finding that hydrological systems can efficiently dissipate spatial gradients, 

several other studies showed that information about the spatial variability of precipitation can significantly improve 

the predictive performance of hydrological models. For instance, Euser et al. (2015) highlighted that distributed 

models driven by distributed rainfall could reproduce the observed hydrograph of a 1600 km2 large catchment in 

Belgium with higher accuracy compared to spatially lumped model structures. Furthermore, Woods and Sivapalan 

(1999) showed that the interplay between spatial patterns of rainfall and soil saturation can substantially impact 

the runoff generation of a catchment when they analyzed the dependence of average runoff rates in dependence of 

on the spatial and temporal variability of the meteorological forcing and the catchment state. The relevance of 

these spatial patterns is thereby particularly high if the system is close to a threshold where different localized 

preferential flow processes start dominating (e.g. cracking soils: drying of soil; macropores: occurrence of 

earthworms) as discussed by Zehe et al. (2007). Spatial averaging of the system state or the meteorological forcing 

can hence lead to a misrepresentation of relevant spatial patterns, especially at more extreme conditions. 

 

Given the partly contradictory findings present in the literature, it appears reasonable to assume that the relevance 

of distributed rainfall is changing dynamically over time and depends on the interplay of the prevailing i) system 

state (e.g. catchment wetness), ii) on the system functional structure, determined by patterns of topography, land-

use, and geology, as well as on iii) the strength and spatial organization of the rainfall forcing. In consequence, it 

seems furthermore rational to hypothesize that also hydrological models should dynamically adapt their spatial 

structure to the prevailing context thereby reflecting the inherently dynamic nature of hydrological similarity 

(Loritz et al., 2018). 

 

The idea that hydrological models should dynamically allocate their spatial resolution, as well as the associated 

representation of natural heterogeneity in time, is motivated by our previous work (Loritz et al. 2018). In thisthat 

study, we highlighted that simulations of a distributed model consisting of 105 independent hillslopes were highly 

redundant to reproduce discharge or catchment storage changes of a mesoscale catchment within one hydrological 

year. Based on the Shannon entropy as metric we identified periods where a rather small number of representative 

hillslopes was sufficient because most of them functioned largely similar within the chosen margin of error. 

However, during other periods up to 32 independent representations of hillslopes were required, which underlines 

that spatial variability of system properties, such as surface topography or soil types among the hillslopes can exert 



a stronger influence on the runoff generation at certain times as expected given the findings reported by other 

studies conducted in the same research environment (e.g. Fenicia et al., 2016; Loritz et al., 2017). It can, therefore, 

be argued that also distributed rainfall and corresponding distributed model structures are only of higher 

relevanceimportant during specific periods, while during other periods a compressed, spatially aggregated model 

structure may be sufficient. An implementation of such an adaptive spatial model resolution would ensure an 

appropriate spatial model complexity, defined based on the least amount of details about the system structure (e.g. 

the variability of topographic gradients) and catchment states that are sufficient to capture the relevant interactions 

with the spatial pattern of precipitation. Yet it would be as parsimonious as possible to avoid redundant 

computations, which again could be used to minimize computational costs (Clark et al., 2017)Clark et al., 2017). 

 

Moving to the event time scale instead of running continuous simulations is surely one-way to achieve such a 

dynamical allocation of the model space. This would entail running a set of models that differ with respect to their 

resolutions in space and time depending on the prevailing structure of the meteorological forcing and wetness state 

of a landscape. Yet, this introduces multiple new problems, for instance, how to infer the initial conditions of a 

catchment prior to a rainfall event given the degrees of freedom distributed models can offer (Beven, 2001). The 

latter is of considerable importance particularly during extremes resulting from high-intensity rainfall-runoff 

events, which can be strongly sensitive to the actual state of the system such as the spatial patterns of macropores 

(Zehe et al., 2005) or of the antecedent soil water content (Zehe and Blöschl, 2004). 

 

A different avenue to implement a dynamically changing model resolution is adaptive clustering, as recently 

demonstrated for a spatially distributed conceptual (top-down) model by Ehret et al. (2020). This concept allows 

for continuous hydrological simulations, which use a higher spatial model resolution only at those time steps when 

it is necessary. The idea behind adaptive clustering is similar to adaptive time-stepping (e.g. Minkoff and Kridler, 

2006). However, instead of reducing the time steps during times when large gradients prevail, adaptive clustering 

increases or decreases the number of independent spatial model elements during times of low or high functional 

diversity. The general concept behind adaptive clustering is thereby not entirely new to environmental science and 

is already used for instance in hydrogeology under the term adaptive mesh here with the main focus to increase 

the resolution of gradients during times of high dynamics (by increasing or decreasing the number of nodes (grid 

elements) in a model (Berger and Oliger, 1984). The main difference between the adaptive mesh and adaptive 

clustering approach is that instead of adjusting the actualspatial resolution of the numerical model grid during 

runtime adaptive clustering changes the number of hydrological response units (HRU) that are used (needed) to 

represent a catchment. This implies that also the degree of spatial heterogeneity of the catchment state (e.g. the 

wetness state, energy state, etc.) that is covered by the model is dynamically changing. 

 

While the idea of adaptive clustering is promising as it allows a minimum adequate representations of the spatial 

variability of a hydrological landscape, it has to our knowledge so far only been tested within a simple top-down 

model (Ehret et al. (2020)).Ehret et al., 2020). It is thus of interest whether such a dynamic clustering is also 

feasible when using a physically based (bottom-up) model particularly as these models were specifically 

introduced to explore how distributed system characteristics and driving gradients control hydrological dynamics 

(Freeze and Harlan, 1969). Here we will hence test and develop an adaptive clustering approach using 

straightforward physical reasoning and implement it into a distributed bottom-up model. The 

underlyingoverarching objective of this study is thus to exploit the value of adaptive clustering as a tool to better 

understand the temporal relevance of distributed precipitation for the runoff generation of a meso-scale catchment 



and, as by-product, to reiterate that adaptive clustering could potentially be used to reduce computational times as 

already discussed in detail by Ehret et al. (2020). High computational times are thereby still one of the many 

reasons why bottom-up are rarely used on larger scales in an spatial explicit manner (Clark et al., 2017). For 

instance, Hopp and McDonnell (2009) used the HYDRUS 3D model (e.g. latest version of Hydrus: Simunek et al., 

2016) and reported computational times ranging from 10 min up to 11 hrs when they simulated water fluxes and 

state variables at the Panola hillslope (area = 0.001250 km2 (25 m x 50 m); maximal soil depths = 4 m) for a 

simulation time of 15 days. by changing slope angles, soil depths, storm sizes and bedrock permeability. A 

meaningful application of bottom-up models at relevant management scales (around 250 km2 in south Germany 

e.g. Loritz, 2019), without a violation of important physical constraints (e.g. 10-2 - 101 m maximum vertical grid 

size for the Richards equation; Or et al., 2015; Vogel and Ippisch, 2008), would thus imply long computational 

times. This again strongly limits the number of feasible model runs to examine, for instance, different parameter 

sets (Beven and Freer, 2001). 

 

In this study, we therefore test the specific hypothesis ifthat adaptive clustering is a feasible approach to represent 

the spatial variability of rainfall in a hydrological bottom-up model at the lowest sufficient level of detail without 

losing predictive performance compared to a fully distributed model. We test this hypothesis by introducing a 

clustering approach at the example of the model CATFLOW, which is applied to the 19.4 km2 large Colpach 

catchment using a gridded radar-based quantitative rainfall estimate by addressing the two following research 

questions: 

 

1. Does the model performance of a spatially aggregated model improve ifwhen it is distributed in space and 

driven by distributed rainfall? 

2. Can adaptive clustering be used to distribute a bottom-up model in space that it is capableable to represent 

relevant spatial differences in the system state and precipitation forcing at the least sufficient resolution to 

avoid being highly redundant as a fully distributed model? 

2 Study area, hydrological model and meteorological data 

2.1 The Colpach catchment 

The 19.4 km2 Colpach catchment is located in northern Luxembourg and is a headwater catchment of the 256 km2 

large Attert experimental basin (Fig. 1). The prevailing geology of both catchments are Devonian schists of the 

Ardennes massif which are characterized by shallow, coarse-grained, and highly permeable soils (> 1 m; e.g. 

Jackisch et al., 2017; Juilleret et al., 2011). The steep hills of the Colpach are primarily forested and the elevation 

of the Colpach ranges from 265 to 512 m a.s.l.. Annual runoff coefficients varied around 50 % ± 7 % for the 2011- 

2017 period. Precipitation is rather evenly distributed across the seasons (vegetation and winter season), while the 

runoff generation has a distinct seasonal pattern as around 80 % of the annual discharge is being released between 

October and March (Seibert et al., 2017). The Colpach and its sub-catchments (e.g. Weierbach) have been used as 

study area in a series of scientific publications. We refer here to Pfister et al. (2018), Jackisch (2015) or Loritz et 

al. (2017) for more detailed system description (mean annual precip: 900 – 1000 mm yr-1; mean annual 

evapotranspiration: 450 – 550 mm yr-1; mean annual discharge: 450 – 550 mm yr-1; land-use: 65 % forest; 23 % 

agriculture; 2 % others; mean annual temperature: 9.1 °C). 



 

Figure 1. a) map of the Colpach catchment (location northern Luxembourg), b) picture of a typical forested hillslope 

within the Colpach catchment, c) the Colpach river around 4 km north of the gauging station. 

2.2 The CATFLOW model 

The key elements of the CATFLOW Model (Maurer, 1997; Zehe et al., 2001) are 2d hillslopes which are 

discretized along a 2-dimensional cross-section using curvilinear orthogonal coordinates. Evapotranspiration is 

represented using an advanced SVAT (soil–vegetation–atmosphere transfer) approach based on the Penman-

Monteith equation, which accounts for tabulated vegetation dynamics, albedo as a function of soil moisture, and 

the impact of local topography on wind speed and radiation. Soil water dynamics are simulated based on the Darcy-

Richards equation and surface runoff is represented by a diffusion wave approximation of the Saint Venant 

equations using an adaptive time stepping.Soil water dynamics are simulated based on the Darcy-Richards 

equation (solved implicitly, modified Picard iteration; Celia et al., 1990) and surface runoff is represented by a 

diffusion wave approximation of the Saint-Venant equations using adaptive time stepping (solved explicitly, Euler 

forward starting downslope). Vertical and lateral preferential flow paths are represented as connected pathways 

containing an artificial porous medium with high hydraulic conductivity and very low retention. The hillslope 

module is designed to simulate infiltration excess runoff, saturation excess runoff, re-infiltration of surface runoff, 

lateral water flow in the subsurface, return flow, but cannot handle snowfall or snow accumulation. The latter 

means that CATFLOW should not be applied if snow is a dominateddominant control, which is not the case in the 

Colpach catchment. The model core is written entirely in FORTRAN77 and the individual hillslopes can be run in 



parallel on different CPUs to assure low computation times and high performance of the numerical scheme. Up to 

date model descriptions can be found in Wienhöfer and Zehe (2014) or in Loritz et al. (2017). 

2.3 ModelMeteorological forcing and observed discharge 

Meteorological input data used here are recorded at a temporal resolution of 1 hr at two official meteorological 

stations by the “Administration des Services Techniques de l’Agriculture Luxembourg” at the locations “Roodt” 

and “Useldange”. The meteorological station “Roodt” measures rainfall within the catchment border (Fig. 2 a) and 

provided the precipitation input to the model of Loritz et al. (2017). The second station “Useldange” is located 

outside the catchment around 8 km west of the Colpach outlet measures air temperature, relative humidity, wind 

speed, and global radiation. These data are used as meteorological input (except for precipitation) in all model 

setups in this study. In other words, this means that all model setups in this study are forced by identical 

meteorological inputs except for the precipitation data (see section 3.1). Therefore, we cannot account for 

variations of the wind speed or the temperature within the Colpach catchment. A detailed description and analysis 

of the meteorological data can be found in Loritz et al. (2017). 

 

Quality checked dischargeDischarge observations of the Colpach are provided by the Luxembourg Institute of 

Science and Technology (LIST) in a 15 min temporal resolution for the hydrological year 2013/14. The data was 

aggregated to an hourly temporal resolution and transformed to specific discharge given the catchment area of 

19.4 km2. 

2.4 Spatially resolved precipitation data 

Besides the precipitation data from the ground station located in “Roodt”, we use a gridded quantitative 

precipitation estimate, which mergesis a merged product of two weather radar withradars, rain gaugegauges, micro 

rainfall radars and disdrometer observations (Location of the ground measurements in the supplement and in more 

detail in Neuper and Ehret, 2019). The two used radar stations are located 40 to 70 km, respectively 24 to 44 km, 

away from the study siteborders of the Attert catchment (Neuheilenbach; Germany, Wideumont, Belgium) and are 

operated by the German Weather Service (DWD) as well as by the Royal Meteorological Institute of Belgium 

(RMI). Both distances are within a range that the data can be used at a high-resolution of 1x1 km2 as the signal is 

neither degraded by beam spreading nor impacted by partial blindness through cone of silence issues (e.g. Neuper 

and Ehret (2019)). The raw data, 10 min reflectivity data from single pol C-Band Doppler radar, were aggregated 

to hourly averages as well as(Neuper and Ehret, 2019). The raw data, 10 min reflectivity data from single 

polarimetric C-Band Doppler radar, were aggregated to hourly averages and filtered by static, Doppler clutter 

filters, and bright-band correction following Hannesen (1998). Second trip echoes and obvious anomalous 

propagation echoes were manually removed, and the corrected data were used to create a pseudo plan position 

indicator data set at 1500 m above the ground. A more detailed description of how the reflectivity data was 

transformed to rainfall data, calibrated as well as validated against rain gauges and disdrometers can be found in 

the appendix., micro rainfall radar and disdrometers can be found in the supplement and in Neuper and Ehret, 

(2019). 

 

The chosen precipitation time series starts on the 1st of October 2013 and ends on the 30th of September 2014. 42 

grid cells (1 x 1 km2) of the precipitation field intersect with more than 50 % of their area with the Colpach 

catchment and are used in this study (Fig. 2 a). The weather radar measured an area-weighted mean of around 900 

mm yr-1 in the Colpach catchment for the selected period. This is in accordance with the reported climatic averages 



(900 - 1000 mm yr-1) of this region (Pfister et al., 2017). The maximum hourly precipitation difference between 

the grid cells in the study period is 14 mm hr-1 (August 2014) and the maximum annual precipitation difference 

between the grid cells is 95 mm yr-1 (Fig. 2 b). Temporally, the precipitation isdistributes evenly distributed over 

the year with around 50 % of rainfall in winter and 50 % of rainfall in summer with a short dry spell from mid-

March to the end of April. There is a weak correlation between the mean elevation of the grid cells and the annual 

precipitation sums of 0.43. This implies that precipitation tends to be slightly higher in the northern parts of the 

catchment that are also characterized by higher altitudes (Fig. 2 a). The measured precipitation time series from 

the ground station located in “Roodt” differs from the mean precipitation of the spatial rainfall field about 30 mm 

yr-1 and around 60 mm yr-1 from the exact location in the precipitation grid measured by the weather radar with a 

tendency of higher rainfall values in especially in the winter season. Why exactly the precipitation observations of 

the ground station in Roodt differ in this magnitude from the merged product of the weather radar is an interesting 

research question, however, not the scope of this study. 

 

 

Figure 2. a) annualAnnual sums of the gridded precipitation field over the Colpach catchment for the hydrological year 

2013/14 as well as the location of the rainfall station “Roodt” which is used as precipitation input for the reference model 

(spatial resolution: 1 km2; coord. system WGS84), b) cumulated) (panel a). Cumulated precipitation for each grid cell 



for the hydrological year 2013/14 of the precipitation field (blue lines) and), the corresponding mean of the precipitation 

field (dashed red line) and the precipitation data from the station in Roodt (panel b, dashed orange lines). 

3. Modeling approach 

In the following sectionsections 3.1 to 3.3, we give introduce three non-adaptive model setups (reference model, 

model a short introduction to and model b) and a spatially adaptive model setup (model c). Details how the model 

setups are tested are provided in section 3.4 and 3.5. A summary of the different model setups we use in this study 

and refer to the corresponding subsection for more detailed descriptions of each setupcan be found in Tab. 1. 

 

Reference model 

The spatially aggregated reference model (section 3.1) was designed and intensively tested in the Colpach 

catchment in a previous study (Loritz et al., 2017). This model serves as benchmark here to a) evaluate the other 

three models and b) provides the structural basis for them. Moreover, are the model deficits to simulate streamflow 

in the summer months of the reference model discussed in Loritz et al. (2017) one of the main motivations of this 

study (see section 3.2) apart from the finding of Loritz et al. (2018) that a suitable model structure needs to adapt 

its resolution in time. 

 

Model a 

Model a (section 3.2) is identical to the reference model and hence also spatially aggregated. The only difference 

between the models is that it is driven by different precipitation data. This precipitation data is the area-weighted 

mean of the spatially resolved precipitation product described in section 2.4 and measured by a weather radar. The 

main reason for running model a is to exclude that already the quantitative differences between the precipitation 

data measured at the ground station “Roodt” and by the weather rainfall data result in a performance increase and 

not the spatial variability of the rainfall field. 

 

Model b 

The third model (model b; section 3.2) is a distributed version of the reference model. Model b is thereby distributed 

based on the resolution of the spatially resolved precipitation data and was designed to examine the role of 

distributed rainfall on the runoff generation in the Colpach catchment. It represents the Colpach with 42 spatial 

grids (1 x 1 km2). In each of these grids, we run a model similar to the reference model, however, driven with the 

specific precipitation data measured at this location by the weather radar. 

 

Model c 

Other than the three above mentioned non-adaptive models (reference model, model a, model b) we develop a 

third, spatially adaptive, model (model c; section 3.3). This model is capable to dynamically adapt its spatial model 

structure in time. To dynamically allocate its structure, it uses the spatial variability and the strength of the rainfall 

forcing as well as its fingerprint the catchment (model) state. The main goal is to show that we can achieve similar 

simulation results compared to model b, however, with a coarser dynamically adapting spatial model structure. We 

test this model at two selected rainfall-runoff events. 



3.1 Non-adaptive models – The reference model of Loritz et al. (2017) 

3.1 The reference model of Loritz et al. (2017) 

All simulationsmodel setups in this study are based on a spatially aggregated model structure (reference model), 

developed and extensively tested in the Colpach catchment in a previous study (Loritz et al., 2017). The general 

idea behind the proposed model concept (representative hillslope) is that a single bottom-up hillslope model 

reflects a meaningful compromise between classical top-down and bottom-up models (Hrachowitz and Clark, 

2017; Loritz, 2019)(Hrachowitz and Clark, 2017; Loritz, 2019). This is because a representative hillslope resolves 

the case as iteffective gradient and resistance controlling water storage and release and allows that macroscopic 

model parameters can still be derived from available point measurements. The parameters of the model of Loritz 

et al. (2017) were hence, for the most part, derived directly from a large amount of field data, and the model was 

only afterwardafterwards manually fine-tuned by further exclusively adjusting the spatial macropore density 

within a few trial and error runs to simulate the seasonal water balance of the Colpach catchment. The model 

simulations were tested against hourly discharge observations on an annual and seasonal time scale (as well as, 

against discharge observations from a sub-basin of the Colpach) and, in a different hydrological year, against 

hourly soil moisture observations (38 sensors in 10 and 50 cm depth), and hourly normalized sap flow velocities 

(proxy for transpiration; 30 sensors). The developed model structure agreed well with the dynamics of the 

observables and showed higher model performances as reported in other studies working with different top-down 

model setups in the same environment (Wrede et al., 2015). 

 

To summarize, the reference model serves as benchmark here to a) evaluate the other models and b) provides the 

structural basis for them. None of the other model setups are further calibrated or manually tuned and the only 

difference between the different model setups is the precipitation data they are driven with and respectively the 

model resolution. For further details how the reference model was setup and tuned we refer to the study of Loritz 

et al. (2017). 

3.2 Non-adaptive models – Model a and b 

Despite the acceptable annual model performance of the reference model, it showed deficits to simulate thein 

simulated runoff response to a series of summer rainfall-runoff events. As discussed in Loritz et al. (2017), one 

possible explanation for the unsatisfying performance is that summer precipitation in the Colpach catchment is 

mainly driven by convective atmospheric conditions. These convective precipitation events are characterized by a 

much smaller spatial extent as well as by higher rainfall intensities compared to the stratiform and frontal 

precipitation events that dominate during winter (Neuper and Ehret, 2019). The insufficient model performance 

in summer could therefore likely be a consequence of the larger spatial gradients of the rainfall field compared to 

the winter season that cannot be accounted for in the original model of Loritz et al. (2017). In other words, this 

entails that a hydrological model, distributed at a sufficiently high spatial resolution, is required to capture the 

spatial variability of the precipitation field to satisfactorily simulateachieve improved simulations of the runoff 

generation of the Colpach. One goal of this study (first research question) is hence to test the hypothesis whether 

the performance deficiencies of the representative hillslope model (, the reference model), in summer are mainly 

caused by the inability of the setup to account for the spatial gradientsvariability of the precipitation field, rather 

than a result of important structural differences (e.g. soil, land-use, topography) within the Colpach catchment. 

 



To address the first research questions of this study: “Does the model performance of a spatially aggregated model 

improve if it is distributed in space and driven by distributed rainfall” we analyze simulations of two alternative 

model setups (model a and model b) additional to the reference model from Loritz et al. (2017):). Both model 

setups are described in detail below. 

 

3.2.1 Spatially aggregated model a 

Model a is structurally identical to the reference model, however, it is driven by the area-weighted mean of the 

spatially resolved precipitation data described in section 2.4 (Fig. 2 b). and plotted in Fig. 2 b. We used the area-

weighted mean as not all raster cells of the distributed precipitation data are entirely within the borders of the 

Colpach catchment. This means that that the weight of a grid cells that are not entirely located within the catchment 

is reduced when we calculated the average according to the percentage areal overlap. 

 

We added model a to test if the performance difference between the reference model and our distributed model b 

is merely a result of quantitative differences between the different precipitation products measured either by a 

single ground station or by a weather radar in combination with different ground stations. 

 

3.2.2 Spatially distributed model b 

Model b is a spatially distributed version of the reference model. This means thatMore specifically, here all model 

parameters of the representative hillslope (reference model), as well as all other meteorological variables such as 

temperature or wind speed, are similar and the only two differences betweenidentical to the reference model and 

model b is that. However, model b is spatially distributed as well as driven by differentdistributed rainfall data. 

Model bThis model set-up is thereby distributed on the spatial resolution of the precipitation field similarity as 

done for instance by Prenner et al. (2018) and not following the traditional spatial discretization strategy of 

CATFOW based on a fixed number of hillslopes, inferred from surface topography or land-use. We justify this 

assumption based on the model validation in Loritz et al. 2017 and on a study conducted in the same research 

environment (Loritz et al., 2019)Model b thus represents the Colpach with 42 spatial grids (1 x 1 km2). In each of 

these grids, we run a model identical to the reference model, however, driven with the specific precipitation data 

measured at this location. 

 We justify this assumption based on the model validation in Loritz et al. 2017 and on a study conducted in the 

same research environment (Loritz et al., 2019) where we showed that different sub-basins of the Attert 

basincatchment (the Colpach is a headwater catchment of the Attert catchment) have similar specific discharges 

as long as they are located in the same geological setting and are driven by a similar meteorological forcing (see 

also section 3.34.2). 

 

 

3.23 Spatially adaptive model c 

To address the second and main research question of this study: “Can adaptive clustering be used to distribute a 

bottom-up model in space that it is able to represent relevant spatial differences in the system state and 

precipitation forcing at the least sufficient resolution to avoid being highly redundant as a fully distributed 

model?” we develop a third adaptive model setup (model c). This spatially adaptive model setup is based on the 



distributed model b, however, is able to dynamically adjust its spatial structure in time based on the precipitation 

forcing, as detailed in the sections 4.1 to 4.3. 

3.4 Model analysistesting – non adaptive models a and b 

We analyze the simulation performances of model a and b(spatially aggregated) and b (spatially distributed) by 

calculating the Kling-Gupta efficiency (KGE; Kling and Gupta, 2009) as well as its three components (see 

supplement) between the hourly discharge simulations of the individual modelsmodel setups against hourly 

observed discharge at different time scales (annual, seasonal, event scale). Model a and b are hence run for the 

hydrological year 2013-2014 with hourly printout times and differ only concerning the precipitation data they are 

driven with: 

- Model a: driven by an area-weighted mean of the spatially resolved precipitation data. 

- Model b: driven by 42 precipitation time series each reflecting a grid cell of the precipitation field 

shown in Fig. 2. 

To be able to compare the discharge of the spatially aggregated model a and the distributed model b with the 

observed discharge of the Colpach catchment and to account for the routing of the water from a specific location 

to the outlet, we added a simple lag function acting as channel network. The latter is based on the average distance 

of each grid cell to the outlet of the Colpach assuming a constant flow velocity of 1 m s-1. For model a, we simply 

average allThe latter is based on the average flow length along the surface topography of each precipitation grid 

to the outlet of the catchment assuming a constant flow velocity of 1 m s-1 (e.g. Leopold, 1953). The flow length 

of each grid is estimated based on 10 m resolved digital elevation model. For the spatially aggregated model a, we 

average all flow distances to the outlet and shift the single discharge simulation accordingly. 

3.3 Spatially5 Model testing – adaptive model – Model c 

To address the second research question of this study: “Can adaptive clustering be used to distribute a bottom-up 

model in space that it is capable to represent relevant spatial differences in the system state and precipitation 

forcing at the least sufficient resolution to avoid being highly redundant as a fully distributed model?” we develop 

a third model setup (model c). This spatially adaptive model setup is based on the distributed model b, however, is 

capable to dynamically adjust its spatial structure in time, as detailed in section 3.2.1 to 3.2.3. The underlying 

adaptive clustering approach is based on straightforward physical arguments on how the spatial and temporal 

patterns of rainfall control the spatial pattern of the wetness state of a structural similar catchment. By structural 

similar, we mean that time-invariant properties of the catchment (time-invariant on the scale we are working on) 

like geology, topography or land-use that constrain the state space of a catchment are similarly distributed within 

potential hydrological sub-units of our catchment (e.g. sub-basins or hillslopes; see also section 3.2.2). We 

discusstest the spatially adaptive model c for two selected rainfall-runoff events, which are characterized by 

distinctly different precipitation properties. By that, we examine the dynamic relationshipWe chose event I as it 

has the highest intensity and third-highest spatial variability in summer and event II because it is the event with 

the longest continuous precipitation in the time series. Both events where picked to represent the spectrum of 

rainfall events in the summer season. We focus exclusively on the summer season as the distributed model b only 

outperforms the reference model in this period indicating that spatially distributed rainfall provides no performance 

relevant information during winter. 

 

The main goal of the model testing of the spatially adaptive model c is to show that we can achieve similar 

simulation results compared to the fully distributed model b, however, with a reduced number of hillslopes (coarser 



resolution). We therefore calculate not only the KGE between the spatio-temporal patterns of the rainfall 

forcingsimulated discharge of model c with the observed discharge at event I and its fingerprint the catchment 

stateII but also the KGE between the simulated discharge of model c and show how they can be represented in a 

model. Fullthe simulated discharge of model b on an hourly basis. A full automation of the proposed adaptive 

clustering approach and a test on a longer time scale is, however, beyond the scope of this study. The latter would 

provide only little more scientific inside (besides being technically challenging) how the variability of rainfall 

influences the state of a catchment and how this phenomenon can be used to dynamically allocate a model structure 

in timewe point towards the study of Ehret et al. (2020) who shows the potential of adaptive clustering using a 

conceptual model also for longer periods. 

3.3.1 

Table 1 Summary of the four different model setups 

  

reference model 

spatially aggregated 

model a 

spatially distributed 

model b 

spatially adaptive 

model c 

spatially  

distributed: 

precipitation 

forcing: 

 

spatially 

adaptive: 

testing 

period: 

 

no 

single precip. 

time series 
(ground station) 

 

no 

hydro. year 

13/14, summer 

season, rainfall 

event I and II 

 

no 

single precip.  

time series 
(weather radar) 

 

no 

hydro. year 

13/14, summer 

season, rainfall 

event I and II 

 

yes 

distributed  

precip.  
(weather radar) 

 

no 

hydro. year 

13/14, summer 

season, rainfall 

event I and II 

 

yes 

binned distri. 

precip. 
(weather radar) 

 

yes 

rainfall event 

I and II 

4. Spatially adaptive modeling 

Spatially adaptive modeling or adaptive clustering is an approach to dynamically adjust the spatial structure of a 

hydrological model in time offering the possibility to reduce computational times as well as to find an appropriate, 

time-variantvarying spatial model resolution (Ehret et al.., 2020). The basic idea of adaptive clustering has been 

motivated within the work of Zehe et al. (2014) who stated that functional similarity in a catchment (or in a model) 

can only emerge if different sub-units are structurally similar (e.g. topography, geology, land-use, etc.), are driven 

by a similar forcing and are at a similar state. The latter implies that the concept of hydrological similarity, which 

is frequently used as the basis to discretize a catchment in space (e.g. Wagener et al., 2007), cannot be time-

invariant but needs to dynamically change in time as corroborated by Loritz et al. (2018). This is the case as the 

relevance and interaction of different spatial patterns of the catchment structure, state and forcing also vary in 

time(e.g. Sivapalan et al., 1987), cannot be time-invariant but needs to dynamically change in time (Loritz et al., 

2018). This is the case as the relevance of different spatial controls like the topography or pedology of a catchment 

depend on the prevailing state and forcing (Woods and Sivapalan, 1999). A suitable discretization of a catchment 

into similar functional units needs hence to be time- variant and one way to achieve such a dynamic model 

resolution is spatially adaptive modeling. 

 

Implementing adaptive clustering into a distributed model requires specific decision thresholds that define whether 

spatial differences in the structure, forcing and state of potential sub-units (e.g. hillslopes, sub-basins, etc.) are so 

large, that they need a distributed representation. This entails that if differences between the structure, forcing, or 

state of two or more distributed model elements (here gridded models) are below these thresholds they are by 



definition similar which meansentails that they can represent each other’s hydrological function. The entire 

ideaconcept that certain spatial model elements can represent other model elements and hence other areas of a 

catchment is notby no means new and has been used frequently in Hydrology since at least Sivapalan et al. (1987) 

where they introduced the concept of representative elementary areas. The main novelty of adaptive clustering is 

that hydrological similar model elements are dynamically grouped and split in the runtime of the model instead of 

running a constant number of functional similarmodel elements for the entire simulation period (Ehret et al., 2020). 

3.3.24.1 Spatially adaptive modeling – similarity assumption 

Identifying periods when a given model element or hillslope can represent another one because it functions 

hydrologically similar is the main challenge of adaptive clustering. InFor this studypurpose, we subdivide the 

precipitation field, and the model states at each time step into equally distant bins (bins = groups) and defineclassify 

those as similar if different precipitation grid cells (forcing) or different gridded hillslope models (states) that 

occupy the same bin. This implies that If two or more observations or models are hence in the same bin they 

function similarlyare by our definition functional similar and can thus represent each other. To give an example, 

imagine if 50 % of the catchment area receives rainfallprecipitation of around 1 mm hr-1 and 50 % around 2 mm 

hr-1. In this specific case, we would have two occupied forcing bins (precipitation groups; PB). In the following, 

we explain our time-invariant similarity assumptionshow we have chosen the decision thresholds for the system 

structure as well as our time-variant similarity assumption of the catchment (model) state and the , the precipitation 

forcing and the model states. 

 

Time invariant similarity of the system structure 

The first step of our adaptive clustering approach requires the identification of hydrological response units (HRUs) 

that potentially act similar. A sufficient criterion for this is that their structural setup (e.g. geology, land-use, etc.) 

and their actual state (e.g. storage) are similar at a given time step. As already mentioned in section 3.2, our 

previous studies showed that different hydrological sub-units, in this case hillslopes, of the Colpach catchment, 

can be characterized by similar subsurface characteristics (integral filter properties). This implies a potential 

similar rainfall-runoff transformation when they are in a similar state. This is supported by our previous work 

(Loritz et al., 2017, 2019) which revealed that a sub-basin of the Colpach catchment (0.45 km2) and a neighboring 

catchment (30 km2) located in the same geological setting have almost identical specific discharges as long as they 

are at similar states and forced by comparable amounts of precipitation. This implies that the spatial variability of 

the system structure within the Colpach can be represented by a single spatially aggregated model and all grid cells 

of the precipitation field can thus be represented by the same model with the same model parameters as long as 

they are in the same state and driven by the same forcing. This entails, however, also that if we extend our research 

area to a catchment that is divided, for instance, into two geological settings that function hydrologically differently 

(regarding their filter properties) we would always need to run at least two structural different models where each 

of these models represents one of two geological settings. 

 

Time invariant similarity of the system structure 

The first step of our adaptive clustering approach requires the identification of hydrological response units (HRUs) 

that potentially behave similar. These similar units are typically identified based on structural properties such as 

the geological setting, the land-use or the topography. The general idea is that HRUs are grouped together, which 

share the same controls on gradients and resistances controlling flows of water as long as they are in the same state 

(Zehe et al., 2014). As already mentioned in section 3.2, our previous studies showed that different sub-units of 



the Colpach catchment, are characterized by similar spatially  organized surface and subsurface characteristics 

(integral filter properties). This entails a potential similar rainfall-runoff transformation when they are in a similar 

state. The latter is supported by our previous work (Loritz et al., 2017, 2019), which revealed that a sub-basin of 

the Colpach catchment (0.45 km2) and a neighboring catchment (30 km2) located in the same geological setting 

have almost identical specific discharges as long as they are at similar states and forced by comparable amounts 

of precipitation. We hence assume that all grid cells of the precipitation field can thus be represented by the same 

model with the same model parameters as long as they are in the same state and driven by the same forcing. This 

entails, however, also that if we extend our research area to a catchment that is divided, for instance, into two or 

more geological settings, different dominant land-use or soil type distributions that function hydrologically 

differently (regarding their integral filter properties) we need to run two or more structurally different models 

where each of these models represents one of two structural settings. The latter might limit the possibilities to 

apply this approach on larger scales or in areas with complex structural settings. 

 

Time variant similarity of the precipitation forcing 

The second decision threshold we need to identify, defines the minimum difference at which we consider 

differences in the precipitation field as relevant for the runoff generation. Simply speaking, two 

structuralstructurally similar hydrological units that are in the same state will only respond differently to an 

external forcing if the variability in the forcing has exceeded this threshold. Here, we picked a threshold of 1 mm 

hr-1 upon we consider differences between precipitation observations (grid cells) as relevant. We chose this 

threshold as it represents a reasonable differencevalue upon which we expect that a hydrological landscape element 

might function differently than anotherdifferences in ahydrologic behaviour in humid environmentcatchment and 

based on our collective understanding of the Colpach catchment. This means that only if the spatial differences in 

the precipitation field are above 1 mm hr-1 do we drive the spatially adaptive model c with different precipitation 

inputs. The choice of this threshold is important, as it is one of two main controls or parameters of the model 

resolution of the spatially adaptive model (see supplement B). 

 

Time variant similarity of the catchment state 

The third assumption is to identify a decision threshold upon which we consider that two model elements are in 

the same state. This means that we need to select a point in time after a spatially variable rainfall event (> 1 mm 

hr-1) when two or more modelsmodel elements in the individual grid cells have “forgotten”dissipated the 

differences between them introduced by the interplay of the previous precipitation signalinput with drainage and 

evaporationevapotranspiration dynamics. Here, we use the change in discharge over time (dQ dt-1; slope of the 

simulated hydrograph) and the discharge (Q) at a time step to infer similar model states. By that, we expect that 

two or more gridded models are again in the same state if theirthe individual models estimate runoff simulations 

change inand the slope of the runoff within a similar range (0.05 mm hr-1). margin. As soon as this is the case and 

two or more gridded models are in the same state, we average their states (average saturation of each grid cell of 

the CATFLOW hillslope grid) and by that, aggregate the models back again into a singleone hillslope. The value 

of 0.05 mm hr-1 for Q and dQ dt-1 was picked as it reflects the desired precision of the adaptive model c. Similar 

as in the case of the decision threshold this value needs to be picked carefully. Furthermore, is it important to 

choose similarity metrics (here dQ dt-1 and Q) that are adequately describe the model states during the simulation 

time. 



3.3.34.2 Spatially adaptive modeling - model implementation 

As stated in section 3.3.2, we classified the entire Colpach catchment as hydrologically similar concerningwith 

respect to the runoff generation as long as the different hydrological sub-units of the catchment are in the same 

state and receive a comparable forcing. This meansentails that we start the simulation with one gridded hillslope 

to represent the entire catchment and continue in this mode as long as we have not detected a spatial difference in 

the precipitation field above the selected threshold of 1 mm hr-1 (Fig. 3, t=0). At each time step, we bin the 

precipitation input of the next time step and determine the number of allocated bins (PPB = number of precipitation 

bins). If more than one precipitation bin is occupied (P > 0PB > 1) we increase the number of gridded models (M 

= no. of running gridded models) by running the same model in the same initial state, however, driven by different 

precipitation inputs. 

 

ImagineConsider a scenario where the Colpach catchment is represented by one hillslope (S = 1) and we observe 

a precipitation event where 50 % of the catchment receives no precipitation, 20 % 7 mm hr-1 and 30 % 8 mm hr-1 

(as displayed in an illustrative example in Fig. 3, at t=1).. This would mean that three precipitation bins are 

allocated (PPB = 3) and hence we need to increase the number of running models also to three (M = 3). After 

running these three models for one time step with the different precipitation inputs, we bin the model states (dQ 

dt-1; Q). Let us assume we would identify two occupied model state bins, which means that two different model 

states (S = 2) are needed to represent the spatial variability of catchment states. This could happen if the differences 

between the 7 mm hr-1 and 8 mm hr-1 rainfall intensity did not result in a significant difference in the discharge 

simulation of the two corresponding models. Following our approach, we aggregate the two models that are driven 

by 7 mm hr-1 and 8 mm hr-1 by averaging their states. We do this by averaging the relative saturation of the 

corresponding CATFLOW hillslope grids, which. The latter is straightforward in our study as they have the same 

width as well as lateral and vertical dimensions. In case that the hillslopes would not be structuralstructurally 

similar this requires a weighted averaging of soil water contents to avoid a violation of mass conservation. After 

the aggregation of the two models, we have two model states left (S = 2) each representing 50 % of the catchment 

area.  

 

If there is no further rainfall occurring we wait until the gradients in system states have beenare depleted and the 

two running models have “forgotten” the difference in the past forcing and both predict similar dQ dt-1 and Q 

values and eventually aggregate the two models again two one griddedhillslope model. If rainfall continues in the 

next time step (PPB > 1) we need to check which model states (S) receive which forcing. For instance, given our 

hypothetical example, we know that after the last simulation step we needed two model states (S = 2) to represent 

our catchment. Each of these two states represents 50 % of the area of the catchment. AtImaging that at the next 

time step, we observe a precipitation event where 50 % of the catchment receives 8 mm hr-1and the other 50 % 3 

mm hr-1 (Fig. 3, t = 2). In this case, we have to check if the two model states (S = 2) receive both precipitation 

inputs of 8 and 3 mm hr-1. Let us assume that one model state is receiving 80 % of the 8 mm hr-1 and 20 % of 3 

mm hr-1 rainfall. The other model 20 % of the 8 mm hr-1 and 80 % 3 mm hr-1. In this specific setting, we would 

need to run four models (M = 4) to account for the spatial variability of the model states and precipitation input, 

while each of those reflect a different combination of the model state and forcing in different parts of the catchment. 

At this stage, we again either wait until the internal differences have been dissipated to reduce the number of 

models or we increase the number of models in case that precipitation with larger spatial variability of PPB = 1 is 

continuing (Fig. 3, t = n). The maximum number of models we could require in our adaptive clustering approach 



depends on the maximum resolutionnumber of the precipitation input upon we divided the Colpach catchment and 

is grid cells (42 in ourthis study). The highest resolution that the spatially adaptive model c can reach in this study 

is reflected by the spatially distributed model b. 

4.3.3.4 Spatially adaptive modeling - model analysis 

To test our spatially adaptive model c against the observed discharge of the catchment, we route the simulated 

runoff contributions according to their location to the outlet by assuming a mean flow velocity of water within the 

channel network of 1 m s-1. However, as the same model can represent different grids with different locations we 

additionally need to calculate the average flow distances to the outlet of all grids a model is representing and shift 

the simulation by the average distance accordingly. We then take the area-weighted mean of every simulation at 

each time step. The performance of the adaptive model c is then measuredquantified by the KGE against the 

observed discharge and the area-weighted average of the distributed model b. The latter addresses our second 

research question and follows the logic that an appropriatea suitable adaptive modelmodelling approach should 

lead to similar simulations as a fully distributed model, however, with fewer model elements. While we use 

CATFLOW as a model here, the proposed approach is not restricted to this model and can be used in any 

hydrological model that distributes a catchment into independent spatial unitsframework that distributes a 

catchment into independent spatial units. One advantage of CATFLOW (or similar type of models) is that it uses 

also an adaptive time step procedure making the final model adaptive in space and time. However, if a model 

represent a landscape in entirely continues manner without a delineation of the landscape into independent sub-

units like several 2d surface runoff models an adaptive mesh (numerical grid) is required if the spatial resolution 

should adapt itself during runtime. 

 



 

 

Figure 3. Sketch of the spatial adaptive modeling described in section 3.3.34.2. The upper panel shows the precipitation 

forcing (blue) and the lower panel the model states (red). The numbers below the figures indicate how many 

precipitation (P),PB) and model state (S) bins (groups) are occupied and how many models (M) are running at the given 

time step. 

45. Results 

In the following section, we investigate the precipitation field and compare the performance of the discharge 

simulations of the reference model, the spatially aggregated model a, and distributed model b at the annual, 

seasonal, and event scale by comparing thehourly simulations against hourly observed discharge data. We, 

furthermore, present the simulation results of the adaptive modelingmodel c for two selected rainfall events 

andincluding the spatial distribution of the precipitation forcing as well asand the model states. Finally, we show 

the soil moisture distribution of model c for rainfall event Itwo hillslope models at different time steps that have 

received a significant dissimilar precipitation forcing to highlight the importance of the dissipation time scale for 

adaptive modeling. 



45.1 Precipitation characteristics 

While rainfall sums are equally distributed between the winter (Oct. – Mar.) and vegetation season (Apr. – Sep.) 

in the selected hydrological year 2013/14 (Fig. 2 b), the rainfall intensities and the associated standard deviation 

(here used to measure the spatial variability of the precipitation field) of the precipitation field are in general higher 

in summer (Fig. 4 a &and b). For instance, the five rainfall events with the highest rainfall intensities as well asand 

the highest standard deviation in space were all observed in the summer season. Rainfall intensity and spatial 

variability are thereby strongly linked to each other which is reflected in their linear correlation of 0.82. The latter 

is no surprise as convective storms, which dominate the precipitation generation in summer, are typically 

characterized by higher spatialspatio-temporal variabilities and higher rainfall intensities. This finding is surely 

neither surprising nor limited to the chosen research environment (e.g. Hrachowitz and Weiler, 2011; Wilson et 

al., 1979) but it confirms one of our initial assumptions that rainfall is spatially more diverse in the summer season 

compared to the winter months in the Colpach catchment. 

 

We selected two rainfall-runoff events to test the adaptive model c (Fig. 4, time of the events are indicated by the 

red horizontal bars).4). We chose the first event as it has the highest rainfall intensity of 19 mm hr-1 and the third-

highest spatial variability measuredestimated by the standard deviation of 3.8 mm hr-1 in the time series as well as 

a distinct runoff reaction. Rainfall event I was observed at the beginning of August, lasted for about 5 hrs and the 

highest spatial differences between the grid cells of 14 mm hr-1 was reached right at the beginning of the event 

(Fig. 5 and 6). The rainfall event I moved from west to east over the catchment and reached its maximum rainfall 

intensity after approximately 3 hrs. No rainfall had occurred before the event for a period of 102 hrs. WeIt can 

hence assumebe assumed that the catchment was in a moderately dry state before the event which is also indicated 

by soil moisture measurements presented in Loritz et al. (2017). 

 

The second rainfall event was selected as it has distinctly different properties (low spatial variability, low intensity, 

longer duration) whenas compared to the first event. Event II has a maximum rainfall intensity of 5.8 mm hr-1 and 

a maximum spatial difference between the grid cells of 4 mm hr-1. The event lasted for around 15 hrs, making it 

the longest continuing rainfall in the summer season and there was no rainfall observed 20 hrs before the event but 

more than 36 mm of rainfall inover the previouspreceding three days. We canIt seems hence reasonable to assume 

that the soils in the catchment where rather wet which is again supported by the soil moisture measurements 

presented in Loritz et al. (2017). 

 



 

Figure 4. a) average rainfall intensity of the precipitation field (mm hr-1), b) corresponding standard deviation of the 

precipitation field (mm hr-1), c) observed discharge of the Colpach catchment and the discharge simulation of the 

reference model as well as of the distributed model b. The two red bars highlightdisplay the location of the two selected 

rainfall-runoff events used to test the adaptive clustering approach. 

45.2 Temporal dependency of the model performance 

The performances of the four model setups (reference model, model a, b and c) to simulate the observed discharge 

of the Colpach catchment measuredestimated by means of the KGE are shown in Tab. 1. If one compares2. 

Comparing the two spatially aggregated models that differ only with respect to their rainfall forcing the reference 

model outperforms model a during the winter season and on the annual time scale while model a has a higher 

performance induring the vegetation season (Apr. – Sep.). Both models are characterized by KGE values 

largerhigher than 0.8 in the winter season and for the entire simulation periodhydrological year while the predictive 

performance drops in summer and is particularly low for the two rainfall-runoff events resulting even in negative 

KGE values. The differences between the KGE values (ΔKGE) between the two spatially aggregated models 

(reference model and model a) are low in winter, increase in summer, and are the highest for the convective rainfall 

event I. Here does the reference model only have a similar performance as the mean of the discharge time series 

indicated by a KGE value of -0.41 (please note that it is not zero as in the case when using the Nash-Sutcliff 

efficiency as shown by Knoben et al. (2019)).Here does model a have only a slightly improved predictive 

performance as the average discharge of the event indicated by a KGE value of -0.16 (please note that it is not zero 

as in the case when using the Nash-Sutcliffe efficiency as shown by Knoben et al., 2019). 



 

The observed discharge of the Colpach catchment, the discharge simulations of the reference model as well as the 

discharge simulation of the distributed model b are presented in Fig. 4 c. The visualVisual comparison of the two 

models shows that the reference model has a lower runoff production during summer, which is particularly visible 

in August and September. Interestingly, the latter cannot be explained by the annual or seasonal precipitation sums 

as both models are driven by on average similar precipitation sums of around 900 mm yr-1 for the entire year and 

around 450 mm 6 month-1 in the summer season. Overall, model b has the highest predictive performance 

measuredas indicated by means of the KGE in all five test periods (annual, winter, summer, and the two selected 

rainfall events) ifwhen compared to the two spatially aggregated models. (reference model and model a). The 

absolute differences between the model performances depend again on the selected period. For instance, for the 

entire simulation period, the reference model and model b have close to equal KGE values around 0.9 while the 

differences between the KGE values are ΔKGE = 0.21 in summer ΔKGE = 0.2 and for the spatially variable rainfall 

event III around ΔKGE = 0.73. 

 

Although model b has the highest KGE values for the two selected rainfall-runoff events, the general model 

performance is, given the KGE values of 0.29 and 0.1, still relatively low for both runoff events. The low 

performance can be explained by a general underestimation of the total runoff volume at both events (Fig. 7), while 

it seems that the shape of the simulated hydrograph is simulated acceptable. underpinned by a correlation of 0.72 

and 0.86 between the simulation and observation (see supplement for the three components of the KGE). The latter 

is supported by the fact that the distributed model b is capableable to simulate the observed double peak at event 

I. Furthermore, weWe, furthermore, tested the addition of a direct runoff component by assuming that 10 % of the 

rainfall is directly added to the channel network instead of falling on the hillslopes. This model extension could be 

justified by sealed areas within the catchment, by precipitation that directly falls into the stream or on saturated 

areas like the riparian zone and. This rather simply model extension increases the KGE of model b from 0.29 to 

0.48 at event I. However, we do not update our model here as the main goal of this study is not to perform the best 

possible rainfall-runoff simulation but to investigate the role of the spatio-temporal patterns of the rainfall for the 

runoff generation of a mesoscale catchment by introducing the concept of a spatially adaptive hydrological model. 

 

Table 2. Model performances of the four model setups to simulate the observed discharge of the Colpach catchment, 

which are measured by using the Kling-Gupta efficiency (KGE) based on the hourly simulation and observation time 

steps. Performances are shown for the entire hydrological year (2013/2014), for the winter (Oct. – Mar.) and summer 

season (Apr. – Sep.) as well as for two selected summer rainfall-runoff events in July and August. The three components 

of the KGE can be found in the supplement. 

 annual 

performance 

(KGE) 

winter 
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(KGE) 
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0.1 
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45.3 Spatially adaptive modeling - simulation results 

The upper panel of Fig. 5 shows the binned precipitation field of rainfall event I. The precipitation field was binned 

based on the chosen bin width of 1 mm hr-1. The rainfall field allocates 0 bins (precipitation groups) at t = 0 (PPB 

= 0), 12 bins at t = 1 (PPB = 12), 1213 bins at t = 2 (P = 12PB = 13), 3 bins at t = 3 (PPB = 3) and 2 bins at t = 4 

(PPB = 2). The number of occupied bins indicates the spatial variability of the rainfall event at a given time step 

and would reach maximum spatial complexity if PPB equals 42. This meansentails that if a high number of bins 

is allocated the forcing is spatially variable and respectively a higher number of models is needed to represent the 

spatial variability of the precipitation. The number of bins does, however, not specify how large the gradients are 

within the spatial precipitation field. For instance, if 50 % of a precipitation field is characterized by a rainfall 

amount of 20 mm hr-1 and the other 50 % by 1 mm hr-1 the number of allocated bins is two although the absolute 

difference between the bins is large. 

 

The lower panels of Fig. 5 and Fig. 6 showdisplay the binning of the model states (S) of the adaptive model for 

each time step of event I.  for the similarity measure dQ dt-1. We do not plot the similarity measure Q here as in 

our specific case Q and dQ dt-1 lead to the same classification at both events. However, this does not mean that Q 

is less relevant as in theory two models could simulate identical dQ dt-1 values but very different absolute Q values. 

This shows that the set of similarity measures should be picked carefully and depend very much on the given 

modeling task and the research environment. 

 

At t = 0, we run a single model representing the entire catchment with a single model state. At t = 1, the precipitation 

starts and the spatial field is classified into 12 bins (PPB = 12). Following our approach, this entails that we need 

to run 12 models (M = 12) at t = 1 to account for the spatial variability of the rainfall. After one simulation step, 

we estimate the number of model states by binning the absolute values (Q) and slope (dQ dt-1) of the discharge 

simulations of the 12 models resulting in two different model states (as two model state bins are occupied). Each 

of these states represents now a different part of the catchment with a different area (Fig. 6, lower panel). For 

instance, at t = 1 around 76 % of the catchment area is represented by a model in a state where discharge changes 

below 0.05 mm hr-1 and 14 % between 0.05 and 0.1 mm hr-1. At t = 2, the precipitation field has again been 

classified into 1213 bins but at this time step, the catchment is represented by two model states from the time step 

before. This means we need to check which combinations of states and precipitation input occur. In other words, 

which grids are represented by which state and are forced by which precipitation input. In this specific setting, we 

need to run 16 models which is lower asthan the theoretical maximum (2 model states (S) x 1213 precipitation bins 

(P) = 24PB) = maximum of 26 running models (M)) as not all model states are driven by all groupedbinned 

precipitation inputs. Afterward, we again group the model states (S = 4) and continue until t = 4 after which no 

rainfall occurs and we again represent the entire catchment by a single hillslope model. In total, we were able to 

reduce the maximum number of gridded models from 42 to a maximum of 16 at rainfall event I and at the second 

event from 42 to 4 without a predictive performance loss in comparison to the distributed model b (Tab. 12). The 

latter is, besides the comparison of model c with the observed discharge, also shown by the high KGE values 

between the distributed model b and the adaptive model c of around 0.98 at both events. 



45.4 Spatially adaptive modeling – dissipation of differences 

The dissipation timescale (memory timescale) atfor both events until the different hillslope models have 

“forgotten” the last forcing and are again in the same “runoff generation state” is relatively short. More 

specificallySpecifically, already after 1 hr of no precipitation at event I and II is the differences between the runoff 

generation of the hillslope models in model c are below the pickedselected threshold of 0.05 mm hr-1. for Q and 

dQ dt-1. The same is true for the soil moisture distributions in 10-20 and 60-100 cm depth, which is negligibly 

small at the time step t=4 at event I when the four hillslope models are aggregated. This meansentails that our 

model c would represent the entire catchment withcan again be represented by a single hillslope model already 

shortly after the last rainfall at both events until a new rainfall event (P > 1) occurs. (PB > 1) occurs. The latter is 

supported as the single hillslope from model c and the spatially aggregated model a are also in a similar state 

regarding their runoff generation after t=5 at event I. 

 

This picture is quitemight, however, be different for the soil moisture distribution between the hillslopes, at least 

in deeper soil layers.in certain simulations scenarios. For instance, Fig. 8 showsdisplays the soil moisture 

distribution of two hillslope models in 10 to -20 and 60 to -100 cm depth whichat three time steps during event I 

(t = 3, t = 24, and t=48) that either hashave received the highest amount of rainfall measured at a given grid cell at 

event I (30 mm, 5 hr-1) or the lowest (15 mm, 5 hr-1) for two different time steps during and after event I (t = 3 and 

t = 24; see Fig. 5).). Both hillslope models started in a similarthe same initial model state and Fig. 8 only shows 

the wetness of the soil matrix. The memory time scalethe dissipation time of the topsoil correlates thereby quite 

well with the runoff generation and we observe the . The largest differencedeviation between the “wettest” model, 

which has received the highest amount of rainfall, and the “driest” model, which has received the lowest amount 

of rainfall, is at t = 3 shortly after the highest rainfall intensity (see Fig. 5). After 24 hrs, this difference persists 

but it slowly dissipates and has almost completely disappeared after 48 hrs. In the deeper soil layer, the picture is 

different. During the event, we see no reaction to the rainfall forcing ofin the soil matrix and water bypasses these 

areas through preferential flow paths.deeper soil layers. However, 24 hrs after the first rainfall of event I the 

difference between the two models regarding their soil moisture distributionsdeviate also in deeper layers and the 

deviation is slowly increasing in a similar range as in the top soil although there was no further rainfall. The latter 

means that by aggregating the different hillslope models, as done in our adaptive model cdifference in both layers 

disappears again after only one hour48 hrs of no rainfall, we delete and the difference between the soil moisture 

distributions. As we use the mean to aggregate our models, we “wettest” and “driest” model are, however, still 

conserving mass. The question remains of how important these differences are on longer time scales or for the root 

water uptake. again in a similar state also regarding their soil moisture distributions.  



 

 

 

Figure 5. Binned precipitation field (blue) and binned model states (orange) of the adaptive model (t = 0; August 3rd 

2014 15:00 CET); PPB = no. of allocated precipitation bins, S = no. of allocated model space bins, M = no. of running 

models at the given time step. The spatial distribution of the precipitation and the model states for event I are displayed 

in Fig. 6. 



 

Figure 6. Spatial and temporal distribution of the precipitation field (upper panel) and the corresponding states of the 

actual model grids used by the adaptive model c (lower panel). The model state is estimated by the slope of the simulated 

discharge. The corresponding bins (groups) of the precipitation and model states are shown in Fig. 5. 

 

 

Figure 7. a) rainfall-runoff event I and b) rainfall-runoff event II. Blue bars in the upper panel show the average 

precipitation of the precipitation field for each time step (mm hr-1). The green curves in the lower panel represent a 

single gridded model of the distributed model b; red line the area-weighted mean of the distributed model; purple 

dashed line the area-weighted mean of the adaptive model and dashed blue line the observed specific discharge of the 

Colpach. 

 



 

 

Figure 8. Relative soil moisture distributions for two gridded hillslope models of model b that received the lowest (orange 

curve) respectively the highest (blue curve) amount of rainfall during event I (15 mm 5 hr-1 and 30 mm 5 hr-1). Presented 

for time step t = 3 (during the event) and), t = 24 (after the event). ), and t = 48 (after the event). 



56. Discussion 

56.1 The role and value of distributed rainfall for hydrological models 

While the three non-adaptive model setups (reference model, model a, and b) perform equally well with respect to 

simulate the discharge of the Colpach catchment in the winter season, this is not the case in the summer season 

where the distributed model b has higher KGE values as both spatially aggregated models. This corroborates one 

of our hypothesishypotheses stating that the predictive performance of the spatially aggregated representative 

hillslope (reference model) introduced by Loritz et al. (2017) increases if the model is distributed in space and 

driven by distributed rainfall. HoweverNevertheless, model b has still several deficiencies especially at the two 

selected rainfall-runoff events where it does underestimate the total observed runoff volume. This indicates 

resulting in high correlation values but overall low KGE values. The latter shows that there is still room for further 

improvements of the hydrological model potential to increase itsimprove the predictive performance of the model 

beyond only changing the precipitation input for instance by accounting for the sealed areas and forest roads in 

the catchment. 

 

Although the model comparison in this study is rather heuristic (e.g. we used only a single performance metric 

etc.), the findings highlight that the use of distributed rainfall is recommended during the summer season for 

simulations of the runoff generation of the Colpach. This insight is consistent with the findings of Euser et al. 

(2015) and Wilson et al. (1979) who showed similar results in a 1600 and 42 km2 large catchment. On the other 

hand, the winter performance of model b did not improve in comparison to the reference model. In line with these 

results, Obled et al. (1994) and Das et al. (2008) concluded that “the spatial variability of rainfall, although 

important, is not sufficiently organized in time and space to overcome the effects of smoothing and dampening 

when running off through this rural medium-sized catchment.”. Given the rather small size of the Colpach 

catchment and the fact that the use of distributed rainfall increased the performance during the summer, it seems 

that catchment size might not be the best indicator to decide if or if not a distributed hydrological model driven by 

distributed rainfall is needed. The higher relevance of spatially distributed precipitation for hydrological modeling 

in the summer months surely reflects the circumstance that also the average rainstorm size as well as the average 

rainfall intensities change between the seasons and are on average much higher during summer (Neuper and Ehret, 

2019). Given the changing meteorological regime, it seems reasonable to link the increasing relevance of 

distributed rainfall to these changes. The fact that average storm size over a catchment is a key indicator to identify 

the role of distributed precipitation on the runoff generation of a catchment was also pointed out by Nicótina et al. 

(2008). As the dominant rainfall generation mechanisms change during the hydrological year in many humid 

catchments from frontal to convective, it comes from a physical perspective, not as a surprise that also the relevance 

of distributed rainfall differs between the seasons or even between different rainfall-runoff events. 

 

The evaluation of the 

Although the model comparison in this study is rather heuristic (e.g. we discuss mainly along a single integrating 

performance metric, etc.), the findings in this study show that the use of distributed rainfall is at least recommended 

during the summer season. This contradicts the results of, for instance, Obled et al. (1994) who argued that the 

precipitation over a 71 km2 large catchment is not sufficiently organized to be relevant for the runoff generation. 

It is also not in line with the findings of Nicótina et al. (2008) who recommend the use of distributed rainfall only 

in specific scenarios (e.g. infiltration excess) or in catchments above 8000 km2. Given the improved performance 



of the distributed model b and the rather small size of the Colpach catchment of less than 20 km2 it seems 

reasonable to conclude that catchment size alone might not be the best indicator to decide if a distributed 

hydrological model driven by distributed rainfall is needed or not. 

 

As the dominant rainfall generation mechanisms change during the hydrological year in many catchments from 

frontal to convective, it comes from a physical perspective, not as a surprise that the increased relevance of 

distributed rainfall in summer can be linked to the changing meteorological properties. Ogden and Julien (1993) 

argued along these lines when they showed that the spatial distribution of rainfall is only a dominant control in the 

case that rainfall events have a shorter duration than the average runoff concentration-time of a catchment. 

Similarly, Zhu et al. (2018) reasoned that the spatial patterns of precipitation are less relevant compared to the 

temporal distribution if the drainage area and therefore typically the concentration-time is decreasing. The question 

if a structurally similar catchment needs to be represented in a spatially distributed manner depends hence on the 

spatial and temporal structure of the precipitation as well as on the average concentration-time respectively as 

proxy on the catchment size. 

 

The changing model performances highlightsduring the two events highlight that the necessary spatialrequired 

model structureand precipitation resolution does not only change between seasons but more importantlycan vary 

from rainfall event to rainfall event. to rainfall event. This idea has alreadyalso been highlightedargued by Watts 

and Calver (1991). They concluded who stated that “the finest available definition of rainfall may be desirable for 

modeling…” of convective rainfall events while higherlower spatial model resolutions did not increase the 

predictive performance of their modelsare sufficient during spatially and temporal more homogenous often 

stratiform rainfall events. At first glance contradictingIn contrast, Lobligeois et al. (2014) reported that the 

distribution of rainfall is in general of higher relevance in certain regions of France when they analyzed 3620 

rainfall-runoff events ofin 181 different mesoscale catchments. However, they also discussedargued that a 

substantial amountnumber of rainfall-runoff events contradicteddo not match this general pattern, which shows 

showing that the distribution of rainfall can be of high importance in regions, even if the spatial precipitation 

patterns are usually not a dominant control on the runoff formation in a region. As such “rare” events are frequently 

linked to extremes, which that are in turn beyond the realms of experience on what these landscapes have adapted 

to, they are of considerable importance despite their low occurrence in time (Loritz, 2019).(e.g. Loritz, 2019). This 

point is underpinned by the work of Zhu et al. (2018) and Peleg et al. (2017) who both questioned the common 

practice to use spatially uniform rainfall based on single or a few rain gauges for performing flood risk assessments 

especially for longer return periods in rural respectively urban catchments. The proposed spatially adaptive 

modeling approach could thereby be one way to tackle this issue as it enables continuous physically-based 

simulations with model structures that adapt to the precipitation forcing. 

56.2 Spatially adaptive modeling – as a tool to reduce redundant computations 

The proposed adaptive modeling approach is promising because the spatial adaptive model c performed similarly 

as the distributed model b, although it used a much smaller number of hillslopes. The maximum number of gridded 

model elements that were necessary to represent the variability of catchment states and precipitation was reduced 

by a factor of 2.5 for event I. The total gain in computational efficiency is however larger as most of the time less 

than 16 models are required to represent the catchments runoff generation. 



The first results of the adaptive modeling approach seem promising as the spatial adaptive model c performed 

similarly as the distributed model b, however, using a smaller number of hillslopes. Similar findings were reported, 

for instance, by Chaney et al. (2016). They applied their HRU-based model called “HydroBlocks” in a 610 km2 

large catchment and showed that a compressed, semi-distributed model consisting of 1000 HRUs performed 

similar compared to a gridded fully distributed model while being two orders of magnitudes faster than the 

distributed model and requiring only 0.5 gigabytes instead of 250. They concluded that: “… the spatial patterns of 

the fully distributed model can be reproduced with a fraction of the computational expense.” highlighting the 

potential of approaches like “HydroBlocks” as tools to improve the representation of hydrological processes in 

large-scale land surface models without drastically increasing the computational times and model complexity. 

 

The main difference between models like “HydroBlocks” and our approach is that HRUs are dynamically 

reassigned during model execution based on the spatial properties of the precipitation forcing. By that, we try to 

avoid redundant calculations to reduce computational times similar to Chaney et al. (2016) but also try to avoid 

situations in which we underestimate the spatial variability of the meteorological forcing or the system state in the 

case that the test period is not representative for certain spatial constellations. The latter can thereby significantly 

impact hydrological simulations during extreme conditions (e.g. Zehe et al., 2005; Zhu et al., 2018). Our results 

show that the maximum number of gridded models necessary to represent the variability of the catchment states 

and precipitation elements can be reduced by a factor of 2.5. The total gain in computational efficiency is however 

larger as in the majority of time fewer than 16 models are required to represent the catchments runoff generation. 

For instance, during low flow conditions are the spatially aggregated model a, all hillslopes of the spatially 

distributed model b and the spatially adaptive model c in a similar state and produce hence similar results. In 

addition, the fact that during the winter season a single representative hillslope (reference models) perform close 

to similar to the distributed model b indicates that possibly to save computational times by dynamically adapting 

the model structure is higher than the factor of 2.5 suggests. 

 

Clark et al. (2017) recognized computational times as mayora major obstacle when using physically-based models 

for practical applications, as proposed in the landmark publication of Freeze and Harlan, (1969).Freeze and 

Harlan (1969). The discussion about saving computational times with adaptive clustering is, however, challenging 

(Ehret et al., 2020) as the gain depends on the chosen model approach (e.g. numerical scheme), on the used 

hardware, the programming language, the compiler, or on the number of printout times of a model to the hard-

drive. Furthermore, the (Ehret et al., 2020). The relevance of saving computational times of, for instance, 10 % 

depends furthermore on the absolute calculation time of a model and hence whether a model run needs 100 min 

or 100 d to be completed. A fair comparison would mean to setupset up a virtual environment and work under 

similar conditions, e.g. by using a virtual machine as well as using a fully automated adaptive clustering approach. 

Both isare, however, beyond the scope of this study and we would like to point toward the study of Ehret et al. 

(2020)), which discusses the potential of adaptive clustering with respect to saving computational times in detail. 

56.3 Spatially adaptive modeling – as alearning tool to better understand the dissipative nature of a 

hydrology 

In this study, we focus on the potential of adaptive modeling to examine when interactions between a variable 

precipitation forcing and a variable catchment state cause a variable runoff response and when these differences 

get “forgotten” due to the dissipative nature of hydrological systems. Our results show or reiterate that the 



relevance of distributed rainfall for hydrological modeling is dynamically changing in space and time. One way to 

account for this dynamically changing relevance is to run distributed models driven by distributed rainfall the 

entire time at the highest possible spatial resolution. Such an approach, sometimes referred to as hyper-resolution 

modeling (e.g. Bierkens et al., 2015), would avoid cases in which we unnecessarily underestimate the needed 

(spatial) model complexity of a hydrological model (e.g. Fenicia et al., 2011b; Höge et al., 2018). However, this 

procedure may lead to a strong increase of uncertainty due to an increased number of model parameters (e.g. 

Beven, 1989), result in a general overestimation of the simulated spatial variability due to error propagations within 

the model as well as increase the number of redundant computations in a majority of the simulation period (Clark 

et al., 2017). The latter implies a vast amount of computations as the natural length scale (grid size) of water flow 

in the critical zone, which is frequently simulated by using the Darcy-Richards equation, should not exceed a 

lateral grid size of 10 m and vertical grid size below 1 m in homogeneous soils (Vogel and Ippisch, 2008). The 

same is true for simulating surface runoff with different diffusive wave approaches where typically much higher 

flow velocities occur compared to the subsurface which again requires high resolutions and small calculation time 

steps. Hyper-resolution modeling without a delineation of the underlying system in independent sub-units for 

parallelization is hence up-to-date constrained to rather smallOur results illustrate that the relevance of distributed 

rainfall for hydrological modeling is dynamically changing in space and time. One way to account for this 

dynamically changing importance is to run distributed models driven by distributed rainfall the entire time at the 

highest possible resolution. Such an approach would avoid cases in which we unnecessarily underestimate the 

needed (spatial) model complexity of a hydrological model, which again could lead to limited predictive 

performances (e.g. Fenicia et al., 2011; Höge et al., 2019; Schoups et al., 2008). However, this procedure may 

result in a strong increase of uncertainty due to an increased number of model parameters (e.g. Beven, 1989) 

frequently by an unchanged amount of data for validation (Melsen et al., 2016), lead to a general overestimation 

of the simulated spatial variability due to error propagations and can drastically increase the number of redundant 

computations (Clark et al., 2017; Loritz et al., 2018).The issue of increasing computational times due to redundant 

calculations is thereby reinforced by the fact that physically-based simulations of hydrological fluxes rely on 

relatively short natural length scales in time and space. For instance, the water flow in the critical zone, which is 

frequently simulated using the Darcy-Richards equation, should not exceed a lateral grid size of 10 m and a vertical 

grid size below 1 m in homogeneous soils (Vogel and Ippisch, 2008). The same is true, although on other scales, 

for simulating surface runoff with derivatives of the Saint-Venant equation but also for conceptual models where 

the assumption that a few macroscopic water tables can represent the heterogeneity of driving potentials in a 

landscape is rarely questioned. Even the gridded spatial resolution of 100 m proposed in the comment by Wood et 

al. (2011) for hyper-resolution models seems from a purely physical perspective on hydrological processes 

questionable given the importance of hillslopes as key building blocks in a hydrological landscape (Fan et al., 

2019). This is underpinned by the fact that hillslopes in the upper part of the Colpach are barely longer than 100 

m but different segments of these hillslopes can vary substantially in their wetness and connections to the river 

(e.g. Martínez-Carreras et al., 2016). Hydrological physically based modeling with top-down or bottom-up models 

without a delineation of the underlying system in smaller sub-units is hence up-to-date constrained to rather short 

length scales, at least if applications shall not compromise the underlying physics. 

 

Physical constraints of small grid sizes and calculation time steps must not be a dead-end for applying bottom-up 

models on larger scales. This is because it is often found that different catchments in the same hydrological 

landscape function similarly despite the overwhelming small scale variability we often observe with point-scale 

measurements (e.g. Loritz et al., 2017). This entails a large potential to transfer information about model states 



from one catchment or hillslope to another Physical constraints, which result in small grid sizes and calculation 

time steps, must however not be a dead-end for physically based modeling on larger scales. This is because it is 

frequently found that different catchments in the same hydrological landscape function similarly despite the 

overwhelming small scale variability we frequently observe on the plot scale (e.g. Mälicke et al., 2019; Sternagel 

et al., 2019). This phenomenon sometimes referred to as spatial organization entails a large potential for 

hydrological modeling as it allows to transfer information about functional relationships and catchment states from 

one catchment to another (e.g. Hrachowitz et al., 2013) andas well as offers the possibility to aggregate structurally 

similar sub-units of a system and simulate their functioningfunction by a single representative, as long as they are 

in a similar state and driven by a similar forcing (e.g. Sivapalan et al., 1987; Zehe et al., 2014). The fact that 

hydrological systems are highly dissipative but constrained by there structure is thereby the key to explain the 

feasibility of this dynamic grouping as the unique characteristics of the forcing over an area do not prevail but are 

depleted or “forgotten” in a relatively short time, at least if the focus is on the runoff generation. Specifically, we 

found during both events that already after 1 hr of no rainfall the spatially adaptive model required only a single 

hillslope model to represent the diversity in the runoff generation between the models. While this finding is surely 

constrained by the chosen threshold, the picture is nevertheless quite different in deeper soil layers where the 

diversity of the rainfall forcing leads even after 24 hrs to increasing differences between the “driest” and “wettest” 

models. A part of the information about the different meteorological forcings between the two models is hence 

still stored in the model state after 24 hrs and has not yet been dissipated. The importance of those differences 

likely depends on the dominant runoff generation process. In the present case, they have a minor impact as model 

b and c show similar average baseflow simulations 24 hrs after the rainfall event I and II although model c uses 

only a single hillslope model (difference smaller than 0.001 mm hr-1). 

. The fact that hydrological systems are highly dissipative (Loritz et al., 2019) but constrained by their structural 

setting is thereby the key to explain the feasibility of this aggregation as the unique characteristics of the forcing 

over an area do not prevail but are depleted or “forgotten” in a relatively short time, at least if the focus is on the 

runoff generation. Specifically, we found during both tested events that already after 1 hr of no rainfall the spatially 

adaptive model c required only a single hillslope model to represent the runoff generation of the Colpach. While 

this finding is surely constrained by the chosen thresholds of the two selected similar metrics (dQ dt-1 and Q) and 

the chosen time frame, the picture is underpinned by the soil moisture distributions of the model elements of the 

spatially adaptive model c that are also close to similar at the time step when they are aggregated. 

 

Nonetheless, another virtual experiment showed that there are clear limitations to the proposed approach and the 

chosen parameters. We could demonstrate that two hillslope models that received significant dissimilar 

precipitation amounts (>15 mm 5 hr-1) showed differences regarding their soil moisture distributions in 60-100 cm 

24 hrs after the last rainfall although the runoff generation at this time step were close to similar. The latter means 

that there could be specific constellations when we aggregate hillslope models using the chosen similarity measures 

dQ dt-1 and Q and thereby remove relevant information about the different model states from our ensemble. This 

is the case as we can simulate the same flux by combining different combinations of driving potentials with integral 

resistance terms, a phenomena that is inherent to all our governing equations and sometimes referred to equifinality 

in hydrological modeling (Beven, 1993; Loritz et al., 2019; Zehe et al., 2014). This highlights that the similarity 

metrics that are used to group similar models by their state should be chosen with care and need to be adapted to 

the given research environment and process under study. For instance, in a snow-dominated area we need to group 

model states not only based on their runoff production but also based on their snow cover. The choice of dQ dt-1 

and Q in this study seems, however, to be sufficient to identify similar model elements at least as long as we focus 



on the summer season. This is the case as our hillslope models are all structurally identically and only simulate 

shallow subsurface storm flow during the entire summer season. We can hence assume that we do have a rather 

unique relationship between our model states and the chosen similarity metrics dQ dt-1 and Q. This is underpinned 

by the fact that the individual hillslope models of the distributed model b, which reflect the highest spatial 

resolution of the spatially adaptive model c, are not drifting apart in the chosen summer season. Contrary they are 

mainly producing redundant simulations already shortly after each rainfall event at least as long as we focus on 

the summer season (see supplement). The latter means, however, also that the drawn conclusions are not 

necessarily true for the winter season where we have not tested the adaptive model as the distributed model b and 

spatially aggregated reference model perform close to similar. Nevertheless, a test of the proposed spatially 

adaptive modelling approach on a longer time scale is an interesting task for further research. 

 

While the structure of a catchment constraints its state space, its actual position therein is controlled by the 

meteorological forcing and by an attracting local thermodynamic equilibrium, a point where all driving gradients 

are depleted. As larger gradients dissipate faster than smaller ones if, as long as they are controlled by the same 

integral resistance properties, structuralstructurally similar parts of a landscape will converge to the same state and 

thereby  “forget“ differences between their past forcing and current state. This convergence leads to the emergence 

of hydrological similarity in time (Loritz et al., 2018) and explains the changing relevance of distributed rainfall. 

within hydrological models. This again is the theoretical groundfoundation that explains why adaptive modeling 

works in hydrological systems and not necessarily in meteorological systems as their chaotic nature can amplify 

state differences on longer time scales, instead of dissipating those (e.g. Lorenz, 1963). Our developed adaptive 

modeling approach is using this straightforward physical reasoning of the causal and dissipative interplay between 

the precipitation forcing and the catchment state to dynamically allocate its model structure. during model 

execution. It is built upon a well-established concept in hydrology, which statesassumes that individual 

observations or model states can represent each other if they are allocated to the same group (e.g. Wood et al., 

1990). The related bin widths (grouping) can be selected either based on our physical understanding (Loritz et al., 

2018) or identified based on a statistical analysis of the underlying distribution (of for instance the precipitation 

data; e.g. Gong et al., 2014; Scott, 1979). The general approach is strongly motivated by the idea that a spatially 

homogeneous field can be compressed to a single time series without losing information about the spatial pattern 

of rainfall. This is, however, not the case if the spatial field is highly variable where a compression to a single 

observation reduces the information provided to a hydrological model and hence can average out extremes and 

potentially relevant spatial constellations (e.g. Loritz et al., 2018; Weijs et al., 2013). Spatially adaptive modeling 

can, therefore, be used not only as a tool to analyzereduce computational times but to analyse the relevance of 

certain spatial detail in a hydrological model and therefore as well asa tool to better understand the dissipative 

nature of hydrology. 

67. Conclusions 

In this study, we try to better understand the role and value of distributed precipitation data for the runoff generation 

of a mesoscale catchment. We compare the model performances of three hydrological models at different periods 

and show that a distributed model driven by distributed rainfall yields only to improved performances during 

certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable to 

dynamically adjust its spatial model structure in time. This model is capable to represent the varying importance 

of distributed rainfall within a hydrological model without losing performance compared to a spatially distributed, 



gridded model. Our results confirm that spatially adaptive modeling might be a) one way to reduce computational 

times as already shown by Ehret et al. (2020), b) can be used to better understand the varying importance of spatial 

state and forcing differences in hydrological models and c) highlight that similarity between the runoff generation 

of two hillslopes does not necessarily mean similarity between other state variables (e.g. soil moisture in deeper 

soil layers). 

In this study, we try to improve our understanding of the role and value of distributed precipitation data for the 

runoff generation of a mesoscale catchment. We therefore compare the model performances of three model setups 

at different periods and show that a distributed model driven by distributed rainfall yields only to improved 

performances during certain periods. We then step beyond this finding and develop a spatially adaptive model that 

is able to dynamically adjust its spatial model structure in time. This model is capable to represent the varying 

importance of distributed rainfall within a hydrological model without losing predictive performance compared to 

a spatially distributed, gridded model. Our results confirm that spatially adaptive modeling might be one way to 

reduce computational times in physically-based hydrological simulations as well as be used as tool to better 

understand the causal and dissipative interplay between a catchment’s state and its meteorological forcing. 

 

The main findings of this study are: 

1) The importance of distributed rainfall on hydrological modeling is given by the natural variability of 

rainfall dynamically changing in time. In consequence, there cannot be a time-invariant answer to the 

question “How important are spatial patterns of precipitation for the runoff generation at the catchment 

scale?” nor to any related question which deals with an “optimal” spatial discretization of a hydrological 

landscape within a model. 

2) Spatially adaptive modeling is a feasible way to account for the changing importance of distributed 

rainfall within a hydrological model and at the same time can be used as a tool to better 

understandimprove our understanding of the interplay of thebetween rainfall forcing, the catchment 

structure, and its state. 

3) The tested catchment is organized in a manner that spatial differences between the precipitation forcing 

are effectively “forgotten”. This entails that gradients, which drive runoff, are effectively dissipated in a 

relatively short period. This period might, however, be quite different for other fluxes and state variables 

depending on the dominant runoff generation process. 

  



Appendix A: Detailed description of the distributed rainfall data. 

The distributed precipitation data used in this study is based on single-polarization C-band Doppler radar 

measurements. The mainly used radar data is from the radar located in Neuheilenbach, Germany and operated by 

the German Weather Service (DWD). The raw volume data set has an azimuthal resolution of 1° and a radial 

resolution of 500 m. The -3dB beamwidth of the antenna is 1°. The radar site is between 40 and 70 km away from 

the study area. This means that the resolution is yet neither significantly degraded by the beam spreading, nor 

partial blinded through cone of silence issues. During the period from the 1st of October 2013 to the 27th of March 

2014, the radar in Neuheilenbach was out of service due to maintenance issues. We hence used data from a radar 

located in Wideumont, Belgium in this period. The radar in Wideumont is operated by the Royal Meteorological 

Institute of Belgium (RMI) and is also a C-band Doppler radar with the same technical specifications as the radar 

of the DWD. The distance between radar site in Wideumont and the study area is between 24 to 44 km. Thus, the 

same statements about the resolution, which were made in the case of the data from Neuheilenbach, also apply to 

the radar data of Wideumont. 

 

The data was quality controlled and a correction was performed. The particular raw data was at first filtered by a 

static clutter filter and then also by a Doppler clutter filter. Subsequently, a bright-band correction (Hannesen, 

1998) was applied. Occasional contamination of the data by second trip or anaprop echoes was removed by using 

approaches of Bückle (2009) and Neuper (2009). Specific attenuation corrections were not applied. Furthermore, 

the data was carefully quality checked by an experienced radar meteorologist and operational weather forecaster, 

who even spends his spare time watching radar pictures. From the corrected data a pseudo PPI (plan position 

indicator) data set at 1500m above ground was created and afterward an adequate (based on the synoptic situation) 

reflectivity-rain rate relation (Z-R relation) was applied to compute the precipitation rate (e.g. Fabry, 2015). In the 

last step, the distributed precipitation fields were checked against quality-controlled rain gauges and if necessary 

manually corrected. 

3) Hydrological landscapes are organized in a manner that spatial differences within the precipitation forcing 

are “forgotten” or smooth out in often surprisingly short period when rainfall becomes runoff. This entails 

that gradients that drive runoff are effectively dissipated, which happens frequently under the influence 

of preferential flow (e.g. Berkowitz and Zehe, 2020). The dissipative nature of hydrological processes 

combined with the observation that structural similar hydrological landscape are also functionally 

organized alike explains thereby why hydrological similarity must be a time invariant concept and why 

spatially adaptive modelling is a physical reasonable way to represent hydrological systems with a model. 

  



  



Data availability. The hydrological model CATFLOW and all simulation results are available from the leading 

author on request. The rainfall data were provided by fourth author Malte Neuper from the Karlsruhe Institute of 

Technology. The discharge observations were provided by the Luxembourg Institute of Science and Technology 

within the “Catchments As Organized Systems (CAOS)” research group (FOR 1598) funded by the German 

Science Foundation (DFG). Please contact Laurent Pfister or Jean-Francois Iffly. 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. This research contributes to the “Catchments As Organized Systems (CAOS)” research group 

(FOR 1598) funded by the German Science Foundation (DFG ZE 533/11-1, ZE 533/12-1). Laurent Pfister and 

Jean-Francois Iffly from the Luxembourg Institute of Science and Technology (LIST) are acknowledged for 

organizing the permissions for the experiments and providing discharge data and the digital elevation model. We 

also thank the whole CAOS team of phase I & II. 

  



References 

Berger, M. J. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. 

Phys., 53(3), 484–512, doi:10.1016/0021-9991(84)90073-1, 1984. 

Berkowitz, B. and Zehe, E.: Surface water and groundwater: Unifying conceptualization and quantification of the 

two “water worlds,” Hydrol. Earth Syst. Sci., 24(4), 1831–1858, doi:10.5194/hess-24-1831-2020, 2020. 

Beven, K.: Changing ideas in hydrology — The case of physically-based models, J. Hydrol., 105(1–2), 157–172, 

doi:10.1016/0022-1694(89)90101-7, 1989. 

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16(1), 

41–51, doi:10.1016/0309-1708(93)90028-E, 1993. 

Beven, K.: Dalton Lecture: How Far Can We Go In Distributed Hydrological Modelling? Keith Beven Lancaster 

University, Computer (Long. Beach. Calif)., 5(Figure 2), 1–12 [online] Available from: 

http://eprints.lancs.ac.uk/4420/, 2001. 

Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. 

Process., 6(3), 279–298, doi:10.1002/hyp.3360060305, 1992. 

Beven, K. and Freer, J.: A dynamic topmodel, Hydrol. Process., 15(10), 1993–2011, doi:10.1002/hyp.252, 2001. 

Beven, K. J. and Hornberger, G. M.: Assessing the effect of spatial pattern of precipitation in modeling stream 

flow hydrographs, J. Am. Water Resour. Assoc., 18(5), 823–829, doi:10.1111/j.1752-1688.1982.tb00078.x, 1982. 

Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, 

N., Famiglietti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R. M., Reager, 

J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H. and Wood, E. F.: Hyper-

resolution global hydrological modelling: what is next?, Hydrol. Process., 29(2), 310–320, 

doi:10.1002/hyp.10391, 2015. 

Bückle, J.: Korrektur von Second Trip Echos in Radardaten, Karlsruhe Institute of Technology., 2010. 

Celia, M. A., Bouloutas, E. T. and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated 

flow equation, Water Resour. Res., 26(7), 1483–1496, doi:10.1029/WR026i007p01483, 1990. 

Chaney, N. W., Metcalfe, P. and Wood, E. F.: HydroBlocks: a field-scale resolving land surface model for 

application over continental extents, Hydrol. Process., 30(20), 3543–3559, doi:10.1002/hyp.10891, 2016. 

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., 

Cai, X., Wood, A. W. and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical 

challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21(7), 3427–3440, 

doi:10.5194/hess-21-3427-2017, 2017. 

Das, T., Bárdossy, A., Zehe, E. and He, Y.: Comparison of conceptual model performance using different 

representations of spatial variability, J. Hydrol., 356(1–2), 106–118, doi:10.1016/j.jhydrol.2008.04.008, 2008. 

Ehret, U., van Pruijssen, R. Van,., Bortoli, M., Loritz, R., Azmi, E. and Zehe, E.: Adaptive clustering : A method 

to analyze dynamical similarity and to reduce redundancies in: reducing the computational costs of distributed ( 

hydrological ) modeling, , (February), 1–33) modelling by exploiting time-variable similarity among model 

elements, Hydrol. Earth Syst. Sci., 24(9), 4389–4411, doi:https://doi.org/10.5194/hess-24-4389-2020-65, 2020. 

Euser, T., Hrachowitz, M., Winsemius, H. C. and Savenije, H. H. G.: The effect of forcing and landscape 

distribution on performance and consistency of model structures, Hydrol. Process., 29(17), 3727–3743, 

doi:10.1002/hyp.10445, 2015. 

Fabry, F.: Radar Meteorology, Cambridge University Press, Cambridge., 2015. 

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., 

Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., 

Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad‐

Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., 



Safeeq, M., Shen, C., Verseveld, W., Volk, J. and Yamazaki, D.: Hillslope Hydrology in Global Change Research 

and Earth System Modeling, Water Resour. Res., 55(2), 1737–1772, doi:10.1029/2018WR023903, 2019. 

Fenicia, F., Kavetski, D. and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological 

modeling: 1. Motivation and theoretical development, Water Resour. Res., 47(11), 1–13, 

doi:10.1029/2010WR010174, 2011a2011. 

Fenicia, F., Kavetski, D. and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological 

modeling: 1. Motivation and theoretical development, Water Resour. Res., 47(11), 1–13, 

doi:10.1029/2010WR010174, 2011b. 

Fenicia, F., Kavetski, D., Savenije, H. H. G. and Pfister, L.: From spatially variable streamflow to distributed 

hydrological models: Analysis of key modeling decisions, Water Resour. Res., 52(2), 954–989, 

doi:10.1002/2015WR017398, 2016. 

Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based, digitally-simulated hydrologic response model, 

J. Hydrol., 9(3), 237–258, doi:10.1016/0022-1694(69)90020-1, 1969. 

Gong, W., Yang, D., Gupta, H. V. and Nearing, G.: Estimating information entropy for hydrological data: One-

dimensional case, Water Resour. Res., 50(6), 5003–5018, doi:10.1002/2014WR015874, 2014. 

Hannesen: Analyse konvektiver Niederschlagssysteme mit einem C-Band Dopplerradar in orographisch 

gegliedertem Gelände, University of Karlsruhe., 1998. 

Höge, M., Wöhling, TGuthke, A. and Nowak, W.: A Primer for Model Selection: The Decisive Role of Model 

Complexity, Water Resour. Res., 54(3), 1688–1715hydrologist’s guide to Bayesian model selection, averaging 

and combination, J. Hydrol., 572, 96–107, doi:10.1002/2017WR021902, 20181016/j.jhydrol.2019.01.072, 2019. 

Hrachowitz, M. and Clark, M. P.: HESS Opinions: The complementary merits of competing modelling 

philosophies in hydrology, Hydrol. Earth Syst. Sci., 21(8), 3953–3973, doi:10.5194/hess-21-3953-2017, 2017. 

Hrachowitz, M. and Weiler, M.: Uncertainty of Precipitation Estimates Caused by Sparse Gauging Networks in a 

Small, Mountainous Watershed, J. Hydrol. Eng., 16(5), 460–471, doi:10.1061/(ASCE)HE.1943-5584.0000331, 

2011. 

Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., 

Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan,  a., Gupta, H. V., Hughes, D. a., Hut, R. W., 

Montanari,  a., Pande, S., Tetzlaff, D., Troch, P. a., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. a., 

Zehe, E. and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB)—a review, Hydrol. Sci. J., 58(6), 

1198–1255, doi:10.1080/02626667.2013.803183, 2013. 

Huang, Y., Bárdossy, A. and Zhang, K.: Sensitivity of hydrological models to temporal and spatial resolutions of 

rainfall data, Hydrol. Earth Syst. Sci., 23(6), 2647–2663, doi:10.5194/hess-23-2647-2019, 2019. 

Jackisch, C.: Linking structure and functioning of hydrological systems., KIT - Karlsruher Institut of Technology., 

2015. 

Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J. and Zehe, E.: Form and function 

in hillslope hydrology: in situ imaging and characterization of flow relevant structures, Hydrol. Earth Syst. Sci., 

21(7), 3749–3775, doi:10.5194/hess-21-3749-2017, 2017. 

Juilleret, J., Iffly, J. F., Pfister, L. and Hissler, C.: Remarkable Pleistocene periglacial slope deposits in 

Luxembourg (Oesling): pedological implication and geosite potential, Bull. la Société des Nat. Luxemb., 112(1), 

125–130, 2011. 

Kling, H. and Gupta, H.: On the development of regionalization relationships for lumped watershed models: The 

impact of ignoring sub-basin scale variability, J. Hydrol., 373(3–4), 337–351, doi:10.1016/j.jhydrol.2009.04.031, 

2009. 

Knoben, W. J. M., Freer, J. E. and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–

Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23(10), 4323–4331, doi:10.5194/hess-23-

4323-2019, 2019. 



Leopold, L. B.: Downstream change of velocity in rivers, Am. J. Sci., 251(8), 606–624, doi:10.2475/ajs.251.8.606, 

1953. 

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P. and Loumagne, C.: When does higher spatial resolution 

rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. 

Sci., 18(2), 575–594, doi:10.5194/hess-18-575-2014, 2014. 

Lorenz, E. N.: Deterministic Nonperiodic Flow, J. Atmos. Sci., 20(2), 130–141, doi:10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2, 1963. 

Loritz, R.: The role of energy and information in hydrological modeling, Karlsruhe Institute of Technology (KIT)., 

2019. 

Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J. and Zehe, E.: Picturing and 

modeling catchments by representative hillslopes, Hydrol. Earth Syst. Sci., 21(2), 1225–1249, doi:10.5194/hess-

21-1225-2017, 2017. 

Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U. and Zehe, E.: On the dynamic nature of 

hydrological similarity, Hydrol. Earth Syst. Sci., 22(7), 3663–3684, doi:10.5194/hess-22-3663-2018, 2018. 

Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H. and Zehe, E.: A topographic index 

explaining hydrological similarity by accounting for the joint controls of runoff formation, Hydrol. Earth Syst. 

Sci., 23(9), 3807–3821, doi:10.5194/hess-23-3807-2019, 2019. 

Mälicke, M., Hassler, S. K., Blume, T., Weiler, M. and Zehe, E.: Soil moisture: variable in space but redundant in 

time, Hydrol. Earth Syst. Sci., 24(5), 2633–2653. Discuss., (November), 1–28, doi:10.5194/hess-24-2633-2020, 

20202019-574, 2019. 

Martínez-Carreras, N., Hissler, C., Gourdol, L., Klaus, J., Juilleret, J., François Iffly, J. and Pfister, L.: Storage 

controls on the generation of double peak hydrographs in a forested headwater catchment, J. Hydrol., 543, 255–

269, doi:10.1016/j.jhydrol.2016.10.004, 2016. 

Maurer, T.: Physikalisch begründete zeitkontinuierliche Modellierung des Wassertransports in kleinen ländlichen 

Einzugsgebieten., Karlsruher Institut für Technologie., 1997. 

Melsen, L. A., Teuling, A. J., Torfs, P. J. J. F., Uijlenhoet, R., Mizukami, N. and Clark, M. P.: HESS Opinions: 

The need for process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20(3), 

1069–1079, doi:10.5194/hess-20-1069-2016, 2016. 

Minkoff, S. E. and Kridler, N. M.: A comparison of adaptive time stepping methods for coupled flow and 

deformation modeling, Appl. Math. Model., 30(9), 993–1009, doi:10.1016/j.apm.2005.08.002, 2006. 

Neuper, M.: Anomale Strahlausbreitung - Prinzip und Fallbeispiele, Karlsruhe Institute of Technology., 2009. 

Neuper, M. and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and information-

based approach, Hydrol. Earth Syst. Sci., 23(9), 3711–3733, doi:10.5194/hess-23-3711-2019, 2019. 

Nicótina, L., Alessi Celegon, E., Rinaldo, A. and Marani, M.: On the impact of rainfall patterns on the hydrologic 

response, Water Resour. Res., 44(12), 1–14, doi:10.1029/2007WR006654, 2008. 

Obled, C., Wendling, J. and Beven, K.: The sensitivity of hydrological models to spatial rainfall patterns: an 

evaluation using observed data, J. Hydrol., 159(1–4), 305–333, doi:10.1016/0022-1694(94)90263-1, 1994. 

Ogden, F. L. and Julien, P. Y.: Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and 

small basin scales, Water Resour. Res., 29(8), 2589–2597, doi:10.1029/93WR00924, 1993. 

Or, D., Lehmann, P. and Assouline, S.: Natural length scales define the range of applicability of the Richards 

equation for capillary flows, Water Resour. Res., 51(9), 7130–7144, doi:10.1002/2015WR017034, 2015. 

Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S. and Burlando, P.: Partitioning the impacts of spatial and 

climatological rainfall variability in urban drainage modeling, Hydrol. Earth Syst. Sci., 21(3), 1559–1572, 

doi:10.5194/hess-21-1559-2017, 2017. 



Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K. and McDonnell, J. J.: Recent 

Trends in Rainfall-Runoff Characteristics in the Alzette River Basin, Luxembourg, Hydrol. Process., 31(10), 

1828–1845, doi:10.1023/A:1005567808533, 2017. 

Pfister, L., Hissler, C., Iffly, J. F., Coenders, M., Teuling, R., Arens, A. and Cammeraat, L. H.: Contrasting 

Hydrologic Response in the Cuesta Landscapes of Luxembourg, in The Luxembourg Gutland Landscape, edited 

by A. M. Kooijman, L. H. Cammeraat, and A. C. Seijmonsbergen, pp. 73–87, Springer International Publishing, 

Cham., 2018. 

Prenner, D., Kaitna, R., Mostbauer, K. and Hrachowitz, M.: The Value of Using Multiple Hydrometeorological 

Variables to Predict Temporal Debris Flow Susceptibility in an Alpine Environment, Water Resour. Res., 54(9), 

6822–6843, doi:10.1029/2018WR022985, 2018. 

Schoups, G., van de Giesen, N. C. and Savenije, H. H. G.: Model complexity control for hydrologic prediction, 

Water Resour. Res., 44(12), 14, doi:10.1029/2008WR006836, 2008. 

Scott, D. W.: On Optimal and Data-Based Histograms, Biometrika, 66(3), 605, doi:10.2307/2335182, 1979. 

Seibert, S. P., Jackisch, C., Ehret, U., Pfister, L. and Zehe, E.: Unravelling abiotic and biotic controls on the 

seasonal water balance using data-driven dimensionless diagnostics, Hydrol. Earth Syst. Sci., 21(6), 2817–2841, 

doi:10.5194/hess-21-2817-2017, 2017. 

Sivapalan, M., Beven, K. J. and Woods, E.: On Hydrologic Similarity, , 23(12), 2266–2278, 1987. 

Smith, M. B., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F. and Cong, S.: The distributed 

model intercomparison project (DMIP): Motivation and experiment design, J. Hydrol., 298(1–4), 4–26, 

doi:10.1016/j.jhydrol.2004.03.040, 2004. 

Sternagel, A., Loritz, R., Wilcke, W. and Zehe, E.: Simulating preferential soil water flow and tracer transport 

using the Lagrangian Soil Water and Solute Transport Model, Hydrol. Earth Syst. Sci., 23(10), 4249–4267, 

doi:10.5194/hess-23-4249-2019, 2019. 

Vogel, H.-J. and Ippisch, O.: Estimation of a Critical Spatial Discretization Limit for Solving Richards’ Equation 

at Large Scales, Vadose Zo. J., 7(1), 112–114, doi:10.2136/vzj2006.0182, 2008. 

Wagener, T., Sivapalan, M., Troch, P. and Woods, R.: Catchment Classification and Hydrologic Similarity, Geogr. 

Compass, 1(4), 901–931, doi:10.1111/j.1749-8198.2007.00039.x, 2007. 

Watts, L. G. and Calver, A.: Effects of spatially-distributed rainfall on runoff for a conceptual catchment, Nord. 

Hydrol., 22(1), 1–14, doi:10.2166/nh.1991.0001, 1991. 

Weijs, S. V., van de Giesen, N. and Parlange, M. B.: Data compression to define information content of 

hydrological time series, Hydrol. Earth Syst. Sci., 17(8), 3171–3187, doi:10.5194/hess-17-3171-2013, 2013. 

Wienhöfer, J. and Zehe, E.: Predicting subsurface stormflow response of a forested hillslope – the role of connected 

flow paths, Hydrol. Earth Syst. Sci., 18(1), 121–138, doi:10.5194/hess-18-121-2014, 2014. 

Wilson, C. B., Valdes, J. B. and Rodriguez‐Iturbe, I.: On the influence of the spatial distribution of rainfall on 

storm runoff, Water Resour. Res., 15(2), 321–328, doi:10.1029/WR015i002p00321, 1979. 

Wood, E. F., Sivapalan, M. and Beven, K.: Similarity and scale in catchment storm response, Rev. Geophys., 

28(1), 1, doi:10.1029/RG028i001p00001, 1990. 

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, 

M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. 

P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A. and Whitehead, P.: Hyperresolution global land 

surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47(5), 

1–10, doi:10.1029/2010WR010090, 2011. 

Woods, R. and Sivapalan, M.: A synthesis of space-time variability in storm response: Rainfall, runoff generation, 

and routing, Water Resour. Res., 35(8), 2469–2485, doi:10.1029/1999WR900014, 1999. 

Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler, C., Krein, A., Savenije, H. H. G., Uhlenbrook, 



S., Kavetski, D. and Pfister, L.: Towards more systematic perceptual model development: a case study using 3 

Luxembourgish catchments, Hydrol. Process., 29(12), 2731–2750, doi:10.1002/hyp.10393, 2015. 

Zehe, E. and Blöschl, G.: Predictability of hydrologic response at the plot and catchment scales: Role of initial 

conditions, Water Resour. Res., 40(10), 1–21, doi:10.1029/2003WR002869, 2004. 

Zehe, E., Maurer, T., Ihringer, J. and Plate, E.: Modeling water flow and mass transport in a loess catchment, Phys. 

Chem. Earth, Part B Hydrol. Ocean. Atmos., 26(7–8), 487–507, doi:10.1016/S1464-1909(01)00041-7, 2001. 

Zehe, E., Becker, R., Bárdossy, A. and Plate, E.: Uncertainty of simulated catchment runoff response in the 

presence of threshold processes: Role of initial soil moisture and precipitation, J. Hydrol., 315(1–4), 183–202, 

doi:10.1016/j.jhydrol.2005.03.038, 2005. 

Zehe, E., Elsenbeer, H., Lindenmaier, F., Schulz, K. and Blöschl, G.: Patterns of predictability in hydrological 

threshold systems, Water Resour. Res., 43(7), doi:10.1029/2006WR005589, 2007. 

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., 

Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V. and 

Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the 

HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. 

Sci., 18(11), 4635–4655, doi:10.5194/hess-18-4635-2014, 2014. 

Zhu, Z., Wright, D. B. and Yu, G.: The Impact of Rainfall Space-Time Structure in Flood Frequency Analysis, 

Water Resour. Res., 54(11), 8983–8998, doi:10.1029/2018WR023550, 2018. 

 

  



Reply to Referee #1 Daniel Wright: 

Daniel Wright (DW): Summary and Recommendation: The authors present a framework for 

dynamically adapting the level of spatial detail re-solved within a physics-based rainfall-runoff model 

depending on the spatial variability in precipitation. I found this the be one of the most interesting 

manuscripts that I’ve ever reviewed, and commend the authors on this innovative work. Nonetheless, 

there are some issues that should be addressed before the manuscript is suitable for publication in 

HESS, and that could help maximize the impact of the work. 

Ralf Loritz (RL): We would like to thank Daniel Wright for his positive comments and the time he 

invested to review our Manuscript (MS). The revised MS will follow the reviewer’s recommendations 

and include among other things a re-structured section 3 (model introduction) as well as a more extensive 

discussion about its connection to the land surface modeling community. Furthermore, will we carefully 

check the references the reviewer recommended and see whether they help us to improve our 

argumentation. 

Major comments: 

1. DW: I believe the discussion could be strengthened by deeper consideration of how this approach 

would “scale up” to larger watersheds or regions. Part of my reason for encouraging this is that the 

land surface modeling (LSM) community is at least as concerned as the rainfall-runoff community about 

model computational demands of long-term/ensemble simulations, and are seeking ways of representing 

fine-scale (e.g. hillslope and below) over continental-to-global domains. In fact, land surface modeling 

was the focus of the well-known Wood et al. (2011) hyperresolution modeling opinion piece. In addition, 

there has been relevant progress in LSM development that the authors should cite. I will mention these 

below. But in terms of scaling up, the key aspects seem to be acknowledgement that heterogeneity of 

model parameters will increase with modeled area, while the rainfall spatial coverage will, on average, 

decrease. 

RL: Thank you for raising this point. We mentioned in our MS in the method section page 14 line 28 to 

31: “This entails, however, also that if we extend our research area to a catchment that is divided, for 

instance, into two geological settings that function hydrologically differently (regarding their filter 

properties) we would always need to run at least two structural different models where each of these 

models represents one of two geological settings.”  

We agree with the reviewer that this section is rather short and will provide a more extensive discussion 

in a revisited MS (see also the following points). We will also carefully read the proposed references by 

Woods et al. (2011). 

 

2. DW: I believe the discussion could also be strengthened by some discussion of how well this approach 

might fit with specific types of spatial discretizations. It fits quite naturally with hillslope-based models. 



The fit is less clear with gridded or TIN-based models-or at least with high-resolution gridded models 

in which individual model grids must “communicate” with each other to transmit water via overland or 

subsurface flow to channels. 

RL: This is an important point. Indeed our approach is limited to hydrological models that are based on 

a division of the landscape into partly independent spatial units (similar to the work of Chaney et al. 

2016). However, at least in theory, there is no limit on how complex the interaction between these 

independent sub-units are as long as there is redundancy/similarity when different model elements 

“communicate” with each other. However, the question at what point of model complexity we would 

still save computational times by reducing redundancy depends on a series of factors (e.g. model, 

resolution, no. of processes and state variables). We will discuss this in a revisited MS.  

DW: It seems that the computational advantages of the approach might be limited in that case. In 

addition, models such as GSSHA in which overbank river flow can return to the land surface would 

have some limits here too. These issues are worth discussing because such models constitute important 

current directions in physics-based model development. 

RL: From our perspective, it makes much sense to divide a landscape into different building blocks 

such as hillslopes, sub-basins, etc. (e.g. Zehe et al., 2014). This is the case as current physically-based 

models are still constrained to small areas if they are set up on an appropriate grid size. We see hence 

no way around dividing a landscape into some kind of independent sub-units and either run models in 

parallel or/and group similar model elements (dynamically or time-invariant) if we want to work on 

larger scales. That said, we also believe that it would be rather difficult to implement a spatial adaptive 

modeling approach in a current model like Delft2d or GSSHA. 

We wrote in our MS (Pg. 16 line 10): “While we use CATFLOW as a model here, the proposed approach 

is not restricted to this model and can be used in any hydrological model that distributes a catchment 

into independent spatial units.“. To underpin this point we will discuss the limitation of our approach in 

more detail (please also see the discussion with the second referee and the third). Again we thank DW 

for this valuable comment. 

 

3. DW: While there may be other relevant LSM developments, the one that I am aware of is Hydroblocks 

(Chaney et al. 2016). While I recommend reading that paper, the basic approach is similar to this 

manuscript’s in that spatial units are grouped into hydrologically similar clusters to reduce the 

computational demand.  

RL: Thank you very much for pointing us to the study of Chaney et al. (2016). We will examine it 

carefully. 

DW: The difference is that in Hydroblocks, these clusters are not dynamically reassigned according to 

time-varying characteristics (unless the developers have recently added that capability). So in fact, your 



approach appears to be superior in some respects. Specifically, within Hydroblocks, since there is no 

dynamic reassignment, you can never have a cluster that extends beyond the spatial extent of a single 

precipitation grid cell, which means that their approach loses computational efficiency with higher-

resolution precipitation datasets. Your approach thus seems to hold more promise in terms of flexibility 

to advances in precipitation inputs. 

RL: Interesting comment. We would like to highlight that we only showed that our approach is 

theoretical and practically feasible. It remains an open question if we could actually save more 

computational times in comparison to HydroBlocks or similar time-invariant approaches. The question 

is open for discussion as our approach is also more complicated. We will discuss this in a revised 

discussion section.  

 

4. DW: More clear description of what each model does and does not do is needed in Section 3. 

Specifically, I found it confusing the way that the models are briefly introduced at the beginning of the 

section, and then discussed further in various subsections. I also find it strange that you have text that 

is not assigned to specific subsections. It isn’t clear why section 3.2.1 is needed...convention is that you 

don’t include subsections unless you have at least 2 or 3 (i.e. 3.2.2, 3.2.3). This section structuring needs 

rethinking. […] Also, a table that compares the key features and differences of all the models could be 

effective. I think one think that would really help is to not use “model a”, “model b”, etc. but some brief 

descriptive names that actually help the reader understand and recall the differences. More important, 

I really couldn’t figure out from the descriptions what the differences between some models were. I also 

don’t understand the motivation for using a different rainfall dataset for the reference model and model 

a; this seems unnecessary. 

RL: We stated in our MS on page 11 line 26-29: “We added model a to test if the performance difference 

between the reference model and our distributed model b is merely a result of quantitative differences 

between the different precipitation products measured either by a single ground station or by a weather 

radar.”  

However, we understand the comment of Daniel Wright and we will restructure section 3 entirely and 

remove the short introduction of the different models. We will also follow your advice and add a table 

with the key features of each model. 

 

5. DW: Zhu et al. (2018) and Peleg et al. (2017) both highlight how distributed rainfall structure is 

really important in determining flood frequency across a range of scales. Though I normally refrain 

from suggesting that authors cite my own work, in this case it seems appropriate to highlight these 

studies, since they do show that for extreme events, rainfall space-time structure is extremely important 

in determining hydrologic response even at very small scales (see Peleg et al. in particular), and that 

this importance varies with rainfall magnitude and basin size.  



RL: We have carefully read both publications and they fit nicely into our revisited discussion. Thank 

you for pointing us towards these two references. 

DW: Along with this, I disagree with the statement on pg. 27: “it seems that catchment size might not 

be the best indicator to decide if” a distributed model is needed. It probably is the best single indicator, 

but is still insufficient. I draw a somewhat different conclusion from your work: that a distributed 

approach is always needed to reap the full benefit of spatially distributed rainfall (at least in locations 

in which convective rainfall can occur), and that provides motivation for continued developments such 

as this into ways of handling this need in computationally-efficient ways. 

RL: What we wanted to convey here is that it is the combination of the drainage area and the average 

size of a typical rainstorm, which is important and not the drainage area alone. For instance, if you 

wanted to predict the runoff formation in the Colpach catchment in the winter season a spatially 

aggregated model driven by a single precipitation time series might be sufficient as our results show. 

This means also that you could invest your limited time and improve for instance the groundwater 

representation in your model instead of setting up a distributed model. However, if you wanted to make 

predictions in the summer months our results highlight that you need some sort of a distributed model 

to be able to capture the spatial variability of the rainfall. This means that only because the Colpach is 

20 km2 we cannot decide if we need a spatially distributed model as the catchment size does not explain 

how variable its meteorological forcing is. Nicotina et al. (2008) argued along these lines and stated that 

the “total residence time of a water parcel is often controlled by the travel time within hillslopes, we 

find that when typical hillslope size is smaller than the characteristic size of rainfall structures (say, a 

correlation length of rainfall intensity), the rainfall pattern effectively samples all possible residence 

times and the response of the catchment does not depend on the specific rainfall pattern.” and the second 

referee pointed us towards the study of Ogden and Julien (1993). The second reviewer also nicely 

summarized their key finding: “only for rainfall with durations shorter than the concentration time of 

a catchment does the spatial distribution of the rainfall matters, for longer rainfall events only the 

temporal distribution matters.”. Following these two studies and our own results we would argue that 

our first research question in our MS: “How important are spatial patterns of precipitation for the runoff 

generation at the catchment scale?” can only be answered if we combine information about the 

catchment size (e.g. average hillslope length, concentration time) with information about the 

meteorological forcing (e.g. intensity, correlation length, velocity). In a revisited MS we will rephrase 

this paragraph and explain in more detail what we meant by this statement. 

DW: Likewise, I disagree with the statement on pg. 30 line 18-19: compressing rainfall into a single 

time series isn’t so important as the ability to only use as much computational power as is truly needed 

to solve the problem at hand. 

RL: Again an interesting point you raise here. In our specific setting, compression of precipitation and 

saving computational power are the same.  By compressing the precipitation field to a single time series 

we also compress our model, minimize redundant calculations, which again means that we save 



computational power. So, we would argue that we first need to understand (test) how far we can 

compress our rainfall field without losing predictive performance before we can save computational 

times in a meaningful manner. The data-based / machine learning community most likely would disagree 

 

 

6. DW: Some discussion of implications for calibration would be interesting. Is it necessary to calibrate 

using a fully distributed model? This would limit the usefulness of this approach in some respects such 

as automated calibration procedures. 

RL: Typically, one run of the reference model (a single CATLOW hillslope) for a simulation period of 

one year and hourly printout times takes about 2 - 3 hrs. Assuming that you run your code on a 

workstation with 32 cores you can run about 400 model setups in 24 hrs. As structurally similar areas 

are represented by the same model in our approach, testing different model parameters sets should be 

feasible even in larger areas if the structural properties are not too variable/complex. We will discuss 

this in a revisited MS. 

 

7. DW: There are a number of minor grammatical issues that nonetheless cause some distraction from 

the overall high quality of the manuscript. I will point out some of these below, but it could be worthwhile 

to have a native English speaker perform a careful proofreading. 

RL: We will carefully proofread the MS once more and would like to highlight that there will be another 

professional language check by Copernicus if the MS is accepted for publication. 
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Reply to Anonymous Referee #2: 

Anonymous Referee #2 (AR2): Summary and Recommendation: The manuscript introduces an 

adaptive spatial clustering of hydrologic response units (HRU) to cope with the dynamics of the 

intermittent rainfall by keeping the model as parameter parsimonious (=model states) as possible in 

terms of reduction of similar-reacting HRUs. The manuscript is well-written and I enjoyed reading it. 

The introduced clustering is innovative from and fits into the scope of the journal. I have a few moderate 

and a number of minor comments, which are stated below.  My overall recommendation would be a 

moderate revision to give the authors enough time to solve the open issues.  Since I can only choose 

between minor and major revision, major revision it is. 

Ralf Loritz (RL): We would like to thank the second referee for the time and the effort she/he put into 

his review. The points she/he raises are relevant and addressing them will help to improve our 

manuscript. We hope that after this discussion (as well as after we revised our manuscript) all issues 

she/he raises can be clarified. 

Moderate comments: 

1. AR2: The manuscript is about the reduction of the spatial model resolution based on the variety of 

precipitation as input signal. I’m wondering if there is not an adaption of the temporal resolution 

required as well since scales in space and time are not independent of each other (see Melsen et al.  

(2015) and references therein)? Maybe it’s not an issue for the small catchment studied here …   

RL: Important comment. The results of the study of Zhu et al. (2018; recommended by the first 

reviewer) highlight that the timing of the precipitation is more important in smaller catchments while it 

is the spatial pattern in larger catchments. We will discuss this in a revisited MS and carefully read the 

study of Melsen et al. (2015). 

AR2: … but  for  larger  catchments  with  a  small hydrologic variability the numeric stability can be 

questioned due to the large spatial discretization and the high temporal resolution (e.g. in terms of the 

Courant-Friedrichs-Lewy condition, Courant et al., 1928). The authors should proof this condition for 

their model setup and discuss possible issues in the manuscript. An alternative would be to reduce the 

temporal resolution as well, which would lead to an additional reduction of parameters/computational 

costs. 

RL: CATFLOW uses an adaptive time-stepping, which means that time steps can be reduced down to 

seconds depending on the numerical solver. In the presented study the Darcy Richards equation is solved 

implicitly while the surface runoff is solved explicitly (for more details see also Zehe et al., 2001). As 

the horizontal grid resolution of the CATFLOW hillslope (reference model) is below 1 m, the vertical 

below 10 cm and time steps are small we have no issue to fulfill the Courant criteria in our model. 

Nevertheless, you mention an important point here and the fulfillment of physical and numerical 

constraints were the main motivations of our former “representative hillslope” study (Loritz et al. 2017).  



CATFLOW hillslopes are typically interconnected by a river network and runoff is routed downstream 

with a diffusion wave approach (explicitly solved) assuming a prismatic river cross-section and 

roughness that changes with changing Strahler order. However, the combination of a river network with 

the raster layout of our adaptive model is not straightforward (although not impossible, for instance by 

linking the centroid of a raster cell to the closest node of the river network). To make things not more 

complicated as necessary we decided to use a lag function in this study. This lag function is not solved 

numerically but shifts the simulated hydrographs in time by a constant velocity. Again we have no issue 

with the Courant criteria here. The latter is different if we would have used an adaptive mesh approach 

where the numerical grid is changed during runtime. Here we carefully need to check the courant criteria 

when we increase the size of the grids. We will discuss this in a revisited MS. 

 

2. AR2: The authors have selected two events to show the ability of adaptive clustering.  The choice of 

both events seems to be very arbitrary. From Fig. 4 it seems that the resulting runoff peaks are not 

representative for runoff mechanisms of the catchment. As far as I understand from P13 l8-10 the 

clustering is carried out manually and not automatically so far, which is the reason why the authors 

decided for two small events covering only a few time steps. However, I disagree with the hypothesis 

that “a test on a longer timescale...would provide only little more scientific inside” (P13 l9-10), which 

is also not proven by the authors. 

RL: Respectfully, we do not agree with the assessment of the reviewer regarding the selection of our 

rainfall events. We chose event I as it has the highest intensity and third-highest spatial variability in the 

chosen period. We chose event II because we wanted to test our adaptive model at a rainfall event with 

a longer duration and lower intensity). From examining the rainfall-runoff events in summer we believe 

that both events represent the runoff generation in summer well as long as subsurface storm flow is 

dominant. We agree with the reviewer that our statement is a bit misleading and we will explain better 

what we mean here. Please see also the discussion with the third and fourth reviewers. 

AR2: I rather expect that the reduction of model parameters due to the adaptive spatial resolution is 

reduced significantly for long-lasting rainfall events causing a direct runoff response over several days 

as e.g. in Nov 2014, Jan 2014-Mar2014 and Aug 2014.   

RL: You are correct. The needed spatial model resolution in winter is much lower compared to the 

chosen summer rainfall-runoff events. This is indicated by the fact that the distributed model b and the 

reference model perform almost identical with respect to simulate the observed discharge in the winter 

season. We would argue that is is difficult to justify the use of a spatially distributed model over a 

spatially aggregated model if they perform similarly as long as the focus is on an integral response of a 

system. 

 AR2: Another point that can be questioned is snow, which does not cause runoff immediately, but when 

snow melt begins.  How will this be affected/can be incorporated by the adaptive clustering?  The impact 



of more complex events than those  analysed  in  the  current  study  has  at  least  to  be  discussed  

sufficiently  in  the manuscript, although an analysis of more events is encouraged to represent the effect 

of the adaptive clustering on the variety of runoff responses. 

RL: Interesting point. Snow is rare in the Colpach catchment which is fortunate as CATFLOW has no 

internal snow routine. However, let’s assume we would have used a model with a snow routine in an 

area where snow is a dominant control on the runoff generation. In this specific scenario, we would 

indeed have to adapt our definition of similarity between the model states. In other words, instead of 

using the only slope of the simulated hydrograph alone to define similarity, we would also need to check 

the snow cover before we would group models as functional similar based on their state. Two similar 

hillslopes would then have the “same” snow cover (given a threshold) as well as the same slope of the 

hydrograph. We very much like the idea of testing the approach in an area where snow is an important 

factor. However, for now, we will discuss the limits of choosing a single variable to group model states 

in a revisited MS. 

 

3. AR2: The model states are identified by the slope of the resulting runoff curve. However, the slope  

can be more or less identical for one time step independent of the current runoff situation, e.g. if runoff 

is reduced in one tile from 25mm to 20mm and in another tile from 10mm to 5mm (which could be the 

case in a stratiform event with a convective cell inside), the resulting slope is the same, right? So the 

soil moisture and other storage elements is then “averaged” due to the same model state of both tiles, 

although both tiles are in completely different hydrologic situations.  It would be useful if the authors 

would comment on that issue or, if I understood it not correctly, clarify the part where I got lost. 

RL: You are correct. In an earlier version of our spatial adaptive model, we used the absolute discharge 

to identify similar model states. The issue here was that two models could produce the same discharge 

at a given time step but one model would simulate a rising hydrograph while the other a declining. We 

hence decided to take the slope of the hydrograph assuming that the model differences would be small 

given the size of the Colpach catchment, the focus on the summer season and because we only simulate 

shallow subsurface stormflow. In the case of a stratiform event with a convective cell inside or if we 

have snow in a catchment our assumption might be violated. Thank you for raising this issue and along 

your lines, we will add another criterion to our spatially adaptive model. In a revisited MS only model 

elements which share a similar dQ dt-1 (0.05 mm hr-1) as well as Q (0.05 mm hr-1) will be grouped 

together. 

 

Specific comments: 

AR2: P4 l5-8 The difference is not clear formulated at this point.  It becomes clearer while reading the 

manuscript, but should be communicated concisely at this point. 



RL: We will rephrase this sentence. 

AR2: P7 l27 Where are the disdrometers located?  Can they be used to improve the rainfall input for 

the reference model to achieve a more realistic uniform areal rainfall?  If not, could be an increase of 

rainfall amounts with altitude improve the areal rainfall estimate? The Roodt station is situated in the 

raster field with the lowest rainfall amounts (Fig 2) and not representable for the catchment.  So any 

correction has to be done to enable a fair comparison between reference model and model a. 

RL: When we were setting up the reference model for our proceeding study (Loritz et al., 2017) the 

only rainfall measurement available at that time was the ground station in “Roodt”. As we are aware 

that the comparison between the reference model and model b (the distributed model) is not entirely fair 

as they used different rainfall data we added model a to the model ensemble. In a restructure section 3 

we will clarify this as well as add the location of the distrometers to the appendix A1. 

AR2: Fig 2 Please add rain gauge data to Fig 2b) to enable a comparison of all rainfall inputs. 

RL: We will add the rainfall data from “Roodt” to Fig2b. 

AR2: P10 l2, p11 l26 area-weighted -> As I understand the areal mean is estimated by the arithmetic 

mean of the satellite data.   How do weights for different areas affect this estimation? This is not clear 

for me, please rephrase/add the explanation. 

RL: As not all of the 42 raster cells of the distributed rainfall data are entirely within the borders of the 

Colpach catchment their weight was reduced when we calculated the average precipitation for model a. 

We will rephrase this sentence accordingly.  

AR2: P11 l2 sap flow -> Do the authors mean by sap flow the flow in plants? I can’t imagine at this 

point how the authors applied observations like that in the current study.  If so, please describe a bit 

more detailed, since it is not a conservative measure for model validation and hence of great interest 

for the community. 

RL: By sap flow we indeed mean sap flow in plants. In our proceeding study (Loritz et al. 2017) we 

compared normalized sap flow velocities against normalized transpiration simulations of CATFLOW 

to evaluate the transpiration simulation. Sap flow measurements where thereby one of the keys for a 

successful simulation in the Colpach catchment as they helped us to identify the onset of the vegetation 

(when the trees started to transpire). The comparison is described in detail in Loritz et al. (2017; Figure 

12). Although we agree that this might be of great interest for the community we would like to avoid 

discussing this once more to keep the MS as focused as possible. 

AR2: P12 l23 “average distance of each grid cell to the outlet” -> Should it not be the distance along 

the flow path/flow direction?  So it would be possible that the runoff is assumed to stream upwards in 

some areas of the catchment- Please rephrase or reconsider. 



RL: For each grid cell of the precipitation field we calculated the average flow length along the surface 

topography to the outlet of the catchment using an underlying DEM with a 10 m resolution. We used 

the averaged flow distances in our lag function. We will explain this in more detail in a revised MS.  

AR2:  P12 l30 “3.2.1 to 3.2.3” -> “3.3.1 to 3.3.3” 

RL: Following the discussion with the first reviewer Daniel Wright we will restructure section 3 and 

remove all “subsubsections”. 

AR2: P13 l2 “wetness state” Please define this term.  It sounds as only soil moisture is included without 

any additional information, but there is more included, right? If not, why not using the term soil 

moisture?  Section 3.3 and 3.3.1 There are repetitions among the paragraphs, please remove them. 

RL: We will remove the term “wetness state” with the term “catchment state” to make clear that we 

also mean the shallow groundwater table, soil moisture, etc. We will furthermore restructure section 3 

and remove the repetitions. 

AR2: P15 l4 & 21 Both thresholds are catchment size-dependent (as the authors state also later).For  

other  applications  it  would  be  useful  to  introduce  a  catchment  size-dependency to derive these 

thresholds.  This is beyond the scope of the study since it demands a multi-catchment analysis, but the 

authors should add a small sensitivity analysis by e.g. using ∆P >{0.5, 1, 2} mm/hr as thresholds. This 

is along with a comment I have for the results section later, but I want to state it already here. In the 

results discussion it is often mentioned, that the number of parameters is reduced between model b and 

c, there is no figure illustrating it, although I would imagine it would bean impressive plot with y as 

KGE over x as the summarized number of model parameters per time step (or on average) for one event. 

Model reference, a, b, c (∆P>1mm), c(∆P>0.5mm) and c(∆P>2mm) would be the points to show in the 

diagram. I assume model c would represent a break in the curve (KGE not increasing, while number of 

model parameters do) and the different thresholds would represent the uncertainty of this approach. 

RL: Interesting comment. Using a typically physically-based model (CATFLOW) and specifically the 

setup of our model based on field measurements it is kind of difficult to estimate the number of model 

parameters in our study. However, we will add a plot with the distributed precipitation binned into 

different thresholds (0.1, 0.5, 1, 2, 5 mm hr-1) to the appendix. Based on this plot we will discuss how 

the binning will most likely affect our spatial adaptive model. Furthermore, will we discuss that a 

sensitivity analysis with different thresholds is needed along your line of arguments. Again thank you 

for this comment. 

AR2: Table 1:  As far as I understood the calibration was done only for the reference model, right? 

Although that seems to be done in a former publication, a brief information about calibration and 

validation period, objective function and so on is required to interpret the table. For model a, b and c 

no parameters were changed, so the same parameter set was used throughout the study to enable 

comparisons? If there was a re-calibration for model c, the reference model and models a and b should 

be re-calibrated for the events only as well to enable a fair comparison 



RL: Exactly the calibration was done in a former publication exclusively for the reference model. All 

model parameters remain the same. The only differences between the models are the rainfall data which 

we use to drive the models as well as their spatial resolution. We will add more details about the 

calibration in a restructured section 3.  

AR2: Fig. 5: I’m a bit confused here. The authors state P=12 for t=2, but from counting it is P=13 – 

please double-check (also the number of entries in the following text refer ring to t=2).  Additionally, 

for t=4 M=3 results from P=2 and S=1 – from my understanding the maximum of model states is 

max(M)=2 in this case, please double-check. 

RL: You are correct. We will check the figure as well as the corresponding text passages. Thank you 

for checking the figures so carefully. 

AR2:  P27 l4-22 This paragraph provides already a good overview of related references. However, from 

my understanding the reference of Nicotina et al. (2008) concluded that spatial patterns of rainfall are 

only important for large catchments (8000km2 in their study) for hourly time steps, the correct  

estimation of areal rainfall is sufficient for smaller catchments.  The authors should review this reference 

again and check their implementation in the current manuscript.  

RL: Thank you for this comment. We were referring to the following section in Nicotina et al. (2008): 

“As noted in section 4, this is because the spatial scales of variability of rainfall are very often much 

larger than the typical hillslope scale. Whenever infiltration excess mechanisms are important, the 

spatial distribution of areas of intense rainfall may be an important factor in determining the hydrologic 

response, … “. In the current MS the use of this reference is indeed misleading and a leftover from an 

earlier version. We will revisit the corresponding sentence. 

AR2: Also, Ogden and Julien (1993) state that only for rainfall with durations shorter than the 

concentration time of a catchment the spatial distribution of the rainfall matters, for longer rainfall 

events only the temporal distribution matters.  To highlight the importance of distributed models the 

authors could also look at Krajewski et al. (1991), Bardossy & Das (2008) or Müller-Thomy et al. 

(2018) 

RL: Thank you very much for pointing us to these publications we will read them carefully and see if 

they can help us to improve our argumentation. 

  



Reply to Referee #3 Wouter Knoben: 

Wouter Knoben (WK): Summary and Recommendation: The authors develop and test a hydrological 

model that is able to change its spatial complexity in time.  In its most simple state, the model represents 

the Colpach catchment in Luxembourg as a single representative hillslope.  In its most complex state, 

the model would be able to use 42 hillslope elements to simulate the catchment’s response to extremely 

spatially variable rainfall inputs.   The model adds hillslope elements based on the spatial complexity 

of incoming precipitation and removes hillslope elements based on the change of runoff over time. Both 

processes use a threshold to decide when upscaling or downscaling the model is needed or possible.  

The authors show  that  the  adaptive  model  reaches  the  same  KGE  scores  as  a  fully  distributed 

model that uses 42 hillslope elements all the time,  while the adaptive model needs 16 representative 

hillslopes at most.  This is shown for two short-duration event that occurred during summer. 

I have read this paper with much interest and found it generally easy to read and understand.  As models 

grow more complex, computation times go up and studies such as this could open up great opportunities 

to reduce computation costs by avoiding redundancy in model calculations. However, I have some 

questions about the tests and metric the authors use to show that the adaptive model is as good as the 

fully distributed one. These are outlined below. I’ve provided additional requests for clarification in the 

line-by-line comments in the hopes that these are helpful. 

Ralf Loritz (RL): We would like to thank Wouter Knoben for the interesting discussion on our 

Manuscript (MS). WK raises a couple of important and well-thought comments and we hope that after 

this discussion as well as after we have revisited our MS all open issues can be clarified. 

Comments: 

1. WK: My main concern is the choice of using dQ/dt to reduce the number of model elements. Using 

the change in discharge over time to measure similarity of states can only work if there is a unique 

relationship between model state and dQ/dt. Given the equifinality in the fluxes-discharge relation that’s 

typically visible in hydrological models (see e.g. Khatami et al., 2020), I think the section that introduces 

this concept (P16, l17) is not quite clear about why this dQ/dt assumption can be used together with 

CATFLOW.  

RL: Important comment and also the second reviewer had similar concerns. We will hence add Q as a 

second variable to group and ungroup model states and improve the discussion on how using a single 

variable to define similarity between model states will always lead to errors in certain scenarios and 

following that these variables need to be picked carefully. 

WK: Reading further, the authors address this concern to some extent in section 4.4 (P23, l18). This 

section however seems to show that CATFLOW does not exhibit such a unique relationship and the 

model reduces the number of model elements before the groundwater states reach similarity.  This does 

apparently not affect the quality of the simulations much, because the KGE scores in Table 1 seem to 

indicate the adaptive model is as good as the fully distributed model for the two testing events. 



RL: In the current MS we did not mention that CATFLOW simulates only shallow subsurface 

stormflow in the entire summer period. This means that we do have a rather unique relationship between 

our model states and their function. Furthermore, the example in Fig.8 shows two extreme cases where 

one model receives much more precipitation than the other exactly intending to show the limits of our 

approach (section 5.3). As discussed in more detail with the fourth reviewer we will show that there is 

no difference between model a and model c (also concerning soil moisture in both depths) already shortly 

after the rainfall stops and when model c represents the entire catchment with a single hillslope. 

Furthermore, by calculating the Shannon entropy of the 42 hydrographs simulated by the spatially 

distributed model b we can see that there is no reason to assume that two models drift apart in the selected 

time frame. We will disscuss this in a revisted MS. 

WK: Fig. 4 shows that both testing events are selected in the middle of summer, when presumably the 

catchment is in quite a dry state (catchment state is not mentioned when selection of the two events is 

discussed on P18, l20 to P19, l6).  

RL: We mention the catchment states for event I and II on page 18 line 26 to 28 and page 19 line 5 to 

6. Furthermore, do we refer to our former study where we showed 38 time series of soil moisture in the 

Colpach catchment in various depths and locations for the same hydrological year. 

WK: The fact that both events are selected during the dry summer could mean that the model can reset 

itself to mostly empty between the events and as such the long term (seasonal) impacts of not keeping 

the groundwater states separate cannot be investigated with the current two testing events. 

Equally,  the events concern high flows so the impact of differences in slow ground-water states probably 

do not register in the dQ/dt values during the falling limb of the hydrograph (and thus the adaptive 

model simplifies itself). 

There is the compounding issue that the KGE scores used to calculate the performance of model c are 

only calculated during the high flow event and that metrics such as KGE are typically not very sensitive 

to errors in low flows.  This means that the parts of the simulation time series where the differences in 

groundwater states could be seen are both not included in calculation of the KGE score of model c and 

if they were, the KGE metric might not be able to pick up on any differences. 

RL: Again an important point. As already mentioned above we discussed in section 5.3. “While this 

finding is surely constrained  by  the  chosen  threshold,  the  picture  is  nevertheless  quite  different  

in  deeper  soil  layers  where  the diversity of the rainfall forcing leads even after 24 hrs to increasing 

differences between the “driest” and “wettest” models.  A  part  of  the  information  about  the  different  

meteorological  forcings  between  the  two  models  is  hence still  stored  in  the  model  state  after  24  

hrs  and  has  not  yet  been  dissipated.  The importance  of  those differences likely depends on the 

dominant runoff generation process. In the present case, they have a minor impact as model …” 



In a revisited MS we will underpin once more that our approach with the current definition of similarity 

regarding the model states can have significant impacts for long-term simulations however that there is 

no reason to expect that in our specific case. 

WK: Summarizing the above, I’m not sure that the dQ/dt criterion is entirely appropriate to determine 

when the adaptive model can reduce its complexity, and I’m equally unsure if the current two testing 

events would be able to show if the dQ/dt criterion is or is not appropriate.  The straightforward solution 

would be to run model c for the year, add these results to Table 1 and briefly investigate for example 

the relative contributions of different fluxes to the overall water balance and the model’s response to a 

few precipitation events during winter.  Given that the adaptive model should be faster than the fully 

distributed one, this should not be a large computational burden and it will provide a much more 

complete impression of the capabilities of the adaptive model. 

RL: We hope that an improved discussion of the limits of the dQ/dt criterion (or any other criterion) as 

well as the addition of a second similarity measure (Q) will clarify the issues WK raises. We would also 

like to stress once more that we focus exclusively on the summer season as the distributed model b 

outperforms the reference model only in this period and because the meteorological boundary conditions 

change between the winter (frontal) and summer seasons (convective; Fig. 4 b). Furthermore, did we 

chose two rainfall-runoff events instead of the entire period as it allows us to analyzes the events in great 

detail (Event I: Fig. 5, 6, 7) and as our main focus in this study is on the rainfall-runoff interaction and 

not on low flow conditions. We selected event I because it has the highest rainfall intensity and third-

highest spatial variability (highest Shannon entropy) in the selected period and event II because we 

wanted to test our spatial adaptive model at a summer rainfall event with longer duration. We believe 

that both events represent the state space of the runoff formation of the Colpach in summer well and see 

no reason to assume that the model c would fail at another rainfall event. A test of the spatial adaptive 

model for the entire hydrological year (or even for a longer period), in a different environment, with 

more variables and different thresholds to group and ungroup the model states and maybe even with a 

different type of model, is indeed desirable. However, to keep the already quite elaborated MS as focused 

as possible we will focus on improving the discussion with respect to the limits of our approach, add Q 

as second criteria to define similar model states, add a new figure to the appendix where we show how 

the thresholds impact the number of precipitation groups (please see the discussion with reviewer 2) and 

finally plot the soil moisture of model a and c at the end of event I and II to highlight that both models 

are in a similar state also with respect to their soil moisture. 

 

 

Line-by-line comments 

WK: P5,  l5.   This  question  seems  quite  strongly  related  to  the  contrasting  results  in  the literature 

that the authors discuss in the first and second paragraph of the introduction, where they conclude that 



the impact of using a distributed model and/or distributed forcing data is conditional on the catchment 

under investigation. This research question seems a bit generic in that light, given that only a single 

model and catchment are being investigated in this work. As is, question 1 seems more like a formality 

to me (it must be answered with “yes” before Q2 can be investigated) and the main focus of the 

manuscript seems to be on Q2. Perhaps the manuscript can gain a bit in focus if only the current 

research question 2 is specified, and the work done to answer the current Q1 is presented as a 

prerequisite to address the current question 2. For example, “We test this hypothesis by first showing 

that the model CATFLOW applied to the 19.4 km2Colpach catchment using a gridded radar-based 

quantitative rainfall estimate improves in performance when it is distributed in space and driven by 

distributed rainfall. We then address the following research question: “Can adaptive clustering be used 

to distribute a bottom-up model in space that it is capable to represent relevant spatial differences in 

the system state and precipitation forcing at the least sufficient resolution to avoid being highly 

redundant as a fully distributed model?” 

RL: Good idea. We will consider rephrasing this section following your lines. 

WK: P5, l14. Assuming that “> 1 m” refers to soil depth, should it be “< 1 m”? 

RL: No, soils are rather deep in this area and vary between 1 to 2.7 m according to several drillings and 

electrical resistivity tomography (ERT) measurements.  

WK: P7, l9. Which numerical scheme is used by CATFLOW? 

RL: Darcy-Richards: implicitly solved by a mass conservative modified Picard iteration scheme  (Celia 

et al. 1990); Surface runoff (1d St. Verdant eq.) explicit Euler forward. We will add this information to 

the MS. 

WK: P7, l20.  If possible without using too much space, it might be helpful to the reader to briefly 

summarize the main findings of Loritz et al. (2017). 

RL: The main findings of this study are summarized on page 10 section 3.1. 

WK: P7, l21. What are the outcomes of this quality control? 

RL: Manually quality checked by the Luxembourg,  Institute  of  Science  and  Technology  (LIST; no 

negative values, etc). We will remove the term “quality checked” as it is not necessary here. 

 

WK: P7, l28.  I’m not quite sure I understand why these distances are given as a range if only a single 

station is concerned. Does this indicate minimum and maximum distance of the catchment bounds to 

each radar station. 

RL: Exactly. These are the distance to the boundaries of the Attert catchment in which the Colpach is 

located. We will add this information in a revisited MS. 



WK: P9, l13. I find this sentence a bit hard to follow. Is the part from “apart from...” onwards necessary 

here? This is already discussed in the introduction. 

RL: We will remove this part. 

WK: P10, l21. Why is the model tested during two events instead of over the full year? How were these 

events selected? 

RL: Please see the discussion above and the discussion with the second and fourth reviewer. 

WK: P11, l14. The conclusion that a distributed model is needed to account for runoff driven by 

convective precipitation would be stronger if the authors can (briefly) list which processes are 

represented at too coarse a scale in the reference model for it to properly deal with convective 

precipitation. 

WK: P11, l14. I believe this sentence would be more complete if it also explicitly mentioned that 

distributed instead of catchment-averaged precipitation data is needed to properly simulate the result 

of convective precipitation events. 

RL: We wrote on page 11 line 14: “In other words, this entails that a hydrological model, distributed 

at a sufficiently high spatial resolution, is required to capture the spatial variability of the precipitation 

field to satisfactorily simulate the runoff generation of the Colpach”. We believe that our argumentation 

is well justified here. 

WK: P11, l27.  It would be helpful for the reader to repeat that the only difference between reference 

model and model a is the choice of precipitation data. 

RL: We wrote in the sentence before the sentence you mention: “Model a is identical to the reference 

model, however, driven by the area-weighted mean of the spatially resolved precipitation data  

described  in  section  2.4  (Fig.  2  b).” 

WK: P12, l3. Are these variables similar or identical to those used in the reference model? 

RL: Identical. We will change the word accordingly. 

 

WK: P12, l4.  To clarify, does this mean that model b is run in a gridded fashion with the catchment 

divided into 42 grids (matching the precipitation grid)?  If not, it would be good  to  clarify  this  in  the  

text  and  mention  the  number  of  model  elements  that  the precip field similarity approach gives. 

Line 18 on this page could benefit from a similar clarification. 

RL: Yes, this means that model b is “divided into 42 grids (matching the precipitation grid)”. We will 

consider rephrasing the corresponding sentences.  

WK: P12, l23. Are there some observations that could help support the choice for 1 m/s? 



RL: We will add the reference of Leopold, (1953). Fig. 1 in this reference shows an average relation of 

flow velocities and discharge in rivers. Correspondingly we picked an average value of 1 m s-1 (2 to 3 

feet per second). 

WK: P14, l29. It might be good to extend this line of reasoning to soil types and vegetation cover, as 

these are commonly used as model inputs/parameters. 

RL: Agreed. We will rephrase the corresponding sentence. 

WK: P15, l7.  This sentence is quite general (referring to humid environments) and could use a 

reference.  However, if the authors chose 1 mm hr-1 based on their expertise and knowledge about this 

catchment, then I think it’s more accurate (and in no way worse) to phrase this decision along those 

lines, e.g.:  “We chose this threshold as a reasonable value upon which we expect differences in 

hydrologic behavior, based on our collective understanding of the Colpach catchment.” 

RL: Valuable point, we will rephrase this sentence. 

WK: P17, l10. I think it’s import to repeat the similarity condition of dQ/dt here, because for a model 

that has no unique relation between model state and dQ/dt values this method cannot be applied without 

accounting for this difference. 

RL: Please see the discussion above and in section 5.3 in our MS. 

WK: P20, l6. The authors use KGE values in this section and Table 1. I’m not sure to what extent the 

aggregated value is a useful metric for events that last only a handful of time step.  It would be good to 

at least disaggregate the KGE into its correlation, variability and bias components (e.g. quantify what 

can be qualitatively estimated from Figure 7) to see if the total KGE scores of the individual models are 

generated by (roughly) the same types of errors in the simulations. 

RL: Good point. We will add the three components of the KGE in the appendix for each model. 

 

WK: P21, l25.  “acceptable” is somewhat subjective because no standard of acceptability has been 

defined. It might be cleaner to simply report the correlation component of the KGE to quantify to what 

extent the hydrograph shape is simulated. 

RL: Agreed. We will rephrase this term. 

WK: P21,  l26.  This trial of a direct runoff component seems somewhat ad-hoc to me.  I don’t think this 

adds anything to the manuscript and that it will take more space than is available to properly justify this 

change. I suggest to remove these sentences. 

RL: Thank you. We will consider removing this sentence. 

WK: P30, l4-24. These sentences seem as if they would be better placed in the introduction or 

methodology sections. 



RL: We will rephrase some of these sentences. Please see the discussion with reviewer #1 (Daniel 

Wright). 

  



Reply to Referee #4 Anna E. Sikorska-Senoner: 

Anna E. Sikorska-Senoner (AS): Summary and Recommendation: This paper proposed an adaptive 

modelling as an alternative to a distributed model for representing spatial variability of the catchment 

and forcing input (precipitation). Such an adaptive modelling should be able to run faster than a 

distributed model but should provide a similar model performance as its fully distributed version. The 

manuscript is generally well written and it is easy to follow.  The idea of a spatially adaptive model that 

dynamically adjusts its spatial structure during runtime is indeed very interesting and has a potential 

for being applied in many (hydrologic) modelling approaches. Yet, I have few major issues that should 

be addressed before considering this manuscript for a publication in HESS. Thus, I recommend a major 

revision. 

Ralf Loritz (RL): We would like to thank Anna E. Sikorska-Senoner for her comments and the time 

she invested to review our Manuscript (MS). We hope that after the discussion as well as after we have 

revisited our MS all open issues she raises can be clarified. 

Comments: 

1. AS: The adaptive model (model c) is tested here only on two rainfall events, which I see as the major 

weakness of this manuscript.  As the strength of this approach should lie in the possibility to apply it to 

a continuous modelling and not to an event-based modelling.  Thus, I think it would be important to 

demonstrate how the model c works on continuous time series.  As this is missing in the current 

manuscript, we still do not know at the end whether it is a good or a bad option to be used. 

RL: Model a and model c simulate close to identical hydrographs at the end of both rainfall events when 

model c represents the Colpach catchment again by a single hillslope model. This is also true for the soil 

moisture distributions, which we did not show in the current MS. This means that the information about 

the spatial organization of a past rainfall event have already been dissipated closely after the spatial 

adaptive model c represents the catchment by a single hillslope. In other words, there is no difference 

between model a and c after this point and we would learn not much by letting model c run continuously 

until the next rainfall event. 

Furthermore, as rainfall event II is characterized by one of the longest rainfall durations in summer and 

event I by the highest intensity and third highest spatial variability we see no reason to expect that the 

spatial adaptive model will fail at other summer rainfall-runoff events. We think that it is not the length 

of the simulation that matters here but the fraction of the visited state space (or in other words if your 

training data set is representative). The latter means that we do not assume that the catchment and the 

model which represents it will function differently at the other untested events. This is underpinned by 

the fact that also the 42 model elements in the distributed model b do not drift apart. The latter reflects 

the highest complexity model c could reach. 

However, we agree that we did not well justify the selection of the two events. Following your comment, 

we will hence plot the soil moisture distribution of model a and c for event I and II at the time step when 



the catchment is again represented by a single hillslope. This will show that there is no difference 

between the spatially aggregated model a and model c already shortly after the rainfall stopped. 

Furthermore, will we improve our discussion regarding the choice of our two rainfall-runoff events. 

Again, we would like to thank AS for her comment. 

 

2. AS: The performance metrics of the calibrated (tuned) models should be provided so that the model 

ability to predict rainfall events could be assessed 

RL: The reference model is the only model which was manual tuned to match the seasonal water balance 

of the Colpach. This procedure is described in detail in Loritz et al. (2017) and in the current MS in 

section 3.1. The KGE value of the reference model is reported in table 1. We will furthermore add the 

three components of the KGE as discussed with Wouter Knoben to the appendix.  

 

3. AS: A model set-up between the model a and b could be very didactical, i.e. having a structure as the 

model b but using the precipitation input as the model a (the same for each grid cell) 

RL: The only difference between model a and b is the precipitation input. Running model b with the 

input of model a would mean to produce the same hydrograph as model a 42 times. 

 

4. AS: It is not quite clear how the switch between different model setups (i.e. the number of model run 

in the model c) affect the setup of initial conditions for next runs, which is important to be considered 

for continuous model simulations but also for simulations of events. More details should be provided on 

that. 

RL: Please see the discussion above. 

 

5. AS: It would be also very didactical to see the comparison of the precipitation records from the 

ground station with the precipitation fields obtained from the gridded data.  This is never done in the 

manuscript and no reason for not doing that is given. 

RL: Agreed. We will add the precipitation from the ground station to Fig. 2b. 

 

6. AS: The (rather) poor model performance of all tested models’ set-ups for two selected events requires 

some discussion. It appears that none of these model can really capture the dynamics of these two events 

even if using the distributed model and the distributed rainfall information (with KGE<0.3).  Hence, it 

is even more important to verify the model performance (pkt.  2). An addition of other metrics that focus 

entirely on the flood event such as peak or time to peak could be here very informative. Given a rather 



poor models’ performance, it is difficult to justify the need of developing the adaptive model based on 

the distributed model if the latter does not provide acceptable simulation results. 

RL: Respectfully, the focus of this MS is not to minimize residuals between an observed quantity and 

a model simulation. The main goal of this study is to introduce an approach with the goal to setup a 

spatially adaptive model and equally important underpin this approach with a physical meaning. 

Furthermore, would we like to highlight that we a) discuss the model performance and how it could be 

improved on page 21 line 26 to 28 and b) would like to reiterate that the reference model, which is the 

basis of this study, was tested against a series of different variables (sap flow, discharge, water balance, 

soil moisture, etc.), at different hydrological years, in an additional sub-basins as well as mainly setup 

based on field observations. We believe that such an evaluation and model-building process underpins 

the quality as well as the ability of a model to mimic the hydrological dynamic of a landscape sufficiently 

and maybe even more than adding another performance metric.  

As the model was setup to simulate the seasonal water balance we think that the annual performance is 

quite “good” and we are not surprised that if we zoom into a single event that we loss performance. 

Furthermore would we like to highlight that the performance metric, which is important here is the KGE 

between model b and c, which is 0.98. To improve the interpretability of our model scenarios we will 

add a second table with the three components of the KGE to the appendix as discussed with Wouter 

Knoben. Furthermore, will we clearly state that the goal of this study is not to perform a best as possible 

streamflow simulation. 

 

7. AS: A fair comparison of all presented models should involve the same metrics, i.e. computation over 

the same time at a continuous time scale. In this study, different model setups are compared at different 

scales that makes it difficult to get an overview of their performance.  

RL: We compare and discuss the connection between model b and model c only for the two events as 

well as for the corresponding summer period. Respectfully, we do not think that the comparison is unfair. 

 

Detailed comments 

1. AS: Abstract: ‘a mesoscale catchment’; a 20-km2 catchment appears rather small tome than meso-

scale. 

RL: Meso-scale: 5 to 1000 km2, we refer here to the work of Zehe et al. (2014) and Dooge, (1986). 

2. AS:  Abstract: ‘three hydrological models’, the model is actually the same but different set-ups are 

used that span from the averaged model until the distributed model. Please clarify that here. 

RL: This depends on your the definition of the term “model”. However, I agree and we will use the 

term model setups here. 



3. AS:  L. 20-21 p.  3:  It is not always possible and justified to switch from a continuous model to an 

event based model.  Hence, continuous modelling is often required in many applications. 

RL: Agreed. Could you provide a reference here? 

4. AS: L. 19 p. 4: The tested catchment appears rather small to me. How do you define the cut here for 

a small/meso-scale catchment?  

RL: We refer here to the work of Zehe et al. (2014) and Dooge, (1986) which is around 5 to 250 km2. 

The definition of organized complexity is that such systems are too complex that we can tread them 

exclusively in a mechanistic manner but too organized that we can represent them in a purely statistical 

manner. 

5. AS: L. 7-9 p. 5: consider restructuring this sentence. 

RL: Thank you. We will consider rephrasing it. 

6. AS:  L. 11-13 p.  7: could you add the location of these meteorological stations to the map in fig 1? 

RL: The station “Useldange” is too far away to be added to the map. But its location is provided in the 

corresponding reference. We will add this information. 

7. AS:  L. 15 p. 7: it should be ‘and measures...’ 

RL: Thank you. Changed. 

8. AS:  L. 16 p.7: is there any weighting applied here and what kind of? 

RL: No weighting applied. 

9. AS:  L. 28 p. 7: could the locations of radars be also placed in the fig. 1? 

RL: No, they are too far away. However, their location is displayed in the reference provided by Neuper 

and Ehret, (2019). We will add this information. 

10. AS: L. 12-14 p. 8: Why do you compare these values with literature and not with the ground station 

records from your catchment?  Is there any reason that you are not using the precipitation records from 

the ground station? 

RL: These values represent the climatic averages of the area. We have only data for about 10 to 15 

years. 

11. AS: Fig.   2:  One would expect that the radar values would be compared with the ground station 

values as a corresponding mean (Fig.  2b). Could you add these values to the figure? 

RL: Agreed. Will be added. 



12. AS:  L. 10-17 p.  9 till 21 p.  10:  I am not quite sure if this text is really helpful.  After reading  these  

lines,  we  still  do  not  know  how  the  reference  model  and  other models look like. Maybe you could 

merge these lines with the sections 3.1-3.3. 

RL: We will restructure section 3. Please see the discussion with Daniel Wright. 

13. AS:  L. 19-20 p.  10: I would say that the main goal is to test or verify whether similar model 

performance can be achieved with the adaptive model as compared to the model b. However, by the 

comparison that you did we still do not know the answer to this question as the comparison is done only 

based on two pre-selected events both having rather a poor model performance. Please comment on 

that and also state why these events were chosen for the comparison (and not others)? 

RL: Please, see the discussion above. 

14. AS: L. 21-22 p.  10:  Why do you compare the adaptive model with model b using only these two 

events and not the entire simulation period?  In my opinion, the greatest potential of the adaptive 

modelling lies in continuous modelling and not in the event-based. 

RL: Please, see the discussion above. 

15. AS:  L. 31 p.  10 – l.  1 p.  11:  why do you test the model only based on the annual assessment and 

not on hourly simulations?  It is quite surprising because you use the model for assessing the model 

performance at an event-based scale in the second step, i.e.  when comparing different models.  I think 

it is important to report here how the model behaves at an hourly time scale so that one knows what can 

be expected from the model. 

RL: I am not sure if I have understood that comment correctly. But we tested our models by comparing 

hourly simulations with hourly observations for one hydrological year. 

16. AS: L. 3 p.  11:  Which metrics were used here for assessing that the model performance agreed 

well with the dynamics of observed values?  Can you give some more details on that? 

RL: We use the Spearman rank correlation, the Nash-Sutcliff eff. and the KGE. We refer to the study 

of Loritz et al., (2017). 

17. AS:  L. 7-8 p.  11:  It is not surprising that the model performs poorly at time series scale if it was 

evaluated only on an annual basis. Some insights should be given here; why was the model tested at 

an annual basis if its intention is to predict events? 

RL: Respectfully, the goal of this study is not to perform a best possible streamflow simulation with 

regards to minimize residuals. If this would be the case we would have picked a more data driven 

approach. 

18. AS: L. 3 p. 12: similar to what? 

RL: They are the same in all models. 



19. AS:  L. 12. p. 12: the model analysis should go after the introduction of all models. 

RL: Agreed. We will restructure section 3. 

20.  AS: L. 16-19 p.  12: an additional model between the models a and b would be here very useful, i.e. 

a model that has a structure as the model b but uses precipitation as  in  the  model  a  (so  it  uses  the  

same  precipitation  for  each  grid  cell).   This inclusion could nicely show the added value (or no 

value) of including a spatial distribution of i) the model and ii) of the precipitation input data. 

RL: Please, see the discussion above. 

21. AS:  L. 8-10 p.  13:  why exactly?  In my opinion, the strength of this approach lies in the possibility 

to apply it to a continuous modelling and not to an event-based modelling.  Thus, I think it would be 

nice to demonstrate how the model works on continuous time series in terms of the model performance 

and computational efforts.  As such a test is missing in the current manuscript, we still do not know at 

the end whether it is a good or a bad option to use the adaptive modelling approach...  Based on the two 

events selected, we cannot say much about the value of the adaptive approach as the model performance 

remains poor for these events (as seen from the Table 1 and fig. 7). If the full simulation is not 

possible(could you give more details why exactly?), already a simple test with shorter but continuous 

time series of few months or weeks could provide some more insights on how this approach is really 

working. 

RL: Please, see the discussion above. 

22. AS: Tab. 1: as the initial idea is to improve the model performance for rainfall events, it  appears  

from  the  table  that  the  model  c  and  model  b  have  still  rather  poor model performance for the 

event I and II. In addition, all models perform poor for these events. Yet, an inclusion of the spatial 

variability does not improve much the model performance that is still not so good. Thus, it calls a 

question of the need of such an adaptive inclusion to this spatially distributed model which performance 

is rather low....  Could you comment on that?  A decomposition of KGE into its components would bring 

more insights on the models’ behaviour. 

RL: We will add the three components of the KGE to the appendix. 

23. AS:  L. 9-10 p.  15:  How many grid cells need to have a difference higher than this threshold to use 

the model c? 

RL: One. 

24. AS: L.  30-31  p.   15   fig.3:  is  the  re-arranged  model  running  with  the  same  initial conditions 

of the original model or how do you decide on these initial conditions if  you  want  to  increase  or  

decrease  the  number  of  M  in  the  subsequent  time intervals particularly if a continuous simulation 

is performed? 

RL: We aggregate their states. 



25. AS: L. 4-6 p.  18: for a fair comparison of different models, you should use the same metrics and 

the same time periods for evaluation.  It is not clear why this is not the case here. 

RL: See discussion above. 

26. AS: Fig. 4: could you add simulations with the model a? 

RL: If we add all simulations the figure is hard to read. However, we will consider your comment when 

we revisit your MS. 

27.  AS: L 8. P. 20: The reference Knoben et al. (2019) is missing in the literature list. 

RL: Thank you we will add this reference. 

28.  AS: L. 6-7 p.  21: the performance of KGE below 0 is still rather very poor, which re-quires some 

further explanations. According to Knoben et al. (2019), simulations can be considered as behavioral 

if KGE>0.3 (with KGE≈−0.41 for a mean flow benchmark). 

RL:  See comments above. 

29. AS: Table 1: the performances (KGE) of all models is rather poor for the events here selected (with 

KGE between -0.41 and 0.29). As already the model b (distributed)cannot simulate the two events in a 

good way (as also seen from the fig.7), why would you spend time on developing the adaptive model 

based on the model b instead if improving the model b or testing different models here?  Could you 

comment or justify that? 

RL: See comments above. 

30. AS: Fig.  7:  the simulations with the model a and the reference model should also be added here.  

Moreover, for both events, all models largely underestimate the events. Could you comment on that? 

RL: In fig. 7 we focus on the comparison of model b and c. 

31. AS:  L 10 p.  26 – l.  2 p.  27:  do you have any idea where this large underestimation may come 

from and how it could be improved? 

RL: Discussed in the MS (page 21 line 26 to 28). 

32. AS: Discussion:  I missed some recommendations for other works.  When and how would such an 

adaptive modelling be recommended?  How one can set up the adaptive process?  And why it is really 

needed to implement such an adaptive modelling? 

RL: Thank you for this comment. We will revisit the discussion of the MS in this regards. 


