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Response 1 

Comments to the Author: 2 

This paper presents an investigation on the use of compositional balances for the analysis and spatial mapping of particle-3 

size fractions. In particular, it aims to compare the use of ILR balances for the purpose of performing: (1) linear regression 4 

(named GLM, although it is just LM in the study), (2) regression kriging, (3) random forest prediction. I believe that the general 5 

topic of the investigation could be interesting for the applied field of study. However, in my view, the study has severe 6 

limitations, and should not be considered further for publication in this journal. The main weak points of the study are 7 

summarized in the following points. 8 

 9 

Comment 1. Although only partially explained, the methods being compared appears to be all applied separately to the three 10 

univariate ILR coordinates. This is not correct, as the ILR coordinates are typically correlated, so the analysis should also 11 

consider the cross correlations among coordinates. All the presented results are thus suboptimal, and does not provide any 12 

effective guidance for other studies in the field. This also leads inconsistencies in the results (see my following point 2.). 13 

Response: Although our models were predicted separately for each ILR component (ILR1 and ILR2) and seem to be 14 

suboptimal, we think that correlations among the components (i.e., sand, silt, and clay) can be revealed using an ILR 15 

transformation. Therefore, the models considered the joint fractions by transforming the original soil PSF data from simplex 16 

(three components) to the real space (two ILR components). Moreover, the reason why we predicted each ILR component 17 

separately is because that was a more suitable approach for the spatial prediction models currently used (such as the GLM and 18 

RF). In general, in the formula for a single prediction model (GLM and RF), only one column of observations (ILR1 or ILR2) 19 

is included, generating one column of predictions. Therefore, these models cannot consider multiple variables (observations, 20 

ILR1 and ILR2) together in one formula. Some previous studies (Akpa et al., 2014; Buchanan et al., 2012; Huang et al., 2014; 21 

Nagra et al., 2017) have used similar methods in combination a with log-ratio transformation to make predictions of soil PSF 22 

in other study areas, and we think our results can therefore provide guidance for other studies. For the multivariable methods, 23 

we have used compositional kriging for the spatial prediction of soil PSFs in our previous studies (Wang and Shi, 2017, 2018); 24 

however, this approach cannot be combined with environmental covariables to achieve one of the objectives of this work, i.e., 25 

using hybrid interpolation. For the other models, a multivariate RF may be an alternative method for considering multivariate 26 

settings in future research. We have improved this part of the paper in the revised version (Discussion 4.3 Limitations)  27 

 28 

P21L549: 4.3 Limitations. 29 

“In this work, we used ILR transformation to demonstrate the correlation of soil PSF data, and different balances were also 30 

compared. However, these models were predicted separately for each ILR component (ILR1 and ILR2), which were suboptimal 31 

because they cannot further consider the cross correlations among ILR coordinates. In our pervious study, we have used 32 

compositional kriging (CK) for the spatial prediction of soil PSFs (Wang and Shi, 2017), and the cross correlations of ILRs 33 

can be taken into account using CK. Although it is optimal, it cannot consider different balances of ILR, nor can it be combined 34 
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with the hybrid interpolator (e.g., RK). Moreover, predicting each ILR component separately was a more suitable approach 35 

for the spatial prediction models currently used (such as the GLM and RF). Therefore, more alternative spatial prediction 36 

models combined with interpretation of ILR balances for compositional data should be considered in the future. For example, 37 

CK and high accuracy surface modelling (HASM; Yue et al., 2016) can be applied for small scale study areas. For large scale 38 

study areas, multivariate RF (Segal and Xiao, 2011) can be combined with a log-ratio transformation and hybrid interpolation, 39 

enabling the cross correlations among ILR coordinates to be better interpreted.” 40 

 41 

Refrence 42 

Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., and Hartemink, A. E.: Digital Mapping of Soil Particle-Size Fractions for 43 
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Buchanan, S., Triantafilis, J., Odeh, I. O. A., and Subansinghe, R.: Digital soil mapping of compositional particle-size 45 
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 59 

Comment 2. The results of linear models and kriging, if correctly applied, should not depend on the ILR basis being chosen. 60 

This has been proved by previous studies on the use of linear models and kriging for compositional data (see, e.g., Pawlowsky-61 

Glahn et al, (2015)). The authors cited in the text (Fiserova & Hron, 2011) indeed suggest to choose the ILR basis driven by 62 

interpretation purposes (which may be eased by a particular basis), but they do not refer to the influence of the basis on the 63 

results themselves, as these are independent on the basis being chosen if the method can be restated in term of a projection in 64 

the simplex (as LM and RK). As such, studying the effect of the choice of the ILR basis in these cases does not provide any 65 

meaningful information, beside the evidence that the methods discussed in the manuscript were not applied correctly (see point 66 

1.). 67 

Response:  68 
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For the same soil sampling point within the soil PSF raw data, different ILR balances produced different ILR values (ILR1 69 

and ILR2). There is no doubt that they can be back-transformed with the same values of soil PSFs (sand, silt, and clay) even 70 

though the balances were different (Fig. 1). For the soil PSF interpolation, the raw data first transformed the ILR mode (two 71 

components of ILR1 and ILR2), then interpolated and finally back-transformed to the raw data form (three components of 72 

sand, silt, and clay). Using three SBPs resulted in different input values for the interpolation, and also produced different results. 73 

Therefore, for soil PSFs the ILR balance should be selected carefully.  74 

 75 

Fig. 1. Transformation and inverse transformation of ILR methods based on different SBPs. 76 

Different GLM and GLMRK models based on three ILR balances generated different results in our study, but this is not 77 

indicating that choosing the ILR basis has the influence on the results themselves. We find that there are four aspects causing 78 

the difference in our prediction results when we check the process and code we used: (1) the environmental covariables applied 79 

for each prediction model; (2) the predicted ILR components of the testing sets; (3) the back-transformed values for the three 80 

components of soil PSFs; and (4) the predicted ILR residuals (testing sets) without back transformation (only for the RK 81 

method).  82 

For (1). The three ILR balances generated different transformed datasets. The GLM model used the “glmStepAIC” algorithm 83 

(i.e., a stepwise regression) to select the best combination of environmental covariables for each ILR component. (P8L325“The 84 

Akaike’s information criterion (AIC) was applied to choose the best predictors and remove model multicollinearity using a 85 

backward stepwise algorithm.”) Therefore, the variable inputs were different for these ILR data. We listed the choice of 86 

variables of each ILR for one random prediction (Table 1).  87 

Table 1. Combination of environmental covariables for different ILR data. 88 

Data Combination of environmental covariables 

ILR1SBP1 WWC + ndvi + lon + soc + rain + CNB + NH 

ILR2SBP1 FWHC + WWC + ndvi + tem + soc + dem + rain + AHS + aspect + MSP 

ILR1SBP2 FWHC + WWC + ndvi + tem + soc + SHC + dem + rain + AHS + aspect + MSP 

The raw data

ILR1SBP2, ILR2SBP2

SBP2

ILR1SBP1, ILR2SBP1 ILR1SBP3, ILR2SBP3

SBP1 SBP3

The same values

Inverse transformation
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ILR2SBP2 FWHC + WWC + lon + soc + aspect + CNB + MSP + MRVBF 

ILR1SBP3 FWHC + WWC + tem + lat + soc + dem + aspect + CNB + MSP + MRVBF 

ILR2SBP3 ndvi + tem + soc + SHC + dem + rain + aspect + MSP + SH 

 89 

For (2) and (3). Moreover, an independent dataset validation was used for the accuracy assessment in this study. The training 90 

and testing sets were entirely different and had no intersection. Therefore, the predicted ILRs in the testing sets were different 91 

and the back-transformed soil PSFs and the accuracy indicators (ME and RMSE) were also different (see response 1).  92 

For (4). For the validation and prediction maps of RK, the results were the sum of the predicted ILR and ILR residuals, 93 

which were then back-transformed, producing different values (Fig. 2). We also noticed that although the differences among 94 

the values were small, the inverse transformation can enlarge the difference and prediction errors because of the value ranges.   95 

 96 

 97 

Fig. 2. Process of RK method in our study. 98 

 99 

In summary, we think the reasons for the different results start with the first step (EC selection), and affect the next steps. We 100 

The raw data

sand, silt, clay

ILR1, ILR2

ILR transformation

Prediction models

Envitonmental 

covariables

training

ILR1pre, ILR2pre

testing

Ordinary kriging

ILR residuals+

ILR1pre_RK, ILR2pre_RK

Predict values

sandpre, siltpre, claypre

Inverse transformation
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have added more explanation for this in our revised version.  101 

P20L514: “The results of GLM and GLMRK should not depend on the ILR basis being chosen, which has been proved by 102 

previous studies on the use of linear models and kriging for compositional data (Pawlowsky-Glahn et al, 2015). However, the 103 

GLM model used the “glmStepAIC” algorithm (i.e., a stepwise regression) to select the best combination of environmental 104 

covariables for each ILR component. Therefore, the variable inputs were different for these ILR data, and further impact the 105 

accuracy assessment and prediction maps.” 106 

Reference  107 

Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R.: Modeling and analysis of compositional data. John Wiley & Sons, 108 

Ltd, 2015. 109 

 110 

Comment 3.  111 

(1) Studying the bias of linear models and regression kriging is not meaningful, because both are unbiased methods. If bias is 112 

found, it derives from an incorrect definition of the notion of bias, which should be considered in the geometry of the simplex. 113 

(2) Moreover, all the statistics and summaries should be considered in a multivariate setting, and the consideration of univariate 114 

components of psfs should be completely avoided (particularly if the aim is to approach them in a compositional setting). 115 

Overall, the paper does not discuss clearly the background on compositional data analysis, and the comments to analyses and 116 

results are often formally inappropriate, showing inconsistencies and general confusion on the concepts related with the theory 117 

of compositional data analysis. 118 

Response: (1) We agree that the linear models and RK are unbiased. However, in the validation method used in this study, an 119 

independent dataset validation was used for the accuracy assessment. Therefore, the training (70%) and test (30%) sets were 120 

entirely different and had no intersection. Although these models are unbiased, we can also verify the bias of an independent 121 

dataset (predictions) using the mean error (ME). In other words, for spatial interpolation, the usual methods of validation for 122 

comparing the interpolation methods are known as cross-validation and validation with an independent data set. Cross-123 

validation involves eliminating each observation in turn, estimating the value at its site from the remaining observations and 124 

comparing the predicted value with the measured value. This procedure is a rapid, inexpensive one for comparing predicted 125 

and measured values. Unfortunately, it has limitations in many cases. For kriging estimators, it retains the same variogram, 126 

and to be true cross-validation the variogram should be recomputed and fitted afresh when each observation is removed. These 127 

shortcomings can be avoided by using an independent data set for validation. Validation with an independent data set which is 128 

a superior and more dependable method directly estimates the spatial uncertainty, as validation points are located randomly 129 

throughout the field (Shi et al., 2009). Therefore, the concept of unbiased is for all sampling points, not for the validation. 130 

 131 

(2) Furthermore, for the statistics and summaries, the Aitchison Distance (AD) was applied as an indicator to evaluate the 132 

overall performance of the models. The AD can consider a multivariate setting. In addition, we also wanted to evaluate and 133 

compare which component (i.e., sand, silt, and clay) performed best among these prediction models. In the field of soil PSF 134 
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spatial prediction, each component should be evaluated and not just the overall impact, which will help to fully understand the 135 

modeling process. The three ILR balances produced different ILR data, with distinct data ranges and other statistical 136 

characteristics. This is why we explored whether different balances would affect one soil PSF component and further improve 137 

the accuracy.  138 

We have listed some previous studies that used ME to evaluate soil PSF prediction bias for a linear regression (LR) method 139 

combined with a log-ratio, which confirms that the use of these univariate metrics should not be avoided (Buchanan et al., 140 

2012; Huang et al., 2014). 141 

Refrence 142 

Buchanan, S., Triantafilis, J., Odeh, I. O. A., and Subansinghe, R.: Digital soil mapping of compositional particle-size 143 

fractions using proximal and remotely sensed ancillary data, Geophysics, 77, WB201-WB211, 10.1190/geo2012-0053.1, 2012. 144 

Huang, J., Subasinghe, R., and Triantafilis, J.: Mapping Particle-Size Fractions as a Composition Using Additive Log-Ratio 145 

Transformation and Ancillary Data, Soil Sci. Soc. Am. J., 78, 1967-1976, 10.2136/sssaj2014.05.0215, 2014. 146 

Shi, W., Liu, J., Du, Z., Song, Y., Chen, C., and Yue, T.: Surface modelling of soil pH, Geoderma, 150, 113-119, 147 

10.1016/j.geoderma.2009.01.020, 2009. 148 

 149 

Comment 4. The discussion is very confused, and the overall message strongly hindered by incorrect English wording. 150 

Response: Thanks for the suggestion about the quality of the English language of this paper. We looked for some senior editors 151 

from a professional English polishing company to improve the overall language of this article and we have checked and 152 

improved the writing in the revised version.  153 
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Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods has beenis a widely used technique. 168 

As a hybrid interpolator, regression kriging (RK) is an alternative way to improve prediction accuracy. However, there is still 169 

a lack of systematic comparisoncomparisons and recommendationrecommendations when RK is applied for compositional 170 

data, and whetherit is not known if the performance based on different balances of isometric log-ratio (ILR) transformation is 171 

robust. Here, we systematically compared the generalized linear model (GLM), random forest (RF), and their hybrid pattern 172 

(RK) using different balances of ILR transformed data offor soil PSFs, with 29 environmental covariables (ECs) for the 173 

prediction of soil PSFs onin the upper reaches of the Heihe River Basin. The results showed that RF had better 174 

performanceperformed best, with more accurate predictions, but GLM hadproduced a more unbiased prediction. For the hybrid 175 

interpolators, RK was recommended because it widened the data ranges of the prediction results, and modified the bias and 176 

accuracy for most models, especially for RF. The However, there was a drawback, however, existed due to the data distributions 177 

and model algorithms. Moreover, prediction maps generated from RK demonstratedrevealed more details of the soil sampling 178 

points. For the three components, sequential binary partitionspartition (SBP) based ILR transformed data madeproduced 179 

different distributions, and it is not recommended to use the most abundant component of compositions compositional data as 180 

the first component of permutations.a permutation. This study can provideprovides a reference for the spatial simulation of 181 

soil PSFs combined with environmental covariablesECs and transformed data at athe regional scale. 182 

Keywords: soil particle-size fractions; regression kriging; compositional data; isometric log-ratio; generalized linear model; 183 

random forest 184 

1 Introduction  185 

Recently, spatial interpolation of soil particle-size fractions (PSFs) has become a focus of researchers in soil science researchers. 186 

More accurateaccurately predicted soil PSFs could contribute to a better understanding of hydrological, physical, and 187 

environmental processes (Delbari et al., 2011; Ließ et al., 2012; McBratney et al., 2002).  188 

The characteristiccharacteristics of compositional data makes soil PSFs were more impressive than other soil properties. 189 

mailto:shiwj@lreis.ac.cn


2 

 

Soil PSFs are usually expressexpressed as three components of discrete data – sand, silt, and clay, and carry only relevant 190 

percentage information. Soil texture is classified as soil PSFs, which can demonstratebe demonstrated on thea ternary diagram. 191 

ThisThe closure system of thea ternary diagram is not Euclidean space. Instead, it, but is rather Aitchison space (so-calledi.e., 192 

the simplex) (Aitchison, 1986). Due to the “spurious correlations” (Pawlowsky-Glahn, 1984), traditional statistical methods 193 

based on the Euclidean geometry may makegenerate mistakes when dealing directly with soil PSFsPSF data directly 194 

(Filzmoser et al., 2009). The requirements ofrequirement for constant sum, nonnegative, unbiased arevalues is the key to its 195 

spatial interpolation (Walvoort and de Gruijter, 2001). Data transformation is crucial importance for the transformation of 196 

compositional data to transform it from the simplex to the real space. Log ratio transformations play a significant role in 197 

compositional data analysis, including the additive log-ratio (ALR), centered log-ratio (CLR) (Aitchison, 1986), and isometric 198 

log-ratio (ILR) (Egozcue et al., 2003).  199 

Currently, thoughAlthough these three log-ratio methods have been widely applied to transform soil PSFsPSF data, different 200 

study area scales and what model useselection should considerbe considered when modeling. For local- scale study areas, 201 

geostatistical models, i.e., ordinary kriging (OK) and compositional kriging, combined with log-ratio transformed data, can 202 

meet the requirementsare sufficient to map spatial patterns virtually, as shown in our previous study (Wang and Shi, 2017). As 203 

another perspective, functional compositions combined with the kriging method can also be applied forto produce soil particle 204 

size curves (PSCPSCs) (Menafoglio et al., 2014), which can develop fully the richnessproviding an abundance of information. 205 

It usedThis involves the use of complete and continuous information rather than discrete information, and soil PSFs can be 206 

extracted from the predicted soil PSCs (Menafoglio et al., 2016a). Log-ratio transformations can also combinebe combined 207 

with functional-compositional data for the stochastic simulation of PSCs (Menafoglio et al., 2016b, Talska et al., 2018). For 208 

middle- scale study areas, outliers may lead to the overestimation of the variogram and make, resulting in prediction errors 209 

(Lark, 2000). Therefore, the spatial interpolation should take robust variogram estimators into account to improve model 210 

performance (Lark, 2003). TheA previous study has already proved that applying robust variogram estimators in log-ratio co-211 

kriging had significant improvement insignificantly improved mapping performance (Wang and Shi, 2018). For the large- 212 

scale study areaareas, geostatistical models are limited by the number of soil sampling points and increased spatial variability. 213 

More and moreAn increasing number of studies have concentrated on mapping soil PSFs using different machine learning 214 

models, statistical models, and geostatistical models combined with ancillary data (so-calledi.e., environmental covariates, 215 

ECcovariables, ECs) on a broad basin scale (Zhang et al., 2020), national scale (Akpa et al., 2014)), and global level (Hengl 216 

et al., 2017) using log-ratio transformed data.  217 

Among these EC-combined models, linear, machine-learning, geostatistical models, and high accuracy surface modeling 218 

(Yue et al., 2020) have been commonly used in middle-scale or large-scale studies. Linear models, such as the generalized 219 

linear model (GLM) and multiple linear regression (MLR) have been used in soil PSFs predictionPSF predictions because of 220 

their flexibility and interpretability (Lane, 2002; Buchanan et al., 2012). Many of machine-learning models werehave been 221 

applied for soil PSFsthe interpolation of soil PSFs and soil texture classification. For example, tree learners –, such as the 222 

random forest (RF), showed more advantages with abilitieshave been shown to be advantageous due to their ability to handle 223 
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noisy datasets and generatedgenerate more realistic maps (Zhang et al., 2020). FurtherFurthermore, regression kriging (RK) 224 

can not only combine environment covariables byECs through its regression partfunction, but it also improveimproves model 225 

accuracy as a hybrid interpolator for some soil properties, such as topsoil thickness and pH (Hengl et al., 2004). However, the 226 

scope of the comparison needs to be expanded forto further exploringexplore the accuracy assessment toand predict 227 

compositional data using linear models, machine-learning models, and besides, theseother models combining RK (hybrid 228 

patterns). 229 

In log-ratio methods, the ILR method performedperforms better than ALR and CLR in both in theory and in practice 230 

(Filzmoser and Hron, 2009; Wang and Shi, 2018; Zhang et al., 2020). The ILR method eliminates model collinearity and 231 

preserves advantageous properties such as isometry, scale invariance, and sub-compositional coherence, which is based 232 

onthrough its use of orthonormal coordinate systems (so-calledi.e., balances) using a sequential binary partition (SBP) 233 

(Egozcue and Pawlowsky-Glahn, 2005). These choices are not unique. In other words, multiple sets of ILR transformed data 234 

can generatebe generated by permutations of components (different SBPs) in the compositional data. The choice of SBPsan 235 

SBP can be based on prior expert knowledge, using a compositional biplot (Lloyd et al., 2012) or variograms and cross-236 

variograms (Molayemat et al., 2018). It has been proven in statistical science that different results wereare obtained using 237 

different choices of SBP balances, and the option of a specific SBP for data compositions is crucial for the intended 238 

interpretation of coordinates (Fiserova and Hron, 2011). However, most researchers in soil science researchers have ignored 239 

this point. Martins et al. (2016) reported that the clay was takenhas been widely used as the denominator in the ALR method 240 

because it wasis typically the most abundant component of compositions. Few studies have compared the different SBP options 241 

from the perspective of accurate assessmentassessments and analyzed whether these differences are due to the general 242 

characteristics of specific data sets or log-ratio transformations. 243 

Therefore, based on our previous studywork, the objectives of this study arewere to: (i) compare the spatial prediction 244 

accuracy of soil PSFs using a generalized linear model (GLM) and random forest (RF) combined with environmental 245 

covariablesECs and ILR transformed data; (ii) determine whether hybrid interpolators (GLMRK and RFRK) can improve the 246 

interpolation performance of a GLM and RF; and (iii) explore the distributions of different transformed data and the variation 247 

law of precision based on different choices of SBP balances of ILR. 248 

 249 

2 Methods and materials 250 

2.1 Study area  251 

The study area iswas the upper reaches of the Heihe River basinBasin (HRB), which is the birthplacesource of the Heihe River 252 

and the central area of the runoff generation ofin the HRB. The elevation isin this area ranges from 1640 m to 5573 m (Fig. 1), 253 

and the climate is damp and cold, being dominated by the Qilian Mountains. The mean annual rainfall of thisin the study area 254 

is 350 mm, and the mean annual temperature is lower than 4 °C. Meadow and steppe dominateare the dominant vegetation 255 

types. Grassland wasis the primary type of land use. The main soil classes are frigid calcic soil in the southwest of thisthe study 256 
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area, with cold desert soil dominatesdominating the southeast, andwhile Castanozems and Sierozems mainly distributeare 257 

distributed in the north of the study area. 258 

 259 

 260 

Figure. 1. The location, elevation, and soil samples on the upper reaches of the Heihe River Basin. 261 

2.2 Data collection and analysis  262 

2.2.1 Soil PSF data  263 

A total of 262 soil samples based on a purposive sampling strategy were collected in the upper reaches of the HRB based on a 264 

purposive sampling strategy and were used to characterize the spatial variability of soil PSFs at the regional- scale study area 265 

(Fig. 1). The variability of soil formation factors, such as the elevation, soil classestype, vegetation classesclass, and 266 

geomorphology classes of the upper reaches of the HRB was considered in soil samplessample collection. The average of three 267 

mixed three topsoil samples (approximately approximate depth of 0 – –20 cm) was obtained to reduce the noise of soil 268 

samplessample parameters, and thea parallel sample was also measured. Subsequently, about 30 g of each soil sample was air-269 

dried, and the chemical and physical analyses were operated after the fieldwork. Collected conducted in the laboratory. Soil 270 

PSF information was obtained for the soil samples recorded the information about soil PSFs using a Malvern Panalytical 271 

Mastersizer 2000 laser, with less than 3 % average measurement error.  272 

 273 
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2.2.2 The selection of environmental covariablesECs 274 

There were 29 environmental covariatesECs considered in our study, including both continuous and categorical variables, 275 

which were considered in our study (Table 1). They followfollowed the principles of the SCORPAN model (McBratney et al., 276 

2003), which form is defined as 𝑆𝑎 = 𝑓(𝑆, 𝐶, 𝑂, 𝑅, 𝑃, 𝐴, 𝑁). 𝑆𝑎 are soil attributes (or classes) as a function of soil properties 277 

(𝑆) or other properties –, i.e., climatic properties (𝐶), organisms and vegetation (𝑂), relief such as topography and landscape 278 

attributes (𝑅), parent material (𝑃), an age or time factor (𝐴)), and spatial position (𝑁). The continuous variables included the 279 

morphometry and hydrologic characteristics of topographic properties, climatic and vegetative indices, and soil physical and 280 

chemical properties. The categorical variables includeincluded geomorphology types, land use types, and vegetation 281 

typesclasses, which were transformed from vector to raster (1000 m). Due to the intricate patterns of topography in the upper 282 

reaches of the HRB, variablesthe variable of topographic properties dominated the environmental covariates. ECs. The System 283 

for Automated Geoscientific Analyses geographic information system (SAGA GIS) (Conrad et al., 2015) was applied for a 284 

terrain analysis to derive topographic variables using the 30 m DEMresolution Advanced Spaceborne Thermal Emission and 285 

Reflection Radiometer Global Digital Elevation Model (ASTER GDEM, http://www.gscloud.cn). TheA collinearity test can 286 

removeremoved the redundant variables, and then thesethe topographic properties were then resampled to 1000 m. More details 287 

about environmental covariables can be foundof the ECs are provided in the Data Availability section. 288 

Table 1. Selected environmental covariates in our study. 289 

Representation Environment covariables Abbreviation 

Morphometry  Analytical Hill Shading AHS 

characteristics Aspect ASPECT 

 Closed Depressions CD 

 Convergence Index CI 

 Channel Network Base Level CNB 

 Slope Length and Steepness Factor LSF 

 Multi-resolution Ridge Top Flatness Index (Gallant and Dowling, 2003) MRRTF 

 Multi-resolution Valley Bottom Flatness Index (Gallant and Dowling, 2003) MRVBF 

 Mid-slope Position MSP 

 Plan Curvature PLC 

 Profile Curvature PRC 

 Slope Height SH 

 Slope Length (D. Moore et al., 1993) SL 

 Tangential Curvature (Florinsky, 1998) TC 

Hydrologic  Catchment Area CA 

characteristics Surface Area SA 

http://www.gscloud.cn/
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 Stream Power Index SPI 

 Topographic Wetness Index (Beven and Kirkby, 1979) TWI 

 Vertical Distance to Channel Network VDCN 

Climatic and  Average Annual Precipitation RAIN 

vegetative indices Average Annual Temperature TEM 

 Normalized Differential Vegetation Index NDVI 

Soil physical 

and chemical 

properties 

Field Water Holding Capacity (Yi et al., 2015; Song et al., 2016; Yang et al., 

2016) 
FWHC 

 Soil Depth (Yi et al., 2015; Song et al., 2016; Yang et al., 2016) PDEPTH 

 
Saturated Hydraulic Conductivity (Yi et al., 2015; Song et al., 2016; Yang et 

al., 2016) 
SHC 

 Soil Organic Carbon SOC 

Categorical  Geomorphology GEOT 

maps Land Use LU 

  Vegetation Classes VEGET 

 290 

2.3 Isometric log-ratio transformation and sequential binary partitionSBP 291 

An orthonormal basis of the ILR was chosen to isometrically project the compositions from 𝑆𝐷 (the simplex for the Aitchison 292 

geometry) to 𝑅𝐷−1 (real space for the Euclidean geometry) isometrically.). The choice of a specific orthonormal basis for use 293 

on 𝑆𝐷 can be explained by the SBP with theirfor the groups of compositions (Egozcue and Pawlowsky-Glahn, 2005). The 294 

equation for the choice of the construction of coordinates (so-calledi.e., balances) between groups of compositions iswas 295 

calculated as follows: 296 

𝑧𝑘 = √
𝑟𝑘𝑠𝑘

𝑟𝑘+𝑠𝑘
𝑙𝑛(

(𝑥𝑖1𝑥𝑖2 ...𝑥𝑖𝑟𝑘
)1/𝑟𝑘

(𝑥𝑗1𝑥𝑗2 ...𝑥𝑗𝑠𝑘
)1/𝑠𝑘

), 𝑘 = 1, . . . , 𝐷 − 1,                    (1)  297 

where 𝑧𝑘 refers to the balance between two groups,; 𝑖1, 𝑖2, . . . , 𝑖𝑟𝑘 is the 𝑟𝑘 partspart of one group,; and 𝑗1, 𝑗2, . . . , 𝑗𝑟𝑘 is the 298 

𝑠𝑘 partspart of the other group. Therefore, in a stepwise manner, the balances contain stepwise all the relevant information of 299 

the compositions in two groups. ItThis can also can be explained in a tabular form – for. For soil PSFsPSF data (D = 3), all 300 

three choices of the balance of SBPs are shown in Table 2. The first component of the ILR containscontained all the information 301 

on soil PSFs, and the main difference ofin the choice of balances for soil PSFs was the order of the three parts, i.e., the first 302 

order of the soil PSF component was used as the numerator of the first ILR equation. In our study, three SBP balances of SBP 303 

—, SBP1, SBP2, and SBP3, were transformed from the original soil PSF data, and the orders of soil PSF data were 304 

(𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑), and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡), respectively. The transformation equationequations for the ILR 305 
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can be derived from Eq. (1), which wasand were defined as EqEqs. (2) and Eq. (3). The inverse equations for ILR were defined 306 

as EqEqs. (4), (5), (6). The ILR transformation and its inverse are available inwere conducted using the R package 307 

“compositions” (K. Gerald van den Boogaart and Raimon Tolosana, 2014).  308 

𝐳 = (𝑧1, . . . 𝑧𝐷−1) = 𝐼𝐿𝑅(𝐱), and for 𝑖 = 1, . . . , 𝐷 − 1 and component 𝑥𝑖,             (2) 309 

𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
.                          (3) 310 

𝑌(𝑥𝑗) = ∑
𝐼𝐿𝑅(𝑥𝑗)

√𝑗×(𝑗+1)

𝐷
𝑗=1 −√

𝑗−1

𝑗
× 𝐼𝐿𝑅(𝑥𝑗),                  (4) 311 

𝐼𝐿𝑅(𝑥0) = 𝐼𝐿𝑅(𝑥𝐷) = 0,                      (5) 312 

𝐼𝐿𝑅(𝑥𝑗) =
𝑒𝑥𝑝(𝑌(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑌(𝑥𝑗))
𝐷
𝑗=1

.                      (6) 313 

Table 2 All choices of SBPs for soil PSF data (D = 3), the orders of soil PSFs data are (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑) 314 

and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡) for SBP1, SBP2 and SBP3. 315 

Groups Step Sand Silt Clay r s Balance 

SBP1 
1 + - - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
 

 

2 0 + - 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
 

SBP2 
1 - + - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑖𝑙𝑡

√𝑐𝑙𝑎𝑦×𝑠𝑎𝑛𝑑
 

 

2 - 
0 

+ 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
 

SBP3 
1 - - + 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
 

  
2 + - 

0 
1 1 Step2: 𝑧2 = √

1

2
𝑙𝑛

𝑠𝑎𝑛𝑑

𝑠𝑖𝑙𝑡
 

 316 

2.4 Linear model, machine-learning model, and hybrid patterns 317 

2.4.1 Generalized linear model 318 

The generalized linear model (GLM) is an extended version of the linear model, which contains response variables, with non-319 

normal distributions (Nelder and Wedderburn, 1972). The link function is embedded into the GLM to ensure the classical linear 320 

model assumptions. The scaled dependent variables and the independent variables can be connected using a link function for 321 

the additive combination of model effects, the choice of link function depends on the distribution of response variables 322 

(Venables and Dichmont, 2004). A Gaussian distribution with an identity link function was applied in our study, which 323 
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givesproduced consequences equivalent to that of multiple linear regressionMLR (Nickel et al., 2014). However, categorical 324 

variables can be directly trained in the GLM without setting dummy variables. The Akaike’s information criterion (AIC) was 325 

applied to choose the best predictors and remove model multicollinearity using a backward stepwise algorithm.  326 

 327 

2.4.2 Random forest 328 

Random forest (The RF) is a non-parametric technique, which combines the bagging method with a selection of random 329 

variables as an extended version of a regression treestree (RT) (Breiman, 1996, 2001). It can improve model prediction 330 

accuracy by producing and aggregating multiple tree models. The principle of the RF is to merge a group of “weak trees” 331 

together to generate a “powerful forest.” The bootstrap sampling method iswas applied for each tree, and each predictor was 332 

selected randomly from all model predictors. The “out of bag” (OOB) data were applied to produce reliable estimates in an 333 

internal validation using a random subset independent of the training tree data. There are threeThree parameters needneeded 334 

to be tuned: the number of trees (𝑛𝑡𝑟𝑒𝑒) and); minimum size of terminal nodes (𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒), and the number of variables 335 

randomly sampled as predictors for each tree (𝑚𝑡𝑟𝑦) (Liaw and Wiener, 2001). The standard value of the 𝑚𝑡𝑟𝑦 parameter 336 

for 𝑚𝑡𝑟𝑦 iswas one-third of the total number of predictors, while 𝑛𝑡𝑟𝑒𝑒 and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 iswere 500 and 5, respectively. For 337 

regression, the mean square errors (MSEs) of predictions were estimated to train the trees. The variable importance of the RF 338 

iswas produced from the OOB data using the “importance” function. TheOne of the benefits of RFs arethe RF is that the 339 

ensembles of trees are used without pruning to ensure that the most significant amount of variance can be expressed. Moreover, 340 

the RF can reduce model overfitting, and normalization is unnecessary due to the insensitive effects on the value range. being 341 

insensitive. The GLM and RF algorithms of GLM and RF and the parametersparameter adjustment of the RF were 342 

availableconducted in the R package “caret” (Max Kuhn, 2018). 343 

 344 

2.4.3 Regression kriging 345 

Regression kriging (RK) is a hybrid interpolation technique that combines regression models (e.g., GLM and RF) with ordinary 346 

kriging (the OK) of the residuals of regression models (Odeh et al., 1995). Mathematically, the RK method corresponds to two 347 

interpolators –, the regression part and the kriging part, which are operated separately (Goovaerts, 1999). AOne limitation of 348 

using only the regression part is that they areit is usually only useful within the range of values of the training sets (Hengl et 349 

al., 2015). The principle of the RK method is that the regression model explains a deterministic component of spatial variability, 350 

and the interpolation of regression residuals generated from OK is used to describe the spatial variability (Bishop and 351 

McBratney, 2001; Hengl et al., 2004). ResidualsThe residuals are used to create a variogram (e.g., Gaussian, Sphericalspherical, 352 

or Exponentialexponential) for modelmodels based on the MSE from the results of a cross-validation. FirstlyFirst, the 353 

regression part in our study (GLM or RF) was used to predict soil PSFs; the. The residual from the fitted model was then 354 

calculated by subtracting the regression part from the observations. Subsequently, the OK was applied for the whole study area 355 

to interpolate the residuals. Finally, the regression prediction and the predicted residuals at the same location were summed. 356 
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The variograms of the RK method were generated automatically by using the “autofitVariogram” function in the R package 357 

“automap” (Hiemstra et al., 2009). 358 

2.5 Prediction method system and validation  359 

The method system of spatial interpolation models for soil PSFs was revealedis presented in Table 3. We systematically 360 

compared 12 models –: four interpolators, including GLM and RF combined with or without RK, and three SBPs of the ILR 361 

transformation method. For the validation of model performance, the independent data set validation was used to evaluate the 362 

prediction bias and accuracy of the models. The sub-training sets (70 %) and the sub-testing sets (30 %) were randomly 363 

dividedselected from data independently, and this process was repeated 30 times.  364 

Table 3. The method system of spatial interpolation models of soil PSFs. 365 

Models GLM GLMRK RF RFRK 

ILR_SBP1 GLM_SBP1 GLMRK_SBP1 RF_SBP1 RFRK_SBP1 

ILR_SBP2 GLM_SBP2 GLMRK_SBP2 RF_SBP2 RFRK_SBP2 

ILR_SBP3 GLM_SBP3 GLMRK_SBP3 RF_SBP3 RFRK_SBP3 

 366 

The mean error (ME), the root mean square error (RMSE), and Aitchison distance (AD) were used to evaluate and compare 367 

the prediction performance of models. The ME and RMSE measure prediction bias and accuracy, respectively (Odeh et al., 368 

1995). The AD is an overall indicator of compositional analysis, which describes the distance between two data compositions. 369 

Generally, in an accurate, unbiased model will have all three symbolsvalues will be close to 0. The equations for ME, RMSE, 370 

and AD are definedwere calculated as follows: 371 

𝑀𝐸 =
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1 ,                          (7) 372 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1

2
,                      (8) 373 

𝐴𝐷 = [∑ (𝑙𝑜𝑔
𝑀𝑖

𝐺(𝑴)
− 𝑙𝑜𝑔

𝑃𝑖

𝐺(𝑷)
)𝐷

𝑖=1

2
]
0.5

,                   (9) 374 

where 𝑀𝑖 and 𝑃𝑖  are the measured value and predicted valuevalues at the 𝑖th position, respectively; 𝑛 refers to the number 375 

of soil samples; 𝐷 is the number of dimensions of data compositions; and 𝐺(𝑴) and 𝐺(𝑷) denotesdenote the geometric 376 

mean with the form G(𝐱) = (𝑥1, . . . , 𝑥𝐷)
1/𝐷 of(𝑥1, . . . , 𝑥𝐷)

1/𝐷 of the measured and predicted values, respectively.  377 

 378 

2.6 Statistical analysis 379 

AnThe interpretation of the balances of ILR is based on a decomposition of the covariance (COV) structure (Fiserova and 380 

Hron, 2011), we). We calculated the variance (VAR), the covariance (COV), and the corresponding correlation coefficient (CC) 381 

of ILR transformed data based on different SBP balances of SBP. The equations for calculating VAR, COV, and CC are 382 



10 

 

definedwere derived from Eq. (1) as follows, which can derive from Eq (1)::  383 

𝑉𝐴𝑅(𝑧) =
1

𝑟+𝑠
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑟
𝑝=1 −

𝑠

2𝑟(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑖𝑞
)𝑟

𝑞=1 −
𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1

𝑟
𝑝=1 −384 

𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1                                (10) 385 

𝐶𝑂𝑉(𝑧1, 𝑧2) =
𝐶

2𝑟1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑟1
𝑝=1 +

𝐶

2𝑟2𝑠1
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
2

𝑥
𝑗𝑞
1
)

𝑠1
𝑞=1

𝑟2
𝑝=1 −

𝐶

2𝑟1𝑟2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑖𝑞
2
)

𝑟2
𝑞=1

𝑟1
𝑝=1 −386 

𝐶

2𝑠1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑗𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑠1
𝑝=1 ,                                 (11) 387 

𝐶𝐶 =
𝐶𝑂𝑉(𝑧1,𝑧2)

√𝑣𝑎𝑟(𝑧1)⋅𝑣𝑎𝑟(𝑧2)
                                                           (12) 388 

For soil PSFsPSF data, EqEqs. (10), (11)), and (12) can be simplified to three dimensions; the. The relationship between the 389 

ratios of soil PSF components and the dominant roles of ILR transformed data are demonstratedwere indicated from the 390 

covariance structure. All the statistical analyses, such as the descriptive statistics of soil PSFsPSF data, calculation and 391 

evaluation of indicators, and the spatial operation of prediction maps, were performed onusing the R statistical program (R 392 

Development Core Team, 2019).  393 

 394 

3 Results 395 

3.1 Exploratory data analysis 396 

3.1.1 Descriptive statistics of soil PSFsPSF data 397 

ForFrom the descriptive statistics of the original (raw) and ILR transformed data, the silt fraction dominant dominated the soil 398 

PSFs with , accounting for a more substantial componentamount than those ofthe sand and clay fractions. The distributions of 399 

the sand and clay fractions were similar (Fig. 2a). The ILR transformed data based on the three SBP balances of SBP were 400 

revealed different distributions (Figs. 2b, 2c, and 2d). For example, two ILR components of ILR (ILR1, and ILR2) for SBP1 401 

had a symmetric distribution around zero value at the x-axis (Fig. 2b). In comparison, the distribution of data generated from 402 

SBP2 or SBP3 had to mirror-symmetric deliveriesa mirrored symmetry, with a left-skewed ILR1 of SBP2 and right-skewed 403 

ILR2 of SBP3 (Figs. 2c and 2d). The comparison of means and medians demonstrated that the back-transformed means of 404 

three sets of ILR transformed data were the same, and the mean ILR of sand of ILR was closer to the median compared with 405 

the original soil PSF original data. In contrast, the cases of componentopposite patterns were apparent for the silt and clay were 406 

the opposite components (Fig. 2e).  407 



11 

 

 408 

 409 

Figure. 2. Descriptive statistics of original soil PSF data and ILR transformed data using different balances of SBP. Not that 410 

means of Sand_ILR, Silt_ILR, and Clay_ILR from different SBPs of ILR were back-transformed to the real space. 411 

 412 

3.1.2 Covariance structure of ILR transformed data with different balances 413 

The covariance analysis of the transformed data of soil PSFs data based on the different SBPs showed that the variance 414 

VarILR_1 of SBP3 was maximumthe largest, followed by the values of VarILR_1 of SBP1 and SBP2 (Table 4). The variance 415 

of the second component of ILR (VarILR_2) wasfollowed the opposite pattern to the rulethat of VarILR_1. The covariance 416 

(COV) and the corresponding correlation coefficient (CC) followed the same pattern –of SBP1 > SBP3 > SBP2. From these 417 

values, the relationship ofrelationships among soil PSFsPSF components or ratios were revealed, as we have known, the. The 418 

first ILR equation of ILR (𝑧1 in Table 2) contained all the soil PSF information of soil PSFs, and, while the second one (𝑧2 in 419 

Table 2) included only two components; the. The VarILR_1 information of VarILR_1,was therefore, was more abundant. Six 420 

values of VarILR_1 and VarILR_2 were not 0 (or not nearly 0), indicating that there was no constant (or almost the constant) 421 

value in any two ratios of soil PSF components. The COV value of COV of SBP3 was close to 0, showingindicating that the 422 

proportions of clay/sand and clay/silt were approximately the same. The same results were generated from the corresponding 423 

correlation coefficient (CC).CC.  424 

Table 4 Covariance analysis of soil PSF data based on different SBPs. VarILR_1 and VarILR_2 denote the variance of the 425 

first and the second component of ILR, respectively. COV refers to the covariance of ILR1 and ILR2. CC is the correlation 426 

coefficient. 427 

Balances VarILR_1 VarILR_2 COV CC 

SBP1 0.53 0.71 0.32 0.52 
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SBP2 0.39 0.86 -0.24 -0.41 

SBP3 0.94 0.30 -0.09 -0.16 

 428 

The distribution of soil PSFsPSF sampling data in thea ternary diagram (the United States Department of Agriculture (USDA) 429 

texture triangle) showed that the main texture class was silt loam (Fig. 3a). The biplot of soil samples demonstrated that the 430 

rays of the three components, i.e., sand, silt, and clay, were reasonably well clustered at about 120 ° in the three groups (Fig. 431 

3b).  432 

 433 

 434 

Figure. 3. The distribution in the USDA triangle (a) and biplot graph (b) of soil PSFs sampling. The red, smooth curve of these 435 

soil samples in the USDA triangle was fitted by loess function in R. 436 

3.2 Accuracy comparison of different models using ILR data 437 

The first three rows of the boxplots (in Figs. 4 a4a, 4b, and 4c) demonstrated indicate the bias of the different models according 438 

to their ME values. The MEsME of sand werewas closest to 0, followed by the MEs of clay and silt. The GLM was more 439 

unbiased than the RF, with lower ME values. After combingcombining with RK, thethere was an improvement was revealedin 440 

the ME for MEs in most GLM and RF models (Figs. 4a, 4b, and 4c). For the accuracy assessment, RMSEsthe RMSE of silt 441 

was higher than for the other two components. The GLMRK did not perform as well as expect for RMSEs, which expected in 442 

terms of the RMSE, with only improved RMSEs of the sand component having an improved RMSE (Fig. 4d). However, the 443 

RFRK hadperformed better performance when compared withthan the GLMRK and improved the RMSE of most RMSEs of 444 

parts compared with the RF, except for the RFRK_SBP1 of sand. OverallAs an overall indicator of soil PSFs, the AD, showed 445 

that the RF (or RFRK) performed better than the GLM (or GLMRK) in terms of both average RMSE values and uncertainties 446 

(Fig. 4g). Moreover, the RFRK improved the AD values for the SBP2 and SBP3 methods. For the uncertainty assessment, the 447 

RF generated lowerfewer difficulties than the GLM, and the models combined with RK further reduced the uncertainties for 448 

most GLM and RF models. For three balances of SBP methods, The model performances were different. for the three SBP 449 
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balances. To better evaluate model performance using the different SBP balances, we graded each box from 1 to 3, and the 450 

final results wereare shown in the Supplementary Material table(Table S1.1. It). The results demonstrated that SBP1 performed 451 

best, with the lowest ME value amongof all models. For the accuracy comparison, the pattern is not there was no apparent 452 

pattern, but it canaccuracy could be considered hierarchically. For the GLM, SBP1 hadperformed better performance than the 453 

other two SBPsSBP methods, which also performed well when RK was added (GLMRK). For RF, SBP1 produced the best 454 

result. However, the introduction of RK maderesulted in SBP3 performedperforming best among the three methods. Further, 455 

theThe RMSEs generated from RFRK using SBP3 data had the best accuracy among all the models in our study.  456 

 457 

Figure. 4. Accuracy comparison of GLM, RF, and their RK patterns using different ILR balances data. The mean values of 458 

different model indicators were calculated in their boxes. 459 
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3.3 Spatial prediction maps of soil PSFs generated from the different models 460 

Prediction maps of soil PSFs made from the different models were revealedare shown in Figs. 5, 6, and 7. For the components 461 

of soil PSFs, the maps of the three group maps followed a similar rule. The GLM and GLMRK showedproduced more extensive 462 

ranges of predicted valuevalues, and their maps were more relevant to the real environment. However, the RF and RFRK 463 

predicted a relatively narrow andrange of low values offor these components, revealing a smoother distribution than GLMs. 464 

Moreover, RK that generated by the GLM and GLMRK. Unlike the regression methods demonstrated hot spots, the RF and 465 

RFRK methods produced hot and cold spots on the prediction maps compared with only-regression parts;and more details of 466 

the soil sampling points were apparent (Fig. S2.1) were shown.  467 
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 468 

Figure. 5. Spatial prediction maps of the sand component of the upper reaches of the Heihe River Basin.  469 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3
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 470 

Figure. 6. Spatial prediction maps of the silt component of the upper reaches of the Heihe River Basin. 471 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3
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 472 

Figure. 7. Spatial prediction maps of the clay component of the upper reaches of the Heihe River Basin. 473 

3.4 Spatial distribution of soil texture classes in the USDA triangles 474 

The predicted soil textures plotted in Fig. 8 inbased on the USDA texture triangles (Fig. 8) showed that most predicted soil 475 

texturespredictions fell within the rangesrange of observed soil textures (Fig. 3a), and silt loam was the dominant in the soil 476 

texture types forin all the cases. The GLM produced a more discrete distribution than the RF, and the RK method expanded 477 

the effect of dispersion. ForIn the trends of the predicted samples, the silt components predicted from all models were over-478 
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estimatedoverestimated. The pattern fitting curves indicated that the prediction results were closer to the bottom right of the 479 

USDA soil texture triangle than the soil PSFsPSF observations. Curves ofThe GLMRK and RFRK curves were longer than 480 

the GLM and RF, showing curves, with a more extensive rangesrange of valuevalues in the ternary diagram. Compared with 481 

the GLMRK, the RFRK produced a more upward extension (FigFigs. 8j, k, l). It was clear that the clay fraction was over-482 

estimated,overestimated and the sand fraction was under-estimatedunderestimated. 483 
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 484 

Figure. 8. Predicted 262 soil samples based on leave-one-out method in USDA texture triangles using (a) GLM_SBP1, (b) 485 

GLM_SBP2, (c) GLM_SBP3, (d) GLMRK_SBP1, (e) GLMRK_SBP2, (f) GLMRK_SBP3, (g) RF_SBP1, (h) RF_SBP2, (i) 486 

RF_SBP3, (j) RFRK_SBP1, (k) RFRK_SBP2, (l) RFRK_SBP3. Red fitting lines in triangles showed the trends.  487 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3
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4 Discussion 488 

4.1 Comparison of the GLM, RF, and their hybrid interpolators using ILR data 489 

The range of applicability of this study is limited to independent modelling. However, the study demonstrated the correlation 490 

of the raw data (sand, silt, and clay), and has confirmed that the currently used prediction models are suitable. For the 491 

assessment of independent validation, the RF revealed more accurate results, but with more bias than the GLM. The RK 492 

method improved the bias performance of the bias for most models and the accuracy of the RF. Odeh et al. (1995) have 493 

indicated that RK was superior to the linear models, such as the multiple linear regression (MLR),, which can bewas reflected 494 

in the prediction ofresults for sand in our study. Scarpone et al. (2016) reported that as a hybrid interpolator, the RFRK 495 

outperformed the RF when dealing withmaking soil thickness predictionpredictions. We proved that RK was also 496 

availablesuitable for compositional data to improveand improved model performance when using an ILR transformation in the 497 

RF. In summary, the GLM and RF had theirboth advantages and disadvantages when considering the trade-off between bias 498 

and accuracy. The difficulty with the use of the GLM is the need for a back-transformation; it needs. There is a need to present 499 

results on the original untransformed scale after analyzingconducting the analysis on a transformed level, which may produce 500 

the unfortunate result between themspurious results (Lane, 2002). In our study, we compared the means of ILR transformed 501 

data and the original data. We proved the feasibility of the ILR transformation method, especially for meeting the requirements 502 

of compositional data. StillHowever, the accuracy of the GLM still needs to be improved; this, which may be because the 503 

transformed data did not follow a normal distribution. In addition, although the RF had anthe advantage onof prediction 504 

accuracy, the limited interpretability of the consequences – a “black box” effect – made it challengingdifficult to modify the 505 

prediction bias because each tree from the model cannot be examined individually (Grimm et al., 2008). The ILR 506 

transformation before modeling increased the difficulty of interpretation for not only the predicted values on the ILR- scale 507 

but also the residuals. Moreover, the back-transformation of the optimal estimate of log-ratio variables does not generate the 508 

optimal estimation of compositionscompositional data (Lark and Bishop, 2007), which also should also be considered. 509 

Multivariate methods, such as the multivariate RF, can be combined with a log-ratio transformation and hybrid interpolation, 510 

enabling the cross correlations among ILR coordinates to be better interpreted. 511 

 512 

4.2 Comparison of three SBP balances ofin the ILR transformation method 513 

The results of GLM and GLMRK should not depend on the ILR basis being chosen, which has been proved by previous studies 514 

on the use of linear models and kriging for compositional data (Pawlowsky-Glahn et al, 2015). However, the GLM model used 515 

the “glmStepAIC” algorithm (i.e., a stepwise regression) to select the best combination of environmental covariables for each 516 

ILR component. Therefore, the variable inputs were different for these ILR data, and further impact the accuracy assessment 517 

and prediction maps. 518 

The comparison of the three SBP balances of SBP showed that mostthe indicators of ME and RMSE performed better when 519 
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using SBP1 offor ILR transformed data performed better, which may be interpreted as the distributions of the ILR1 and ILR2 520 

of SBP1 werebeing more symmetric (Fig. 2b). In contrast, the performance of SBP2 was worse than the other two that of SBP1 521 

and SBP3 because the ILR_1 component, including all the soil PSF information of soil PSFs, was left-skewed (Fig. 2c). This 522 

result was apparent, especially apparent for the GLM and GLMRK, because the normal distribution of data is needed in thea 523 

linear model needs to be normally distributed (Lane, 2002). 524 

The interpretation of the negligible difference among the three SBP balances of SBP was the presented in a biplot of soil 525 

PSFsPSF sampling data (Fig. 3b), which revealed a triangular shape. In other words, these canThis could be interpreted as 526 

thatthe three soil PSFs hadhaving a mixed pattern, andwith each component was dominated by the components in one cluster 527 

(Tolosana-Delgado et al., 2005). Although the silt component dominated the soil PSFs with the highest content (Fig. 2a), sand 528 

and clay also played essentialimportant roles ofin the compositional data as well. Therefore, taking either the most abundant 529 

component of compositionsthe compositional data as the denominator (Martins et al., 2016) or the first component of the 530 

permutations wasdid not provide convincing evidence. In contrast, usingUsing the most abundant component of compositions 531 

the compositional data as the primary component of the alterations, i.e., SBP2, demonstratedresulted in a relatively poor 532 

performance among three compared to the other SBPs data. Thus, we recommendedrecommend using other parts that wereare 533 

not the most abundant as the first component of permutations when the biplot diagram was, which in this case resulted in a 534 

uniform distribution on the biplot diagram, with a cluster at about 120 ° (Fig. 3b). Furthermore, the choice of balance is the 535 

key to improving model accuracy, such as shown by the result of the RFRK-SBP3 model (Fig. 4). We also fitted the biplots 536 

using a random sampling test (70 %% of the soil sampling data was randomly sampled), and the distribution distributions 537 

(angle) of these graphs (angle) were almost the same (Fig. S3.1). Multiple data sets should be considered in further 538 

researchesstudies to verify if it wasthis is a general feature of soil PSFsPSF samples or if it was produced from our data set.  539 

Also, theThe weighting problem was not considered in this study, because the ILR method can be qualified as an unweighted 540 

log-ratio transformation, giving all parts the same weight for both the definition of the total variance and the reduction of 541 

dimension. ItThis may enlarge the ratios generated from the rare parts and, which would dominate the analysis (Greenacre and 542 

Lewi, 2009). The pairwise log-ratio can be used to set weights by their proportions when there is no additional knowledge 543 

about the component measurement errors (Greenacre, 2019). Nevertheless, all three parts of the soil PSF data 544 

dominatedominated the biplot diagram, without the influence of rare elementelements and with no redundancy; thus, there are 545 

nonone of the shortcomings mentioned above, and the accuracy were apparent. Accuracy assessments using a pairwise log-546 

ratio transformation need more researchrequire further study in the future. 547 

4.3 Limitations 548 

In this work, we used ILR transformation to demonstrate the correlation of soil PSF data, and different balances were also 549 

compared. However, these models were predicted separately for each ILR component (ILR1 and ILR2), which were 550 

suboptimal because they cannot further consider the cross correlations among ILR coordinates. In our pervious study, we have 551 

used compositional kriging (CK) for the spatial prediction of soil PSFs (Wang and Shi, 2017), and the cross correlations of 552 
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ILRs can be taken into account using CK. Although it is optimal, it cannot consider different balances of ILR, nor can it be 553 

combined with the hybrid interpolator (e.g., RK). Moreover, predicting each ILR component separately was a more suitable 554 

approach for the spatial prediction models currently used (such as the GLM and RF). Therefore, more alternative spatial 555 

prediction models combined with interpretation of ILR balances for compositional data should be considered in the future. For 556 

example, CK and high accuracy surface modelling (HASM; Yue et al., 2016) can be applied for small scale study areas. For 557 

large scale study areas, multivariate RF (Segal and Xiao, 2011) can be combined with a log-ratio transformation and hybrid 558 

interpolation, enabling the cross correlations among ILR coordinates to be better interpreted.  559 

5 Conclusions 560 

We evaluated and compared the performance of the GLM, RF, and their hybrid pattern (i.e., GLMRK and RFRK) using 561 

different ILR balances of ILR transformed data. The bias of the GLM was lower than thosethat of the RF; however, the 562 

accuracy of the GLM was relatively lowerlow. More discrete distributions and broader ranges of prediction value distributions 563 

were produced from GLMs in the USDA soil texture triangles. In other words, different data sets were generated from the use 564 

of the GLM and RF –, with unbiased and inaccurate predictions for the GLM and biased and more accurate predictions for the 565 

RF.  566 

  The hybrid patternspattern of GLM and RF,  (i.e., RK, were recommended, which) was found to be the best solution 567 

because it produced relative highera relatively high prediction accuracy and environmental correlation, showingstrong 568 

correlations with ECs, providing more details about the soil sampling points (hot spots and cold spots) compared with only the 569 

regression partmodel. However, the non-normal distribution of ILR transformed data, and the “black box” effect of the RF 570 

algorithm were drawbacks in the use of the GLMRK and RFRK.  571 

ConcerningFor the different SBP balances of SBP,, the three SBP-based data generated slightly different distributions. A 572 

slight difference was produced, and the , but no pattern was not visible, which was apparent. This could be explained fromby 573 

the angle of the biplot diagram –, with three rays of soil PSFsPSF components clustered into three modes, and each part 574 

dominated indominating its cluster. Using the most abundant component of compositionsthe compositional data as the first 575 

component of the permutations was not considered the right choice because ofSBP2 produced the worst performance of SBP2. 576 

On the contrary. Instead, we recommendedrecommend using other parts that wereare not the most abundant as the first 577 

component of permutations when the biplot diagram was, which in this case resulted in a uniform distribution with on the 578 

biplot diagram, with a cluster at about 120 °, like°. To consider the form of our study. For a general featurefeatures of soil 579 

PSFsPSF compositional data, multiple soil PSFsPSF data sets should be considered and compared in the future. This study 580 

can provide a reference for the spatial simulation of soil PSFs combined with environmental covariablesECs at athe regional 581 

scale, and how to choose the balances of ILR transformed data.  582 

 583 

Data Availability. We did not use any new data and the data we used come from previously published sources. Soil particle-584 

size fractions data is available through our previous studies (Wang and Shi, 2017, 2018). Moreover, it also can be visited on 585 
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this website: http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/ (Digital soil mapping dataset of 586 

soil texture (soil particle-size fractions) in the upstream of the Heihe river basin (2012-2016); last access: 4 July 2020). The 587 

meteorological data can be accessed through http://data.cma.cn/ (last access: 4 July 2020). Environmental covariates data of 588 

soil physical and chemical properties and categorical maps can be obtained through http://data.tpdc.ac.cn/zh-hans/ (last access: 589 

4 July 2020), including saturated water content, field water holding capacity, wilt water content, saturated hydraulic 590 

conductivity data (http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/, Digital soil mapping dataset 591 

of hydrological parameters in the Heihe River Basin (2012); last access: 4 July 2020), and soil thickness data 592 

(http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/, Digital soil mapping dataset of soil depth in 593 

the Heihe River Basin (2012-2014); last access: 4 July 2020). DEM data set is provided by the Geospatial Data Cloud site, 594 

Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn, last access: 4 July 2020). 595 
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