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Abstract. The estimation of groundwater recharge is of paramount importance to assess the sustainability of groundwater use in

aquifers around the world. Estimation of the recharge flux, however, remains notoriously difficult. In this study the application

of non-linear transfer function noise (TFN) models using impulse response functions is explored to estimate groundwater

recharge and simulate groundwater levels and estimate groundwater recharge. A non-linear root zone model that simulates

recharge is developed and implemented in a TFN model, and is compared to a more commonly used linear recharge model.5

An additional novel aspect of this study is the use of an autoregressive-moving average noise model so that the remaining

noise fulfills the statistical conditions to reliably estimate parameter uncertainties and compute the confidence intervals of

the recharge estimates. The models are calibrated on groundwater level data observed at the Wagna hydrological research

station in the southeastern part of Austria. The non-linear model improves the simulation of groundwater levels compared to

the linear model. The annual recharge rates estimated with the non-linear model are comparable to the average seepage rates10

observed with two lysimeters. The recharges estimates from the non-linear model are also in reasonably good agreement with

the lysimeter data at the smaller time scale of recharge per 10 days. This is an improvement over the results from previous

studies that used comparable methods, but only reported annual recharge rates. The presented framework requires limited

input data (precipitation, potential evaporation, and groundwater levels) and can easily be extended to support applications in

different hydrogeological settings than those presented here.15
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1 Introduction

Despite ongoing scientific efforts, the estimation of groundwater recharge remains a notoriously difficult task for hydrologists

(e.g., Bakker et al., 2013). From the many techniques available (see, e.g., Healy and Scanlon, 2010, for an overview), methods

using groundwater level observations as the primary source of information are among the most popular. This is likely due to20

the abundance of available groundwater level data and the simplicity of the methods (Healy and Cook, 2002). A well-known

example is the water table fluctuation (WTF) method, which only requires an estimate of the specific yield and groundwater

level data as model input. An additional advantage of the WTF method is that no assumptions are made about the actual

recharge processes, for example the existence of preferential flow paths. This can also be considered a disadvantage, as no

relationship between precipitation and recharge is established. This makes the method unsuitable for future projections of25

groundwater recharge when precipitation patterns change, for example in climate change impact studies.

In a review paper on the topic, Healy and Cook (2002) suggested that "approaches based on transfer function noise (TFN)

models should be further explored" for the estimation of recharge. TFN models can be used to translate one or more input

series (e.g., precipitation and potential evaporation) into an output series (e.g., groundwater levels) and have been adopted in

many branches of hydrology (Hipel and McLeod, 1994). An early example of the use of these models for recharge estimation30

is given in Besbes and De Marsily (1984), through the deconvolution of groundwater levels with an aquifer unit hydrograph

obtained from a groundwater model. The study showed how the recharge flux can be related to rainfall by using an additional

unit hydrograph for the unsaturated zone. Their proposed method required a calibrated groundwater model and a good estimate

of the infiltration, making the method relatively laborious and less applicable in practice. O’Reilly (2004) developed a water-

balance/transfer-function model to simulate recharge, using the WTF method to obtain recharge estimates to calibrate the35

model parameters.

In recent decades, the use of a specific type of TFN models using predefined impulse response functions (von Asmuth et al.,

2002) has gained popularity for the analysis of groundwater levels(Bakker and Schaars, 2019). In this data-driven method,

impulse response functions are used to describe how groundwater levels react to different drivers such as precipitation, evap-

oration, and pumping. The method has been successfully applied to characterize and analyze groundwater systems around the40

world, for example in Brazil (Manzione et al., 2010), Italy (Fabbri et al., 2011), the United Kingdom (Ascott et al., 2017),

and India (van Dijk et al., 2019). The advantages of data-driven models compared to numerical groundwater models are faster

model development and a lower number of calibration parameters (e.g., Bakker and Schaars, 2019). A large number of time

series may be analyzed in a timely manner, for example, to improve the understanding of a groundwater system. Results are

often also useful for the development of numerical groundwater models.45

An important goal for these models has traditionally been to accurately describe the observed groundwater level fluctuations.

For shallow water tables (up to a few meters depth) this can often be achieved using a simple linear relationship linear model

between precipitation and evaporation on the one hand and groundwater levels on the other hand, i.e., when the rainfall doubles,

so does the increase in the groundwater levels (e.g., Berendrecht et al., 2003; von Asmuth et al., 2008). In a large scale case

study for the Netherlands, Zaadnoordijk et al. (2019) obtained good results with this method for areas with shallow groundwater50
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depths. For the simulation of deeper groundwater levels the linear relationship model was shown to be less appropriate and

non-linear models may be used to accurately simulate the groundwater levels (e.g., Berendrecht et al., 2006; Peterson and

Western, 2014; Shapoori et al., 2015). Such non-linear models improve the simulation of groundwater levels by taking the

non-linear processes that occur in the root zone into account, for example through the limitation of evaporation due to low soil

moisture levels and the temporal storage of water within the root zone.55

More recently, efforts have been made to explore the use of TFN models to estimate groundwater recharge, as suggested by

Healy and Cook (2002). Hocking and Kelly (2016) constructed TFN models that included rainfall, evaporation, river levels,

pumping, and a linear trend as explanatory variables, to isolate the contribution of rainfall to the groundwater level fluctuations.

This contribution was then converted to recharge using the hydrograph fluctuation method (Viswanathan, 1984). Obergfell et al.

(2019) used a linear model to estimate average diffuse recharge and obtained good annual recharge estimates when compared60

to results from a chloride mass balance. Recognizing the importance of evaporation in their model setup, they constrained the

parameter estimation by including the correct simulation of the seasonal behavior in the objective function. Peterson and Fulton

(2019) used a non-linear TFN model that includes a soil moisture module to estimate recharge (Peterson and Western, 2014).

To obtain reasonable estimates of recharge the model was constrained by comparing the modeled evaporation to the expected

actual evaporation obtained using the Budyko curve. All of these studies reported annual recharge rates, but at least the latter65

method could in principle also be used to obtain estimates at smaller time scales.

In this study, exploration of the use of non-linear TFN models using impulse response functions is continued to estimate

groundwater recharge and improve the simulation of groundwater levels. A non-linear root zone recharge model is developed

based on a soil-water storage approach and implemented in a TFN model to simulate the (non-linear) effect of precipitation

and evaporation on the groundwater levels. This study focuses on the estimation of recharge for relatively shallow groundwater70

systems without capillary rise of groundwater to the unsaturated zone. The estimated recharge fluxes are compared to long-term

recharge rates measured with two lysimeters located at the hydrological research site Wagna in Austria, providing a unique

opportunity to evaluate the recharge estimates at smaller time scales. Additionally, this study documents the extension of the

commonly used autoregressive model with a moving average part to model the residuals and obtain an approximately white

noise series used for model calibration. The purpose of this study is to provide a proof-of-concept of the proposed methods75

through a detailed case study for a single location. The data from the lysimeters are only used to evaluate the model results,

and are not used to improve the results during model setup and calibration.

The next section provides an overview of the study site and the data used for model input and evaluation. In the third section,

the methodological approach is described, starting with a brief overview of TFN modeling, followed by a description of the

recharge models and ending with a description of the model calibration. The results are presented and discussed in the fourth80

section, followed by a general discussion on the applicability of the methodology in the fifth section. The conclusions of this

study are summarized and recommendations for future research are provided in the sixth and final section.
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2 Study site and field data

The study site is at the hydrological research station near the town of Wagna in Styria, Austria . (see Fig. 1). The site is located

in an agricultural field surrounded by residential areasand all the required input time series are measured directly at the site.85

This includes the precipitation and the meteorological variables required to calculate potential evaporation. It is noted here

that the term "evaporation" rather than "evapotranspiration" is used throughout this manuscript (e.g., Savenije, 2004; Miralles

et al., 2020). The FAO-Penman-Monteith method is used to compute the daily grass-reference evaporation (Allen et al., 1998).

Klammler and Fank (2014) and Schrader et al. (2013) showed that the estimates from this method are in good agreement with

estimates obtained from a grass lysimeter that is present at the site. The average annual precipitation (P ) and grass reference90

evaporation (Ep) in the period 2007-2019 were 956 and 765 , respectively. The time series of both fluxes are shown in Fig. 2a

and 2b.

. Groundwater levels are observed with a daily time step since 1992 (see Fig. 2d, only data from 2006 onwards is shown

here). The depth to water table is approximately 4 m and no capillary rise of moisture from the water table into the root zone

is expected due to the existence of a coarse gravel layer at a depth of 0.50-120cm (Klammler and Fank, 2014). The land95

surface is at 267 m above Mean Adriatic Sea Level (MASL) with little elevation differences and small hydraulic head gradients

(±2.5m per km). The nearest drainage features are the Sulm river 1 km to the west and the larger Mur river 1.5 km to the east.

Groundwater pumping for drinking water purposes occurs 500 meters north of the observation well at a rate of 240 m3d−1.

Due to the low discharge and high conductivity of the aquifer, the effect of this pumping is assumed to be negligible at the

study site. Given these conditions, the groundwater level fluctuations are assumed to be the exclusive result of changes in the100

groundwater recharge from infiltrating precipitation water.

The climate at the study area is influenced by the Mediterranean Sea in the south, the land masses of Hungary in the east,

and the Alps in the west. The average air temperature is 18.6 ◦C in summer (Jun-Aug) and -0.9 ◦C in winter (Dec-Feb)

(Prettenthaler et al., 2010). In the summer months there are approximately eight to nine sunshine hours per day, while during

the winter months the number of hours with sun averages only two to three hours. Precipitation primarily occurs as short-105

duration convective rainfall events during the warm summer months. In winter, most of the precipitation also takes place as

rainfall; the number of days with snowfall averages only 10 days per year (Prettenthaler et al., 2010). As the number of days

when snowfall occurs is rather limited, the effect of snow on groundwater recharge is not taken into account in this study.

All the required input time series are measured directly at the site. This includes the precipitation and the meteorological

variables required to calculate potential evaporation. It is noted here that the term "evaporation" rather than "evapotranspiration"110

is used throughout this manuscript (e.g., Savenije, 2004; Miralles et al., 2020). The FAO-Penman-Monteith method is used to

compute the daily grass-reference evaporation (Allen et al., 1998). Klammler and Fank (2014) and Schrader et al. (2013)

showed that the estimates from this method are in good agreement with estimates obtained from a grass lysimeter that is

present at the site. The average annual precipitation (P ) and grass reference evaporation (Ep) in the period 2007-2019 were

956 and 765 mm a−1, respectively. The time series of both fluxes are shown in Fig. 2a and 2b.115
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Figure 1. Time series Map of the precipitationcase study area with the locations of the lysimeters, potential evaporationthe meteorological
station, recharge, and observed groundwater levels for the period 2006 to 2020. The recharge shown here is the average seepage measured
with the two lysimetersgroundwater monitoring well used in this study.
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Figure 2. Time series of the precipitation (P ), potential evaporation (Ep), recharge (R), and observed groundwater levels (h) for the period
2006 to 2020. The recharge shown here is the average seepage measured with the two lysimeters.
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The study site is equipped with two weighable scientific field lysimeters operated by JR-AquaConSol since 2005 (von Unold

and Fank, 2008). The first lysimeter is operated under conventional farming practices (Sciencelys 1), while the second lysimeter

(Sciencelys 2) was organically farmed until 2014, when it was also converted to conventional farming. A crop-rotation scheme

is used for the lysimeters, with crops changing every growing season. The soils in the area are rather heterogeneous, with the

thickness of the sandy loamy top layer varying greatly over short distances. The underlying sand and gravel deposits start at a120

depth between 50-120 cm. Both lysimeters have an area of 1 one m2 and are 2 two meters deep. Seepage to the groundwater

is measured near the bottom of the lysimeters at 1.8 meters depth, where suction cups are installed that apply a water potential

that is similar to the potential measured with tensiometers just outside the lysimeters. Both lysimeters are identical in their

technical setup, and a detailed description of the lysimeters is provided in von Unold and Fank (2008) and Klammler and Fank

(2014).125

As the recharge is not measured at the water table itself, a certain time lag between the recharge measured with the lysimeters

and the corresponding groundwater level rise exists. Only a limited time lag is expected as the ±2 m thick percolation zone

consist mostly of highly conductive gravel layers. It is noted that the recharge measurements are local measurements for the area

of the lysimeter, and are influenced by prevailing soil conditions, vegetation and the degree of soil sealing. The groundwater

levels, measured at approximately 12 m distance from the lysimeters at Wagna test site, may also be influenced by different130

recharge rates from other land-use types in the surrounding area (e.g., grassland or residential areas). As such, the measured

recharge rates from the lysimeters are – for the purpose of this paper – used as an indicative rather than an exact estimate

of recharge. Considering the above, the average recharge from the two lysimeters (shown in Fig. 1c2c) is used in this study

for the comparison with model estimates. The average recharge measured with the lysimeters is 322 mm a−1 over the period

2007-2019.135

A number of studies have used the hydrological research site Wagna. Only the literature with a focus on recharge estimation

and unsaturated flow modeling is discussed here. Fank (1999) used the water table fluctuation method to estimate groundwater

recharge from observed groundwater levels and computed an average recharge of 393 mm a−1 over the period 1992-1996.

This estimate is comparable to the 296 and 396 mm a−1 reported by Stumpp et al. (2009) for the two lysimeters that were

operated at the site in the period 1992-2001. Stumpp et al. (2009) also applied a HYDRUS-1D model to simulate unsaturated140

zone flow. Using stable isotope δ18O measurements it was shown that lysimeter recharge could be adequately simulated with

this physically based model, although recharge peaks were generally underestimated. Groenendijk et al. (2014) documented

a large comparative study of six different unsaturated zone models, where measured water content and fluxes were used to

calibrate and evaluate the models. Although this study focused on nitrate leaching, the study also showed how all models had

difficulties in accurately simulating the water content and fluxes observed in the current lysimeters. This was attributed to the145

lack of processes such as hysteresis, preferential flow and multiple phase flow in the models. A later study using the MIKE

SHE model yielded similar results (Reszler and Fank, 2016). The study concluded that the seepage and water content dynamics

in the lower gravel zone inside the lysimeters could not be matched using the Richards equation and a Van Genuchten-Mualem

approach, suggesting the existence of preferential flow paths below the root zone.
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3 Methodology150

3.1 The basic model setup

Transfer Function Noise (TFN) models are used here to translate recharge into groundwater levels. The basic model structure

is:

h(t) = hr(t) + d+ r(t) (1)

where h(t) [L] are the observed groundwater levels, d [L] is the base level of the model, hr(t) [L] is the contribution of the155

recharge to groundwater level fluctuations, and r(t) [L] are the model residuals. The contribution hr(t) [L] is computed by

convoluting a recharge flux R(t) [LT−1] with a predefined impulse response function θ (von Asmuth et al., 2002):

hr(t) =

t∫
−∞

R(τ)θ(t− τ)dτ (2)

Following Bakker et al. (2008), a four-parameter impulse response function is used to translate the recharge flux into ground-

water level fluctuations:160

θf (t) =Atn−1e−t/a−ab/t t≥ 0 (3)

where A [T−n+1] is a scaling parameter, a [T], b [-], and n [-] are shape parameters. For n > 1 the four-parameter function

simulates a delayed response of the groundwater levels to recharge, while for n≤ 1 and b= 0 the groundwater levels respond

instantaneously to a recharge pulse. If n= 1 and b= 0, Eq. (3) reduces to an exponential response function with only two

parameters:165

θe(t) =Ae−t/a t≥ 0 (4)

The parameters A, a, n, b, and d are estimated by fitting Eq. (1) to observed data. Depending on the hydrogeological setting

and the model used to compute the recharge either a four-parameter or an exponential response function is used here to translate

the recharge flux R into groundwater level fluctuations. The main question that remains is how to estimate the recharge R(t)

from observed hydrometeorological data. The following two sections introduce the two models used in this study to compute170

the recharge flux R(t).
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3.2 The Linear model

A common approach to approximate the recharge flux R in Eq. (2) is a simple linear function of precipitation P [LT−1] and

potential evaporation Ep [LT−1] (e.g., Berendrecht et al., 2003; von Asmuth et al., 2008):

R= P − fEp (5)175

where f [-] is a parameter that is calibrated. The grass-reference evaporation computed using the Penman-Monteith equation

(Allen et al., 1998) is used as potential evaporation Ep here. A clear interpretation of the parameter f is not available. While

Berendrecht et al. (2003) referred to f as a crop factor, von Asmuth et al. (2008) noted that the value of f "depends on the soil

and land cover" instead of a single crop and also incorporates the "average reduction of the evaporation due to actual soil water

shortages". Here, f is referred to as the evaporation factor, following the terminology suggested by Obergfell et al. (2019).180

From Eq. (5) it is clear that the flux R can be negative for periods when evaporation (fEp) exceeds precipitation. As Eq. (5)

does not include a storage term, the temporal distribution of recharge that may result from storage in the unsaturated zone has to

be captured by the impulse response function. The four-parameter response function is therefore used to translate the computed

recharge into groundwater level fluctuations for the linear model. As such, the response function simulates the behavior of the

entire system: the root zone, unsaturated zone, and the saturated zone. In total, the linear model has six parameters to be185

estimated: A, n, a, b of the response function (Eq. (3)), the evaporation factor f , and the base level of the model d (Eq. (1)).

Conceptual model for the non-linear recharge model.

3.3 The Non-linear model

While the linear model depends on the response function to simulate the effects of the root zone on the groundwater recharge,

the non-linear model uses a soil-water storage concept to account for the temporal storage of water in the root zone. The non-190

linear recharge model developed here is loosely based on the FLEX conceptual modeling framework used in rainfall-runoff

modeling (Fenicia et al., 2006). The model is conceptualized as two connecting reservoirs: the first for interception and the

second representing the root zone, as shown in Fig. 3. Inputs to the non-linear model are precipitation (P [LT−1]) and potential

evaporation (Ep [LT−1]).

The general functioning of the model is as follows. Precipitation water is intercepted in the first reservoir until the interception195

capacity Si,max [L] is exceeded. The intercepted water can evaporate from the first reservoir as interception evaporation (Ei

[LT−1]). This process forms the first barrier for precipitation to become groundwater recharge (Savenije, 2004), and creates

a threshold non-linearity in the model. Precipitation exceeding the interception capacity continues as effective precipitation

(Pe [LT−1]) to the root zone reservoir. From the root zone, water is evaporated through transpiration by vegetation and soil
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Figure 3. Conceptual model for the non-linear recharge model. Si,max and Sr,max are the maximum capacities of the interception and root
zone reservoirs, respectively. Ei is the interception evaporation and Et,s is a combined flux consisting of transpiration and soil evaporation.

evaporation (Et,s [LT−1]) or is drained to become groundwater recharge (R [LT−1]). The model is described in more detail200

below.

To allow the model to adjust the input potential evaporation (Ep) to an evaporation flux that better represents the vegetation-

dependent actual evaporation, a maximum potential evaporation flux Emax [LT−1] is computed first:

Emax = kvEp (6)

where kv [-] is a vegetation coefficient that needs to be calibrated. This approach is similar to, for example, the Ecohydrological205

Streamflow model developed by Viola et al. (2014). The parameter kv is interpreted as a vegetation coefficient, highlighting

the idea that the groundwater recharge may be affected by different types of vegetation instead of a single type of crop.

The water balance for the interception reservoir is:

∆Si
∆t

= P −Ei−Pe, (7)

where210

Ei∆t= min(Emax∆t,Si) (8)

where Si [L] is the amount of water stored in the interception reservoir. The maximum storage capacity of the interception

reservoir is determined by the parameter Si,max [L]. Intercepted water is evaporated from the interception reservoir, limited
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by the amount of maximum potential evaporation Emax (energy-limited) or the amount of water available for evaporation Si

(water-limited). Any precipitation water exceeding the interception capacity Si,max will continue to the root zone reservoir as215

effective precipitation Pe.

The water balance for the root zone reservoir is:

dSr
dt

= Pe−Et,s−R (9)

where Sr [L] is the amount of water in the root zone reservoir, Et,s [LT−1] is a combined evaporation flux constituting both

soil evaporation and transpiration by vegetation, and R is the recharge to the groundwater. The maximum storage capacity of220

the root zone reservoir is determined by the parameter Sr,max [L]. The saturation at t= 0 is set to Sr(t= 0) = 0.5Sr,max. The

evaporation flux Et,s is limited by the amount of water available in the root zone as follows:

Et,s = (Emax−Ei)min(1,
Sr

lpSr,max
) (10)

where the parameter lp [-] determines at what fraction of Sr,max the evaporation flux is limited by the availability of soil

water. The relationship between the saturation of the root zone (Sr/Sr,max) and the fraction of the potential evaporation that225

is evaporated through the root zone (Et,s/Emax) is shown in Fig. 4a. It is noted that the maximum potential evaporation is

decreased by the amount of evaporation that already took place as interception evaporation. The actual evaporation as simulated

by the non-linear model is calculated as Ea = Et,s +Ei.

Recharge to the groundwaterR is computed using Campbell’s approximation for unsaturated hydraulic conductivity (Camp-

bell, 1974).230

R= ks

(
Sr

Sr,max

)γ
(11)

where ks [LT−1] is the saturated hydraulic conductivity and γ [-] is a parameter that determines how non-linear this flux is

with respect to the saturation of the unsaturated zone. Equation (11) reduces to the equation used in the FLEX models (Eq. (4)

in Fenicia et al., 2006) when γ = 1 and is similar to that used by Peterson and Western (2014). The relationship between the

saturation of the root zone and the recharge flux for different values of γ is shown in Figure 4b.235

In the preliminary phase of this study it was found that the use of an exponential response function yields similar results

as the four-parameter response function for the non-linear model. For reasons of model parsimony, the exponential response

function (Eq. (4)) was adopted for the non-linear model to translate the recharge R into groundwater levels.

In total the non-linear recharge model has 6 six parameters that need to be estimated: kv , Si,max, Sr,max, ks, γ, and lp. Some

of these parameters may be fixed to sensible values based on experience and literature values (Savenije, 2010), decreasing the240
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Figure 4. Relationships between the saturation of the root zone (Sr/Sr,max) and the fraction of the potential evaporation that is evaporated
through the root zone (Et,s/Emax) (a), and the drainage (R) from the root zone reservoir (b). The saturated hydraulic conductivity is set to
ks = 1 mmd−1.

number of parameters that need to be calibrated. Here, the interception capacity Si,max was set to 2 mm and lp was fixed to

0.25 [-]. The parameter Sr,max was fixed to 250 mm (e.g., Gao et al., 2014), as it was found to have a strong correlation with

ks in the preliminary phase of this study and thus hard to calibrate. This leaves a total of 6 six parameters to be calibrated: kv ,

ks, and γ of the non-linear recharge model, A and a of the response function (Eq. (4)), and the base level of the model d (Eq.

(1)).245

3.4 The Lysimeter model

For comparison, a third model is constructed where the recharge measured with the lysimeters is used as the flux R in Eq. (2).

Similar to the non-linear model, an exponential response function is used to translate this recharge into groundwater levels.

Assuming that the recharge measured with the lysimeters is a good estimate of the (unknown) real recharge, the groundwater

levels simulated with this model provide an indication of the fit that may potentially be obtained with the other models.250

3.5 Noise modeling

The residuals r(t) of TFN models applied to groundwater level data (see Eq. (1)) often show considerable autocorrelation. To

allow statistical inferences with the model (e.g., the estimation of confidence intervals of the simulated recharge) it is necessary

to transform the residuals series into a noise series that is approximately white noise. For groundwater levels time series this

generally means that the autocorrelation needs to be removed from the residuals. An autoregressive model of order one (AR(1))255

is commonly used for this purpose (e.g., von Asmuth et al., 2002):

υ(ti) = r(ti)− r(ti−1)e−∆ti/α (12)

where υ is called the noise series here, ∆ti is the time step between two residuals r(ti) and r(ti−1), and α [T] is the AR

parameter.
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Figure 5. Durbin-Watson (DW) statistics for models calibrated on groundwater levels with an increasing interval (∆t) up to 15 days, using
an AR(1) noise model (a) or an ARMA(1,1) noise model (b).

In the preliminary phase of this study, the models were calibrated using daily groundwater level observations. It was found260

that the noise series from these models still exhibited significant autocorrelation, despite the use of the AR(1) noise model. This

result may in fact not be that surprising, considering the slow processes governing groundwater flow systems and the model

structure used to simulate these. The former can for example be quantified by calculating the autocorrelations of the observed

groundwater levels, which in this study are higher than 0.95 for measurements up to 13 days apart and only drop below 0.5

for measurements 100 days apart. The latter is more general, where autocorrelated errors are a result from the model structure.265

Errors in the input data propagate through the TFN model and are likely to result in autocorrelated errors, due to the use of a

reservoir model (Kavetski et al., 2003) and the convolution with an impulse response function.

As a practical solution, the time step between groundwater level observations was systematically increased through removal

of observations from the time series. For each increase in the interval between two measurements the models were re-calibrated

and diagnosed for autocorrelation using the Durbin-Watson (DW) test (Durbin and Watson, 1950) for the first time lag and the270

Ljung-Box test (Ljung and Box, 1978) for lags up to one year(described in the Appendix ??). The results for the DW test for

different time intervals are shown in Fig. 5a. A value of DW = 2 indicates that there is no autocorrelation in the noise, while

DW < 2 indicates a positive autocorrelation at lag one and DW > 2 a negative autocorrelation. While it is clearly visible in Fig.

5a that removing observations from the groundwater level time series reduces the autocorrelation, application of the AR(1)

model did not suffice for the data used in this study.275
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In a further attempt to remove the autocorrelation from the residuals, the AR(1) model was extended with a Moving-Average

part of order one (MA(1)) to form an ARMA(1,1) noise model as follows:

υ(ti) = r(ti)− r(ti−1)e−∆ti/α− β

|β|
υ(ti−1)e−∆ti/β−∆ti/|β| i≥ 1 (13)

where β is the parameter of the moving average part of the noise model. The parameter β can have both positive and negative

values in this formulation. The parameters α and β are estimated during model calibration. The first value of the noise series280

at t= 0 is set to the first value of the residuals, υ(t0) = r(t0)), as it is not possible to compute υ(t= 0) from the previous

residual. The MA(1) process can correct for individual shocks in the system, quickly reducing the error over one time step,

whereas the AR(1) part deals with an error whose effect exponentially decreases over multiple time steps. Note that the time

step ∆t in Eq. (13) may be irregular, but in this study only time series with a regular time step are used. Additional research is

necessary to make this noise model fully applicable to irregular time steps, as was done for the AR(1) model (von Asmuth and285

Bierkens, 2005).

Rerunning the previous analysis of the Durbin-Watson statistic for for an increasing time interval between observations using

the ARMA(1,1) noise model, shows that this noise model is better capable of removing the autocorrelation at the first time lag

(Fig. 5b). The autocorrelation decreases with increasing time interval and the DW value stabilizes for time intervals of around

6 days and larger. A lack of autocorrelation in the noise series at larger time lags was also confirmed using the Ljung-Box290

test, although the autocorrelation at lags around one year become significant for time intervals below 10 days. Based on this

analysis, groundwater level time series with a 10 day time interval were used for model calibration. The final autocorrelation

plots are shown in Fig. A1 in the Appendices.

3.6 Parameter estimation and confidence intervals

The previous three sections described the TFN models used in this study, which include a recharge model, a response function,295

and an ARMA(1,1) noise model. An overview of the entire TFN modeling process is shown in Fig. 6. The model parameters

are estimated by fitting the simulated groundwater levels to the observed groundwater levels. The linear and non-linear models

both have eight parameters that are estimated, and the lysimeter model has five parameters. A non-linear least squares approach

is used here to estimate the parameters for each model simultaneously. The following objective function is used, minimizing

the sum of the squared noise:300

Fobj =

n∑
i=1

υ2
i (14)

Minimization of the objective function is done using the Trust Region Reflective algorithm, as implemented in Scipy’s

least squares method (Virtanen et al., 2020, version 1.4.0) and Lmfit (Newville et al., 2016, version 1.0). Note that this is not
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Figure 6. Modeling strategy as applied in this study.

the default option in Lmfit. The standard errors of the parameters are computed from the covariance matrix that is estimated

during optimization. An important assumption underlying this approach is that the minimized noise series (υ in Eq. (13))305

behaves as normally distributed white noise with no significant autocorrelation, a constant variance (homoscedastic), and a

mean of zero. These assumptions were checked through visual inspection of the results and the use of various statistical tests

for autocorrelation as already shown in the previous section.

The 95% confidence intervals of the simulated recharge are computed through a Monte Carlo simulation (N=100,000).

Parameter sets are drawn from a multivariate normal distribution computed using the estimated covariance matrix. If one of the310

parameters in a parameter set is outside the parameter boundaries, the set is discarded from the sample and a new parameter

set is drawn. This procedure is repeated until N parameter sets are available for the Monte Carlo simulation. The model is run

with the N different parameters sets and the 95% confidence intervals are computed from the ensemble of simulated recharge

fluxes.

3.7 Numerical and software implementation315

All models were implemented in Python code and are freely available through the open-source package Pastas (?, version

0.15b)(Collenteur et al., 2019, version 0.17). The non-linear model is available under the name "FlexmodelFlexModel" in the

Pastas library. The non-linear recharge model is numerically solved using an explicit Euler scheme with a time step of 1 one

day. As TFN models are traditionally computationally inexpensive and have short computation times (in the order of seconds),

special attention was paid to increase the computation speed of the recharge model. This was achieved by using Numba, a just-320

in-time compiler for Python code (Lam et al., 2015, version 0.48)(Lam et al., 2015, version 0.49). As a result the non-linear

model has similar computation times as the linear model.
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3.8 Goodness-of-fit metrics

Four metrics are used to evaluate the goodness-of-fits goodness-of-fit of the simulated groundwater levels and the groundwater

recharge: the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), the Nash-Sutcliffe Efficiency (NSE), the325

coefficient of determination (R2), and the Kling-Gupta Efficiency (KGE). The MAE provides and the RMSE provide a metric

for the overall model fit and error, while the NSE is a goodness-of-fit metric commonly used in hydrological modeling. The R2

is a common error metric and is in hydrogeological TFN modeling sometimes referred to as the Explained Variance Percentage

(EVP, von Asmuth et al. (2002)). The KGE is an aggregate metric and contains a correlation term, a bias term and a variability

term (see Kling et al., 2012, for a more detailed discussion). The NSE , R2 and KGE all have a maximum of 1, denoting a330

perfect fit of the model with the data. The MAE improves and RMSE improve when moving towards zero.

All metrics are implemented in the Python package HydroStats (?, version 0.78) that was used to compute goodness-of-fit

metrics for this study.

4 Results& Discussion

4.1 Groundwater level simulations335

The ten-year 10-year period 2007-2016 was used for calibration and the three year period 2017-2019 was used for model

validation. The year 2006 was used for model warm up. The use of a warm up period is especially important for the non-

linear model, because the recharge flux strongly depends on the initial saturation level of the root zone. The simulated and the

observed groundwater levels are shown in Fig. 7a, along with the estimated recharge fluxes (Fig. 7b and c) and the measured

recharge (Fig. 7d). As the models are calibrated on groundwater level observations with a 10 day time step, only recharge340

rates summed over 10 day intervals are presented here. The blue shadings denote the 95% confidence intervals of the recharge

estimates. The step responses characterizing how the groundwater levels respond to a sudden unit recharge event for each of

the models are shown in the inset plot at the top of Fig. 7a. The values of the calibrated parameters can be found in Table A1

in the Appendix.

All three TFN models are able to capture the major groundwater dynamics and simulate the observed groundwater levels345

reasonably well. For the calibration period, the non-linear model shows the best simulation of the groundwater levels as

quantified by the four goodness-of-fit metrics used in this study (see Table 1). The linear model performs better than the

lysimeter model in terms of NSE and KGE metrics, but the lysimeter model shows similar or better performance according

to the MAE and R2, respectivelyaccording to all four metrics. For the validation period, the differences in the metrics are not

as clear, and no model but the non-linear model still outperforms the other models. For example, the The lysimeter model350

captures the single peak in groundwater levels during the validation period better than the other models, but shows the worst

simulation of the low groundwater levels that follow this peak. The linear model performs better during that the period with
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Figure 7. Observed and simulated groundwater levels (a) and the estimated (b, c) and measured (d) recharge rates (R). The groundwater
level measurements used for calibration are shown as black dots and unused measurements are shown as gray dots. The inset plot shows blue
shadings in plots (b) and (c) denote the characteristic step response calibrated for each model. Note 95% confidence intervals of the different
scale for the y-axis used for recharge computed with the linear modelestimates.
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Table 1. Goodness-of-fit metrics for the groundwater level simulation for each model. The metrics are computed for the calibration period
(2007-2016) and the validation period (2017-2019). Groundwater level measurements with a ten day 10-day time interval were used to
calculate these metrics, similar to the measurements used for calibration.

Linear Non-linear Lysimeter
Cal. Val. Cal. Val. Cal. Val.

MAE [m] 0.17 0.14 0.13 0.13 0.18 0.18
RMSE [m] 0.20 0.19 0.15 0.18 0.23 0.24
NSE [-] 0.74 0.73 0.85 0.75 0.64 0.57
KGE [-] 0.86 0.76 0.93 0.77 0.74 0.81

low groundwater levels, but overestimates the low groundwater levels observed at the beginning of the validation period. The

non-linear model generally shows good performance, but underestimates the low groundwater levels at the end of the validation

period.355

While the groundwater levels simulated by the linear and non-linear models are rather similar, the groundwater recharge

fluxes (R) computed by these two models are very different (see Fig. 7b and 7c). The recharge fluxes are compared to the

recharge measured with the lysimeters by computing the same goodness-of-fit metrics (Table 2). The recharge flux computed

by the non-linear model shows a reasonably good fit resulting in, for example, a Kling-Gupta Efficiency of KGE = 0.67 KGE

= 0.67 for the calibration period(see also Table 2). The recharge computed by the linear model however, deviates strongly from360

the lysimeter recharge and often simulates negative recharge that was not measured with the lysimeters. It is concluded that

the linear model should not be used to estimate groundwater recharge at this small time scale (10-day intervals), as expected.

For the simulation of groundwater levels, the linear model may still be appropriate, as the difference in the recharge flux can

be compensated for by the shape of the response function. This is clearly the case here, as is visible by the differences in the

block and step response functions shown in the inset plot in Figure 7a calibrated for each model (shown in Figure 8). The linear365

model shows a delayed response to a groundwater recharge impulse, whereas the non-linear and lysimeter models simulate an

instantaneous response of the groundwater levels.

Although the linear recharge model in combination with the four-parameter response function works well to simulate most

of the groundwater levels time series, the model fails under conditions where evaporation is limited by the availability of soil

moisture. This occurs for example in the years 2010, 2013, and 2017, when the linear model simulates a stronger decline370

in groundwater levels than was observed. These strong declines in simulated groundwater levels are caused by continued

(modeled) evaporation over the summer months, resulting in negative recharge rates (as visible in Fig. 7b) and ultimately lower

groundwater levels. Measurements from the lysimeters (data not shown) show that actual evaporation is only a fraction of

the potential evaporation during those periods. Similar behavior for the simulation of low groundwater levels was found by

Berendrecht et al. (2006), using the same linear recharge model. These results confirm that the linear recharge model should375

not be used to simulate groundwater levels under such soil moisture limited conditions.
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Figure 8. Calibrated block and step response functions for all three models. The block response (a) shows how the groundwater levels react
to a one-day recharge event of 1mm. The step response (b) shows the response of the groundwater level to a sudden unit increase in recharge
that extends infinitely in time.

Table 2. Performance metrics for the similarity between the estimated recharge and the measured recharge, in mm per 10 days. The metrics
are shown for the calibration period (2007-2016) and the validation period (2017-2019).

Linear Non-linear
Cal. Val. Cal. Val.

MAE [mm] 18.76 14.83 5.81 4.92
RMSE [mm] 25.34 20.46 9.38 8.95
NSE [-] -1.64 -1.96 0.64 0.43
KGE [-] 0.27 0.22 0.67 0.60

The non-linear model performs much better under such soil-moisture soil moisture limited conditions and simulates almost

no recharge during these periods. The non-linear model resembles the recharge behavior as measured with the lysimeters

reasonably well; recharge occurring primarily as individual events, interluded by extended periods of reduced recharge. The

behavior of event-based recharge was also found in other studies (Groenendijk et al., 2014; Reszler and Fank, 2016), and380

suggests that recharge paths are activated when a certain threshold in the soil moisture is exceeded. This non-linear response

of recharge to infiltrating precipitation also becomes clear when examining the estimated values for the parameter γ, which

indicates a non-linear response with a value of γ = 2.91 [-]. The results show that the use of a non-linear recharge model

improves the simulation of groundwater levels at the study site, while also providing a reasonable estimate of the recharge flux

R at this time scale.385

It is somewhat surprising that the lysimeter model does not outperform the other two models. Three periods with deviating

groundwater levels that stand out in particular are discussed here: the low groundwater levels in 2011, the peak in 2013, and a

low in 2015. As the groundwater level fluctuations are primarily the result of individual recharge events and the groundwater

system has a long memory, such periods with groundwater levels deviating for a longer period of time are likely the result of

errors in the quantification of individual recharge events. In 2011 almost no recharge was recorded in the lysimeters, coinciding390
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Figure 9. Annual recharge rates as computed by each TFN model and as measured with the lysimeters. The error bars denote the 95%
confidence intervals of the recharge estimate.

with an underestimation of the simulated groundwater levels. From the groundwater level measurements, however, it is clear

that some recharge must have taken place, visible by temporarily stagnating and even slightly increasing groundwater levels

during that period. Due to a technical issue with the lysimeters, no groundwater recharge was recorded by the lysimeters for

parts of 2015, explaining the deviation in simulated groundwater levels in that year. No explanation could be found for the

peak in 2013, but this may just as well be an error in the measurement of a single event, causing a long term deviation in the395

groundwater level simulation.

4.2 Annual recharge rates

Groundwater resource managers are often interested in annual recharge rates. In this section the ability of the models to estimate

recharge at this time scale is investigated. The annual recharge rates computed by the TFN models and the annual recharge

measured with the lysimeters are shown in Fig. 9. The non-linear model performs better than the linear model, also shown400

by the descriptive statistics of the deviation [mm] between measured and estimated annual groundwater recharge rates shown

in Table 3. This is particularly true for wet years where the linear model shows large deviations (up to 239 mm a−1) in the

annual recharge rates. The largest deviation for the non-linear model occurs during the dry year of 2011 (123 mm a−1). The

recharge computed with the linear model has much wider confidence intervals, despite (or maybe because of) having only one

calibration parameter (f in Eq. (5)). This means that the practical use of the recharge estimate from the linear model may be405

limited, as any analysis that uses this estimate as input data would have large uncertainties in its outcomes due to the uncertainty

in the input data. The non-linear model performs much better in this respect.

The long term average recharge (calculated for the period 2007-2019) estimated by the non-linear model (352 mm d−1)

is much closer to the recharge measured with the lysimeters (322 mm d−1) than to that of the linear model (437 mm d−1).

The overestimation of recharge by the linear model can be explained by an underestimation of evaporation that results from410

a low value for the evaporation factor f in Eq. (5), f = 0.69f =−0.69. From the actual evaporation flux computed from the

lysimeter data (Klammler and Fank, 2014) however, it was calculated that the actual evaporation is approximately 88% of the

potential evaporation (or, f = 0.88) for the period 2007-2019. These results confirm findings from Obergfell et al. (2019) that

the factor f is difficult to estimate and hampers the accurate estimation of recharge using the linear model.
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Table 3. Descriptive statistics of the deviation (in mm) between measured and estimated annual groundwater recharge rates.

Linear Non-linear

mean 114.95 29.99
min -51.89 -53.80
max 238.94 123.42
std 74.17 62.71
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Figure 10. Yearly cumulative sums of recharge (a), the actual and potential evaporation (b), and the saturation of the root zone (c). The
dashed line in plot (c) denotes the value of lp, where the evaporation from the root zone will equal the potential evaporation.

An accurate estimate of evaporation is also important for recharge estimates made with the non-linear model. In Fig. 10415

the annual cumulative sums of recharge and actual evaporation are shown as simulated by the non-linear model and measured

with the lysimeters (computed from 1st of Jan. to 31st of Dec.). The actual evaporation computed by the model is close to that

measured with the lysimeters, averaging 81% of the potential evaporation. The vegetation coefficient kv in Eq. (6) is calibrated

at kv = 1.48 [-], which seems quite high at first. For most of the simulation period, however, the saturation of the root zone

(Sr/Sr,max) is well below the level (lp = 0.25) where evaporation from the root zone equals the potential evaporation that420

is left after interception evaporation, as visible in the Fig. 10c. As a result the actual evaporation simulated by the non-linear

model is still below the potential evaporation, but matches the actual evaporation measured with the lysimeters rather well.

In Fig. 10 it is visible that for years where the actual evaporation computed by the non-linear model more or less equals

the actual evaporation measured with the lysimetermodel, the recharge fluxes match better as well. When actual evaporation is

underestimated by the model, the recharge is overestimated (see e.g., 2008, 2011, and 2015), relative to the lysimeter recharge.425

A probable cause for the underestimation of evaporation is the cultivation of different crops in the lysimeters during the
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observation period (shown in the table below the plots in Fig. 10). For example, for all years when Triticale was planted the

actual evaporation was underestimated and the recharge overestimated. As grass reference evaporation was used as input data

and the vegetation coefficient kv is assumed to be constant through time, the different evaporative capacities of the individual

crops is not considered in the current model setup. Cultivation of different crops does not only influence the total yearly430

evaporation, but also the pattern in time as a result of different growing seasons and harvest times. Such effects can again be

observed for Triticale, a crop that starts transpiring early in the year, visible by an earlier rise of the cumulative evaporation in

years when Triticale is planted. The use of improved input data for evaporation, taking into account the impact of vegetation on

this flux, may further improve recharge estimations and groundwater level simulations, particularly in agricultural areas with

crop rotation schemes.435

4.3 Parameter estimation and consistency of model output

The results presented so far are based on the calibration of the models using only 1 one out of every 10 groundwater level

measurements. The use of only a selection of the available groundwater level measurements during calibration allowed for a

further investigation into the consistency of the modeling results, by calibrating the models to 10 different selections derived

of the original time series as a type of split-sample test. This way, it is possible to assess the consistency of the estimated440

parameters and the impact on the simulated groundwater levels and the annual recharge estimates for this particular time

series. The resulting ensembles of groundwater level simulations and annual groundwater recharge estimates are shown in

Fig. A2 in the Appendix. The results show that both the simulated groundwater levels and the estimated recharge fluxes are

consistent between the different calibrations for all models. This should in fact not be that surprising, considering that the time

series used for calibration originate from the same groundwater level time series.445

What may be more surprising, however, are the differences in the estimated parameters between the 10 different calibrations

(see Fig. A3 in the Appendix). The parameter values for all models are of the same order of magnitude and model performance

measured in R2 as NSE is relatively stable, but the optimal parameter values can differ significantly from each-other between

calibrations (e.g., for the non-linear model ks ranges between 100 and 250 mm d−1) even though the estimated confidence

intervals overlap for the most part. The results of this split sample test raise the question of parameter identifiability. Given the450

similarity in simulated groundwater levels and annual recharge estimates, it is clear that different combinations of parameters

yield similar results. This It is noted here that this analysis does not constitute a formal sensitivity analysis of the parameters,

for example by varying one parameters and analyzing the changes in the estimated recharge or simulated groundwater levels.

The results of this split sample test shows rather serve as a motivation for such a study and show that caution is needed when

interpreting values of individual (optimal) parameters. Further research is necessary on the identification of parameters, for455

example through testing the models on large samples of groundwater time series (similar to, e.g., Perrin et al., 2001).
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5 Applicability of the methodologyDiscussion

5.1 Hydrogeological settingChoice and performance of non-linear recharge models

The presented approach was tested on relatively shallow groundwater levels (±4 m depth to the water table), for which no

feedback between the groundwater and root zone was expected. In this setting an exponential response function was used in460

the results from this study showed that, compared to the linear model, the non-linear model and the computed flux R could

be directly interpreted recharge model is better capable of simulating true system dynamics that are commonly not measured,

such as groundwater recharge . The use of an exponential function may not be appropriate for deeper groundwater bodies with

thicker unsaturated zones. A response function that accounts for this could then be used (e.g., the four-parameter response

function), but the estimated flux R should then be interpreted as drainage from the root zone to the groundwater and not as465

recharge occurring at the water table. Peterson and Fulton (2019) suggested that the flux could be and actual evaporation. This

suggests that the improvements in the simulation of the groundwater levels and the estimation of recharge are the result of a

better representation of the hydrological processes, rather than the result of added mathematical complexity. As such, the use

of non-linear recharge models in TFN models is a promising step in the effort "averaged over a period greater than the time

lag" to provide an estimate of gross recharge in this case. This approach was applied here for the presentation of the annual470

recharge rates, where also the recharge estimates from the linear model were considered.

To make the methods applicable in other hydrogeological settings than those presented here, additional hydrological pro-

cesses (e.g., snow melt, surface runoff) and variables (to get the right answers for the right reasons", as advocated by, e.g.,

pumping, river levels) may be included in the model. In the current framework, it is relatively easy to account for other vari-

ables causing groundwater level fluctuations (e.g., von Asmuth et al., 2008; ?).475

This would allow for the estimation of recharge in hydrogeological systems where the groundwater level fluctuations are

(possibly) not exclusively the result of recharge . Obergfell et al. (2019) already successfully tested this approach for ground-

water levels that were also influenced by groundwater pumping. To make the recharge models applicable in different settings,

additional processes may be implemented in the root zone model, for example precipitation entering the system as snow or

leaving as surface runoff before infiltrating into the soil. For ideas on how to include such processes one can draw from the480

vast number of concepts already available in conceptual rainfall-runoff modeling (e.g., Beven, 2011).

Kirchner (2006). This may be particularly important when using this type of models to forecast groundwater recharge and

levels under drought conditions.

There may also be possibilities for knowledge transfer in the reverse direction, fading the boundaries between hydrologists

and hydrogeologists (e.g., Staudinger et al., 2019). Groundwater levels are not often considered in conceptual rainfall-runoff485

models, although it has been shown that groundwater level time series can be used to further constrain parameters in these
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models (e.g., Seibert, 2000). This studyshowed how groundwater levels may be used to calibrate the parameters of a root zone

module, which is based on the conceptualization taken from a rainfall-runoff model (Fenicia et al., 2006). It would be interesting

to see new attempts to constrain the parameter estimation in rainfall-runoff models using groundwater levels, in particularly

using the concepts of impulse responses to improve the simulation of groundwater levels without adding many parameters .490

Conversely, the results of such analyses may also help to further constrain the It is noted that the non-linear recharge model

developed for this study is only one of a set of similar soil-water storage models that may be applied. Comparable results

(not shown here) were obtained using the non-linear recharge model developed by Berendrecht et al. (2006), which is also

available in the Pastas software (Collenteur et al., 2019). It is expected that other non-linear recharge models (e.g., the models

of Peterson and Western, 2014) perform similarly. The identification of the most appropriate non-linear recharge model under495

different conditions is a topic for future investigation.

The application of a non-linear recharge model does come with additional challenges in the estimation of the model param-

eters. Non-linear models have a larger number of parameters that need to be estimated, and a higher potential for problems

related to equifinality (Beven, 2006). As was shown in this study, however, not all model parameters have to be calibrated and

some may be fixed to sensible values (following e.g., Savenije, 2010). The use of non-linear models therefore does not neces-500

sarily imply a higher number of parameters that need to be calibrated; i.e., the same number of parameters were calibrated for

the linear and non-linear models used in the TFN models presented here. this study. Nonetheless, finding the optimal parameter

values may be challenging and dependent on the initial parameter values. Global optimization methods may help overcome

these problems, as for example shown by Peterson and Western (2014).

5.2 Noise modeling and quantifying uncertaintiesTransformation of the residuals to uncorrelated noise505

In this study, model parameters are were estimated by fitting simulated groundwater levels to observed groundwater levels.

The recharge is an intermediate model result that is not calibrated for, and it is recommended . It is recommended here to

quantify the impact of parameter uncertainties on the recharge estimates by computing their confidence intervals . To obtain

reliable using the standard errors of the estimated parameters. Reliable estimates of the parameter standard errors of in the

parameters may be obtained in the current framework when the autocorrelation of the presented framework , it is important to510

remove the autocorrelation from the minimized noise series is removed by using an appropriate noise model. Here, an AR(1)

model did not suffice for this purpose and an ARMA(1,1) noise model was used instead. While this model was more successful

The current implementation of the ARMA(1,1) model is for groundwater level time series with regular time steps between

observations, unlike the AR(1) model that is often used (von Asmuth and Bierkens, 2005). Additional work is needed to make

the ARMA(1,1) model suitable for time series with irregular time steps.515

The ARMA(1,1) noise model performed reasonably well in transforming the residual series into a noise time series that

is approximately white noise, some autocorrelation still but some autocorrelation remained in the noise series. As a practical

solution, the time interval between groundwater level measurements was increased to 10 days by removing measurements from

the time series. It should be is noted here that the optimal time interval is likely to be site specific site-specific and should be

investigated per for each individual time series. The approach shown in Section Sect. 3.5 can be helpful in determining the520
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optimal time step size used for model calibration. Alternatively, it may be appropriate to use an ARMA model of higher order

(see e.g., Box and Jenkins, 1970). The modeling of the residuals and the choice of an appropriate noise model and time interval

should be considered are an iterative process, as also suggested in Smith et al. (2015). by Smith et al. (2015). Additionally, it

is important to use an appropriate length for the calibration period. Van der Spek and Bakker (2017) recommended a 10 to 20

year period for simulating groundwater levels with reliable credible intervals.525

5.3 Time series requirementsApplication to other hydrogeological settings

The presented method requires time series of groundwater levels , precipitation, and potential evaporation as model input data.

The precipitation and evaporation time series should have a regular (daily) time step to compute the recharge approach was

tested on relatively shallow groundwater levels (±4 m depth to the water table), for which no feedback between the groundwater

and root zone was expected. In this setting an exponential response function was used in the non-linear model and the computed530

flux R could be directly interpreted as groundwater recharge. The use of an exponential function may not be appropriate for

deeper groundwater bodies with thicker unsaturated zones, which require a more complicated response function that accounts

for a significant travel time through the unsaturated zone. In that case the estimated flux R should be interpreted as drainage

from the root zone to the groundwater . The requirements on the groundwater level time series are less stringent, and larger or

even irregular time steps between observations are allowed.535

To calibrate the model on irregular time series it is necessary to adapt the objective function (e.g., von Asmuth and Bierkens,

2005). The limited requirements on the groundwaterlevel time series makes the method applicable to many historical time

series, which often exhibit irregular time steps and data gaps. For the length of the calibration period, Van der Spek and Bakker

(2017) recommended a 10 to 20 year period for simulating groundwater levels with reliable credible intervals. More research

is needed to determine the effect of time series length on the recharge estimation. and not as recharge occurring at the water540

table. Alternatively, as suggested by Peterson and Fulton (2019), the flux could be "averaged over a period greater than the

time lag" between the drainage from the root zone and the arrival at the water table, to provide an estimate of gross recharge at

larger time scales.

5.4 Right answers for the right reasons

The It is not always possible to assume that there is no feedback between the root zone and the groundwater. If the roots of545

the vegetation reach to the groundwater, for example in shallow groundwater systems or deep rooting systems, evaporation

of groundwater can occur. In this case the actual evaporation is not limited by the availability of soil moisture and may be

close to potential evaporation. The linear model may be applicable to simulate groundwater levels and estimate recharge in

these systems, although the model still lacks the ability to temporarily store water. An alternative non-linear root zone model

presented in this study is only one of many similar alternatives. Comparable results were obtained using a similar root zone550

model developed by Berendrecht et al. (2006), which is also available in the Pastas software (?). It is expected that other

comparable non-linear model setups (e.g. the models of Peterson and Western, 2014) perform in a similar manner.
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Such non-linear models are better capable of simulating true system dynamics which are commonly not measured, such as

groundwater recharge and actual evaporation.This suggests that the improved groundwater level simulation is the result of a

better representation of the hydrological processes, rather than merely modeling approach that allows for the evaporation of555

groundwater (Peterson and Western, 2014) may be more appropriate under these conditions. In this approach, the part of the

potential evaporation that is not lost through evaporation and transpiration from the soil reservoir is added to the TFN model

as a separate forcing.

Additional hydrological processes (e.g., snow melt, surface runoff) and forcings (e.g., pumping, river levels) may be in-

cluded in the model to make the methods applicable in other hydrogeological settings than those presented here. In the current560

framework, it is relatively easy to account for other forcings causing groundwater level fluctuations (e.g., von Asmuth et al.,

2008; Collenteur et al., 2019). This allows for the estimation of recharge in hydrogeological systems where the groundwater

level fluctuations are not exclusively the result of added mathematical complexity. As such, the use of non-linear root zone

models in TFN models is a promising step in the effort "to get the right answers for the right reasons", as advocated by, e. g.

Kirchner (2006).565

recharge. Obergfell et al. (2019) already successfully tested this approach to estimate recharge from groundwater levels that

were also influenced by groundwater pumping. Additional processes may be implemented in the root zone model to make the

recharge models applicable in different settings, for example precipitation entering the system as snow or leaving as surface

runoff before infiltrating into the soil. For ideas on how to include such processes one can draw from the vast number of

concepts already available in conceptual rainfall-runoff modeling (e.g., Beven, 2011).570

6 Conclusions & Outlook

The In this study the application of linear and non-linear transfer function noise (TFN) models using predefined impulse

response functions was explored to estimate recharge and simulate groundwater levels. The methods were tested on models

were calibrated to groundwater levels observed at the Wagna hydrological research station in the Southeastern part of Austria.

A firstmodel calculated recharge study site in Wagna, Austria. The recharge estimate, obtained as an intermediate flux of the575

models, was compared with the average seepage measured with two lysimeters at the same site. This enabled an evaluation even

at short time scales, which goes beyond earlier related work. Three models were applied. In the first, recharge was calculated as

a linear function of precipitation and evaporation, while a second model the second used a non-linear root zone recharge model

for this purpose. The computed recharge fluxes were compared to the average recharge flux measured with two lysimeters that

are present at the research site. A third TFN model was constructed for comparison, using the lysimeter measured recharge580

seepage as input data to simulate the groundwater levels.
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All models were calibrated to observed groundwater levels, with the recharge as an intermediate flux that is not calibrated

for in the first two models

Based on the results from this study, it is concluded that it is possible to estimate groundwater recharge from observed

groundwater level time series using TFN models and impulse response functions. This confirms findings from previous research585

(Obergfell et al., 2019; Hocking and Kelly, 2016; Peterson and Fulton, 2019), for a different geographic and climatic area. The

non-linear recharge model provided better estimates of annual recharge rates than the linear model, and was shown to compute

reasonable estimates for recharge summed over 10-day periods. This suggests that the non-linear model may be used to obtain

recharge estimates at smaller time scales than reported so far. Using detailed information from the lysimeters present at the

study site, deviations in the recharge estimate could be linked to errors in the simulation of the actual evaporation, highlighting590

the importance of the evaporative flux in the estimation of recharge.

The results show that both the linear and use of a non-linear TFN models are capable of simulating recharge model also

improved the simulation of the groundwater levels reasonably well, with the non-linear modelslightly outperforming compared

to the linear model. For the linear model. The use of , a more complex response function was required to obtain satisfac-

tory resultswith the linear model, as the response function also had to simulate the storage effects of the root zone. However,595

this response function was not able to The response function used in the linear model did not compensate for all hydrolog-

ical conditions, and in particular during periods of low soil-moisture levels the lack of soil moisture . The lack of storage

dynamics in the linear model leads to larger errors in the simulation of the groundwater levels during periods of droughts,

when transpiration and soil evaporation are limited by soil moisture availability. These findings confirm those from other stud-

ies (Berendrecht et al., 2006; Peterson and Western, 2014) and advocate a more widespread adoption of non-linear recharge600

models in TFN modeling of groundwater levels.

The use of such models does not necessarily imply a higher number of calibration parameters; i.e., the linear and non-linear

modelsused in this study have the same number of calibration parameters.

The use of a non-linear root zone model to compute the recharge in the TFN model improved the estimation of groundwater

recharge significantly. For annual recharge rates it was found that the non-linear model provides good estimates with relatively605

small deviations from the recharge measured with the lysimeters, while the linear models shows significantly larger deviations

and a structural overestimation of annual recharge rates. The non-linear model also provided reasonable estimates for recharge

summed over 10-day periods, suggesting that this model may be used to obtain recharge estimates at smaller time scales than

reported so far (e.g., Obergfell et al., 2019; Peterson and Fulton, 2019). Using detailed information from the lysimeters present

at the study site, deviations in the recharge estimate could be linked to errors in the simulation of the actual evaporation,610

highlighting the value of field data from lysimeters and

The proposed method for estimating recharge combines the advantages of data-driven TFN models with those of soil-water

storage models. Adding the latter to the importance of the evaporative flux in the estimation of recharge.
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TFN model improves the representation of hydrological processes and enables recharge estimation at sub-seasonal time

scales and below. As the model parameters are obtained by calibration to measured groundwater levels, knowledge of soil615

and aquifer properties is not needed. This makes the methods particularly useful for areas with little information about the

subsurface. The methods developed in this paper were tested on a single groundwater time series and are presented as a proof-

of-concept. Additional research is needed using larger groundwater level data sets to investigate the general applicability of

the method under different hydrogeological settings . The methods can also be extended to estimate recharge in settings where

other hydrological stresses cause groundwater fluctuations (e.g., river levels and pumping) or when other processes (e.g., snow620

melt, surface runoff) influence recharge generation. To support and encourage such applications and future research, the models

are included and documented in the open-source software Pastas and all scripts used for this study are made available.

and to explore the suitability of different types of recharge models.

Code and data availability. All models and methods used in this manuscript are available through the Python package Pastas (Collenteur

et al., 2019, version 0.17.0). The data used for this manuscript is available upon request from JR-AquaConSol. Example scripts to ap-625

ply the proposed methods in other settings are available from Zenodo (https://doi.org/10.5281/zenodo.4548801) and the Pastas GitHub

(https://github.com/pastas/pastas)
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Appendix A: Testing for autocorrelation

Two tests are used to diagnose the minimized noise series for autocorrelation: the Durbin-Watson test and Ljung-Box test. The

Durbin-Watson statistic tests the null-hypothesis that the correlation between the noise values at lag one equals zero and is630

computed as follows:

DW =

∑n
t=2(υt− υ2

t−1)∑n
t=1υ

2
t

where n is the number of values in the noise series. The test-statistic has a range 0≥DW ≤ 4, where values of DW < 2

indicate a positive correlation and values of DW > 2 indicates negative autocorrelation.

The Durbin-Watson test requires a constant time interval of the noise series and tests for autocorrelation at a lag of one time635

step.

The Ljung-Box test tests the null-hypothesis that the noise series are independently distributed for all desired time lags and

is computed as follows:

Q= n(n+ 2)

h∑
k=1

ρ2
k

n− k

where ρk is the autocorrelation at lag k, h is the maximum lag used for calculation, and n is the number of values in the noise640

series. A maximum time lag of h= 36 -is used here, translating to the autocorrelation for measurements that are approximately

one year apart. The computed Q-statistic is then compared to a critical value computed from a χ2
α,h−p distribution with a

significance level α and h− p degrees of freedom, where p is the number of parameters of the noise model. The Ljung-Box

test requires a constant time step and tests for autocorrelations up to lag h.
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Figure A1. Autocorrelation graphs for all three models for lags up to one year. The shaded area shows the 99% confidence interval for the
autocorrelation function (ACF).
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Figure A2. The first three plots show ensembles of 10 groundwater levels time series simulated by the three models.The bottom plot shows
the mean of the estimated annual recharge rates from an ensemble of 10 models. The black whiskers show the 1.96 times the standard
deviations of the ensemble of annual recharge rates.
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calibration, measured as R2 the NSE between the observed and simulated groundwater levels.
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Table A1. Calibrated parameter values for all three model configurations. The estimated standard errors of the parameters are reported
between the brackets. The units from parameter A depend the type of response function.

Linear Non-linear Lysimeter

A [*] 0.58 (0.06) 0.89 (0.09) 1.01 (0.17)
a [d] 108.18 (22.69) 116.97 (12.73) 165.04 (30.11)
b [d] 0.03 (0.00) - -
n [-] 1.13 (0.10) - -
d [m] 262.41 (0.13) 262.28 (0.09) 262.28 (0.15)
α [d] 93.84 (26.29) 82.74 (20.40) 207.23 (89.82)
β [d] 9.92 (1.42) 10.08 (1.42) 7.89 (1.15)
f [-] -0.69 (0.07) - -
kv [-] - 1.48 (0.17) -
γ [-] - 2.91 (0.30) -
ks [mm d−1] - 118.81 (30.95) -
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