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Abstract. Many European countries rely on groundwater for public and industrial water supply. Due to a scarcity of near real-

time water table depth (wtd) observations, establishing a spatially consistent groundwater monitoring system at the continental 

scale is a challenge. Hence, it is necessary to develop alternative methods to estimate wtd anomalies (wtda) using other 

hydrometeorological observations routinely available near real-time. In this work, we explore the potential of Long Short-10 

Term Memory (LSTM) networks to produce monthly wtda, using monthly precipitation anomalies (pra) as input. LSTM 

networks are a special category of artificial neural networks, useful in detecting a long-term dependency within sequences, in 

our case time series, which is expected in the relationship between pra and wtda. In the proposed methodology, spatiotemporally 

continuous data were obtained from daily terrestrial simulations of the Terrestrial Systems Modeling Platform (TSMP) over 

Europe (hereafter termed the TSMP-G2A data set) with a spatial resolution of 0.11°, ranging from the year 1996 to 2016. The 15 

data were separated into a training set (1996-2012), a validation set (2013-2014), and a test set (2015-2016) to establish local 

networks at selected pixels across Europe. The modeled wtda maps from LSTM networks agreed well with TSMP-G2A wtda 

maps on spatially distributed dry and wet events in 2003 and 2015 constituting drought years over Europe. Moreover, we 

categorized test performances of the networks based on intervals of yearly averaged wtd, evapotranspiration (ET), soil moisture 

(θ), snow water equivalent (Sw), and soil type (St) and dominant plant functional type (PFT). Superior test performance was 20 

found at the pixels with wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and Sw < 10 mm, revealing a significant impact of the local 

factors on the ability of the networks to process information. Furthermore, results of cross-wavelet transform (XWT) showed 

a change in the temporal pattern between TSMP-G2A pra and wtda at some selected pixels, which can be a reason for undesired 

network behavior. Our results demonstrate that LSTM networks are useful to produce high-quality wtda based on other 

hydrometeorological data measured and predicted at large scales, such as pra. This contribution may facilitate the establishment 25 

of an effective groundwater monitoring system over Europe relevant to water management. 

1 Introduction 

Groundwater is an essential natural resource, accounting for about 30% of the fresh water on Earth (Perlman, 2013) and 

sustains various domestic, agricultural, industrial and environmental uses, due to its widespread availability and limited 
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vulnerability to pollution (Naghibi et al., 2016; Tian et al., 2016). According to the report of the European Environment Agency 30 

(EEA) in 1999, groundwater comprises over 50% of public water supply in most European countries. Groundwater systems 

are dynamic and adapt continuously to natural and anthropogenic stresses (Kenda et al., 2018). However, they are affected in 

recent years as a consequence of frequent extreme weather conditions, e.g., severe droughts and human overexploitation. Thus, 

effective and efficient groundwater management, especially under drought conditions, is required at the European scale to 

maintain environmental and socioeconomic sustainability. 35 

Drought is characterized as the costliest natural hazard worldwide, resulting in significant societal, economic, and ecological 

impacts (Wilhite, 2000). The report of the EEA in 2016 demonstrated that drought had become a recurrent feature of the 

European climate, and more droughts have occurred in some European countries than in the past, and their severity has also 

been increased. Recent severe heatwave events in Europe occurred in 2003, 2015, and 2018, which lead to several drought 

events covering most of the European continent (Norris, 2018). Groundwater drought is a specific type of drought, impacting 40 

several important drought-sensitive sectors such as drinking water supply and irrigation (Van Loon et al., 2017). Hence, 

groundwater monitoring is ultimately indispensable over the European continent.  

Effective groundwater monitoring requires accurate information on groundwater dynamics in space and time. One crucial 

variable for characterizing groundwater dynamics is water table depth anomaly (wtda), reflecting anomalies in groundwater 

storage (Zhao et al., 2020), which is a key variable in groundwater drought analysis. The wtda is the deviation of the wtd value 45 

from the climatological average for a specified time period normalized by the climatological standard deviation, and can serve 

as a measure of groundwater drought. Commonly, wtd observations are measured in-situ in observation wells. However, to 

date, there is still a challenge to obtain near real-time spatially continuous wtd observations over Europe (Van Loon et al., 

2017; Bloomfield et al., 2018), and available data sets often suffer from uncertainties originating from unknown well-bore and 

well installation specifics. Therefore, an alternative (indirect) method is needed for producing reliable area-wide wtda 50 

information over Europe. 

Indirect methods rely on measurements of one or more hydrometeorological variables related to wtd via physical processes 

in the water cycle, such as infiltration and percolation. Precipitation anomaly (pra) is the most common variable used to model 

wtda, of which calculation method is the same as wtda but based on precipitation (P). P is connected with groundwater via the 

process of percolation through soil layers. Thus, depending on evapotranspiration (ET) and the thickness of the vadose zone, 55 

a lag exists in the response of groundwater to P. A considerable number of studies linked the accumulation of pra over extended 

time scales (e.g., 6 or 12 months) to wtda, often applying the Standardized Precipitation Index (SPI) and the Standardized 

Precipitation Evapotranspiration Index (SPEI) to represent wtda (e.g., SPI: McKee et al., 1993; Thomas et al., 2015; SPEI: 

Vicente-Serrano et al., 2010; Van Loon et al., 2017). In these studies, equal weights were assigned to the meteorological input 

in the derivation of the drought indices.   60 

As an alternative, artificial neural networks (ANNs) are able to account for non-uniformly weighted, temporally lagged 

contributions of pra to wtda, potentially providing more robust prediction models. ANNs are one of the most widely used 

machine learning methods that have been inspired by biological neural systems, having many interconnected information-
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processing units (i.e., neurons) (Haykin, 2009; Ma et al., 2019). ANNs adapt learnable parameters (i.e., weights and biases) in 

the links between neurons to achieve an appropriate input-output mapping based on observed data, also for complex nonlinear 65 

relationships. ANNs are not easily affected by input noise and able to readjust their parameters when new information is 

included. More importantly, compared to physically-based models, they necessitate little background knowledge, reducing the 

requirements for human involvement and expertise, and thus, enabling rapid hypothesis testing (Govindaraju, 2000; Shen, 

2018; Sun and Scanlon, 2019).  

Feedforward networks (FFNNs, also termed multilayer perceptrons in some literature) and their variants are commonly used 70 

ANNs for groundwater level modeling in previous studies, e.g., Yang et al. (1997), Nayak et al. (2006), Adamowski and Chan 

(2011), Yoon et al. (2011), Gong et al. (2015), Mohanty et al. (2015), Sun et al. (2016). One major drawback of FFNNs is that 

they cannot preserve previous information, resulting in inefficiencies in handling sequential data (J. Zhang et al., 2018; 

Supreetha et al., 2020). To leverage the performance of FFNNs, the delay time in the network response needs to be estimated 

in advance. 75 

Recurrent neural networks (RNNs) are a special type of ANNs mainly designed for sequential data analysis. Through loops 

in their hidden layers, the information generated in the past flows back to neurons as the input of new computing processes 

(Karim and Rivera, 1992). Due to the ability to store information traveling through, RNNs can avoid the aforementioned 

preprocessing step of FFNNs and thereby can more efficiently solve sequential data problems. However, standard RNNs suffer 

from the exploding and vanishing gradient issues and often fail to exploit long-term dependencies between sequences, which 80 

is expected in the response of wtda to pra. These issues can be overcome by a variant of standard RNNs named Long Short-

Term Memory (LSTM) networks (Supreetha et al., 2020). Although RNNs have been employed extensively in other science 

fields, particularly natural language processing (D. Zhang et al., 2018), their application in hydrology is still in its infancy and 

has only recently received increasing attention (e.g., Kratzert et al., 2018; Shen, 2018; J. Zhang et al., 2018; Le et al., 2019; 

Sahoo et al., 2019). Thus, limited studies have been conducted to estimate groundwater fluctuations using RNNs, especially 85 

LSTM networks.  

The consistency of the temporal pattern between input and target variables is a prerequisite for the good performance of 

ANNs, including LSTM networks. Cross-wavelet transform (XWT) is a useful tool to visualize the pattern changes between 

input and target variables, aiming to extract similarities of two time series in time and frequency. The technique has been 

applied for time-frequency analysis in many publications, e.g., Adamowski (2008), Prokoph and El Bilali (2008) and Banerjee 90 

and Mitra (2014).  

In this study, we utilized spatiotemporally continuous pra and wtda from integrated hydrologic simulation results of the 

Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed TSMP-G2A data set, introduced in Sect. 2.4) 

in combination with LSTM networks to capture the time-varying and time-lagged relationship between pra and wtda in order 

to obtain reliable prediction models at the individual pixel level. The impact of local factors on the network behavior was also 95 

investigated, and the local factors studied were yearly averaged wtd, ET, soil moisture (θ), snow water equivalent (Sw), and 
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soil type (St) and dominant plant functional type (PFT). In addition, we implemented XWT on both TSMP-G2A pra and wtda 

series for time-frequency analysis to gain insight into the internal characteristics of the obtained networks. 

This paper is organized as follows: in Sect. 2 (Methodology), we first present a conceptual model of groundwater balance 

to theoretically derive the relationship between pra and wtda and then briefly introduce the architecture of the proposed LSTM 100 

networks, continuous and cross-wavelet transform. This is then followed by detailed information of our study area and data 

set as well as a generic workflow to construct local LSTM networks at selected pixels over Europe. Section 3 (Results and 

discussion) shows reproduced wtda maps for groundwater drought analysis, discusses the impact of local factors on the network 

behaviors and investigates the network performances at the local scale, before completing the paper with Sect. 4 (Summary 

and conclusions). 105 

2 Methodology 

LSTM networks were applied to estimate monthly wtda over the European continent, using monthly pra as input. We 

constructed the networks at the individual pixels and analyzed temporal patterns between TSMP-G2A pra and wtda using 

XWT. In this section, we briefly recall the conceptual model of groundwater balance, introduce the principle of LSTM 

networks and the application of XWT, and describe the study area and data set, before presenting a universal workflow to 110 

establish the proposed LSTM networks locally at selected pixels.  

2.1 Conceptual model of groundwater balance 

The subsurface water balance can be described by a control volume that contains the vadose zone, and an unconfined aquifer 

closed at the bottom (Fig. 1). Note, areas with surface water are not taken into account in this study, and the impact of 

anthropogenic activities such as groundwater abstraction is neglected. Flows in and out of the control volume are P and ET 115 

across the land surface and lateral flows in the subsurface. These flows are balanced by changes in the water stored in the 

vadose zone and the unconfined aquifer.  
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Figure 1: Conceptual model of groundwater balance over a control volume (after Maxwell, 2010). 𝑷 is precipitation; 𝑬𝑻 is actual 

evapotranspiration; 𝑸𝒈 is the lateral groundwater flow; 𝑺𝒗𝒛 and 𝑺𝒖𝒂 are the water storages in the vadose zone and the unconfined 120 

aquifer, respectively; and 𝒕 is time.  

The groundwater balance equation for the conceptual model is given in Eq. (1): 

𝑑(𝑆𝑣𝑧)/𝑑𝑡 + 𝑑(𝑆𝑢𝑎)/𝑑𝑡 = 𝑃 − 𝐸𝑇 + 𝑸𝒈 .                                                     (1) 

Rearranging Eq. (1), will result in Eq. (2) as follows: 

𝑑(𝑆𝑢𝑎)/𝑑𝑡 = 𝑃 − 𝐸𝑇 + 𝑸𝒈 − 𝑑(𝑆𝑣𝑧)/𝑑𝑡 ,                                                                                (2) 125 

where, 𝑃 is precipitation [LT-1]; and 𝐸𝑇 is actual evapotranspiration [LT-1]; and 𝑸𝒈 is the lateral groundwater flow [LT-1]; and 

𝑆𝑣𝑧  and 𝑆𝑢𝑎 are the water storages in the vadose zone [L] and the unconfined aquifer [L], respectively; and 𝑡 is time [T].  

The term on the left-hand side and the first term on the right-hand side in Eq. (2) indicate an explicit relationship between 

the fluctuation of Sua and P, providing the theoretical basis of this study. In the case of large continental watersheds (i.e., 𝑸𝒈 =

0), the difference between P and ET is equal to the total variations in 𝑆𝑣𝑧 and 𝑆𝑢𝑎. Note, we explicitly separated the water 130 

storage term of the vadose zone from the unconfined aquifer to highlight the transient impact of unsaturated storage on the 

relationship between  𝑑(𝑆𝑢𝑎)/𝑑𝑡 and (P-ET). 

2.2 Long Short-Term Memory networks 

In this study, we employed LSTM networks having the same architecture of hidden neurons as Gers et al. (2000), which is 

shown in Fig. 2. As a category of RNNs, LSTM networks have loops in their hidden layers, facilitating hidden neurons to 135 

weigh not only new inputs but also earlier outputs internally for predictions. Hence, similar to other RNNs, they are considered 

to have memory. Compared with standard RNNs, LSTM networks add a constant error carousel (CEC) and three gates that 

are the input, forget and output gates in their hidden neurons (see Fig. 2), in order to overcome the exploding and vanishing 

gradient issues. For a detailed description of the functions of these components, the reader is referred to Hochreiter and 

Schmidhuber (1997), and Gers et al. (2000). Benefiting from the interaction of these components, LSTM networks show great 140 

promise in studying long-term relationships between time series. They have the ability to capture dependencies over 1000 time 

steps, outperforming standard RNNs whose upper boundary of reliable performances is only 10 time steps (Hochreiter and 

Schmidhuber, 1997; Kratzert et al., 2018). The response of wtda to pra is expected to exhibit a long time lag, especially in case 

of deep aquifers, and thus LSTM networks are an appropriate type of networks to use here. In addition, compared with 

traditional physically-based models, the proposed LSTM networks require less computational time and background knowledge 145 

to perform the simulations. Moreover, when the proposed LSTM networks are available, we only need the pra data to estimate 

wtda, which are available from bias corrected operational forecasts and reanalysis data sets. 
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Figure 2: One-hidden-layer LSTM network with one hidden neuron. The green lines indicate the entry points of new inputs into the 

hidden neuron. The blue lines show the entry points of previous outputs into the hidden neuron, where 𝒘∗ is the weight on a linkage; 150 
𝒉(∗) is the output of the hidden neuron; 𝒙(𝒕) is the input at the time step t; and 𝒄(∗) is the cell state of the constant error carousel 

(CEC). 𝝈 represents a sigmoid function of a gate, and tanh is a hyperbolic tangent function. 

 

The procedure for processing inputs in hidden neurons of LSTM networks are as follows (Olah, 2015; Ma et al., 2019): 1) 

filter the information used for prediction from new inputs based on the result of the input gate; 2) filter the information to 155 

remember from the old CEC state according to the output of the forget gate; 3) update the CEC state using the results from the 

previous two steps; 4) compute outputs of hidden neurons from the new CEC state and the results given by the output gate. 

Figure 2 illustrates a one-hidden-layer LSTM network containing only one hidden neuron; the pseudocode is presented in 

Appendix A to detail how data is transferred in the given LSTM network. Owing to limited data available at each pixel (i.e., a 

total of 252 time steps), we built small LSTM networks at the local scale, having one input layer, one hidden layer, and one 160 

output layer. The network receives monthly pra from the input layer, processes it on the hidden layer, and finally generates 

monthly wtda from the output layer. The numbers of input and output neurons are determined by how many input and output 

variables are used in the derivation of the network. In the constructed LSTM networks, only one neuron is located on either 

the input or output layer, as the number of input or output variables is one. Thus, the complexity of the network only depends 

on the number of hidden neurons and, therefore, can vary by changing the number of hidden neurons. The architecture of a 165 

network plays an important role in its behavior of processing new data, and it can be a double-edged sword to apply a network 
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with considerable hidden neurons. On the one hand, the larger we allow a network to grow, the better it can learn from a given 

data set. On the other hand, a complex network easily captures unwanted patterns when it learns too much from the given data 

set, eliminating its ability to deal with previously unobserved information (Dawson and Wilby, 2001; Müller and Guido, 2017). 

This phenomenon is termed overfitting. Hence, it is crucial to identify the optimal number of hidden neurons and specify the 170 

appropriate structure of the network, which is the focus of hyperparameter tuning described in Sect. 2.5. 

2.3 Continuous and cross-wavelet transform 

Continuous wavelet transform (CWT) is a type of wavelet transform useful for feature extraction (Grinsted et al., 2004). Given 

a mother wavelet 𝜓0(𝜂) , 𝜂  being a dimensionless time parameter, the CWT of a time series 𝑥𝑛0
 is formulated as the 

convolution of 𝑥𝑛0
 and a scaled and translated form of 𝜓0(𝜂) (Torrence and Compo, 1998): 175 

𝑊(𝑠, 𝑛) = ∑ 𝑥𝑛0
𝜓∗[(𝑛0 − 𝑛)𝛿𝑡 𝑠⁄ ]𝑁−1

𝑛0=0  ,                 (3) 

where, the (*) signifies the complex conjugate; 𝛿𝑡 is the time step of 𝑥𝑛0
; N is the total number of 𝛿𝑡 in 𝑥𝑛0

; 𝑠 is the wavelet 

scale; and n is the localized time index along which 𝜓0(𝜂) is translated. Here, the wavelet power is defined as |𝑊(𝑠, 𝑛)|2.  

The mother wavelet must be zero-mean and localized in the time and frequency domains (Torrence and Compo, 1998). In 

this study, we applied the Morlet wavelet as the mother wavelet, defined as: 180 

𝜓0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2 ,                  (4) 

where, 𝜔0 is the dimensionless frequency, set as 6 here to acquire a good balance between time and frequency localization 

(Grinsted et al., 2004). 

XWT is a method to locate common high power in the wavelet transforms of two time series. The XWT of two time series 

𝑥𝑛0
 and 𝑦𝑛0

 can be computed using (Grinsted et al., 2004): 185 

𝑊𝑥𝑦(𝑠, 𝑛) = 𝑊𝑥(𝑠, 𝑛)𝑊𝑦
∗(𝑠, 𝑛) ,                  (5) 

where, 𝑊𝑥(𝑠, 𝑛) and 𝑊𝑦(𝑠, 𝑛) are the CWT of the time series 𝑥𝑛0
 and 𝑦𝑛0

, respectively. The cross-wavelet power is calculated 

as |𝑊𝑥𝑦(𝑠, 𝑛)|. However, directly using the cross-wavelet power gives biased results of the XWT analysis, so here we applied 

|𝑊𝑥𝑦(𝑠, 𝑛)| 𝑠⁄  proposed by Veleda et al. (2012) for correction. For detailed descriptions about CWT and XWT, the reader is 

referred to Torrence and Compo (1998), Grinsted et al. (2004), Prokoph and El Bilali (2008), and Veleda et al. (2012). 190 

In this study, XWT is used as an independent and additional analysis tool to visualize the pattern in the pra-wtda relationship 

at the individual pixel level in time and frequency. In the XWT analyses, we focus on common, localized high-power frequency 

modes of 𝜓0(𝜂) in pra and wtda time series and dynamics of the modes over time. Using the XWT analysis, we expect to 

clarify whether a changing pattern exists in the pra-wtda relationship during the study period and if it affects the network 

behavior. Moreover, by linking the results of the XWT analysis with the network outputs, we explore the impact of the amount 195 

and range of the frequency modes on the LSTM network performance in order to obtain insight into the internal operations of 

LSTM networks.  
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2.4 Study area and data set 

We constructed the LSTM networks at individual pixels over eight hydrometeorologically different regions within Europe 

(Fig. 3), which are known as the PRUDENCE regions (Christensen and Christensen, 2007). Table 1 lists region names and 200 

abbreviations, coordinates, and climatologic information. The climatology is represented by regional averages and standard 

deviations of yearly averaged data derived from the TSMP-G2A data set (Furusho-Percot et al., 2019) from the years 1996 to 

2016, except for Sw of which data are only available from the years 2003 to 2010. The TSMP-G2A data set consists of daily 

averaged simulation results from TSMP over Europe, using the grid definition from the COordinated Regional Downscaling 

Experiment (CORDEX) framework with a spatial resolution of 0.11° (12.5 km, EUR-11). TSMP is a fully coupled atmosphere-205 

land-surface-subsurface modeling system, giving a physically consistent representation of the terrestrial water and energy 

cycle from the groundwater via the land surface to the top of the atmosphere, which is unique (Keune et al., 2016; Furusho-

Percot et al., 2019). The current version (version 1.1) of TSMP consists of the numerical weather prediction model COnsortium 

for Small Scale Modeling (COSMO) version 5.01, the land surface model National Center for Atmospheric Research 

Community Land Model (CLM) version 3.5 and the 3D surface-subsurface hydrologic model Parallel Flow (ParFlow) version 210 

3.2, which are externally coupled by the Ocean Atmosphere Sea Ice Soil (OASIS3) Model Coupling Toolkit (MCT) coupler 

(Gasper et al., 2014; Shrestha et al., 2014). TSMP has been successfully applied in many studies to simulate the terrestrial 

hydrological processes, e.g., Shrestha et al.  (2014), Kurtz et al. (2016), Sulis et al. (2018), and Keune et al. (2019). Furusho-

Percot et al. (2019) showed good agreement of the hydrometeorological variability between TSMP-G2A and observed data at 

the regional scale in the PRUDENCE regions. They compared anomalies of temperature, P, and total column water storage 215 

from the TSMP-G2A data set with commonly used reference observational datasets (i.e., the 0.25 degrees gridded European 

Climate Assessment and Dataset, E-OBS v19, ECA&D, and observations from the Gravity Recovery and Climate Experiment, 

GRACE), resulting in Pearson correlation coefficients (R) ranging from 0.73 to 0.94 for temperature anomalies and from 0.62 

to 0.88 for pra. Similar results were obtained by Hartick et al. (2021), who compared anomalies of total column water storage 

from the TSMP-G2A data set with the novel GRACE‐REC data set and obtained R from 0.69 to 0.89 in the different 220 

PRUDENCE regions. For details of the TSMP-G2A data set, the reader is referred to Furusho-Percot et al. (2019). 
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Figure 3: TSMP-G2A wtd [m] climatology over the European continent for the time period from 1996 to 2016. Areas bounded by 

the thick black lines show the PRUDENCE regions (i.e., SC: Scandinavia; BI: British Isles; ME: Mid-Europe; EA: Eastern Europe; 

FR: France; AL: Alps; IB: Iberian Peninsula; MD: Mediterranean). 225 

As shown by the averages in Table 1, P is heterogeneously distributed over the PRUDENCE regions, with the highest rainfall 

in AL (1494 mm) and the lowest in EA (776 mm). Most regional average wtd range from 2 m to 5 m, other than IB and MD 

(having a larger average wtd > 6 m). Within this range, AL has a relatively high average wtd (4.14 m) due to its strong relief. 

Higher ET is naturally observed in more arid regions, e.g., the highest regional average ET (518 mm) is recorded in MD. No 

significant difference is observed in regional average θ over PRUDENCE regions, and the minimal regional average θ is 230 

observed in IB (0.29 m3m-3) and MD (0.30 m3m-3).  For Sw, large values (> 60 mm) are simulated in SC and AL, while values 

below 10 mm are recorded in the other regions.  

 

Table 1: Overview of the PRUDENCE regions, including region names and abbreviations, coordinates, and climatologic information 

extracted from the TSMP-G2A data set (expressed as average ± standard deviation). 235 

Area 

Coordinate 

(lon_west, lon_east, 

lat_south, lat_north) 

Regional 

precipitation, P 

[mm] 

Regional 

water table 

depth, wtd 

[m] 

Regional 

evapotranspiration

, ET  

[mm] 

Regional 

soil 

moisture, θ 

[m3m-3]  

Regional snow 

water 

equivalent, Sw 

[mm] 

(SC) Scandinavia (5, 30, 55, 70) 1005 ± 451 2.43 ± 5.83 283 ± 129 0.32 ± 0.11 79.80 ± 109.17 

(BI) British Isles (-10, 2, 50, 59) 1119 ± 308 2.29 ± 6.11 395 ± 130 0.36 ± 0.10 0.82 ± 2.19 

(ME) Mid-Europe (2, 16, 48, 55) 885 ± 192 2.77 ± 6.87 444 ± 141 0.35 ± 0.10 2.44 ± 5.49 

(EA) Eastern Europe (16, 30, 44, 55) 776 ± 185 3.08 ± 7.37 470 ± 164 0.33 ± 0.10 9.50 ± 13.07 

(FR) France (-5, 5, 44, 50) 897 ± 169 2.95 ± 7.04 485 ± 164 0.35 ± 0.10 0.31 ± 1.12 
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(AL) Alps (5, 15, 44, 48) 1494 ± 638 4.14 ± 9.16 499 ± 185 0.35 ± 0.10 65.57 ± 127.23 

(IB) Iberian Peninsula (-10, 3, 36, 44) 841 ± 371 6.62 ± 10.61 495 ± 233 0.29 ± 0.11 3.38 ± 28.18 

(MD) Mediterranean (3, 25, 36, 44) 894 ± 338 6.48 ± 10.76 518 ± 229 0.30 ± 0.10 3.59 ± 15.22 

 

We utilized the TSMP-G2A data set to compute pra and wtda (Eqs. (6)-(7)) at the individual pixel level over Europe, which 

are the input and output data of the proposed LSTM networks. The associated average and standard deviation values are based 

on the training set (i.e., the data within the years 1996 to 2012, described in Section 2.5) to guarantee that no future information 

leaks into the networks in the training process.  240 

𝑝𝑟𝑎 = (𝑝𝑟𝑚 − 𝑝𝑟𝑎𝑣)/𝑝𝑟𝑠𝑑 ,                                              (6)  

where, 𝑝𝑟𝑚 is monthly sum P calculated from the TSMP-G2A data set; 𝑝𝑟𝑎𝑣  is the climatological average of 𝑝𝑟𝑚 (i.e., averages 

of 𝑝𝑟𝑚 in January, February, …, December); 𝑝𝑟𝑠𝑑 is the climatological standard deviation of 𝑝𝑟𝑚. 

𝑤𝑡𝑑𝑎 = (𝑤𝑡𝑑𝑚 − 𝑤𝑡𝑑𝑎𝑣)/𝑤𝑡𝑑𝑠𝑑 ,                                             (7) 

where, 𝑤𝑡𝑑𝑚 is monthly average wtd derived from the TSMP-G2A data set; 𝑤𝑡𝑑𝑎𝑣  is the climatological average of 𝑤𝑡𝑑𝑚; 245 

𝑤𝑡𝑑𝑠𝑑  is the climatological standard deviation of 𝑤𝑡𝑑𝑚. 

The wtda is a measure of groundwater drought. Here we define wtda ≥ 2 corresponding to extreme drought, 1.5 ≤ wtda < 2 

corresponding to severe drought, 1 ≤ wtda < 1.5 corresponding to moderate drought, 0 ≤ wtda < 1 corresponding to minor 

drought and wtda < 0 corresponding to no drought, following McKee et al. (1993). 

To identify the effect of local factors on the network behaviors, we categorized the network performances based on different 250 

intervals of yearly averaged wtd, ET, θ, Sw, and St and dominant PFT. The data of θ were calculated based on the information 

at a depth from 0 to 5 cm below the land surface. It is important to note that the data used in this study cover the years 1996 to 

2016 (except for Sw data only available from 2003 to 2010), to ensure that spinup effects do not impact the analyses (Furusho-

Percot et al., 2019). 

2.5 Experiment design 255 

LSTM networks are employed here to detect connections between pra and wtda from the pan-European simulation results and 

utilize pra as input to predict wtda. At each time step, one new input enters a network, together with information stored in the 

network’s memory (i.e., useful messages from inputs in the past), to generate outputs. Therefore, LSTM networks have the 

ability to handle the lagged response of wtda to pra.  

Monthly anomaly time series at individual pixels were divided into three parts for network training (01/1996–12/2012), 260 

validation (01/2013–12/2014), and testing (01/2015–12/2016) containing about 80%, 10%, and 10% of the total data, 

respectively. In training, the network is fitted to a given training set by adjusting its weights and biases. The technique of 

adjusting network parameters is called an optimizer that minimizes a cost function at a certain learning rate (Govindaraju, 

2000). This study utilized a supervised training algorithm with a supplementary teacher signal (i.e., TSMP-G2A monthly wtda) 

to guide the training process, which is widely adopted in Hydroscience in case of e.g., stream stage modeling (Sung et al., 265 



11 

 

2017), stream discharge modeling (Zhang et al., 2015) and groundwater level modeling (Adamowski and Chan, 2011). One 

common challenge in the training process is overfitting. Validation is a process to address overfitting by comparing the network 

output with the teacher signal to obtain a validation loss (Govindaraju, 2000; Liong et al., 2000). Provided that the network 

has gained sufficient knowledge from the training set, training ceases when the number of epochs (i.e., an iteration when the 

whole training set travels through the network forward and backward once) is ≥ 50 and the validation loss starts increasing. 270 

The strategy to stop training based on validation losses is termed early stopping. 

Moreover, the validation losses were applied to tune hyperparameters of the LSTM networks whose architecture has been 

introduced in Sect. 2.2. To simplify the procedure of hyperparameter tuning, we only focused on the optimization of the number 

of hidden neurons in this study and set other hyperparameters constant (Table 2). The networks with hidden neurons from 1 to 

100 were trained at individual pixels, and the best three of them were selected for testing based on the validation losses. 275 

 

Table 2: Hyperparameter settings of the proposed LSTM networks. 

Hyperparameter Value or method 

Number of input, hidden, and output layer(s) (1, 1, 1) 

Number of input, hidden and output neuron(s) (1, 1-100, 1) 

Initial weights and biases of all neurons U(-0.5, 0.5)* 

Initial cell states of LSTM neurons 0 

Optimizer, learning rate  RMSprop (Hinton et al., n.d.), 0.001 

Loss function Mean Square Error (MSE) 

* U(-0.5, 0.5):  uniform distribution bounded by -0.5 and 0.5. 

 

Finally, during testing, the optimally trained networks were provided with a previously unknown data set, originating from 

the same source as the training set. The difference between generated and target values during testing is called the 280 

generalization error, representing the ability of a network to perform on previously unobserved data. The average of the three 

optimal network results was utilized for evaluation in order to moderately eliminate individual deficiencies of the selected 

networks, thereby improving the quality of the final results (Goodfellow et al., 2017; Brownlee, 2018). The metrics to assess 

network performance in this study are the root mean square error (RMSE), the coefficient of determination (R2) and the bias 

from R (α) as shown in Eqs. (8)-(10), respectively. α indicates systematic additive and multiplicative biases in the generated 285 

values, having a value between 0 and 1, where α = 1 means no bias (Duveiller et al., 2016). 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑔𝑒𝑛𝑒)
2𝑁

𝑖=1 /𝑁 ,                 (8) 

𝑅2 = 1 − ∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑔𝑒𝑛𝑒)
2𝑁

𝑖=1 / ∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅)2𝑁
𝑖=1 ,                (9) 

𝛼 = 2  [𝜎𝑦𝑒𝑥𝑝
𝜎𝑦𝑔𝑒𝑛𝑒

⁄ + 𝜎𝑦𝑔𝑒𝑛𝑒
𝜎𝑦𝑒𝑥𝑝

⁄ + (𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅ − 𝑦𝑔𝑒𝑛𝑒̅̅ ̅̅ ̅̅ ̅)
2

(𝜎𝑦𝑒𝑥𝑝
𝜎𝑦𝑔𝑒𝑛𝑒

)⁄ ]⁄ ,                                       (10) 
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where, 𝑦𝑒𝑥𝑝, 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅, 𝜎𝑦𝑒𝑥𝑝
are the expected value, the average of the expected values, and the standard deviation of the expected 290 

values, respectively; 𝑦𝑔𝑒𝑛𝑒 , 𝑦𝑔𝑒𝑛𝑒̅̅ ̅̅ ̅̅ ̅, 𝜎𝑦𝑔𝑒𝑛𝑒
 are the generated value, the average of the generated values, and the standard 

deviation of the generated values, respectively; 𝑁 is the number of time steps in the given time series. 

Repeating the above network training, validation, and testing processes (right panel of Fig. 4), we constructed the proposed 

LSTM networks locally at ≤ 200 pixels randomly selected in each group in order to save computing time. As described in Sect. 

2.4, climatologic differences occur not only between different PRUDENCE regions but also at certain pixels in the same 295 

region, which potentially explains varying network performances at individual pixels. To analyze the network reaction to local 

factors, we categorized the pixels into groups based on various intervals of yearly averaged wtd, ET, θ, Sw, and St and dominant 

PFT (Table 3), and the analysis results will be presented in Sect. 3.2. Figure 4 gives a generic workflow of this study to 

establish the LSTM networks at the local scale and analyze their output. 

 300 

Figure 4: Workflow for LSTM network setup over the European CORDEX domain. The left section represents the overall processes 

of the network setup, whereas the right section shows how to apply LSTM networks at a selected pixel. The blue dashed lines with 

arrows indicate additional data transmission paths.  

 

 305 
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Table 3: Intervals of yearly averaged wtd, ET, θ, Sw, and St and dominant PFT for categorization. 

Yearly averaged 

water table 

depth, wtd  

[m] 

Yearly averaged 

evapotranspiration, 

ET  

[mm] 

Yearly averaged 

soil moisture, θ 

[m3m-3] 

Yearly 

averaged 

snow water 

equivalent, Sw 

[mm] 

Soil type, St  
Dominant plant functional type, 

PFT* 

1) 0.0–1.0; 

2) 1.0-2.0; 

3) 2.0-3.0; 

4) 3.0-4.0; 

5) 4.0-5.0; 

6) 5.0-6.0; 

7) 6.0-7.0; 

8) 7.0-8.0; 

9) 8.0-9.0; 

10) 9.0-10.0; 

11) 10.0-50.0. 

1) < 0.0; 

2) 0.0-100.0; 

3) 100.0-200.0; 

4) 200.0-300.0; 

5) 300.0-400.0; 

6) 400.0-500.0; 

7) 500.0-600.0; 

8) 600.0-700.0; 

9) 700.0-800.0; 

10) 800.0-900.0; 

11) 900.0-1000.0; 

12) 1000.0-1100.0. 

1) 0.0-0.05; 

2) 0.05-0.10; 

3) 0.10-0.15; 

4) 0.15-0.20; 

5) 0.20-0.25; 

6) 0.25-0.30; 

7) 0.30-0.35; 

8) 0.35-0.40; 

9) 0.40-0.45; 

10) 0.45-0.50. 

1)  ≤ 10.0 

2) > 10.0 

1) Sand; 

2) loamy sand; 

3) sandy loam; 

4) silt loam; 

5) silt; 

6) loam; 

7) sandy clay 

loam; 

8) silty clay 

loam; 

9) clay loam; 

10) sandy clay; 

11) silty clay; 

12) clay; 

13) organic 

material; 

14) water; 

15) bedrock; 

16) others. 

1) Needleleaf evergreen 

temperate tree; 

2) needleleaf evergreen boreal 

tree; 

3) needleleaf deciduous boreal 

tree; 

4) broadleaf evergreen tropical 

tree; 

5) broadleaf evergreen 

temperate tree; 

6) broadleaf deciduous tropical 

tree; 

7) broadleaf deciduous 

temperate tree; 

8) broadleaf deciduous boreal 

tree; 

9) broadleaf evergreen shrub; 

10) broadleaf deciduous 

temperate shrub; 

11) broadleaf deciduous boreal 

shrub; 

12) c3 arctic grass; 

13) c3 non-arctic grass; 

14) c4 grass; 

15) corn; 

16) wheat. 

*Dominant PFT: the PFT of which percentage is ≥ 50% at a pixel. 
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3 Results and discussion 310 

3.1 Water table depth anomaly maps in 2003 and 2015 reproduced by the LSTM network results 

We employed the outputs of the proposed LSTM networks to reproduce wtda over the European continent in 2003 and 2015, 

constituting drought years (Van Loon et al., 2017). Here, we displayed the wtda from the TSMP-G2A data set and the networks 

(hereafter called LSTM wtda) for August 2003 (in the training period, Fig. 5a) and August 2015 (in the testing period, Fig. 5b) 

with respect to strength. We focused on areas where wtda ≥ 1.5 (i.e., a strong drought) and studied the consistency between the 315 

TSMP-G2A and the LSTM wtda results on the distribution of groundwater drought. As the LSTM networks performed well at 

most pixels during the training period, the LSTM wtda map appears almost identical to the TSMP-G2A wtda map for August 

2003 (see Fig. 5a), showing severe groundwater drought in most parts of Europe, which is in good agreement with previous 

studies (Andersen et al., 2005; Van Loon et al., 2017). Moreover, in the simulations and LSTM results, there is increased 

groundwater storage over central Germany, central Britain, southeastern France, the west Iberian Peninsula, and several parts 320 

in Eastern Europe, illustrating the strong spatial heterogeneity of the anomalies, which is expected. In contrast, due to decreased 

network performance during testing, the LSTM wtda map shows less agreement with the TSMP-G2A wtda map for August 

2015 (see Fig. 5b) with respect to the severity of drought. Especially extremes in wet and dry anomalies (i.e., |wtda| ≥ 2) were 

underestimated, suggesting that the training set contains too little information on extreme events and, thus, is too short. Yet 

overall, visual inspection of Fig. 5b shows that the LSTM wtda map agrees well with the TSMP-G2A wtda map on the spatial 325 

distribution of dry and wet events. In both maps, we identified severe drought in Mid-Europe, Alps and northwest of Eastern 

Europe, lending confidence in the trained networks to predict wtda from pra information. Additional European wtda maps for 

the second half of 2003 and 2015 are shown in Appendix B, leading to similar conclusions regarding the ability of the LSTM 

results to reproduce TSMP-G2A wtda.  
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 330 

Figure 5: European wtda maps for (a) August 2003 (i.e., in the training period); (b) August 2015 (i.e., in the testing period), derived 

from the TSMP-G2A data set (left) and results from LSTM networks (right). 

3.2 Impact of local factors on the network performance 

In each PRUDENCE region, we computed averages and standard deviations of the test R2 scores and RMSEs for the categories 

based on different intervals (Table 3) of yearly averaged wtd, ET, θ, Sw, and St and dominant PFT (Fig. 6), to study dependents 335 

of the network test performances on different local factors. For statistical significance, we only considered categories with ≥ 

50 pixels. In addition, negative R2 values at the pixel level were set to zero in the calculation of averages and standard 

deviations. 
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Figure 6: Averages and standard deviations of the test R2 scores (left) and RMSEs (right) over the categorized results: yearly 340 
averaged (a) wtd; (b) ET; (c) θ; (d) Sw. The averages are indicated as dots, while the bars indicate standard deviations. The different 

colors reflect test results in different PRUDENCE regions.  

There was no significant influence of St and dominant PFT on the scores (not shown here). In general, the performance 

decreased with increasing yearly averaged wtd, which was manifested by decreasing average R2 scores and growing average 

RMSEs (Fig. 6a). This type of network behavior can be attributed to a stronger connection of groundwater to  P in shallow 345 

aquifers, which is intuitive. In contrast to the impact of yearly averaged wtd on the test performance, the performance was 

positively correlated to yearly averaged ET and θ. With increasing yearly averaged ET (Fig. 6b) or θ (Fig. 6c), there was an 
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increase of average R2 scores and a decrease of average RMSEs. We can explain this phenomenon by the overlap between 

low-wtd and high-ET (or high-θ) areas over Europe. We also discovered that yearly averaged Sw played an important role in 

the network test performance. In most PRUDENCE regions, the performance decreased in the case of increasing Sw, leading 350 

to smaller average R2 scores and larger average RMSEs presented in Fig. 6d. The reason is that snow accumulation resulted 

in complex feedback with groundwater processes that cannot be captured well by the networks without including additional 

input information. Overall, in the same region, most of the proposed LSTM networks achieved relatively good test performance 

at the pixels with yearly averaged wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and Sw < 10 mm, where a stronger relationship 

exists between pra and wtda. 355 

As mentioned in Sect. 2.4, we only used the training set to calculate the climatological average and standard deviation in 

order to prevent the networks from incorporating future information in the training process. However, some extreme values in 

the validation and test sets may exceed the range of the training set resulting in decreased validation and test performances, 

suggesting that a varying pattern may exist between pra and wtda over the study period (see discussion in Sect. 3.3). This can 

also be a potential reason for large standard deviations of the test RMSEs in Fig. 6. 360 

Figure 6 also reveals different regional network test performances. In the same interval of yearly averaged wtd, the difference 

in yearly average R2 scores between two PRUDENCE regions can be more than 40%. FR exhibits the overall best network 

performance during testing. As shown in Table 1, the regional average wtd, ET, θ and Sw of FR are 2.95 m (< 3 m), 485 mm 

(> 200 mm), 0.35 m3m-3 (> 0.15 m3m-3) and 0.31 mm (< 10 mm), respectively. Hence, there was a close connection between 

pra and wtda at most pixels in FR, resulting in good network test performance.  365 

To further analyze the network test performances in different PRUDENCE regions, Fig.7 and Table 4 provide test R2 scores 

over Europe and percentages of the selected pixels with test R2 ≥ 50%, respectively. FR outperformed the other regions on test 

R2 scores, which is consistent with the finding from Fig. 6. In BI, ME, EA and AL, the proposed LSTM networks behaved 

well during testing (i.e., having test R2 ≥ 50%) at more than 30% of the selected pixels (colored in blue in Fig. 7). However, 

we also found low percentages of the selected pixels with test R2 ≥ 50% in SC, IB and MD, which are 17.46%, 29.66% and 370 

27.72%, respectively. In Table 1, SC is characterized as the region with the largest regional average Sw (79.80 mm) and the 

smallest regional average ET (283 mm), and as shown in Fig. 6, the networks tended to perform poorly during testing in the 

areas with large Sw and small ET. The pixels in IB and MD (regional average wtd > 6 m) generally have larger wtd than the 

other regions, resulting in a more lagged and weaker connection between pra and wtda, which is intuitive. Therefore, the 

network behavior in IB and MD was relatively poor. 375 



18 

 

 

Figure 7: Map of test R2 scores achieved by the proposed LSTM networks in the PRUDENCE regions.   

 

Table 4: Percentages of the selected pixels with a test R2 score ≥ 50% in the PRUDENCE regions [%]. 

SC BI ME EA FR AL IB MD 

17.46 33.38 50.00 32.09 57.28 40.06 29.66 27.72 

 380 

We extended the scope of the analyses to the entire study period, and found that the performance of individual networks 

generally followed two combinations with respect to training and test scores that are: 

• C1: training R2 score ≥ 50%, test R2 score ≥50%; 

• C2: training R2 score ≥ 50%, test R2 score ≤ 0%. 

The data distribution in the training and test sets was expected to be analogous, and if the networks did not encounter 385 

overfitting during training, their test performance increased by the improvement of the training performance, and vice versa. 

C1 is the expected network behavior with both satisfactory training and test scores. C2 is an exception in which the networks 

that performed well on the training set failed to handle the test set. Significantly reduced test performance in C2 can be 

attributed to the hypothesis that the pattern between pra and wtda varied over the study period.   

Figure 8 shows percentages of the pixels where the network performance followed C1 (Fig. 8a) and C2 (Fig. 8b) in different 390 

PRUDENCE regions and intervals of wtd, ET, θ and Sw. For statistical significance, only the regions and the intervals of wtd, 

ET, θ and Sw with ≥ 50 selected pixels were considered. Here, we focused on the regions and the intervals with high percentages 

(> 30%, above black dashed lines in Fig. 8) to identify common hydrometeorological characteristics of a pixel where the 

network performance followed C1 or C2. For C1, high percentages were found in regions except for SC, IB and MD and in 

areas with wtd ≤ 3 m, ET ≥ 200 mm, θ ≤ 0.10 m3m-3 and θ ≥ 0.20 m3m-3, and Sw ≤ 10 mm, which are in good agreement with 395 
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our previous findings. In contrast, for C2, the percentages are high in SC, EA, IB and MD and in areas with wtd ≥ 2 m, ET ≤ 

300 mm, and 0.10 m3m-3 < θ ≤ 0.25 m3m-3. The distribution of C2 is not very sensitive to Sw, and the percentages are large in 

both areas with Sw ≤ 10 mm and Sw > 10 mm. Moreover, in areas with negative ET, there is no pixel where the network 

performances followed C1, and C2 is the dominant network performance combination. We explain negative ET by pronounced 

freezing and sublimation processes in these areas, which significantly affect the response of wtda to pra. 400 

 

Figure 8: Bar plots showing percentages of pixels where the network performance followed the combinations (a) C1; (b) C2 in 

different regions and intervals of yearly averaged wtd, ET, θ, Sw, from left to right, respectively. Black dashed lines indicate 

percentages equal to 30%. 

3.3 Cross-wavelet transform (XWT) analysis 405 

In the previous section, we posed the hypothesis that the temporal pattern between pra and wtda during training, validation, and 

testing was different at a number of pixels over the European continent. XWT was employed here for hypothesis testing at the 

individual, representative pixels (Table 5), which were randomly selected based on the hydrometeorological characteristics of 

C1 and C2 summarized in Fig. 8. XWT showed the time-frequency pattern in the pra and wtda time series derived from the 

TSMP-G2A data set (i.e., TSMP-G2A pra and wtda) at these pixels and highlighted the common high power of the frequency 410 

components in the time series (Fig. 9). The α values (Eq. (10)) of Pixel 1 were generally suggesting that smaller biases existed 

in the results of the LSTM networks. In addition, we found different α values for Pixel 2 with small biases in the training and 

large biases in the validation and testing.  

 

 415 
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Table 5: Pixel characteristics in the XWT analysis (Pixels 1-2). 

 
Performance 

combination 
Region 

Yearly 

averaged water 

table depth, 

wtd [m] 

Yearly averaged 

evapotranspiration, 

ET [mm] 

Yearly 

averaged soil 

moisture, θ 

[m3m-3] 

Yearly average 

snow water 

equivalent, Sw 

[mm] 

Pixel 1 C1 FR 1.38 422.91 0.28 0.0 

Pixel 2 C2 SC 5.19 -24.41 0.16 535.0 

 420 

 
Training R2 

[%] 

Training α  

[%] 

Validation R2 

[%] 

Validation α 

[%] 

Test R2  

[%] 

Test α 

 [%] 

Pixel 1 82.50 98.94 53.99 91.32 82.63 99.09 

Pixel 2 66.47 93.72 -34.74 34.82 -802.83 8.84 

 

Figure 9 shows the results of the XWT analyses of the selected pixels in combination with the corresponding TSMP-G2A 

pra and wtda time series. Inspecting the results of the XWT analyses (bottom panel of Fig. 9), the concentration period of power 

was inconsistent in the area without edge effects (i.e., the area within the black dashed line) at Pixel 2 from the time period 

1996 to 2016, indicating a time-varying pattern between pra and wtda at the pixel, thus supporting our hypothesis. It also 425 

explores the high sensitivity of LSTM networks to outliers, which is a drawback of data-driven models.  

The high power in the XWT results at the representative pixel of C1 (Pixel 1, Fig. 9a) was consistently located in a certain 

period (i.e., below 64 months), indicating a consistent pattern between pra and wtda throughout the whole study period, which 

is the prerequisite of good network performances. At the pixel, we found that most of the high power in the XWT results was 

consistently concentrated in the period from 2 to 16 months during the study period (see Fig. 9a). Supplementary plot in 430 

Appendix C (Fig. C1a) showed similar phenomena as above. Therefore, we speculate that LSTM networks might be frequency-

aware and work well to capture the pra-wtda relationship at the monthly, seasonal and annual periods. 
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Figure 9: -TSMP-G2A pra, TSMP-G2A wtda and LSTM wtda time series (top) as well as cross-wavelet spectra for TSMP-G2A pra 

and wtda series (bottom) at a representative pixel of the performance combination (a) C1; (b) C2. In the cross-wavelet spectra, the 435 
black dashed line marks the boundary of the cone of influence; the color bar presents 𝒍𝒐𝒈𝟐(𝒑𝒐𝒘𝒆𝒓/𝒔𝒄𝒂𝒍𝒆) . In all plots, the two 

grey dashed lines separate the study period into the training, validation and testing periods. 

4 Summary and conclusions 

In this study, we proposed LSTM networks as an indirect method to model monthly wtda over the European continent, using 

monthly pra as input. Local LSTM networks were constructed at individual pixels randomly selected over Europe to capture 440 

the time-varying, and time-lagged relationship between pra and wtda from integrated hydrologic simulation (TSMP-G2A) 

results covering 1996 to 2016 episode. The monthly anomaly series derived from the TSMP-G2A data set were divided into 

three sections at each pixel for network training, validation, and testing. Using the output of the LSTM networks, we 

successfully reproduced TSMP-G2A wtda maps over Europe for drought months in both the training and testing period (e.g., 

August 2003 and August 2015) in terms of the spatial distribution of dry and wet events. The good agreement between the 445 

TSMP-G2A and LSTM wtda maps demonstrated the ability of the trained networks to model wtda from pra data. The results 

highlighted the impact of local factors on the network test performance, manifested by R2 scores and RMSEs. Most of the 

networks attained high test R2 scores at the pixels with wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and Sw < 10 mm, where a 

stronger connection existed between pra and wtda. Also, the various hydrometeorological characteristics in each PRUDENCE 
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region resulted in regional differences in the test performance of the proposed networks, with FR showing the overall best 450 

network performance. In some regions, test performance deteriorated due to changing temporal patterns in the pra-wtda 

relationship, approved by XWT analyses. According to the results of the XWT analyses, we hypothesize that LSTM networks 

have frequency awareness and tend to perform well to capture the pra-wtda relationship at the monthly, seasonal and annual 

periods.  

We also recognized that the limited amount of data in the training introduces uncertainties in the network performances. 455 

Any potential extension of training data may lead to a significant improvement in the quality of the derived networks. In 

addition, hyperparameters of the proposed LSTM networks may be further tuned at the individual pixel level to improve 

network performance. Due to a lack of spatiotemporally continuous wtd observations over Europe, this study presents a 

methodology of deriving a LSTM network model for wtda from pra based on simulation results from a terrestrial model (i.e., 

the TSMP-G2A data set). As demonstrated in Furusho-Percot et al. (2019) and Hartick et al. (2021), the TSMP-G2A data set 460 

shows good agreement with hydrometeorological and GRACE observations in different European regions. Therefore, we argue 

that the TSMP-G2A data set is a good reference data set to establish the methodology. The results suggest that LSTM networks 

are useful to estimate wtda time series based on other hydrometeorological variables which are routinely measured and, 

therefore, are more easily available from e.g., atmospheric reanalyses and forecast data sets and observations than groundwater 

level measurements. After training, LSTM networks could provide fast and reliable predictions of wtda only based on data of 465 

input variables, which is impossible for traditional physically-based models such as TSMP. The proposed methodology may 

be transferred into a real-time monitoring and forecasting workflow for wtda at the continental scale. 

 

Code and data availability. The code for constructing the proposed LSTM networks and result analyses is available from the 

authors. Please contact Yueling Ma at y.ma@fz-juelich.de. The TSMP-G2A data set is available online at 470 

https://doi.org/10.17616/R31NJMH3 (Furusho-Percot et al., 2019), and the TSMP-G2A pra, the TSMP-G2A wtda and the 

LSTM wtda data sets are available online at https://datapub.fz-juelich.de/slts/yueling/Data_hess-2020-382/. 

 

 

 475 

 

 

 

 

 480 

 

 

 



23 

 

Appendix A: Pseudocode of the LSTM network displayed in Fig. 2 

Hereafter gives pseudocode of the one-hidden-layer LSTM networks illustrated in Fig. 2, which is modified from Gers et al. 485 

(2000). Variables were defined in the caption of Fig. 2. Note that, to simplify the code, biases are not shown here. 

 

RESET all network parameters (i.e., weights, biases and cell states) as listed in Table 2 

REPEAT learning loop 

    forward pass 490 

        for t = 1, 2, … 

           network input to the hidden layer (self-recurrent and from input): 

                input gate: 𝑛𝑒𝑡𝑖𝑛(𝑡) = 𝑤𝑖𝑛𝑥(𝑡) + 𝑤𝑖𝑛ℎℎ(𝑡 − 1) 

                forget gate: 𝑛𝑒𝑡𝑓𝑜𝑟𝑔𝑒𝑡(𝑡) = 𝑤𝑓𝑜𝑟𝑔𝑒𝑡𝑥(𝑡) + 𝑤𝑓𝑜𝑟𝑔𝑒𝑡ℎℎ(𝑡 − 1) 

                output gate: 𝑛𝑒𝑡𝑜𝑢𝑡(𝑡) = 𝑤𝑜𝑢𝑡𝑥(𝑡) + 𝑤𝑜𝑢𝑡ℎℎ(𝑡 − 1) 495 

                cell: 𝑛𝑒𝑡𝑐(𝑡) = 𝑤𝑐𝑥(𝑡) + 𝑤𝑐ℎℎ(𝑡 − 1) 

           activations in the hidden layer: 

                input gate: 𝑖(𝑡) = 𝜎(𝑛𝑒𝑡𝑖𝑛(𝑡)) 

                forget gate: 𝑓(𝑡) = 𝜎(𝑛𝑒𝑡𝑓𝑜𝑟𝑔𝑒𝑡(𝑡)) 

                output gate: 𝑜(𝑡) = 𝜎(𝑛𝑒𝑡𝑜𝑢𝑡(𝑡)) 500 

                cell’s internal state: 

                𝑐(0) = 0, 𝑐(𝑡) = 𝑓(𝑡)𝑐(𝑡 − 1) + 𝑖(𝑡)𝑔(𝑡), where 𝑔(𝑡) = tanh(𝑛𝑒𝑡𝑐(𝑡)) 

                cell’ s activation: ℎ(𝑡) = 𝑜(𝑡)tanh(𝑐(𝑡)) 

           output of the network: 

                𝑛𝑒𝑡(𝑡) = 𝑤𝑛𝑒𝑡ℎ(𝑡), out(t) = net(t) 505 

    backward pass if error injected 

        for t = n, n-1, … 

           use RMSprop optimization algorithm (Hinton et al., n.d.) 

UNTIL validation error begins to drop and number of epochs ≥ 50 
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Appendix B: Supplementary European water table depth anomaly maps  510 

 

Figure B1: European wtda maps for (a) July 2003 (i.e., in the training period); (b) July 2015 (i.e., in the testing period), derived from 

the TSMP-G2A data set (left) and results from LSTM networks (right). 
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Figure B2: European wtda maps for (a) December 2003 (i.e., in the training period); (b) December 2015 (i.e., in the testing period), 515 
derived from the TSMP-G2A data set (left) and results from LSTM networks (right). 

Appendix C: Results of the cross-wavelet transform (XWT) analysis at additional pixels  

Table C1: Pixel characteristics in the XWT analysis (Pixels 3-4). 

 
Performance 

combination 
Region 

Yearly 

averaged water 

table depth, 

wtd [m] 

Yearly averaged 

evapotranspiration, 

ET [mm] 

Yearly 

averaged soil 

moisture, θ 

[m3m-3] 

Yearly average 

snow water 

equivalent, Sw 

[mm] 

Pixel 3 C1 FR 1.06 418.39 0.31 0.0 

Pixel 4 C2 IB 6.44 153.92 0.16 0.0 
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Training R2 

[%] 
Training α [%] 

Validation R2 

[%] 

Validation α 

[%] 
Test R2 [%] Test α [%] 

Pixel 3 84.29 97.89 60.61 98.38 62.22 84.87 

Pixel 4 94.39 99.79 46.87 90.86 -724.90 20.26 

 520 

 

Figure C1: -TSMP-G2A pra, TSMP-G2A wtda and LSTM wtda time series (top) as well as cross-wavelet spectra for TSMP-G2A pra 

and wtda series (bottom) at (a) Pixel 3; (b) Pixel 4. The lines have the same definitions as Fig. 9. 
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