Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-39-AC2, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

HESSD

Interactive comment

Interactive comment on "Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes" by Yannick Colin et al.

Yannick Colin et al.

benoit.cournoyer@vetagro-sup.fr

Received and published: 7 May 2020

Replies (R2) to reviewer # 2 (major (Maj#) comments) (anonymous, 16 Mar 2020) (line numbers are those of the initial submission)

Maj1. The presentation of the sequencing process employed is inadequate. The current text highlights that the sequences were run on a Illumina MiSeq, without providing additional details.

Maj1a : First, the study does not mention how the nucleic acids are extracted from the samples, checked for quality, stored, and shipped to the facility. These points must be

clarified.

R2-maj1a : The following sentences were added to clarify these issues.

From L138: "About 600 mg of sediments or soils, or up to 5 L of aquifer or runoff water samples filtered using 0.22 μ m polycarbonate filters, were used per DNA extraction. Total DNAs were extracted from soils/sediments or filters using the FastDNA SPIN[®] Kit for Soil (MP Biomedicals, Carlsbad, France). For clay bead biofilms, microbial cells were detached by shaking at 2500 rpm for 2 min in 10 mL of 0.8 % NaCl. These suspensions were then filtered and their DNA content was extracted as indicated above. Blank samples were performed during these extractions for both the soils/sediments or filtered cells. DNAs were quantified using a nanodrop UV-Vis Spectrophotometer. Blank DNA extracts showed values below the detection limit. DNA extracts were visualized after electrophoresis at 6V/cm using a TBE buffer (89 mM Tri-borate, 89 mM boric acid, 2 mM EDTA, (pH 8.0)) through a 0.8% (w/v) agarose gel, and DNA staining with 0.4 mg.mL-1 ethidium bromide. A Gel Doc XR+ System (Bio-Rad, France) was used to observe the stained DNA, and confirm their relative quantities (between 20-120 ng/µl; median value around 40 ng/µL) and qualities. DNAs were kept at -80°C, and shipped on ice within 24h to the DNA sequencing services when appropriate.

Quantitative PCR assays were performed on the DNA extracts to estimate their relative content in 16S rRNA gene copies. These assays were performed on a Bio-Rad CFX96 realtime PCR instrument with Bio-Rad CFX Manager software, version 3.0 (Marnes-la-Coquette, France). The 16S rRNA gene primers 338F and 518R described by Park and Crowley (2006) were used, together with the Brilliant II SYBR green low ROX qPCR master mix for SYBR Green qPCR. Melting T° was 60°C. Linearized plasmid DNAs containing a 16S rRNA gene were used as standards, and obtained from Marti et al. (2017). Presence of inhibitors in the DNA extracts was checked by spiking known amount of plasmid harboring int2 (107 copies of plasmid per μ L) in the PCR mix. Number of cycles needed to get a PCR signal was compared with wells where only plasmid DNA harboring int2 was added to the qPCR mix. When a high number of cycles was

HESSD

Interactive comment

Printer-friendly version

needed to observe a signal, a 5- or 10-fold dilution of the DNA extract was done, and another round of tests was performed to confirm the absence of PCR inhibitions. Each assay was triplicated on distinct DNA extracts, and technical triplicates were performed. The 16S rRNA gene qPCR datasets are presented in Figure S1. These assays confirmed the high number of bacterial cells per compartment (Figure S1 and Table S2): (1) soils from the infiltration basin (IB) had a median content of 1.32 x 1011 16S rRNA gene copies per g dry weight; (2) sediments from the detention basin (DB) of 1.83 x 1011 16S rRNA gene copies per g dry weight, (3) the runoff waters (WS) had a median content of 4.75 x 108 16S rRNA gene copies per mL, (4) the aquifer waters (AQ_wat) of 3.10 x 106 16S rRNA gene copies per mL, and (5) the aquifer clay bead biofilms showed 1.35 x 107 16S rRNA gene copies per cm2."

Maj1b : Second, the study must clarify within section 2.2 several key points with respect to the sequencing protocol: (1) a citation for the primers used to target the 16S rRNA gene, (2) the protocol followed by the laboratory must be unambiguously indicated or referenced (TruSeq, Nextera, etc.), (3) the target length of the sequences, and (4) whether the sequence reads were paired-end or single.

R2-maj1b : After the text added for comment R2-maj1a, the following sentences were added to clarify the Maj1b issues:

Sequencing of V5-V6 16S rRNA gene (rrs) PCR products were performed by MrDNA DNA sequencing services (Shallowater, Texas, USA) on an Illumina Miseq. The PCR products were generated using DNA primers 799F (barcode + ACCMGGATTAGATAC-CCKG) and 1193R (CRTCCMCACCTTCCTC) reported by Beckers et al. (2016). PCR amplifications were performed using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) using the following temperature cycles: 94 °C for 3 min, followed by 28 cycles of 94 °C for 30 s, 53 °C for 40 s, and 72 °C for 1 min, with a final elongation step at 72 °C for 5 min. PCR products and blank control samples were verified using a 2% agarose gel and following the electrophoretic procedure described above. PCR products obtained from field samples showed sizes around 430 bp but blanks did not show detectable

HESSD

Interactive comment

Printer-friendly version

and quantifiable PCR products. Dual-index adapters were ligated to the PCR fragments using the TruSeq[®] DNA Library Prep Kit which also involved quality controls of the ligation step (Illumina, Paris, France). Illumina Miseg DNA sequencings of the PCR products were paired-end, and set up to obtain around 40K reads per sample. The tpm DNA libraries were also sequenced by the Illumina MiSeg V3 technology but by the Biofidal DNA sequencing services (Vaulx-en-Velin, France). PCR products were generated using the following mix of degenerated PCR primers: ILMN-PTCF2 (5'- P5 adapter tag + universal primer + GTGCCGYTRTGYGGCAAGA-'3), ILMN-PTCF2m (5'-P5 adapter tag + universal primer + GTGCCCYTRTGYGGCAAGT-'3), ILMN-PTCR2 (5'- P7 adapter tag + universal primer + ATCAKYGCGGCGCGCGCTCRTA-'3), and ILMN-PTCR2m (5'- P7 adapter tag + universal primer + ATGAGBGCTGCCCTGTCRTA-'3) targeting conserved regions defined by FavreâĂŘBonté et al. (2005). The universal primer was 5'-AGATGTGTATAAGAGACAG-'3. The P5 adapter tag was : 5'-TCGTCGGCAGCGTC-'3. The P7 adapter tag was : 5'- GTCTCGTGGGCTCGG-'3. PCR reactions were performed using the 5X Hot BIOAmp[®] master mix (Biofidal, France) containing 12,5 mM MgCl2, and 10% DMSO and 50 ng sample DNA final concentrations. PCR cycles were as follow: (1) a hot start at 94°C for 5 min, (2) 35 cycles consisting of 94°C for 30 s, 58°C for 30 s and 72°C for 30 s, and (3) a ïňAnal extension of 5 min at 72°C. The mix had two carefully optimized enzymes, the HOT FIREPol[®] DNA polymerase and a proofreading polymerase. This enzyme blend has both 5' \rightarrow 3' exonuclease and 3' \rightarrow 5' proofreading activities. This mix exhibits an increased fidelity (up to five fold) compared to a regular Tag polymerase. PCR products and blank control samples were verified using a 2% agarose gel and following the electrophoretic procedure described above. PCR products obtained from field samples showed sizes around 320 bp but blanks did not show detectable and quantifiable PCR products. Index and Illumina P5 or P7 DNA sequences were added by Biofidal through a PCR procedure using the same Hot BIOAmp[®] master mix and the above temperatures, but limited to 15 PCR cycles. Indexed P5/P7 tagged PCR products were purified

HESSD

Interactive comment

Printer-friendly version

using the SPRIselect procedure (Beckman Coulter, Roissy, France). PCR products and blank control samples were verified using the QIAxcel DNA kit (Qiagen, France), and band sizes around 400 bp were observed but not in the blank samples. Quantification of PCR products by the picogreen approach using the Quantifluor dsDNA kit (Promega. France) and a Qubit[®] 2.0 Fluorometer (Thermo Fisher Scientific, France) was performed, and showed low values among the blanks which were at the limit of detection (around 0,07 ng/ μ l). Still, tpm harboring bacteria being in low number among a bacterial community (about 2-3%), these controls were run during the Miseg DNA sequencing of the PCR products. Illumina Miseg DNA sequencings of the tpm PCR products were paired-end, and set up to obtain around 40K reads per sample. Blank samples generated low numbers of tpm reads (blank 1 = 24 reads; blank 2 = 3 reads, blank 4 = 1028 reads, and blank 5 = 1 read), and these have been listed in Table S3. These reads mainly belonged to unknown species (86%). However, reads from P. fluorescens (from OTUs not found in the field samples), P. xanthomarina (17 reads over all blanks) and P. fragi (n=3 reads over all blanks) were recovered but did not have any impact on the coalescence analysis.

Maj1c : Third, the presented study does not mention either positive mock community or negative comparison controls (and how those samples are incorporated into the analyses to remove contaminating sequences). The authors must present these controls.

R2-maj1c : As indicated above in replies "R2-maj1a" and R2-maj1b, several blanks and lab controls were performed all over the investigations. Blanks were run during the DNA extractions, and did not yield detectable contaminant DNAs. Furthermore, the 16S rRNA gene qPCR datasets (Table S2) confirmed that high bacterial numbers were found among each compartment investigated in this study as indicated in reply "R2maj1a". In fact, blanks were performed during the 799F - 1193R PCR amplifications of the V5-V6 16S rRNA gene regions, and DNA yields were found below the detection limit (<0,05 ng/ μ l). Any contaminant DNA would thus be highly diluted and not expected to have major incidence on this 16S rRNA gene-based meta-barcoding community

HESSD

Interactive comment

Printer-friendly version

coalescence analysis. However, it is to be noted that the bacterial tpm community being expected to be in lower number per sample, blank samples for the tpm meta-barcoding sequencing scheme were sequenced. As indicated in "R2-maj1b", low number of tpm reads were obtained and their matching OTUs were listed in Table S3. These reads did not match tpm OTUs transferred from the above ground environments down into the aquifer.

To further clarify these issues, the following sentences were added:

From L294: It is to be noted that blank samples sequenced during the tpm metabarcoding assay revealed 23 Pseudomonas OTUs coming from the DNA extraction kit or generated during the PCR product Illumina sequencing process (Table S3). Only OTU00573 was found in high number (867 reads) but this contaminant did not have an impact on the coalescence analysis because of its absence in the below ground datasets. Other contaminant OTUs did not represent more than 10 times the ones observed in the field samples for identical OTUs, a criterium used to distinguish significant contaminants (Lukasik et al., 2017; doi.org/10.1111/mec.14140). In fact, only seven OTUs found among the blanks matched OTUs recovered from the environmental samples, and only two of these could be related to well-defined species i. e. P. xanthomarina (17 reads among all blanks) and P. fragi (three reads among all blanks). These reads matched a single OTU over eleven allocated to P. xanthomarina in the environmental samples, and one OTU over 52 for P. fragi.

Maj2. The results of the sequencing campaign additionally requires a more comprehensive presentation. L193-194 presents the total sequencing reads, but must present the average and range of reads per sample. A supplemental table must be provided with the raw and processed sequencing counts for each sample.

R2-maj2 : These features are now indicated in Table S2, and cited in the text. From Line 193, the following sentence was added: "The analysis of the 16S rRNA V5-V6 gene libraries yielded 2,124,272 high-quality sequences distributed across 103 samples, as

HESSD

Interactive comment

Printer-friendly version

described in Table S2.

Maj3. Additionally, to explore quantitatively the mixing ratios and why certain communities are providing more biomass, the actual concentration of the community within these compartments should be mentioned or addressed as to why these measurements were neglected.

R2-maj3 : The 16S rRNA gene qPCR datasets are now shown in Figure S1 and Table S2. They confirmed a lower number of bacterial cells among the aquifer than the runoff waters.

From L343, the following sentence was added: "...These results were confirmed by qPCR estimations of 16S rRNA gene copies per compartment. These values were much lower in the aquifer waters than the runoffs."

Maj4. The bioinformatic processing pipeline requires additional information. First, the approach presented divides the 16S rRNA amplicons into 97% OTUs. However, current best practices recommends utilizing the amplicon sequencing variants (ASV) approach (Knight et al., 2018).

maj4a : The authors should either update their approach to the ASV methodology or provide a concise defense as to why they selected the OTU approach.

maj4b : Second, a rarefaction analysis is presented to subsample the dataset at 20,624 sequences. This approach has been recently called into question for more directed comparisons (McMurdie and Holmes 2014). The authors should present a concise defense as to why rarefaction was employed. To bolster this defense, Figure S1 should display the rarefaction curve for the raw data, not the previously subsampled 20,624 dataset (this comment connects with Maj2 in the need to present additional information).

R2-maj4a and 4b : Figure S1 was replaced by Figure S2 which is now showing both the OTU rarefaction curves before and after having performed a sub-sampling

Interactive comment

Printer-friendly version

at 20,624 reads per sample. OTUs were defined at a 97% identity cut-off to collapse reads into groups that reduce the incidence of sequencing errors on the dataset as suggested by several authors including Eren et al. (2013; PLOS ONE 8, doi: 10.1371/journal.pone.0066643), and Johnson et al. (2019; Nat. Commun. 10:5029, doi: 10.1038/s41467-019-13036-1).

It is to be noted that the original paper by Knights et al. (2011) describing the development of the SourceTracker made use of OTU contingency tables built with a 97% identity cut-off. This was also the case of the paper describing a "reliability" test for the source tracker inferences (Henry et al., 2016; https://doi.org/10.1016/j.watres.2016.02.029). Looking at recently published papers on the SourceTracker, one can find that most research groups have maintained a use of OTU-based contingency tables e. O'Dea et al. (2019, https://doi.org/10.1016/j.watres.2019.114967); Han et a. al. (2020, https://doi.org/10.1016/j.watres.2020.115469), Chen et al. (2019. https://doi.org/10.1038/s41598-019-42548-5), Bi et al. (2019, doi:10.1111/1462-2920.14614), and so on. Still, we confirm that a few papers have used the ASV approach to build their contingency tables for the SourceTracker and for other purposes e. g. Karstens et al. 2019, https:// doi.org/10.1128/mSystems.00290-19, and Caruso et al., 2019; https:// doi.org/10.1128/mSystems.00163-18. We recognize that the ASV approach is reliable to identify conserved ASV among datasets showing variable number of reads. However, the ASV approach also has its weaknesses. For our actual application of the SourceTracker, and according to other papers, the OTU-based contingency table was thus kept for our downstream analyses. Nevertheless, we've now cited articles on ASV in order to make sure that future readers of this paper will be aware of this approach, and might consider using it for the SourceTracker analyses.

The sub-sampling performed at 20,624 reads allowed to reduce the incidence of the variable number of reads obtained per sample. An uneven sequencing depth (ranging from 6,062 to 181,207 reads per sample) was recorded, and found to be related to

HESSD

Interactive comment

Printer-friendly version

technical DNA sequencing problems. In fact, the qPCR datasets on 16S rRNA gene copies supported this conclusion. No correlation was observed between the 16S rRNA gene copy numbers (biomass) and the number of reads obtained per sample (see Table S2). In this context, we've decided to sub-sample our dataset to compensate for these discrepancies. In our opinion, sub-sampling datasets remain a good standardization technique to mitigate sample library size artifacts, especially for very unequal library sizes between groups. In accordance with this, our sub-sampled dataset (20,624 reads per sample) led to a very good separation of samples according to their origin (i.e. WS, DB, IB, AQ_wat and AQ_bio) (see Fig. 3).

From 155, the following sentences were added to clarify these issues: Variability in the number of cleaned reads per sample was observed but not correlated with variations in the number of 16S rRNA gene sequences (Table S2). These variations were thus considered to be due to the DNA sequencing process. Therefore, a sub-sampled dataset (20,624 reads per sample; with exclusion of samples with total reads below this threshold) was used to mitigate the artifact of sample library sizes. Operational Taxonomic Units (OTUs) were defined using a 97% identity cut-off as recommended by several authors in order to collapse sequences into groups that reduce the incidence of sequence errors on the datasets (e. g., Eren et al. 2013; and Johnson et al. 2019). It is to be noted that amplicon sequence variants (ASV) could also be used to build contingency tables (e. g., Callahan et al. 2016; Karstens et al. 2019). However, exact sequence variants can generate uncertainties when using 16S rRNA gene sequences because of variations among species and strains due to the presence of multiple copies per genome (Johnson et al. 2019). Figure S2 shows the OTU rarefaction curves for the full and the sub-sampled datasets. This sub-sampled dataset was used for all downstream analyses except those of the SourceTracker Bayesian approach.

Maj5. In the SourceTracker default code, the rarefied sample is then rarefied further to 1000. This procedure should be repeated to draw those 1000 reads from the full dataset, not the previously rarefied data.

HESSD

Interactive comment

Printer-friendly version

R2-maj5 : We agree with this comment. Analyses were thus re-run using the cleaned but not re-sampled 16S rRNA gene reads, and the matching OTU contingency table (the one used to build Figure S2a). We then used the default SourceTracker code, including a sub-sampling of 1,000 reads as recommended by Henry et al. (2016). This analysis was run 3 times, and the coefficient of variation (i.e. Relative Standard Deviation) was used as a gauge to evaluate confidence on the computed values as suggested by Henry et al. (2016) and McCarthy et al. (2017). Table 1 was modified according to these computings.

Maj6. L319-337 presents a great overview of the study that is more appropriate for the abstract rather than the discussion. This section should be removed in its entirety.

R2-maj6 : This paragraph was deleted but a few sentences kept to facilitate the understanding of the discussion

Maj7. Throughout the text, the presence of a specific 16S rRNA transcript often is utilized to state the presence of a specific function within the community, notably within the abstract (e.g., L25, L27). Whereas the 16S taxonomical assignment is a good indicator that a specific function is likely encoded on the metagenome of the community, the linkage is not directly shown through the 16S survey and must be caveated by "likely", "putative", or "predicted to be". This is recognized more consistently within the discussion of the results, but must be maintained throughout the text to recognize that the assignment provided by FAPROTAX is a hypothesis.

R2-maj7 : Ok, this was clarified over the text.

Maj8. The authors commendably provided the raw data as publicly available datasets through EBI. Additionally, the authors should provide all code utilized to process these data as a part of the supplemental materials to allow future readers to reconstruct the presented results.

R2-maj8 : From L149, the following sentences were added so that future readers

HESSD

Interactive comment

Printer-friendly version

can reproduce the results generated in this work : All paired-end MiSeq reads were processed using Mothur 1.40.4 by following a standard operation protocol (SOP) for MiSeq-based microbial community analysis (Schloss et al., 2009; Kozich et al.(2013), so-called MiSeq SOP available at http://www.mothur.org/wiki/MiSeq_SOP. Due to the large number of sequences to be processed, the cluster.split command was used to assign sequences to OTUs.

Maj9. The authors are encouraged to focus on improving the English language and grammar associated with the presented article. A non-exhaustive list of suggested grammar improvements is provided in the final section of this review, but additional editing services are recommended to enhance the clarity and accuracy of the text.

R2-maj9 : we did a complete grammar review and rewrote some sentences to clarify certain formulations.

Minor Min1. The bulk physical and chemical properties of the sampling sites should be presented or directly cited such as pH, temperature, electroconductivity etc.

reply : fixed; the most significant chemical datasets are now indicated in the paper from L365; and a selection of papers was cited so that readers can complete their knowledge of the investigated sites through analysis of these papers which present pH, electrical conductivity, soil properties, and many other datasets. See replies to reviewer 1 for this issue.

Additionally, please replace "for which physico-chemical and biological monitorings have been implemented" with "that records both physico-chemical and biological properties."

reply : fixed accordingly

Min2. L34 – Please clarify what is meant by "DNA imprints allocated"

reply : was changed for "Some tpm sequence types of"

HESSD

Interactive comment

Printer-friendly version

Min3. L70-75 – Please provide citations in support of these claims.

reply : fixed

Min4. L78-L79 – Replace "The tested hypotheses were that" with "Two hypotheses were tested:".

reply : fixed

Because these statements are presenting the underlying hypotheses (supported or rejected), all qualifiers for the verbs must be removed. Therefore, remove L78 "should" and L79 "could also". L79 – Replace "but" with ", and".

reply : fixed accordingly

Similarly with L88-90, please replace "was likely to be" with "will be"

reply : fixed accordingly

Min5. L291-307 – The long list of species mapped to the Pseudomonas genera is difficult to interpret in the currently presented form. Please condense this section for readability.

reply : we've tried to simplify this text but citing all these species is important for specialists; several of these species had never been described in these environmental contexts or in Europe

Min6. Throughout the text, ensure that a comma appears after Latin abbreviations such as i.e., and e.g.,

reply : fixed accordingly

Min7. Figure 1, please italicize the names of the phyla.

reply : fixed accordingly

Grammar / reply: all grammar issues raised by this reviewer were considered and fixed.

Interactive comment

Printer-friendly version

Please also note the supplement to this comment: https://www.hydrol-earth-syst-sci-discuss.net/hess-2020-39/hess-2020-39-AC2supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-39, 2020.

HESSD

Interactive comment

Printer-friendly version

Interactive comment

Printer-friendly version

Discussion paper

Colin et al. revised Table 1

\$3	amples	*	S/	9	8	-	8	AQ_W	at_up	unk	IIMOU
		mean	psi	mean	psi	mean	psu	mean	rsd	mean	rse L
	AQ_wat_dw1	0.3%	33.3	0.3%	43.3	7.5%	42.6	19.7%	30.6	72.3%	4
z	AQ wat dw2	10.2%	30.6	17.6 %	10.3	9.7%	18.8	25.7%	15.4	36.9%	.9
	AQ_wat_dw3	5.0%	9.0	5.0 %	29.1	3.8%	32.0	70.7%	1.9	15.5%	c1
	AQ hio dwl	8.6%	23.5	25.0%	19.1	3.9%	74.1	56.7%	69	5.8%	12
-	AQ_bio_dw2	13.6%	28.0	28.4%	14.1	29%	46.0	48.2%	6.52	6.8%	=
	AQ_bio_dw3	3,4%	1.7.1	13.9%	18.4	5.5%	39.3	72.1%	1.85	5.2%	8
	AQ_bio_up1	32.2%	14.5	V	$\left \right $	V	\setminus	61.3%	5.6	6.8%	23
SI	AQ_bio_up2	56.6%	12.6	Λ	V	Λ	V	36.4%	18.3	7.0%	5
	AQ_bio_up3	44.0%	6.6		/		/	48.1%	8.1	7.8%	10

retrackwas mn 21mes us tap the 108 RNA gate OTU contigency tabs and the defail parameters. Relaric contributions of the outers was averaged. Relative standard insisto r(RNS) and the date out a conflactor value. DB offs at idease low conflactor on the estimated value. W.S. Watershold and water, DB. Detention has insisto r(RNS) and indicated and used a conflactor and the standard sources were grouped under the terminatione.

Fig. 1. revised Table 1

Interactive comment

Figure S1. Boxplot representation of the 16S rRNA gene copy numbers measured by quantitative PCR per DNA extracts of runoff waters (WS), sediments from the detention basin (DB), soils from the infiltration basin (IB), aquifer waters (AQ_waters) or aquifer clay beads biofilms (AQ_bio). Values were expressed per g of dry weight soil or sediment, or per mL, or per surface for the clay bead biofilms.

Printer-friendly version

Discussion paper

Fig. 2. new Suppl. Fig S1

Interactive

comment

Figure S2. Rarefaction curves showing the relation between the number of V5-V6 16S rRNA (rrs) gene reads analyzed and OTU numbers per compartment of the Mi-plaine watershed of Chassieu (France), (a) without sub-sampling and (b) with a sub-sampling performed at 20.624 reads per sample.

Printer-friendly version

Discussion paper

Fig. 3. new Suppl. Fig S2

Interactive comment

				163 rRNA gene copies per g or nil or cm2		raw 165 r9	WA gene reads	cleaned 165 rRNA gene reads*	raw tam gene reads	cleaned tpm ger reads**
						socal	length	laceal	batal	total
compartment	description	sampling date	cample ID	mean	deviation	number	min max mean	number	number	numbe
			(1,2,2040	2,285+08	9,405+06	42927	28 515 417	10872	28.441	56847
			(1,2,2054)	1,885+09	1,515+07	168370	20 564 416	32979	21 627	12945
			C1_5_20540	1,795+07	2,345+06	356997	38 551 416	40110	18 294	8153
			C1_6_20540	7.496+07	7,886+06	182059	22 512 417	9574	26-650	1806
			C1_R_2054o	not av	allable	201625	28 556 416	66238	13 505	2688
			C1 @ 2054o	644.34	allable	176832	28 556 417	275.88	28 330	15650
			C1 11 2016p	8.455+06	0.005+00	199422	37 507 416	37141	40.6/1	20800
		CLIMPT 2025	C1_38_20540	not ar	alable	152100	38 507 417	369.75	10.632	2866
			C1_54_20560	1,355+08	1,835+06	1894661	28 570 415	39401	29.6%	19625
			C1 16 20160	1.556+08	6.305+06	116814	38 521 417	27140	36.029	10000
			C1_17_20140	1,066+08	2,636+07	121294	20 527 417	28786	26.622	15430
			C1_58_20560	6,235+08	5,765+06	25525	188 589 417	6607	22.557	8072
			C1_20_20160	1,515+06	2,8%+05	111138	36 550 416	24198	68 209	12958
			C1_21_20540	4,215+05	0,005+00	110966	28 522 416	29261	40 160	28656
			C1_22_20186	7,711+07	2,785+06	106002	20 567 417	251.8K	1046	2866
			(2,2,2055m	1,505+09	9,305+07	224336	27 496 417	682.88	33 025	9096
			C2_3_2055m	9,065+08	2,576+67	211508	27 566 418	6308	2.415	1010
			C2_6_2055m	5,785+08	2,186+07	200221	36 581 417	68255	64 46.268	1
			(2,7,2055m	4,675+08	4,585+06	258757	38 558 417	85725	26.930	18196
		march 2015	C2_8_2055m	2,215+08	4,936+07	217108	28 547 417	72654	37 906	20071
	heat		C2 10 2015m	1.715+09	7,898+06	260762	ad 549 417 22 525 417	84488	25.549	17998
46	Rundt waters from Mi-plaine watershed		C2_11_2015m	5,055+08	2,126+07	292557	24 512 416	94733	27 495	13576
			C2_58_2015m	9,296+07	2,596+06	222565	20 552 417	74733	31 663	12953
	waetsted		C2_14_2016n C2_15_2016n	4,164+08	3/56+06	270106	27 549 417	906.79	5 252 25 429	2074
			C2_56_2015m	5,654+07	9,585+05	201.878	25 515 418	69640	44 649	29640
			C2_17_2015m	2,224+08	1,236+07	283.668	38 475 417	889.25	21 256	46253
			C2_18_201545	7,06+08	4,68+07	370508	20 558 415	2002	36.915	29823
			(2,20,2015m	2,055+08	4,686+06	368271	38 569 417	81746	28 239	155-05
			C2_21_2015m	1,2%+08	7,686+06	217320	28 526 418	29754	25 534	13656
			C2_22_2016n	4,835+08	2,585+07	11364	28 557 417	63936	32.66	17695
			CR.2, 2054	9,545+08	4,516+07	180662	28 562 417	\$2318	58.248	7828
			CR.R.20554	2,505+09	2,055+08	222959	34 547 416	72826	28/050	8554
			CR.5.2054	5,016+08	4.106+02	1922227	28 509 417	96228	42.600	1778
			CR.7_20554	5,995+08	2,245+07	223766	27 561 418	812.06	47.873	8264
			CR_R_20554	7,975+08	2,645+07	216872	27 553 418	67820	86 760	20533
			C2 9 2055c	8,335+08	2,886+07	1222234	24 550 417	52162	52 682	20656
			CR_11_2016	2,435+09	5,166+07	226106	22 522 418	70296	48.775	26844
			CR_18_20156	5,525+08	1,16+07	363771	28 542 418	43970	30 820	1992
			CR 14 JULIA	3,351+08	4,476+07	367705	28 687 617	SMIN	27 299	25105
			CR_16_20164	1,665+08	8,736+06	206307	36 535 417	68792	33 571	1026
			CR_17_20156	7,025+08	4,836+07	279162	36 552 416	82415	58 208	33772
			CR 18 2016	7,025+08	2,064+07	1228275	22 555 417	92995	43 122	54000
			ck,20,2016	1,216+09	2,796+02	365362	84 558 417	80970	47 299	1791
			Ck 21, 2015c	1,925+09	1,556+08	268179	36 554 416	83068	41 323	20056
			4R,2013a,P1	4,966+10	6,685+08	233.668	44 539 416	21749	58 711	13100
в		octuber 2058	R, 20530_P2	2,686+11	2,876+33	112868	65 529 419	21130	43326	23375
			NR 20120 P4	4,185+11	2,666+33	120134	28 529 416	32546	45255	1074
			BR 20102 P1	2.905+11	1.726+22	118627	34 566 417	2010	22898	24670
	1	aorii 2014	RR,20545,92	2,816+11	1,186+23	118079	20 588 418	23373	\$1287	206.8
	Sediment		49C,20545,P4	7,295+11	2,005+23	1/5050	27 555 417	20056	20062	2994
	deposits from the		RR, 20147, P1	1,566+10	1,545+09	135391	34 539 416	273.25	\$5677	2608
	detection	february 2054	RR_2054F_P2	2,525+21	2,415+23	127484	28 556 415	28735	46872	29986
	basin (see		RK_2054F_P4	2,276+11	1,986+23	18808	30 504 415	6062	6050R	5212
	Marsi et al.,		RR, 2016, P1	2,985+08	1,285+08	125238	28 560 619	21006	38261	12276
	201	july 2014 april 2015	RR,2016,92	2,016+11	8,785+08	113171	28 541 419	20634	40765	1368
			40,2014_P6	1,955+51	2.635+09	1349988	20 551 410	32306	38529	20688
			8R 2015a P1	2,995+50	1,486+08	210960	27 566 418	61781	12.468	4765
			6R, 2015a, P2	2,115+10	3,315+09	185283	28 554 419	48779	21 165	6612
			88, 2025a (Fd	8,885+09	2,476+08	299251	20 520 412	\$7522	15 212	404
			VF1_ZA_2055a	1,275+11	2,565+23	212629	28 556 417	58766	20.675	20925
	Sediments samples (3- 50 cm deptt) from the infibration basin	ncuember 2015	VF2 2A 2055n	1,216+11	1,115+20	187624	36 556 410	\$25.86	29.417	13641
			VF4_ZA_20550	1,066+11	2,636+23	202861	27 522 418	55722	30 138	1366
			VF5_2A_2055n	9,454+50	1,26+22	179629	35 556 418	463156	28 717	12870
			VF6_ZA_2055n	1,065+11	1,855+33	208325	25 557 418	\$5523	11 586	3294
			VF7_28_2016	8,785+50	2,946+23	282858	28 556 #*8	68183	20 525	6405 5200
			VFR,28,205in	2,466+11	2,166+11	116411	28 512 417	228:25	68 522	20005
			VF10_28_2015n	1,185+11	1,465+23	206561	23 553 429	\$2587	40 508	151.25
			vF12 2H 20154	1,828+11	6.105+23	221225	ad 555 d18	55299	49-227	249.20
			VFSR, 2H, 2055n	1,826+11	3,205+22	209552	34 556 418	52839	47.849	19000
			VF14_2H_2015in	1,065+11	2,556+23	70712	28 492 417	29133	20.645	3728
	Aniller		VESS 2H 2025A	1,425+11	4,435+33	211532	AJ 558 418	\$7315 15919	25.835	#227
مبر منظ_AA	bigfilm		Bio Av2 2015c	7,085+06	1,035+06	155688	26 512 439	61754	16 286	1256
	cample		Nic Ave 2016	6,366+06	6,056+05	122322	28 566 439	\$5420	\$5.679	20925
40 No.44	Aquifer		Bio Av1 20554	1,825+07	2.535+06	118788	28 521 438	20167	104 S21 S5 800	7390
	cample	and and an inter	HID AVE 2015	2,064+08	5,006+02	125969	29 553 429	38774	21 279	222683
	Aquifer	-presses 2015	Anal 2025s	7,176+08	5,815+02	150982	29 507 410	\$8529	\$1 683	4114
AQ_wat_up	water		Kau Amita 2015c	6,565+02	5,136+02	115472	29 566 411	32476	76.765	6822
	Aquifer		Sau Auto 2016	2,555+06	1,535+03	237788	40 529 439	21124	19 782	4/18
ACL wat day	water		Kau, Au110, 20551	9,215+08	1,236+08	176475	29 566 439	42548	29.686	23375
			10 I I I I I I I	 						

Printer-friendly version

Discussion paper

Fig. 4. new Suppl. Table S2

Interactive comment

Table 53. Number of *tpm* reads among blank samples run during the tpm meta-barcoding procedure, and their taxonomic allocation and relatedness to OTUs recovered from the environmental complex. ** restricted to show a recovered from the environmental complex. ***

recovered i	tom me enviror	imental samples rescricted t	o above ground samples,	. not conside	eu in the coale	vicence ai	iaiysis, s	ee rabie	30.	
blank sample	total number of	identical OTU sequence among the environmental	maximum % identity with environmental	genus	species	blank 1 (soil)	blank 2 (soil)	blank 3 (water)	blank 4 (water)	blank 5 (water)
010	reads	sampies	tpm sequences							
Otu01	867	Otu00573*	100	Pseudomonas	unclassified	0	0	0	867	0
Otu02	118		99	Pseudomonas	fluorescens	0	0	0	118	0
Otu03	21		99	Pseudomonas	fluorescens	21	0	0	0	0
Otu04	17		no match	unclassified	unclassified	1	0	15	0	0
Otu05	17	Otu00151*	100	Pseudomonas	xanthomarina	0	0	8	9	0
Otu06	13		no match	unclassified	unclassified	1	0	12	0	0
Otu07	10		99	Pseudomonas	unclassified	0	0	0	10	0
Otu08	7		no match	unclassified	unclassified	0	1	6	0	0
Otu09	7		99	Pseudomonas	unclassified	0	0	0	7	0
Otu10	6		no match	unclassified	unclassified	1	0	5	0	0
Otu11	5		no match	unclassified	unclassified	0	0	5	0	0
Otu12	4	Otu01054**	100	unclassified	unclassified	0	0	0	3	0
Otu13	3		99	Pseudomonas	unclassified	0	0	0	3	0
Otu14	3	Otu00069	100	Pseudomonas	fragi	0	0	3	0	0
Otu15	3	Otu00002*	100	Pseudomonas	unclassified	0	0	2	1	0
Otu16	2		99	Pseudomonas	unclassified	0	0	0	2	0
Otu17	2		no match	unclassified	unclassified	0	0	0	1	0
Otu18	2		98	unclassified	unclassified	0	0	2	0	0
Otu19	2	Otu00519**	100	unclassified	unclassified	0	0	0	1	1
Otu20	2		99	Pseudomonas	unclassified	0	0	0	2	0
Otu21	2		99	Pseudomonas	unclassified	0	0	0	2	0
Otu22	2	Otu00556**	100	unclassified	unclassified	0	2	0	0	0
Otu23	2		99	Pseudomonas	unclassified	0	0	0	2	0

Printer-friendly version

Discussion paper

Fig. 5. new Suppl. Table S3