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Abstract: Compound dry and -hot conditions pese-frequently cause large impacts on

ecosystems and societiesy worldwide. A suite of indices are-are availableproposed for
the assessments of droughts and heatwavespreviously, yet there is no index available
for incorporating the joint variability of dry and hot conditions at sub-monthly scale.
Here; we introduced a daily-scale index, termed-ascalled the standardized compound
drought and heat index (SCDHI), to measure-assess the—intensity-of-compound dry-and
-hot conditions. The SCDHI is based on the-a daily drought index (the standardized
antecedent precipitation evapotranspiration index (SAPEI))—and, the daily-scale
standardized temperature index (STI) and a joint probability distribution method. The
new index is-wais verified against real-world compound dry and hot events and the

associatedrelated observed vegetation impacts in China. The SCDHI can-not only

capture compound dry and hot events at both monthly and sub-monthly scales, but is

also a good indicator for associated vegetation impacts. SCBH}-can-not-enly-monitor

monthly scale and reflect the related vegetation activity impacts. Using the SCDHI, we

guantify the mean frequency, severity, duration and intensity of compound dry-hot

events during the historical period in China and assess the ability of climate models to

reproduce these characteristics. We find that the compound events whose severity is at

least light and which last longer than two weeks generally persisted for 2520-35 days

in_China. +—and-the-sSouthern China suffers—suffered from compound events most

frequently, and the most severe compound events were mainly detected in this region.

Climate models generally overestimate the frequency, duration, severity and intensity

of compound events in China, especially for western regions, which can be attributed

to a too strong dependence between the SAPEI and STI in those models. SEDHEHRdex

ear—The SCDHI provides a new tool to quantify sub-monthly characteristics of
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compound dry and hot events;- and eenducive-to the-thmehr-monitoring-of their initiation,

development, and decay. which-This is important informationare—vital for decision-
makers and stake-holders to release early and timely warnings.

Keywords: compound event; SCDHI; SAPEI; sub-monthly scale; China

1 Introduction

Compound dry--hot events are climate events during which dry and hot conditions

occur simultaneously-—Cempeund-dry-het-event, and such events have been observed

fer-on all continents in recent decades (Hao et al., 2019; Mazdiyasni and AghaKouchak,
2015; Manning et al., 2019; Sutanto et al., 2020). Fhe-freguent-cCompound dry-hot
events have-can lead to more devastating impacts on natural ecosystems and human

society than-compared to droughts and heatwaves aloneindividual-events (Zscheischler

et al., 2014,-2018; Chen et al., 2019; Hao et al., 2018a)._For example, Russia was

simultaneously struck by a severe drought and unpresented temperature extremes in the

summer of 2010, which caused large-scale crop failures, wildfires, and human mortality

(Zscheischler et al., 2018). Unfertunatelythe-extreme-droughts-and-hets-Droughts and

heatwaves are expected to occur more frequently in the coming decades under global

warming, which potentially results in more compound events in many parts of the world,
especially for wet and humid regions (Wu et al., 2020; Swain et al., 2018, Zscheischler
and Seneviratne, 2017a). Therefore, understanding such events areis of crucial
importance to provide the-mestfundamentalrelevant information te-helpfor disaster
mitigation.

Much-effort-has-been-made-to-study-theMany studies have investigated multivariate

compound events in recent years_(Zscheischler et al., 2020; Ridder et a., 2020).

Utilizing different-thresholds to define the-concurrent climate extremes for a specific
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period, particularly the frequency of multivariate compound events has received a-great

deal-ofa lot of attention (Wu et al., 2019; Zhang et al., 2019; Ridder et al., 2020).

However, for impacts,-

it the method of frequency analysis other fails to quantitatively measure compound

event characteristics such as duration, severity, and intensity_may be at least as

important; and may help is-irecenvenientfor-comparison-efto compare compound event
characteristics through-across different climates (Wu et al., 2020). Fherefore—To

overcome these shertageslimitations, several joint climate extreme indices have been

proposed for analyzing-the characteristics of the-compound events_beyond frequency.

SpecificalhyFor instance, the standardized dry and hot index based on the ratio of the
marginal probability distribution functions of precipitation and temperature was
proposed to measure the extremeness-degree of a compound drought and hot extreme
event (Hao et al., 2018). Hao et al. (2019, 2020) recently proposed the standardized
compound event indicator and compound dry-hot index to assess the severity of
compound dry and hot events by jeintinglinking the marginal distribution of
standardized precipitation index (SPI) and standardized temperature index (STI) using

the—copula theory. These two joint indices provide useful tools to improve our

understanding of the frequency, spatial extent and severity of the-compound dry-hot
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(Rahhisberger and Martius, 2019; Wang et al., 2016). Concurrent However, when

extreme weather conditions (e.g., high temperature, low humidity, and sunny skies)

occur within a short period, droughts can evolve rapidly; in conjunction with heatwaves

(Koster et al., 2019; Otkin et al., 2018; Pendergrass et al. 2020; Yuan et al., 2019; Li et

al., 2020a). Despite their short duration, concurrent short-term drought and hot

extremes can pose greater-potential-large socio-economic risks because the combination
of these-both hazards events-can exacerbate their respective environmental and societal
impacts (Kirono et al.,, 2017; Schumacher et al., 2019; SedImeier et al., 2018).
Specificalhy;For instance, even short-term concurrent dry and hot extremes can lead to
significant agricultural loss if they occur within sensitive stages in crop development

such as emergence, pollination, and grain filling (Haqiqi et al., 2021; Luan and Vico et

al., 2021; Zhang et al., 2019). Under climate change, short-term concurrent dry and hot
extremes are expected to increase (especially for humid regions), potentially causing
substantial damage to natural ecosystems and society (Li et al., 2020b; Sun et al., 2019).
To improve understanding of such short-term compound events and make-issue -early
and timely warnings, decision-makers and stakeholders require more detailed
information such as the start time, severity, and the projected prejected-tendency 1-for

the coming days rather than the average state at a fixed monthly scale_(Pendergrass et

al., 2020). However, the above-mentioned indices often only allow for identifying

compound dry-hot events at a relatively coarse (i.e., the monthly) temporal resolution

(Hao et al., 2019, 2020)— and key characteristics of climate extremes may not be

detectable at monthly scale (Lu, 2019; Lu et al., 2014 Otkin et al., 2018). For instance,
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hot extremes generally occur at much finer time scales (e.q., days and weeks) (Zhang

et al., 2019). CerrespendinghyConsequently, sub_-monthly-—scale indices for

characterizing short-term compound dry and hot events—conditions are needed. In
addition, through the influence of evapotranspiration, shert-termother meteorological
variables that vary at short time scales (e.g., relative humidity, wind speed, and

radiationtemperature and radiation) are considered an important factor inmay be

important drivers of drought and heatwave concurrences (James et al., 2010). Thus, the

development of a compound drought and heat index should consider other important

drought/hot-related  factors including temperature and variables such as

evapotranspiration.

conditions-at-sub-moenthly-scale-Here we aim-toformulatedevelop a compound drought

and heat index, called the standardized compound drought and heat index (SCDHI), for

monitoring and—anahyzing—compound dry and hot events at sub-monthly scale. To
achieve this aim, we combine a daily scale drought index, the standardized antecedent
precipitation evapotranspiration index (SAPEI), which simultaneously considers
precipitation and potential evapotranspiration, with a daily-—scale standardized

temperature index (STI). The SCDHI provides a new tool to quantify various

characteristics of compound dry-hot events: and can be computed at multiple time scale

(e.q., daily, weekly and monthly).

Several studies have been carried out to study compound dry-hot event in China

(Chen et al., 2019; Hao et al., 2019; Wu et al., 2020; Zhang et al., 2019: Zhou and Liu,
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2018), and these studies help to better understand such events. However, they mostly

focused on the frequency and severity of the compound dry-hot event at a relatively

coarse (i.e., the monthly) temporal resolution without considering their duration and

intensity.
future-change-in-Chinaremains-unelearIn addition, the effect of climate model bias on

the characteristics of compound dry-hot event in China remains unclear. Understanding

climate model biases is a crucial step to assess the risk of future compound dry-hot

events (Villalobos-Herrera et al., 2020). Recent compound dry-hot events have resulted

in serious social and economic losses in China (Wu et al., 2020; Zhang et al., 2019),

motivating further study of these potentially very damaging events. Using the SCDHI,

here we investigate importantthe characteristics such as frequency, duration, severity,
and intensity of compound dry-hot events during the historical (1961-2018) period and

evaluate the effect of climate model biases on compound event characteristics in

The paper is organized as follows: Section 2 introduces the data used in this study,

the development of SCDHI. In the Section 3, the validation of SAPEI and SCDHI are

presented and characteristics of compound dry-hot event and the impact of climate

model bias on its characteristic are investigated. The study is concluded in Section 4.

2. Data and methodologyMethods

2.1 dataData

Daily meteorological datasets covering 1961 to 2018 were collected from 2239
7
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observational stations across the non-arid region in China (Fig. 1), which include
precipitation, maximum air temperature, mean air temperature, minimum air
temperature, relatively humidity, wind speed, and sunshine duration. AH-ef-these
meteorolegicalThe data with strict quality control are available from the China
Meteorological Administration (http://cdc.nmic.cn/nome.do) and the Resources and
Environmental Science Data Center, Chinese Academy of Sciences
(http://www.resdc.cn/Default.aspx). The observational station data were interpolated to
0.25%0.25<gridded data by kriging-methed, as it yields higher interpolation accuracy
than the other commonly used methods, e.g., ordinary nearest neighbor and inverse
distance weighting (Liu et al., 2016). In this study, we only focus the non-arid region
in China, because of three reasons: (1) replenishment of water resources across the
Chinese arid region is mainly from melted glacial or perennially frozen soil, but not

from precipitation; (2) meteorological observations in the arid regions of ChinaChinese

arid-regions are too scarce to conduct robust analysis (Wu et al., 2007; Xu et al., 2015);

(3) from a practical perspective, calculating climate extreme indices across arid region

with-large-sealeand desertregiens is less meaningfulless (Tomas-Burguera et al., 2020).
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PDSHisshewn-in-supplementary-materials-The 0.25<daily root zone (0 - 100 cm) soil

moisture dataset obtained from the Community Land Model of the Global Land Data

Assimilation System (Li et al., 2018; Rodell et al., 2004) was also used in this study.

The Community Land Model product does not have explicit vertical levels, instead soil
moisture is represented in surface (0-2cm), and root zone soil moisture (0-100cm) (Li
etal., 2018). Root zone soil moisture is chosen over the surface soil moisture on account
of its appropriatenessesiteness to characterize drought_and, lower noise relative to
surface soil moisture (Hunt et al., 2009; Osman et al., 2020). The dataset from 1961 to
2014 were downloaded from the Goddard Earth Sciences Data and Information

Services Center (https://earthdata.nasa.gov/eosdis/daacs/gesdiscRedel—et—al—2004).

The soil moisture dataset from the Community Land Model ean-eH-captures dry and
wet conditions in China well (Bi et al., 2016; Feng et al., 2016). To avoid the effect of
seasonality, the-soil moisture was fitted by a Gamma prebabitity-distribution; and then

was—subsequently standardized by normal quantile transformation_ (Herr and

Krzysztofowicz, 2005). -In addition, 8-day leaf area index of the MOD15A2H from

2003 to 2018 were collected. Fhese-data-wereAfter resampled-resampling to a 0.25°

spatial resolution, we subtracted the local mean and divided by the local standard

deviation—and-thenthe-Z-score-was-used to caleulate-theobtain normalized leaf area

index anomalies.
We further used eight—global climate modelss from the Coupled Model

Intercomparison Project Phase 5 (https://esgf.linl.gov/) to assess the effect of climate

model biases on compound dry-hot events {Fayleretal—2012)-(Taylor et al., 2012).

teluding-The global climate models used in this study include CanESM2, CNRM-

CM5, CSIRO-Mk3.6, MIROC-ESM, MPI-ESM-LR, BCC-CSM1-1, IPSL-CM5A-LR,

9
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and MRI-CGCM3,;—were-used-to-project-thefutureclimate—conditions: These global
chimate-models exhibit good performance te-in their simulate-simulation of the-key

features of precipitation and temperature in China_(Jiang et al., 2016; Yang et al., 2019).

We obtained daily climate variables (e.g., precipitation, temperature, relatively

humidity, and wind speed) for the historical (1961-2005)future(2050-2100} periods.

scenario)—All of the global climate models’ outputs were based on the first ensemble
member of each model. ;-referred-to-as+iilplin-al-of the-experiments—In this study,
the bias-corrected climate imprint method, one of the delta statistical downscaling
methods, was used to downscale the global climate models outputs to a spatial
resolution of 0.25<(Werner and Cannon, 2016). The detailed information on these
global climate models is shown in Table S1.

2.2 Development of SCDHI

The SCDHI is a compound drought and heat index based on a daily drought index

and the STI-, both of which are briefly introduced in the following..-which-is-computed

to—caleulate—the—potentialevapetranspiration—Afterward—the—_ Afterwards, we will

explain how the joint distribution method was employed to compute the SCDHI_from

10
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the two univariate indices.

2.2.1 Formulation of daily-scale drought and heat rdexindices

index (SAPEI) was first introduced by Li et al. (2020b). However, the primary

limitation of this index is that it has a fixed temporal scale (the number of considered

antecedent days was equal to 100) and cannot reflect the-dry and wet condition at

different time scales. Given that drought is a multi-scalar phenomenon (Mckee et al.,

1993, Vicente-Serrano et al., 2010), here we extended the SAPEI to a multiple time

scale (i.e., 3-, 6-, 9-, and 12-month) daily drought index.-Hence—wedeveloped-the

The Penman-Monteith method (Allen et al., 1998) was firsthy-used to compute

potential evapotranspiration. With-a-valuefor-petential-evapotranspiration—+tThe daily

difference between precipitation and potential evapotranspiration was then calculated

to reveal—estimate ehmatic—the water balance.—{precipitation—minus—potential
evapetransphration): To reflect dry and wet conditions of the-a given day, the antecedent

water surplus or deficit (WSD) was calculated through the following equations:

11
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WSD:Zn:(P—PET)i (1)

i=1

wWhere n is the number of previous days, PET represents the potential
evapotranspiration, and P represents precipitation.
The WSD values can be aggregated at different time scales, such as 3, 6, 9 months, and

so on. The daily WSD series was fit to a log-logistic distribution. Subsequently,

cumulative probabilities of the WSD series were obtained and transformed to

standardized units using the classical approach of Barton et al. (1965), resulting in the

SAPELI.

The STI1 was computed in a similar fashion as the SPI, while it did not accumulate

temperature in a fixed scale. The calculation of daily STI relied on daily temperature.

A normal distribution was fitted to daily temperature at each day of the year, because

temperature anomalies can be assumed to be normally distributed (Hansen et al., 2012;

Zscheischler et al., 2014). The STI was then computed based on the cumulative

distribution function G(x), that is, are listed below:

1 (x—

X )2
G(X)=—= [ exp(- 20’2‘ )dx @

(o3

STI = ¢™(q) (3)

where X is temperature time series. X and o are the mean and standard deviation

parameters, respectively. g is the cumulative probability and ¢ _is the standard normal

distribution.
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2.2.2 Construction of SCDHI
The SCDHI was established threugh-using copula theory (a brief introduction on

copula theory is shewn—given in supplementary materials), which ean—essentially
combine-models the candidate—variables—into—one-numerical-expressiondependence

between the SAPEI and the STI to generate a bivariate distribution linking the two

indices.

There are many copula families available, which have widely been used for jointing

modelling bivariate distributions (Terzi et al., 2019). Among theathem, Clayton,

Gumbel, Normal, tF, and Frank copula perform well for jeinting—bivariate
13
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hydrometeorological variables (Ayantobo et al., 2018; Liu et al., 2019), and thus were
empleyed-tested to establish the bivariate joint probability distribution in this study.
Assuming, the two random Gaussian-variables X and Y , representing SAPEI and STI,

respectively, the compound dry-hot event can be identified as one variable X lower

less than or equal to a threshold X, and the other variable Y higher than a threshold ¥

at the same time. The joint probability P of the compound dry-hot event can then be
expressed as:

p=P(X <xY>y)=u-c(u,v) (24)

where U and V_arewas the respective thresholds after transforming X and Y- to

uniform marginal distributions (Ayantobo et al., 2017);+espeetively, and c(u,v) was is

the joint probability distribution_based on the fitted copula (Zscheischler and

Seneviratne, 20173).

This joint cumulative probability P eould-can then be treated as an indicator, where

smaller P values denote more severe condition of compound dry-hot eventconditions.

p | . inal P val in_diff

reflected—differentconditions—and-—are—thus—hot-comparable—However, because the

marginal distributions usually vary across seasons and regions, the same value of does

not correspond to the same univariate exceedance thresholds across seasons and regions

but rather refer to similar bivariate extremeness in the bivariate SAPEI-STI distribution.

Henee; Transforming the joint probability P was—transformedin—to a uniform

14
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distribution by fitting a distribution F , and subsequently into a standard normal

distribution results inwhich—was—then—standardized—as an indicator to characterize

compound dry-hot events. Onee-the-P--series-at-each-day-werefitted-to-a-copula-theP-

series-were-transformed-to-standardized-units:Hence, the SCDHI can-be-estimatedis

computed by taking the inverse of the joint cumulative probability (p)-as:
SCDHI = g™ (F(P(X < x,Y >Y))) (35)

where ¢ is the standard normal distribution function_and- F is the marginal

cumulative distribution, which remaps the joint probability to the uniform distribution

(Yeo and Johnson, 2000).the-distribution-F-was-estimated-based-on-the-Yeo-Johnsen

Following the categories of compound dry and hot conditions as suggested by Wu

et al. (2020)-(\Wu-et-al—2020)}, we defined five categories of compound dry and hot

conditions, including abnormal, light, moderate, heavy and extreme compound

droeughtdry-hot, as shown in Table 1. The development of the SCDHI is illustrated in

Fig. 2.
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2.2.3 Evaluation metrics

We used the Akaike information criterion (AIC), Bayesian information Criterion

(BIC), and Kolmogorov-Smirnov (KS) statistics to select the most appropriate copula.

The KS test indicates the goodness-of-fit between the empirical and theoretical

distributions (Wu et al., 2018), while the BIC and AIC are a relative measure of the

qguality of a model for a given set of data and helps in model selection among a finite

set of models (Li et al., 2013). The preferred model is the one with the lower AIC and

BIC values but the higher p values in the KS test. These statistical measures have been

commonly used for selecting appropriate copulas (Zscheischler et al., 2017;

Zscheischler and Seneviratne, 2017; Liu et al., 2019; Terzi et al., 2019). The statistics
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of the three metrics are presented in Fig. S1-3, indicating that the Frank copula showed

lower AIC and BIC values but higher p values of KS test compared to other copulas.

Overall, all test showed comparable results. The Frank copula was thus utilized to

model the dependence between SAPEI and STI and to construct the SCDHI as

explained in Section 2.2.2. Nete-thatfor-the-SCDHl-underthreefuture-scenarios—we

2.3 Other drought indicators

The two commonly used drought indices monthly Palmer drought severity index

(PDSI) and standardized precipitation evapotranspiration index (SPEI) were employed

for comparison against SAPEI. The conventional PDSI was empirically derived using

the meteorological data of the central USA with its semi-arid climate. The portability

of the conventional PDSI to other world regions is thus relatively poor (Liu et al., 2017).

In this study, PDSI was calculated according to the China national standard of

classification of meteorological drought with standard number of GB/T 20481-2017.

The PDSI was built based on long-term meteorological data of in-situ stations evenly

distributed around China (Zhong et al., 2019a). The detailed calculation on the PDSI

and SPEI are presented in the supplementary materials.

2.4 Run theory to extract compound event characteristics

Run theory (Yevjevich and Ingenieur, 1967) was used to identify the frequency,

duration, severity, and intensity of compound dry-hot events. A ‘run’ is defined as a

portion of the time series of a variable X:, in which all values are either below (i.e.,

negative run) or above (i.e., positive run) a selected truncation level of Xq (Ayantobo
17
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et al., 2017). Figure: 3 illustrates an example with two compound dry-hot events, and

each compound dry-hot event is characterized by its respective duration, severity,

intensity, and non-compound dry-hot condition. Specifically, according to the

truncation level Xo, the number of consecutive intervals (days) where values remain

below Xg defines duration, while the cumulative sum of values during a compound dry-

hot period and the minimum value within a compound dry-hot period defines severity

and intensity, respectively. Frequency is simply the number of events in the given time

period. Duration and severity are thus defined as:

duration=t, —t. (12)
D
severity = » SCDHI, (13)

t=1

where t, is terminate time, t, is initiation time, D _is duration. In this study, Xo was set

to -0.8, -1.3, and -1.6 to assess the characteristics of compound dry-hot events under

different thresholds. Furthermore, for the assessment of compound event characteristics

in this study, events shorter than two weeks were discarded.

3 Results and Biscussiendiscussion

3.1 Evaluation of SAPEI

The SCDHI was established based on the daily STI and the daily-seale drought
index—e; SAPEI. However, no previous studies have tested the daily drought

monitoring performance of the SAPEI_at multiple time scales. When-developing—=a

apphed—in—dreught—monitering—Figure: 2-4 shows the spatial distributions and
probability density-densities of the correlations between SAPEI and SPEI/PDSI/soil

moisture across China. The monthly mean SAPEI at 3-, 6-, 9- and 12-month scale all

shewed-—shows strong agreement with the SPEI in China, and —with—correlation

18
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coefficients were typically higher than 0.8—{p—<-08-04)}, indicating that the monthly

SAPEI at multiple time scale calculated from the-daily values coeuld-have-the-samehas

similar capability to monitor monthly drought as SPEI. ef-menthhy-drought-menitering
as—SPEL-The 3-, 6-, 9- and 12-month SAPEI also generally showed goed-high

correlations with the PDSI, and—in particular the 3-month SAPEI and PDSI are

wellgeneraty correlated-closely, with correlation coefficients higher than 0.6{p-<6-61}.

For the daily SAPEI at 12-month scale and soil moisture, a close correlation was

detected in south and north China, while relatively weak correlation is-was found in
Midwest China. The correlation between SAPEI and soil moisture increased in
magnitude at time scales of 3 to -9 months. For the 12-month SAPEI, mean correlation
coefficient reached about 0.5 for whele-all of China. Theise phenemenon-tmphiedresults
indicate that the short-time scale SAPEI was—is more sensitive to precipitation
changevariability, and thus could be more suitable for meteorological drought, while
the long-time scale (more than five month) SAPEI was-is more closely related to soil
moisture and can thus be applied for agricultural drought monitoring. Overall, these
analyses indicate that the SAPEI at daily and monthly scale shewed-rehabitityis a

reliable indicator #a-for drought monitoring at different time scales.

To further test the drought monitoring performance of the SAPEI, typical drought

events were chosen as case studies. Buring-recent-decades,-severalwel-knewn-large-

performance of SARELat 3-menth-thme seales{Sun-and-Yang;2012)-We firstly showed

the monthly evolution of these events by the monthly mean SAPEI, SPEI, and PDSI,

and then analyzed the temporal daHy-evolution of drought at daily scale in-space-and
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time-in the most affected areas according to SAPEI and soil moisture.

Despite being located in the humid climate zone, southwest China suffered from

exceptional drought during the autumn of 2009 to the spring of 2010 (Lin et al., 2015).

en-SAPEland-sel-meisture-{Fig—3-and-4)—We selected this event in southwest China

as the first case study. As shown in Fig. S4, the monthly evolution in 2009/10 drought

based on SAPEI was generally similar with that of SPEI and PDSI. Figure 5 reveals the

daily change of this event using SAPEI and soil moisture. During the September-1-te

30 of 2009, the drought started to appear in the region, and dry conditions became worse
and spread throughout nearly the entire southwest of China from October 1 to
November 15 of 2009. Severe dry conditions then stayed in the region for 152 days
from November 15 to April 15 of 2010, with high intensity. Afterwards, severe drought
was gradually relieved from April 15 to June 15. The drought diminished over time in

most parts of southwest China by the end of June.
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Fhe-In 2011, a particularly unusual drought event was-particelarhy-unusuatoccurred

in the middle and lower reaches of the Yangtze River Basin (MLR-YRB). The MLR-
YRB is generally in a wet condition.; neverthelessNevertheless, it suffered its worst
drought in the recent 50 years during the spring_2011. The-severeis drought caused
shortage of drinking water for 4.2 million people—_and 3.7 million hectares of crops

were damaged or destroyed (Lu et al., 2014; Xu et al., 2015). Meoreover,—the-heavy

SAPRE}and-soH-meisture-was-shown--Fig—5-6—As shown in Fig. S5, the monthly

spatial evolution of the 2011 drought indicated by the SAPEI are broadly similar to

those by SPEI and PDSI. The temporal evolution of this event in MLR-YRB described

by daily SAPEI and soil moisture is shown in Fig. 6. The drought started to appear in

the northern part of the MLR-YRB in early February of 2011, and then gradually
expanded to the whole MLR-YRB during early February and-until March 15. Fhe

sSevere drought condition persisted in this region for 78 days (from March 15 to May

31). Afterwards, there-was-a-tendency-toward-aHeviating-drought conditions alleviated;

and most of MLR-YRB was—continued to be under light and moderate drought
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conditions.

Overall, similar to the SPEI, SAPEI includes multiple time scales (3-, 6-, 9-, and

12- month) to monitor drought at monthly resolution and is relatively sensitive to soil

moisture variations. However, the SAPEI has the advantage to allow for sub-monthly

drought monitoring. Such an index could help fill a gap between science and

applications in that it could be operationally used for detecting and monitoring both

short-term and persistent droughts.
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3.2 Evaluation of the SCDHI

The SCDHI was developed by jeining-linking the marginal distribution of the
SAPEI and STI. Though the copula method has been widely utilized to connect

bivariate-two dependent distributions, the preperty-ability of the SCDHI toin eapturing

capture compound dry-hot events still-needs to be tested. Figure 7 shows the spatial
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distributions of the correlations between SCDHI and SAPEI/STI at daily scale across

China. The SCDHI all showed strong (p < 0.01) correlation with the SAPEI at 3-, 6-,

9- and 12-month scale in China, with correlation coefficients higher than 0.7. A

significant correlation (p < 0.01) was also detected between ST1 and SCDHI at multiple

scales.Fi

by-the- SCDHI-were-close-te-one- Hence, overall the SCDHI is well correlated with
univariate variations in drought and heatwave occurrence.Overal—these—analyses

To further test the drought-heat monitoring performance of the SCDHI, two typical

compound dry-hot events were chosen as case studies according to the Yearbook of

Meteorological Disasters in China. One was-is a well-known compound drought and
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heatwave striking Sichuan-Chongging region with serious consequences during
summer of 2006 (Wu et al., 2020), and the other occurred in southern China with
adverse impacts on agriculture during July to September of 2009 (Wang et al., 2010).
The Sichuan-Chongging region experienced continuous extreme temperatures during
mid-June to late August 2006. The duration and severity of this heteventheatwave were
the worst on the historical record. Simultaneously, a heawy-100-year drought eceurring
onece-in-100-years-hit this-the region. During this compound event, a population of over
ten million was confronted with drinking water shortage, about twenty-theusand20,000
km? of cropland suffered serious losses, and more than one hundred times-forest fires
broke out. Local governments issued the most serious aridity warning (Zhang et al.,

2008).

the-drought/hot-menitering-performanece-of SCDHL-The monthly spatial pattern of this

compound event in the Sichuan-Chongqing region is shown in Fig. SZS6, indicating

that Sichuan-Chenggingthe region during-summer-in-2006-experienced the-moderate to

extreme compound dry and hot conditions_based on the SCDHI during the 2006

summer. Fig—ure 8 maps the spatial pattern of this compound event and its impact on

vegetation from mid-June to late August_at weekly scale. Fhis-The event started to

appear in the Sichuan-Chongging region in mid-June 2006, and gradually spread
throughout the whole Sichuan-Chongging region during June 19 to 26. The moderate
dry-hot conditions then persisted in the entire Sichuan-Chongqing region from June 27
to August 5 #-2006, lasting for 40 days. Fhe-Scattered negative leaf area index was
scatteredappeared in some of the dry-hot affected areas. However—dDuring August 6
to 21, the dreughtdry-hot event became even-more severe with the onset of extremely
hot temperatures, causing negative vegetation anomalies in most of the affected areas.

The monthly spatial patterns of another compound event in southern China during
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July to September of 2009 isare shown in Fig. S8S7. Overall moderate to heavy
compound dry and hot conditions are observed at monthly scale in this region. However,
this-the event showed large fluctuation at weekly scale. According to the Yearbook, the
heteventheatwave was divided into two periods: the first stage was from early to late
July, and the other stage was from mid-August to early September. The fluctuating
compound event caused adverse impacts ef-on crop pollination and grain filling,
resulting in decrease-efd crop production. Fig—ure 9 maps the spatial pattern of this

event and its impact on the leaf area index_at weekly scale. In the first stage, the

droughtdry-hot event hit the-most of southern China during July 5 to 12; and-thenbefore

it became more severe in the western part of southern China during July 13 to 20.

Hewever-tThe het-eventheatwave suddenly disappeared frem-between July 21 to 28,
leading to disappearance of the compound event in most of southern China (Fig. 9a).
AfterwardAfterward, the compound event hit this region again from August 6 to 13,
and its intensity was particularly strong during August 14 to 21, with severe-very hot
conditions. Subsequently, the intensity and spatial extent of the compound event faded
away in the north of southern China during August 22 to 29. This event extended to
most of this region again from August 30 to September 14, with severe dry and hot
conditions. The compound events still stayed in this region from September 15 to 22
(Fig. 9b). Despite the short-term event, the-anermal-changereductions in vegetation

activity waswere found in most of the dry-hot affected areas. This complex event

indicates that monthly analyses of the-compound events —can provide an overall
situation, but is-are unnet-be-able to capture the serious compound dry and hot
conditions caused by a-shert-term-extreme climate anemahyr-anomalies at shorter time

scales.
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Overall, the changes in these two compound dry-hot events based on the SCDHI

are consistent with the national weather records (http://www.weather.com.cn/zt/kpzt/)

and the Yearbook of Meteorological Disasters in China 2010. In summary, the SCDHI
is able to robustly and reliably capture compound dry-hot events at sub-monthly scale,
and potentially provide a new tool to objectively and quantitatively analyze and monitor

the characteristics of compound dry-hot events in time and space.

3.3 Application_of the SCDHI in China

Here-w\We evaluated and compared the spatiotemporal variation of characteristics
of compound dry-hot events in China during the growing season (April-September),
because such events can more easily cause adverse impact on agriculture and ecosystem

during these periods (Hao et al., 2018; Wu et al., 2019; Zscheischler & Fischer, 2020).

More precisely, the

compound dry-hot events and their characteristics (frequency, duration, severity, and

intensity) were identified based on 3-month scale SCDHI and run theory atwith

different thresholds (Wu et al., 2018). We further assessed how well climate models are

able to represent compound event characteristics.;-after-which-the-freguency-duration;

short-term concurrent dry and hot events generathy—often persist for at least weeks

(Otkin et al., 2018), only the-events that tasting-lasted for more than two weeks were
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are considered-in-this-study.

Fig—ure 9-10 shows spatial patterns of key characteristics of the identified

compound dry-hot events_with the threshold being set to -0.8 in run theory. A high

frequency of compound events was-is detected in southern China, with occurrence of
one event every two years on average.; #-In contrast, the eastern Tibetan Plateau and
northeast China experienced fewer compound events (Fig. 10a), which was generally
consistent with the-earlier previeus-studies (Liu et al., 2020; Wang et al., 2016). On
average, Fhe-compound dry-hot events generally lasted for about twenty20-five to
thirty-five35 days in most of China, while in the eastern Tibetan Plateau, the-compound
dry-hot event persisted for less than twenty days (Fig. 10b). Fhe-Mean severity and

intensity of the-compound dry-hot event presented-relativelyshow somewhat similar

patterns in relative terms and shewed-highlight that most of eastern China experienced

the highest severity and intensity (Fig. 10c-d). The spatial patterns are overall similar

when using a threshold of -1.3 (Fig. 11) of -1.6 (Fig. S8) in run theory. As expected,

frequency and duration tend to decrease, while severity stays similar and intensity tends

to increase at more extreme thresholds. White areas indicate regions where no events

longer than two weeks occurred.

-Overall, southern China suffered-suffers more frequent compound dry-hot events,
with higher severity and intensity. Southern China is a humid region where
evapotranspiration is mainly controlled by energy supply because soil moisture is

usually sufficientnot limiting. Fer-given-adeguateln cases of low soil moisture at thein

the-nttiation beginning of a drought, evaporative demand can increase rapidly during a
short period when—if strong, transient meteorological changes (such as extreme
temperature) occur, which in turn exhaust-deplete soil moisture te-and thus intensify

drought conditions (Zhang et al., 2019, Otkin et al., 2018). Moreover, vegetation over
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southern China is usually abundant and plants tend to suck more water from the soil
when-highduring high temperatures, -eceu+-causing evapotranspiration increase and

soil moisture decline (Li et al., 2020c; Wang et al., 2016). As a conseguence, theMere

surface sensible heat fluxes-flux increases, leading to are-thus-transferred-to-the-near-

surface-atmesphere-to-furtherinerease-increasing air temperatures (Mo and Lettenmaier,

2015). These land-atmosphere interactions altegether-cause the Bowen ratio to increase

(Otkin et al., 2013, 2018), creating a-favorable conditions for short-term concurrence

of droughts and hetsheatwaves. Therefore, compound dry-hot events with high severity

and intensity is-are more likely to occur in humid regions—with-higher-severity—and

Figure 12 illustrates how well compound event characteristics are captured by

climate models. On average, climate models overestimate compound dry-hot frequency

in particular for western China, suggesting frequencies that are up to 6 times higher

than observations (Fig. 12a). In the east, biases are much small but still show an

overestimation. Climate models also generally over—estimate the duration of and

severity of compound dry-hot events, in particular in the west of China, whereas both

characteristics are better captured in the east (Fig. 12b, c). Relatively small biases are

present for the intensity of compound dry-hot event (Fig. 12d). All in all, the climate

models potentially strongly overestimate the occurrence of compound dry-hot events

in China, especially for western region, which is likely related to the climate models

overestimating the strength of the dependence between SAPEI and STI (Figure S9).
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Given the identified biases in climate models in the dependence between SAPEI

and STI, multivariate bias adjustment methods are required to reliably estimate future

climate risk of compound events in China (Francois et al., 2020). —lnereasing
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conseguently—affects—associated—risks—FheFurthermore, this dependence may also

change under warmer conditions. For instance, the {negative} correlation between

seasonal mean summer temperature and precipitation is projected to intensify in many

land regions, which could lead_to more frequent dry and hot extremes in addition to

long-term trends in temperature and precipitation irg-te-morefreguent-extremely-dry
and-het-cenditions-(Kirono et al., 2017; Zscheischler and Seneviratne, 2047a2017b);

4 Conclusions

Under-glebal-warming;Short-term-the compound dry-ard--hot events tends-te-be

moere—fregquent—and-shert-lived(ie—days—orweeks)can cause substantial damage.

Correspondingly, a compound drought and heat index should be able to monitor such
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event at sub-monthly scales in order to timely reflect the evolution of concurrent dry

and hot conditions-evelution. In this study, we developed a multiple time scale (e.g., 3-,
6-, 9, and 12- month) compound drought and heat index, termed as SCDHI, to monitor
both short-time-term (e.g., days or weeks) and long-time-term (e.g., months) compound
events. This index was established based on the-a daily drought index (-e-SAPEI) and
the Standardized Temperature Index (STI) using a joint probability distribution method.
Using the SCDHI, we then-guantitively-investigated-thequantified key characteristics
(i.e., frequency, intensity, severity, and duration) of the-compound dry-hot events in

China in the historical period (1961-2018), and revealed-investigated how well climate

models simulate these characteristics.-how-they-would-change-in-thefuttre-(2050-2100)

-The main

conclusions of this study are presented as follows: The SCDHI can weH-monitor

simultaneous dries-dry and hots conditions detected-by-SAPEanrd-STHduring historic

high-impact events. Hereby, theFhe monthly SCDHI can provide an overall situation

of the compound dry and hot conditions, but-whereas the sub-monthly SCDHI can well
capture fluctuation of simultaneous dries-droughts and hets-heatwaves within a month.

SCDHI is further a good indicator of compound dry and hot conditions on vegetation

health.

case study—of-the China, the-seuthern—Chinathe south suffered mere—freguent-the

compound dry-hot events most frequently, with generally higher severity and intensity.

On average, Fhe—ecompound dry-hot events mairhy—exceeding the light category

32



773

774

775

776

7

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

typically lasted for twenty-20five to thirty-five35 days-+r-China. Climate models tend

to e-overestimate the frequency, duration and severity of compound dry-hot events

particularly in the western region of China. In conclusion, the SCDHI offers a new tool

to guantitatively measure the characteristics of compound dry-hot events and can

provide detailed information on the initiation, development and decay of such events

for decision-makers and stakeholders. —~witHintensify-throughout the China-tnthe future:
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1139  SPEI/PDSI, and between daily SAPEI and soil moisture (SM), and (b) The density plot
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1141  SAPEI is computed by averaging the daily values in each month.
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intensity (d) are the average values of all events. White color indicates there are no
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Figure 11 The same as Fiqure 10, but using the threshold of -1.3 in run theory. The

definition of the frequency, duration, severity, and intensity are the same as Figure 10.

White color indicates there are no events.
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