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Abstract.  7 

The set up of a rainfall-runoff model in a river section where no streamflow measurements are available for its 8 

calibration is one of the key research activity for the Prediction in Ungauged Basins (PUB): in order to do so it is 9 

possible to regionalise the model parameters based on the information available in gauged sections in the study region. 10 

The information content in the data set of gauged river stations plays an essential role in the assessment of the best 11 

regionalisation method: this study analyses how the performances of different model regionalisation approaches are 12 

influenced by the “information richness” of the available regional data set, and in particular by its gauging density and 13 

by the presence of nested catchments, that are expected to be hydrologically very similar.  14 

The research is carried out over a densely gauged dataset covering the Austrian country, applying two different rainfall-15 

runoff models: a semi-distributed version of the HBV model (TUW model), and the Cemaneige-GR6J model. The 16 

regionalisation approaches include both methods which transfer the entire set of model parameters from donor 17 

catchments, thus maintaining correlation among parameters (“output averaging” techniques), and methods which derive 18 

each target parameter independently, as a function of the calibrated donors’ ones (“parameter averaging” techniques). 19 

The regionalisation techniques are first implemented using all the basins in the dataset as potential donors, showing that 20 

the output-averaging methods outperform the parameter-averaging kriging method, highlighting the importance of 21 

maintaining the correlation between the parameter values. 22 

The regionalisation is then repeated decreasing the information content of the data set, by excluding the nested basins, 23 

identified taking into account either the position of the closing section along the river or the percentage of shared 24 

drainage area. The parameter-averaging kriging is the method that is less impacted by the exclusion of the nested 25 

donors, whereas the methods transferring the entire parameter set from only one donor suffer the highest deterioration, 26 

since the single most similar or closest donor is often a nested one. On the other hand, the output-averaging methods 27 

degrade more gracefully, showing that exploiting the information resulting from more than one donor increases the 28 

robustness of the approach also in regions that do not have so many nested catchments as the Austrian one. 29 

Finally, the deterioration resulting from decreasing the station density on the regionalisation was analysed, showing that 30 

the output averaging methods using as similarity measure a set of catchment descriptors, rather than the geographical 31 

distance, are more capable to adapt to less dense datasets. 32 

The study confirms how the predictive accuracy of parameter regionalisation techniques strongly depends on the 33 

information content of the dataset of available donor catchments and indicates that the output-averaging approaches, 34 

using more than one donor basin but preserving the correlation structure of the parameter set, seem to be preferable for 35 

regionalisation purposes in both data-poor and data-rich regions. 36 
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1 Introduction 37 

In the hydrological practice, it is often needed to gain information on ungauged river sections and one of the most 38 

informative way to do so is implementing a rainfall-runoff model, when, as it is often the case, the meteorological input 39 

variables are retrievable in reference to its drainage area. Since in such cases the model parameters may not be obtained 40 

through a calibration procedure, it is necessary to regionalise them, exploiting the information of the hydrometric 41 

measurements collected in hydrologically similar catchments in the study area. 42 

Regionalisation approaches for model parameterisation can be classified into two wide categories: “regression-based” 43 

methods and “distance-based” methods (He et al., 2011). The former techniques try to define relationships between 44 

each model parameter and geomorpho-climatic catchment attributes (see e.g., Seibert 1999). The latter, instead, identify 45 

a set of donor watersheds (with similar attributes) and transfer their calibrated parameters to the ungauged (“target”) 46 

catchment. This last type of approaches includes both methods which transfer the entire set of model parameters from 47 

donor catchments, thus maintaining correlation among parameters (also named “output averaging” techniques, which 48 

run the model multiple times and average the simulations), and methods which derive each target parameter 49 

independently, as a function (generally a weighted average) of the calibrated donors’ ones (“parameter averaging” 50 

techniques). To the latter class (“distance-based” group of the “parameter averaging” type) belong also the kriging 51 

methods, where the parameters are regionalised based on their spatial correlation and independently from each other 52 

(Merz and Blöschl, 2004; Parajka et al., 2005). 53 

 54 

In the last two decades, hydrologic scientists from all around the word have focused on the determination of the more 55 

accurate regionalisation techniques for different case studies and rainfall-runoff models (see e.g., the reviews of Merz et 56 

al. 2006, He et al. 2011, Peel & Blöschl 2011, Parajka et al. 2013, Hrachowitz et al. 2013, Razavi and Coulibaly 2013).  57 

 58 

A very important aspect for choosing the most adequate regionalisation technique, and that is worthy of further 59 

analyses, is the information content of the study region. In particular, in very densely gauged areas, spatial proximity is 60 

expected to be a good similarity measure, as demonstrated by the studies by Merz and Blöschl (2004) and Parajka et al. 61 

(2005), who tested different regionalisation approaches on a dense dataset of more than 300 watersheds across Austria, 62 

and by Oudin et al. (2008), on a set of 913 catchments in France, finding that the techniques based on spatial proximity 63 

alone provided excellent performances. But different outcomes may result for less densely and less interconnected (that 64 

is with less availability of stations along the same river), as shown for instance, by Samuel et al. (2011): they 65 

regionalised the parameters of HBV model for a strongly less densely gauged dataset (135 watersheds on the wide area 66 

of Ontario, in Canada) and found that the best the best approach for such study area was an inverse-distance parameter 67 

averaging for a pre-selected set of physically similar catchments.  68 

 69 

The availability in the data set of gauged river stations representative of hydrological conditions similar to the ungauged 70 

ones plays an essential role in the assessment of the best regionalisation method. This availability can be, in some way, 71 

estimated with the station density (i.e. number of station per km2) and with the topological relationship between 72 

catchments. In particular, the presence of several nested catchments (i.e. gauged river sections on the same river) in the 73 

study region can strongly influence the performance of certain techniques: if for an ungauged basin, model parameter 74 

sets are available for down/upstream gauged river sections, donor and target watersheds share indeed part of their 75 

drainage area, and thus they may be also hydrologically very similar. This may actually lead to very good 76 

regionalisation performances for a given approach, but such accuracy may not represent what would be obtained in 77 
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different conditions. Therefore, regionalisation performances obtained for datasets with high degree of “nestedness” 78 

may be not transferrable to study regions poor of nested basins. 79 

 80 

So far, very few studies have been presented in the literature regarding the impact of the presence of nested catchments 81 

on the performances of parameter regionalisation techniques. Merz and Blöschl (2004), Parajka et al. (2005) and Oudin 82 

et al. (2008) tested the effect of the removal of nested catchments from the available donor catchments, but only for one 83 

or two regionalisation techniques, without analysing in detail the differences between different types of approaches. 84 

Additionally, the contribute of the immediate downstream and/or upstream gauged stations has never been compared to 85 

that of the remaining nested catchments, that may share significant portions of drainage area with the ungauged one. 86 

Also the influence of the density of the gauging stations on the parameterisation of rainfall-runoff models has been little 87 

explored, with two notable exceptions: Oudin et al. (2008) applied the spatial proximity and physical similarity output-88 

averaging techniques for decreasing values of station density in France and Lebecherel et al. (2016) tested the 89 

robustness of the spatial proximity output-averaging approach to an increasing sparse hydrometric network on the same 90 

study region. In Austria, the effect of station density has been investigated by Parajka et al. (2015), but in reference to 91 

the interpolation of streamflow time-series and not to the parameterisation of rainfall-runoff models.  92 

 93 

The purpose of the present paper is to compare the impact of the presence of nested donors on the performances of 94 

different parameter regionalisation techniques for a dataset of 209 catchments across Austria. The effect of nested 95 

donors is here tested for a set of consolidated techniques, applied to two different continuous simulating daily rainfall-96 

runoff models, for generalisation purposes: the first is the TUW model (semi-distributed version of HBV, used by 97 

Parajka et al. 2005), and the second model, never used so far for regionalisation in the Austrian region, is the GR6J 98 

model (Pushpalatha et al. 2011) implemented with the Cemaneige snow routine (Valery et al. 2014).  99 

For the exclusion of nested basins, we propose two different criteria, taking into account either the position of the 100 

closing section along the river or the percentage of shared drainage area. The results are also compared to the effect of 101 

the reduction of station density, following a procedure similar to what was done, for different purposes, by Parajka et al. 102 

(2015). 103 

We believe that the present analysis may provide further insights for assessing the performances and selecting the 104 

parameter regionalisation approaches most suitable to a specific study region, keeping into account the impact of the 105 

topological information “richness” of the available regional dataset. 106 

The paper is organized as follows: Section 2 introduces the case study and data. Section 3 first describes the rainfall-107 

runoff models and the tested regionalisation schemes, then the methodology for assessing the impact of nested 108 

catchments and of station density is presented, while the results are presented in Section 4. Finally, Section 5 reports the 109 

discussion and the conclusions. 110 

2 Study region and data 111 

The case study is composed by 209 catchments (see Figure 1) covering a large portion of Austria. Their size varies 112 

considerably, from 13 to over 6000 km2. The topography of the country varies significantly from the flat and hilly area 113 

in the north-east to the Alps in the centre and in the south-west, particularly steep in the extreme west. The annual 114 

precipitation ranges from about 600 mm in the east, where the evaporation plays an important role in the water balance, 115 

to the more than 2000 mm in the west, mainly due to orographic lifting of north-westerly airflows at the rim of the Alps 116 
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(Viglione et al., 2013). Land use is mainly agricultural in the lowlands and forest in the medium elevation ranges. 117 

Alpine vegetation and rocks prevail in the highest catchment (Parajka et al., 2005). The aridity index assumes values 118 

from 0.2 to 1, meaning that the watersheds are mainly wet or weakly arid (annual evapotranspiration is never higher 119 

than precipitation).  120 

Data have been provided by the Institute of Hydraulic Engineering and Water Resources Management (Vienna 121 

University of Technology), which previously screened the runoff data for errors and removed all stations with 122 

significant anthropogenic effects. Hydro-meteorological data include daily streamflow and daily inputs to the rainfall-123 

runoff models for the 33 years period 1976-2008: daily average precipitation, temperature and potential 124 

evapotranspiration defined for 200 meters elevation zones for all the study catchments. The potential evapotranspiration 125 

is estimated by a modified Blaney-Criddle method (Parajka et al., 2005) using interpolated daily air temperature and 126 

grid maps of potential sunshine duration (Mészároš et al., 2002).  127 

In order to implement some of the parameter regionalisation approaches, we make use of several geo-morphoclimatic 128 

catchment attributes, reported and briefly descripted in Table 1. Topographic attributes such as mean catchment 129 

elevation and mean slope are derived from 1 x 1 km digital elevation model while climatic features such as mean annual 130 

precipitation, and aridity index are derived from climatic input time series. Figure 2 shows the spatial pattern of mean 131 

annual precipitation, snow depth and aridity index across the study area. Mean annual solar irradiance is computed 132 

trough GRASS GIS software (http://grass.osgeo.org). Stream network density, FARL (flood attenuation by reservoir 133 

and lakes), boundaries of porous aquifers, areal portions of regional soil types and main geological formation were the 134 

same used and described in detail in Parajka et al. (2005). Finally, Land use coverage is derived from CORINE Land 135 

Cover maps updated to year 2012 (https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012).  For land cover 136 

classes, as well as for geology and soil type classes, the catchments are associated to more than one single attribute: 137 

each basin is described by the portions of the total catchment area corresponding to each class (and for this reason, 138 

Table 1 does not report the min/median/max values of such descriptors. 139 

 140 

 141 
Figure 1. Study area, blue points refer to stream gauges and black lines to catchment boundaries. 142 
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 143 
Figure 2. Spatial pattern of some climatic catchment attributes across the study area. 144 

 145 
Table 1. Available catchment attributes. 146 

Code Unit Min Median Max Description 

Elev m a.s.l. 287 915 2964 Mean elevation 

Area km2 14 168 6214 Drainage area 

Slope m/m 0.9 12.4 28.5 Mean slope 

meanP mm 675 1230 2310 Mean annual total precipitation 

maxP mm 35 49 84 Mean annual maximum daily precipitation 

meanPET mm 281 608 715 Mean annual total evapotranspiration 

SnowF - 0.06 0.17 0.60 

Fraction of precipitation fallen as snow (i.e. 

precipitation fallen in days below 0°) 

SnowD mm 1 14 68 Mean annual snow depth 

Aridity - 0.21 0.46 0.96 Aridity index (meanPET/meanP) 

Irrad kWh/(m2*day) 1750 1899 2274 Mean annual solar irradiance 

RiverD m/km-2 0 830 1256 Stream network density 

FARL - 0.56 1 1 Flood attenuation index by reservoir and lakes 

Corine  % - - - Portions of land use coverage 

Geology % - - - Portions of geological formations 

Soils % - - - Portions of regional soil types 

Forest - 0 0.47 0.93 Fraction of catchment covered in forest 

AcqPort - 0 0.01 0.83 Fraction of catchment with porous aquifers 
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3 Materials and methods 147 

3.1 Rainfall-runoff models structure and calibration 148 

Two models for simulating daily streamflow were applied in this study. This choice is made in order to analyse the 149 

effect of nested catchments and station density on the performance of parameter regionalisation methods for different 150 

model structures. 151 

3.1.1 TUW model 152 

The first is the TUW model, a semi-distributed version of the HBV model (Bergström 1976, Lindström et al., 1997) 153 

developed by Parajka and Viglione (2019). It consists in a snow routine, a soil moisture routine and a flow response and 154 

routing routine. The model processes the elevation zones as autonomous entities that contribute separately to the total 155 

outlet flow. The inputs are daily air temperature, precipitation and potential evapotranspiration over the different 156 

elevation zones, on which the model is run in the version schematized in Figure 3. Finally, the different outputs from 157 

the elevation zones are averaged taking into account the sub-catchment areas. 158 

The snow routine is based on a simple degree-day concept and it is ruled by five parameters: two threshold temperature 159 

parameters distinguishing rain and snow, Tr and Ts, a melting temperature Tm, a snow correction factor SCF and the 160 

degree-day factor DDF. The soil moisture routine represents soil moisture state changes and runoff generation and 161 

involves three parameters: the maximum soil moisture storage FC, a parameter representing the soil moisture state 162 

above which evapotranspiration is at its potential rate, LP, and a parameter β ruling the non-linear function of runoff 163 

generation. Finally, an upper and a lower soil reservoirs and a triangular transfer function compose the runoff response 164 

and routing routine, involving seven additional parameters. The sum of excess rainfall and snowmelt enters the upper 165 

zone reservoir and leaves this reservoir through three paths: i) outflow from the reservoir based on a fast storage 166 

coefficient k1; ii) percolation to the lower zone with a constant percolation rate Cperc, iii) if a threshold of the upper 167 

storage state LUZ is exceeded, through an additional outlet based on a very fast storage coefficient k0. Water leaves the 168 

lower zone based on a slow storage coefficient k2. The outflows from both reservoirs are then routed by a triangular 169 

transfer function representing runoff routing in the streams, where the base of transfer function, BQ, is estimated with 170 

the scaling of the outflow by the CROUTE and BMAX parameters. More details about the model structure and application in 171 

R can be found in Parajka et al. (2007) and Ceola et al (2015), respectively. 172 

The model is run for all the study catchments with the semi-distributed model structure obtained dividing them into 173 

200-meters elevation zones: model daily inputs (precipitation, temperature and potential evapotranspiration) and model 174 

states are defined over such zones, while model parameters are assumed to be the same for the entire catchment. 175 

Following the work by Parajka et al. (2005) on the same study area, 4 out of the 15 total parameters are pre-set and 11 176 

are calibrated: threshold temperatures Tr and Ts are fixed respectively to 2 and 0 °C, Tm to 0 °C and the maximum base 177 

of the transfer function at low flows BMAX to 10 days. Table 2 briefly reports and describes the calibrated parameters, 178 

defining also their lower and upper bounds. 179 

 180 

 181 

 182 

 183 

 184 

 185 
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Table 2. TUW model parameters and their ranges. 186 

Parameter Units Range Description 

SCF - 0.9 - 1.5 Snow correction factor 

DDF mm/(°C*day) 0 - 5 Degree day factor 

LP - 0 - 1 Parameter related to the limit of evaporation 

FC mm 0 - 600 Field capacity, i.e., max soil moisture storage 

β - 0 - 20 Non linear parameter for runoff production 

k0 days 0 - 2 Storage coefficient for very fast response 

k1 days 2 - 30 Storage coefficient for fast response 

k2 days 30 - 250 Storage coefficient for slow response 

LUZ mm 0 - 100 Threshold storage state, very fast response starts if exceeded 

Cperc mm/day 0 - 8 Constant percolation rate 

CROUTE days2/mm 0 - 50 Scaling parameter 

 187 

 188 

Figure 3. TUW model scheme – Lumped version. 189 
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3.1.2 CemaNeige-GR6J model 190 

The second model is the French CemaNeige-GR6J. It is the combination of the CemaNeige snow accounting routine 191 

(Valéry et al., 2014) with the GR6J model (Pushpalatha et al., 2011), a daily lumped continuous rainfall-runoff model, 192 

developed at IRSTEA (Anthony, France), by the Équipe Hydrologie des Bassins versants. 193 

The inputs of the model are spatially-averaged catchment daily air temperature, precipitation and potential 194 

evapotranspiration. Catchment hypsometric curve is also required. 195 

The CemaNeige snow accounting routine is based on a degree-day concept, where the thermal inertia of the snowpack 196 

is also taken into account. It involves two parameters, a snowmelt factor, θG1, and a cold-content factor, θG2. Although 197 

the module requires daily lumped inputs, for better simulating snow accumulation and melting it allows to divide the 198 

catchment into more elevation zones of equal area, through the use of the hypsometric curve. Inputs for each elevation 199 

zone are extracted through interpolation of the mean catchment values using precipitation and temperature gradients 200 

(Valéry et al, 2010), and not from “clipping” of the actual spatial fields like for the TUW elevation zones. The module 201 

functions are applied with a lumped set of calibrated parameters; but internal states are allowed to vary over each 202 

elevation layer according to the different extrapolated inputs. On each elevation layer, two outputs are computed: rain 203 

and snowmelt, which are summed in order to find the total water quantity feeding the hydrological model. At every time 204 

step, the total liquid output of CemaNeige at catchment scale is the average of every elevation zone outputs. Here we 205 

decide to maintain, as default, the number of elevation layers equal to five. For a detailed description of CemaNeige 206 

routines, the readers may refer to Valéry et al. (2014).  207 

The total liquid output of CemaNeige module and potential evapotranspiration are the inputs of the GR6J rainfall-runoff 208 

model. In the model, the water balance is controlled by a soil moisture accounting reservoir and a conceptual 209 

“groundwater” exchange function, while the routing part of the structure consists in two flow components routed by two 210 

unit hydrographs, a non-linear store and an exponential-store, with a total of six parameters. The structure of the model 211 

is represented in Figure 4 and a detailed description of the model routines is given in Pushpalatha et al. (2011). 212 

The CemaNeige-GR6J model is fed with mean catchment daily precipitation, air temperature and potential 213 

evapotranspiration. All the 8 parameters of the combined model (2 for CemaNeige, 6 for GR6J) are calibrated. Lower 214 

and upper bounds of the parameters space are kept as default: all the parameters are allowed to vary between the 215 

normalized interval [-9.99 9.99] and then specific parameter transformations are applied before the model is run. Table 216 

3 reports brief parameters description and transformed boundaries. For the sake of simplicity, we will refer to this 217 

model just with the acronym GR6J, even if it will always include the CemaNeige snow module. 218 

 219 

Table 3. Cemaneige-GR6J model parameters and their transformed real ranges.  220 

Parameter Units Range Description 

θG1 mm/(°C*day) 0 - 109 Snowmelt (degree-day) factor 

θG2 - 0 - 1 Cold content factor 

X1 mm 0 - 21807 Non-linear production storage capacity 

X2 mm -1903 - 1903 Groundwater exchange coefficient 

X3 mm 0 - 21807 Non-linear routing store capacity 

X4 days 0 - 22 Time parameter for unit hydrographs routing 

X5 - 0 - 1 
Threshold parameter for water exchange with 

groundwater 

X6 mm 0 - 21807 Exponential routing store capacity 

 221 
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 222 

Figure 4. GR6J model scheme. 223 
 224 

3.1.3 Model calibration 225 

The sets of parameters for both rainfall-runoff models are estimated for all the study catchments with an automatic 226 

model calibration procedure, using the Dynamically Dimensioned Search (DDS algorithm, Tolson et al. 2007).  227 

The objective function to be maximized is the Kling-Gupta Efficiency (Gupta et al., 2009) between observed and 228 

simulated streamflow, defined as: 229 

 230 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2    Eq. 1 231 

 232 

where 𝑟 is the Pearson product moment correlation coefficient, α is ratio between the standard deviations of the 233 

simulated and observed values and β is ratio between the means of the simulated and observed values.  234 

The 33 years of observation (1976-2008) are split into two sub-periods: the first one, from 1 November 1976 to 31 235 

October 1992, is used for model calibration, and the second one, from 1 November 1991 to 31 October 2008, for model 236 

validation. Warm-up periods of one year are used in all cases. Calibration and validation performances for both models 237 

are reported in Section 4.1.  238 

3.2 Regionalisation approaches 239 

In order to assess the impact of the presence of nested catchments and station density on the performance of the 240 

parameter regionalisation methods, a set of consolidated approaches for the study area are implemented. Three types of 241 

techniques are tested, all belonging to the distance-based group, since recent studies have demonstrated how should be 242 
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preferred to regression-based techniques (see e.g. Kokkonen et al. 2003, Merz and Blöschl 2004, Oudin et al. 2008, 243 

Reichl et al. 2009, Bao et al. 2012, Steinschneider et al. 2015, Yang et al. 2018, Cislaghi et al. 2019).  244 

3.2.1 Ordinary kriging (KR) 245 

The first is a parameter-averaging technique, based on an ordinary kriging approach (termed in the following KR), 246 

where each model parameter is regionalised independently from each other, based on their spatial correlation. 247 

Catchment position is defined by the coordinates of the catchment centroid and the ordinary kriging is based on an 248 

exponential variogram with a nugget of 10% of the observed variance, a sill equal to the variance, and a range of 60 km 249 

both for TUW and Cemaneige-GR6J model parameters. 250 

3.2.2 Nearest Neighbour (1 donor, NN-1) 251 

The second approach is a nearest neighbour method (NN-1), where the complete set of model parameters is transposed 252 

from the geographically nearest donor catchment. 253 

3.2.3 Most Similar (1 donor, MS-1) 254 

In the third technique, termed “most similar” approach (MS-1), a single donor catchment is again identified, for 255 

transposing the entire parameter set but, instead of choosing the catchment that is geographically the closest, the 256 

“hydrologically most similar” donor is identified, based on a set of geo-morphological and climatic descriptors. Five 257 

descriptors are used for assessing such similarity: mean catchment elevation, long-term mean annual precipitation, 258 

stream network density, land cover classes, geology classes. Such set of descriptors was selected by preliminary tests: 259 

since it is not the focus of the work, the analysis for the assessment of the best catchment descriptors is reported in 260 

Appendix A. The donor catchment is identified as the catchment with the smallest dissimilarity index ɸ (e.g. Burn and 261 

Boorman, 1993):  262 

 263 

ɸ = ∑
𝑑𝑗(𝐷,𝑈)

max(𝑑𝑗)

5
𝑗=1       Eq. 2 264 

 265 

which represents the sum of the differences 𝑑𝑗 of the 5 descriptors of the donor catchment 𝐷 and of the ungauged 266 

catchment 𝑈 of interest, normalised by their maximum. For the attributes described by a single value (mean catchment 267 

elevation, long-term mean annual precipitation and stream network density), 𝑑𝑗 is expressed by the absolute difference 268 

between the descriptors 𝑋𝑗
𝐷 and 𝑋𝑗

𝑈 of the donor and target catchments respectively (Eq. 3). For land cover and geology, 269 

whose attributes 𝑋𝑗 are the vectors containing the portions of the total catchment area 𝑋𝑗,𝑐 corresponding to each class c, 270 

the difference 𝑑𝑗 is calculated as the Euclidean distance between such vectors (Eq. 4). 271 

 272 

𝑑𝑗(𝐷, 𝑈) = |𝑋𝑗
𝐷 − 𝑋𝑗

𝑈|      Eq. 3 273 

 274 

𝑑𝑗(𝐷, 𝑈) = √∑ (𝑋𝑗,𝑐
𝐷 − 𝑋𝑗,𝑐

𝑈 )2
𝑐      Eq. 4 275 

 276 
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3.2.4 Output averaging version of NN and MS techniques (NN-OA and MS-OA) 277 

Nearest Neighbour and Most Similar approaches allow to maintain correlation among model parameters, and 278 

overcomes the well-known limitation of the regression approach due to interaction between them. In the “regression-279 

based” methods in fact, as well as in the parameter-averaging approaches (e.g, KR technique), parameters are 280 

regionalised independently from each other, possibly affecting simulation performances. On the other hand, one single 281 

donor catchment (as in NN-1 and MS-1 approaches) is often not fully representative of the hydrological behavior of the 282 

target watershed. Recent studies have been demonstrating how averaging the outputs of the simulations (rather than 283 

model parameters) obtained with different donor parameter sets may be preferred (see e.g., Oudin et al. 2008, Viviroli et 284 

al. 2009). For this reason, NN and MS techniques are also tested identifying more than one donor (here termed NN-OA 285 

and MS-OA respectively), with an ‘output-averaging’ approach (introduced by McIntyre et al., 2005): n donor basins 286 

(the geographically closest ones for the nearest neighbour method, or those with the smallest similarity indexes for the 287 

“most similar” method) are identified. The regionalised streamflow for the ungauged catchment is calculated from all 288 

the simulations 𝑄(𝑑, 𝑃𝑖), obtained running the model (fed by the meteorological input of the target catchment) with each 289 

one of the n parameter sets (𝑃𝑖 , with i in [1 ; n]) corresponding to each of the donor catchments. Streamflow for day 290 

d, 𝑄(𝑑), is computed as the weighted average of the simulated outputs: 291 

 292 

𝑄(𝑑) = ∑ 𝑤𝑖  𝑄(𝑑, 𝑃𝑖)𝑛
𝑖=1       Eq. 5 293 

 294 

where 𝑤𝑖  is the weight associated to each donor catchment i, computed as function of a measure of dissimilarity 295 

between the donor and the target catchments. In the NN-OA case, the dissimilarity is defined by the spatial distance Di 296 

between the centroids of donor i and target catchments (Eq. 6), while in the MS-OA method it corresponds to the 297 

dissimilarity index ɸ𝑖 (Eq. 7). 298 

 299 

𝑤𝑖 =

1

𝐷𝑖

∑
1

𝐷𝑖

𝑛
𝑖=1

      Eq. 6 300 

 301 

𝑤𝑖 =

1

ɸ𝑖

∑
1

ɸ𝑖

𝑛
𝑖=1

       Eq. 7 302 

 303 

3.2.5 Choice of the number of donor catchments for NN-OA and MS-OA 304 

The choice of the number of donor catchments for output averaging represents a central issue in the methodology. 305 

Previous studies showed that the optimal number of donors is strongly related to the rainfall-runoff model and, of 306 

course, to the case study. McIntyre et al. (2005) were amongst the first to apply an ensemble (“output averaging”) 307 

approach and to explore the use of different numbers of donors on the performance of the Probability Distribution 308 

Model (PDM, Moore, 1985) for a set of more than 100 UK catchments. They tested the impact of an increasing number 309 

of donors, either selecting the first n catchments with the smallest dissimilarity measure, or including all the donors with 310 

a value of dissimilarity below a defined threshold (in the latter case, the number of donors may thus vary depending on 311 

the target-donors attributes). They found that a fixed number of ten donors resulted in the best regionalisation 312 

performances. Oudin et al. (2008) applied an output-averaging regionalisation for the TOPMO and GR4J models to a 313 
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large French dataset of almost 1000 basins, but with no weights in flow averaging, since they used an arithmetic 314 

average (thus not taking into account magnitude of donor dissimilarities). They found that the two models performed 315 

optimally with a different number of donor catchments (seven and four respectively) and the efficiency of the 316 

regionalised model decreased almost linearly when increasing the number of donors above such values. In fact, the 317 

higher is the number of donor basins included in the regionalisation process, the more dissimilar will be the donors with 318 

respect to the target watershed, possibly leading to a deterioration of the results. The use of weights in flow averaging 319 

may indeed help to smooth this effect, giving less and less importance to the donors as their similarity decreases. 320 

In the present work, the effect on regionalisation performances due to the number of donor basins is explored in detail, 321 

applying NN-OA and MS-OA for increasing number n of donor catchments, as discussed in Section 4.2. 322 

 323 

3.3 Impact of nested catchments: which catchments should be considered (to be) nested? 324 

As already introduced, the main purpose of the present analysis is to quantify the impact of the presence of several 325 

nested catchments on the regionalisation techniques. In particular, since nested catchments may have a strong 326 

hydrological similarity with the ungauged one, they are expected to play an essential role in the determination of 327 

method performances.  328 

Once the performances have been evaluated using all the study catchments as potential donors, the regionalisation 329 

procedures are repeated for each target basin (assumed to be ungauged) by excluding, from the donors set, the 330 

watersheds which are considered to be nested in relation to the target section.  331 

In general, two or more catchments are nested between each other if their closure sections are located on the same river, 332 

i.e. they share part of their drainage area. Since it may happen that several gauged stations are located on the same river, 333 

we propose to follow two different criteria in order to identify the nested basins: 334 

- Criterion 1: the gauged sections that are immediately downstream and upstream of the target section 335 

- Criterion 2: all the catchments sharing a given percentage of drainage area with the ungauged one. 336 

 337 

3.4 Impact of station density 338 

Another way to evaluate the performances of regionalisation methods taking into account the “richness” in hydrometric 339 

information of the study area is to analyse the spatial density of the potential donors. 340 

It is expected that the effect of the presence of several nested watersheds in a dataset is related to the effect due to 341 

station density. Because of that, further purpose of the study is to compare the results obtained from the above described 342 

nested catchments analysis to the impact of station density on regionalisation accuracy. Parajka et al. (2015) tested the 343 

impact of the station density not for rainfall-runoff modelling but for the direct weighted interpolation of daily runoff 344 

time-series with the topological-kriging (or Top-kriging) approach (see Skøien et al., 2006). Here, the same approach 345 

for analysing the density is applied to all the parameters regionalisation techniques. 346 

The full station density in the dataset is about 2.5 gauges per 1000 km2, estimated dividing the total number of stations 347 

by the area of Austrian territory, which is approximately 84000 km2. All the applied regionalisation approaches are 348 

tested for decreasing station density in the catchments dataset. Given a certain value of station density, the 349 

corresponding number of gauged stations is randomly sampled from the original set of 209 catchments and the 350 

regionalisation approaches are applied on this subsample (catchments input dataset) in leave-one-out cross validation: in 351 
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turn, each of the catchment in the subsample is considered to be ungauged and the remaining basins are used as 352 

potential donors. Figure 5 shows an example of three samples for two different station densities, corresponding to 25 353 

and 100 stations in the input dataset. 354 

For each given value of station density, the following procedure is carried out: 355 

- 100 different random samples (i.e. 100 different subsamples) with the same number of catchments are 356 

generated. 357 

- for each subsample, the regionalisation approaches are applied, through leave-one-out cross validation and the 358 

deterioration of the performances with decreasing density is analysed. 359 

 360 

 361 

Figure 5. Example of three samples for two different station densities. 362 

 363 

4 Results and discussion 364 

4.1 Model performances “at site” 365 

As anticipated, the rainfall-runoff models are calibrated against Kling-Gupta Efficiency (Eq. 1). In addition to KGE, 366 

model performances are evaluated through Nash-Sutcliffe Efficiency (Eq. 8) as well. While KGE considers different 367 

types of model errors (the error in the mean, the variability and the dynamics of runoff), NSE is a standardize version of 368 

the mean square error. 369 

 370 

𝑁𝑆𝐸 = 1 −
∑(𝑄𝑠𝑖𝑚−𝑄𝑜𝑏𝑠)2

∑(𝑄𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2     Eq. 8 371 
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 372 

where 𝑄𝑠𝑖𝑚 is the simulated runoff, 𝑄𝑜𝑏𝑠 is the observed runoff and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the average observed runoff. 373 

Table 4 shows the model performances obtained calibrating the models “at site”, that is over the streamflow measured 374 

in each catchment during the calibration period (1977-1992) and validated over the years 1992-2008 (no regionalisation 375 

procedure is involved).  376 

Both rainfall-runoff models behave well for the study area: in calibration, the median Kling-Gupta efficiencies are 0.85 377 

for TUW and 0.88 for GR6J model, while in validation they deteriorate to 0.76 and 0.81 respectively. In the calibration 378 

period, KGE is always above 0.66 and 0.76, respectively for TUW and GRJ6, whereas in validation, the KGE is over 379 

0.72 for both models for 75% of the basins (even if it drops below 0.3 for two and one basins, respectively for TUW 380 

and GR6J). 381 

Looking at Nash-Sutcliffe efficiency the difference between the two models is even more marked than for the KGE: 382 

GR6J model tends to perform better than TUW, despite the lower number of parameters. 383 

 384 

Table 4. “At site” performances: values of the 25% (1st quar.), 50% (med.) and 75% (3rd quart.) quantiles for Kling-385 
Gupta (KGE) and Nash-Sutcliffe (NSE) efficiencies. 386 

  
 

  KGE [-]   NSE [-] 

  

    
1st 

quart. 
med. 

3rd 

quart. 
  

1st 

quart. 
med. 

3rd 

quart. 

T
U

W
 

Calibration 1977 - 1992   0.82 0.85 0.90   0.65 0.72 0.80 

Validation 1992 - 2008   0.72 0.76 0.82   0.59 0.66 0.72 

G
R

6
J
 

Calibration 1977 - 1992   0.86 0.88 0.91   0.72 0.77 0.81 

Validation 1992 - 2008   0.75 0.81 0.84   0.67 0.74 0.79 

 387 

4.2 Regionalisation performances using all catchments as potential donors 388 

4.2.1 Choice of the donors for the “output averaging” regionalisation methods  389 

Before comparing performances of regionalisation methods, it is necessary to choose the optimal settings for the output-390 

averaging versions of nearest neighbour (NN-OA) and “most similar” (MS-OA) techniques. 391 

As anticipated in the methodology Section 3.2.5, we first investigate the effect of using different numbers of donors: in 392 

particular, values between 1 and 50 are tested for both regionalisation techniques. 393 

Regionalisation methods are repeated through leave-one-out cross-validation for each number of donors n and the 394 

median Kling-Gupta efficiency obtained for each value of n over all the 209 catchments is computed. Tests are 395 

performed for calibration and validation periods, but results are reported only for the validation period.  396 

Figure 6 shows the median Kling-Gupta efficiency when the changing number of donors for TUW (upper panel) and 397 

GR6J (lower panel). Looking at the figures, we may see that in all the four cases, the index always deteriorates when 398 

more than 10 donors are chosen. On the other hand, there is not a unique optimal number of donors for the two models 399 

nor for the two regionalisation techniques. The optimal number of donors identified according to the median of the 400 

KGE varies between 3 and 7 depending both on the rainfall-runoff model (TUW or GRJ6) and on the regionalisation 401 

approach (NN-OA or MS-OA). Since the KGE differences between 3 and 7 donors are not so relevant (around 0.02), 402 
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we decided to use 3 donors for both regionalisation methods and both models, which is also the most parsimonious 403 

option. In addition, the choice of a low number of donors is convenient also in view of the analysis to be done on 404 

decreasing density, where a large number of donors would imply the use of catchments that are less and less similar to 405 

the target one. 406 

It may be noted that the results by Oudin et al. (2008) highlighted a clearer pattern of model performances when 407 

increasing the number of donors, with a stronger decrease in efficiency when using high numbers of donors. This may 408 

be explained by the fact that they were using a simple not-weighted average of outputs. Here instead, the influence of 409 

the additional donors is gradually poorer, due to the weights implemented in the output averaging procedure (Eq. 5): 410 

when adding further donors to the approaches, the corresponding weights in the average are gradually lower according 411 

to the increasing distance (for NN-OA) or dissimilarity index (for MS-OA) from the target. Thus, the impact of the less 412 

similar catchments is smoothed, compared to what may be achieved using a not-weighted output average. 413 

 414 

 415 
Figure 6. Impact of the number of donors on output-averaging nearest neighbour (NN-OA) and ‘most similar’ (MS-OA) 416 

regionalisation methods for TUW (panel a) and GR6J (panel b) model. 417 
 418 

4.2.2 Performances of the regionalisation methods 419 

This section shows the performances of the regionalisation methods without excluding any candidate donor: the above 420 

descripted regionalisation methods will be tested over all the 209 study catchments through leave-one-out cross 421 

validation, for both models. Here all the basins in the dataset are used as potential donors: in turn, each basin is 422 

considered to be ungauged and all the remaining (208) catchments are available in the donors set for testing the 423 

regionalisation approaches. The parameter sets of the donor catchments used in the regionalisation are obtained through 424 

https://doi.org/10.5194/hess-2020-38
Preprint. Discussion started: 26 February 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

a calibration procedure over the years 1977-1992, whereas for assessing the performances of the regionalisation 425 

methods, only the results obtained over the validation period (1992-2008) are reported. Spatiotemporal transfer of 426 

model parameters is therefore the most exacting task (as confirmed by the study of Patil et al. 2015), since we are using 427 

parameters obtained over different catchment (in regionalisation) and over a different observation period. On the other 428 

hand, this is exactly what would happen in a real-world forecasting application or for assessing the impact of a climate 429 

change scenario, where you have to identify the parametrization of a model to be used for independent hydro-climatic 430 

conditions and in any possible river section in the region. 431 

 432 

Figure 7 reports Kling-Gupta and Nash-Sutcliffe efficiency boxplots for the two models when regionalising following 433 

each of the techniques.  434 

For TUW (Figure 7, panels a and b), all regionalisation methods provided good simulations: with respect to the 435 

performances (always on the validation period) obtained when the models have been calibrated on the target section (“at 436 

site” simulations, white boxes): the loss in efficiency indexes is, overall, limited. The Nash-Sutcliff efficiencies of KR, 437 

MS-1 and NN-1 methods are consistent with the findings of Parajka et al. (2005), who computed only the NS: their 438 

results are very similar to the present ones, even if they worked on a greater number of Austrian catchments and 439 

calibrating the model against a different objective function. 440 

For the GR6J model (Figure 7, panels c and d), the efficiencies of the nearest neighbours (NN-1 and NN-OA) and 441 

“most similar” (MS-1 and MS-OA) regionalisations are closer to those of the TUW in respect to what happened when 442 

the models are calibrated “at site”. In fact, the GR6J model in regionalisation mode deteriorates more than HBV in 443 

respect to the parametrization obtained considering the target as gauged. 444 

In addition, we notice that, for this model, the ordinary kriging has performances always poorer than all the other 445 

regionalisation methods. 446 

 447 

For both rainfall-runoff models MS-OA tends to provide the best results and in general the two methods based on 448 

“output average” (NN-OA and MS-OA), that exploit the information from more than one donor, outperform NN-1 and 449 

MS-1, in particular in terms of Nash-Sutcliffe efficiency. This confirms the usefulness of regionalising on the basis of 450 

more than one donor, as indicated by previous studies (e.g. McIntyre et al. 2005, Oudin et al. 2008, Viviroli et al. 2009, 451 

Zelelew and Alfredsen 2014). 452 

 453 
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 454 
Figure 7. Original performances of the regionalisation methods for TUW model (panels a and b) and for GR6J model 455 
(panels c and d) for the 209 Austrian catchments in the validation period 1992-2008. Boxes extend to 25% and 75% 456 

quantiles while whiskers refer to 10% and 90% quantiles. 457 

4.3 Impact of nested donors: performance losses in regionalisation 458 

4.3.1 Catchments identified as nested by the two criteria 459 

As introduced in Section 3.3, two different Criteria are implemented for identifying which donor catchments are 460 

considered to be nested in relation to an ungauged catchment: Criterion 1 (Figure 8, panel a) assumes that the only 461 

nested donors are the first downstream and the first upstream gauged sections. Following this approach, 81% of the 462 

catchments in the dataset have at least one downstream or upstream nested donor (red dots in Figure 9, panel a). 463 

Instead, Criterion 2 (Figure 8, panel b) excludes all the potential donors sharing a given percentage of drainage area 464 

with the target catchment. It requires the definition of a percentage threshold value of shared drainage area. A 465 

preliminary sensitivity analysis (not reported here) was performed, investigating the effect of different values between 466 

5% and 20% for such percentage. Results show that differences in terms of regionalisation performance are not 467 

significant and it is fixed to 10%. The choice of the threshold influences the number of catchments which can be 468 

included in the study: in fact, the higher is the threshold, the lower is the number of basins classified as nested following 469 
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Criterion 2. Using 10% as a threshold allows to include most of the watersheds in the analysis: 65% (137 catchments) 470 

of the basins have at least one nested donor catchment sharing at least the 10% of its area (red dots in Figure 9, panel b). 471 

All the watersheds having potential nested donors according to the second criterion have nested gauged catchments also 472 

according to the first criterion, but not vice versa: the impact of nested catchments on regionalisation performances is 473 

therefore evaluated only for those 137 catchments which are considered to have nested gauged catchments following 474 

both criteria.  475 

It is important to highlight that the remaining 35% of the basins are still used as potential donor catchments, but the 476 

regionalisation approaches are not repeated using such basins as targets (since they have no nested donors, their 477 

performance would not change and they would distort the results). 478 

Among the 137 catchments considered for the analysis of the “nestedness”, 43% result to have only downstream nested 479 

donor(s), 28% only upstream nested donor(s), and 29% at least one upstream and one downstream nested donors. 480 

 481 

 482 

Figure 8. Criteria for excluding nested catchments when regionalising model parameters. 483 

  484 
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 485 

Figure 9. Panel a: red dots (170) refer to catchments with at least one upstream or downstream nested gauged 486 
catchments (Criterion 1). Panel b: red dots (137) refer to catchments with at least one nested gauged catchment sharing 487 

more than 10% of drainage area (Criterion 2). 488 

 489 

4.3.2 Performance losses in regionalisation when excluding nested donors 490 

The regionalisation methods are applied again in leave-one-out cross validation, this time excluding from the available 491 

donors the catchments which are nested in relation to the target (ungauged) basin. This is done for both “nestedness” 492 

criteria (down/upstream or overlapping of drainage area) and the analysis applies exclusively to the 137 catchments 493 

classified as nested according to both criteria (red dots in Figure 9, panel b). The figures of this section (Figures 10 to 494 

13) therefore refer to such subset. 495 

 496 

Figures 10 and 11 compare the different performances (Kling-Gupta and Nash-Sutcliffe efficiencies in the upper and 497 

lower panels respectively) obtained in regionalisation (always over the validation period), when nested catchments are 498 

available or not as candidate donor basins for both TUW model (Figure 10) and GR6J (Figure 11). Each group of 499 

boxplots refers to a different regionalisation method: within such groups, the first box indicates the performance when 500 

no basins are excluded from the donor set, while the second and the third boxes report the performances due to the 501 

exclusion of the nested following Criterion 1 or 2 respectively. 502 

 503 

The performance deterioration is highlighted by bar plots in Figures 12 and 13, showing the mean loss in Kling-Gupta 504 

and Nash-Sutcliffe efficiencies when excluding nested following the two criteria. 505 

 506 

Finally, Table 5 reports the interquartile variability of Kling-Gupta e Nash-Sutcliffe efficiencies for both models and all 507 

the regionalisation approaches when nested donors are excluded or not. 508 

https://doi.org/10.5194/hess-2020-38
Preprint. Discussion started: 26 February 2020
c© Author(s) 2020. CC BY 4.0 License.



20 
 

 509 

The method that is less affected is the ordinary kriging, especially for the HBV model, due to the fact that such method 510 

is not based on the identification of one or more ‘sibling’ donors which may have been excluded if nested. On the other 511 

hand, it should also be highlighted that such method is the regionalisation approach that performs worst, when nested 512 

basins are available. 513 

 514 

As expected, for both TUW and GR6J, NN-1 is always the most heavily affected method (dark green bars in bottom 515 

panels of Figure 12 and 13): this is due to the fact that the nearest donor is a nested one in more than 80% of the 516 

catchments, for both criteria and its exclusion seriously compromise the performance.  517 

 518 

Excluding the nested catchments has also a strong impact on MS-1 (dark blue bars in bottom panels of Figures 12 and 519 

13), even if to a lesser extent than for NN-1, since for more than 60% of the catchments the most similar donor is a 520 

nested one according to both criteria.  521 

 522 

The degradation of performance moving from Criterion 1 (upstream/downstream) to Criterion 2 (overlapping drainage 523 

area) highlighted in Figure 10 and 11 demonstrates that using as donors not only the immediate downstream or 524 

upstream gauged river sections, but also all the catchments partially sharing their drainage area with the target one, have 525 

a strong positive influence on the regionalisation performance.  526 

 527 

Furthermore, it is clear how the use of output-averaging for both nearest neighbour and “most similar” approaches (NN-528 

OA and MS-OA), in addition to perform better than the NN-1 and MS-1 when using all (nested and non-nested) donors 529 

(see also Section 4.3) can also improve the robustness of the methods to the exclusion of the nested donors: the bottom 530 

panels of Figures 12 and 13 in fact show that the loss in the efficiencies of  NN-OA and MS-OA are always smaller 531 

than those corresponding to the single donor approaches (NN-1 and MS-1), for both rainfall-runoff models and for both 532 

regionalisation methods. This confirms that the use of output-averaging (or more in general the use of more than one 533 

donor basin) is preferable for regionalisation purposes also for regions that do not have so many nested catchments as 534 

the Austria study area. 535 

 536 

Finally, the values reported in Table 5 (as well as Figure 12 and 13) shows how, especially for NSE, the losses resulting 537 

when excluding nested donors from the regionalisation are higher for the GR6J model than for the HBV: the GR6J 538 

seems to be slightly more affected by the presence of nested basins, except for MS-1 and MS-OA whose performances 539 

remain more similar to those of TUW.  540 

 541 
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 542 
Figure 10. Effect of the exclusion of nested catchments for the subset of 137 watersheds classified as nested: Kling-543 

Gupta (upper panel) and Nash-Sutcliffe (lower panel) efficiencies when regionalising the TUW model. “No exclusion”: 544 
all the donors are available. “Criterion 1” or “Criterion 2”: nested catchments are excluded from donor set. Box colours 545 

refer to the different methods: green is nearest neighbour (1 donor is dark green and 3 is light green), blue is most 546 
similar (1 donor is dark blue and 3 is light blue) and magenta is ordinary kriging. Boxes extend to 25% and 75% 547 

quantiles while whiskers refer to 10% and 90% quantiles. 548 
549 
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  550 

 551 
Figure 11. Effect of the exclusion of nested catchments for the subset of 137 watersheds classified as nested: Kling-552 

Gupta (upper panel) and Nash-Sutcliffe (lower panel) efficiencies when regionalising the GR6J model. “No exclusion”: 553 
all the donors are available. “Criterion 1” or “Criterion 2”: nested catchments are excluded from the donor set. Box 554 
colours refer to the different methods: green is nearest neighbour (1 donor is dark green and 3 is light green), blue is 555 

most similar (1 donor is dark blue and 3 is light blue) and magenta is ordinary kriging. Boxes extend to 25% and 75% 556 
quantiles while whiskers refer to 10% and 90% quantiles. 557 

  558 

https://doi.org/10.5194/hess-2020-38
Preprint. Discussion started: 26 February 2020
c© Author(s) 2020. CC BY 4.0 License.



23 
 

 559 
Figure 12. Kling-Gupta and Nash-Sutcliffe efficiencies and mean losses in the same criteria resulting when excluding 560 

the nested donors with Criterion 1 and 2 (bottom panels) for TUW model.  561 
  562 
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 563 
Figure 13. Kling-Gupta and Nash-Sutcliffe efficiencies and mean losses in the same criteria resulting when excluding 564 

the nested donors with Criterion 1 and 2 (bottom panels) for GR6J model. 565 
 566 

Table 5. Inter-quartile values of Kling-Gupta and Nash-Sutcliffe efficiencies when regionalising TUW and GR6J 567 
models excluding or not excluding nested donor catchments. 568 

      Inter-quartile KGE [-] 

      NN-1 NN-OA MS-1 MS-OA KR 

T
U

W
 No nested excluded   0.64/0.79 0.66/0.81 0.64/0.79 0.63/0.81 0.63/0.80 

Criterion 1   0.50/0.76 0.54/0.79 0.52/0.78 0.57/0.78 0.60/0.78 

Criterion 2   0.42/0.75 0.53/0.76 0.46/0.77 0.53/0.78 0.61/0.78 

G
R

6
J
 No nested excluded   0.65/0.82 0.65/0.83 0.62/0.83 0.64/0.83 0.53/0.79 

Criterion 1   0.44/0.79 0.52/0.79 0.53/0.80 0.56/0.80 0.52/0.74 

Criterion 2   0.34/0.78 0.45/0.77 0.44/0.78 0.52/0.79 0.52/0.73 

      Inter-quartile NSE [-] 

      NN-1 NN-OA MS-1 MS-OA KR 

T
U

W
 No nested excluded   0.53/0.71 0.56/0.73 0.51/0.70 0.56/0.73 0.50/0.70 

Criterion 1   0.33/0.68 0.47/0.70 0.46/0.66 0.50/0.70 0.49/0.69 

Criterion 2   0.18/0.66 0.41/0.68 0.35/0.65 0.46/0.70 0.49/0.67 

G
R

6
J
 No nested excluded   0.57/0.77 0.60/0.77 0.54/0.77 0.61/0.78 0.50/0.73 

Criterion 1   0.26/0.71 0.45/0.74 0.48/0.74 0.52/0.75 0.46/0.71 

Criterion 2   0.13/0.71 0.34/0.73 0.33/0.72 0.48/0.75 0.45/0.69 
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4.4 Impact of station density: performance losses in regionalisation 569 

The last results concern the analysis on the impact of station density on regionalisation performances. As introduced in 570 

Section 3.4, for decreasing values of station density across Austria, 100 random samples of stream gauges are generated 571 

from the 209 catchments data set and the regionalisation methods are repeated in leave-one-out cross validation over 572 

each one of such samples. Seven different values of station density from 0.3 to 2.1 gauges per 1000 km2 are tested, 573 

which correspond to a total number of stations across Austria from 25 to 175. 574 

For each assigned density value, the described procedure provides 100 different sets of regionalised target catchments. 575 

For a given density, each one of these 100 subsamples is formed by the same number of target catchments, resulting 576 

therefore in the same number of efficiencies to be analysed. 577 

In order to analyse the results, the median regionalisation performances of each subsample are computed and presented 578 

here: thus, for each gauging density, the results consist in 100 values of median performances. 579 

For sake of brevity, only the median Kling-Gupta efficiencies over the validation periods are reported. They are shown 580 

in Figure 14 for TUW model and in Figure 15 for GR6J model: each plot contains the boxplots of the median Kling-581 

Gupta efficiencies for each station density (i.e. number of gauges per 1000 km2), that is, each boxplot presents the 100 582 

values of median Kling-Gupta efficiencies obtained applying the regionalisation approaches to the 100 subsamples 583 

generated with an assigned density. The colored point and the dotted line in the plots indicate the “original” (and 584 

maximum) median regionalisation efficiency of the approaches, that is the one obtained when using all available donors 585 

(i.e. actual station density, corresponding to 2.4 gauges/1000 km2). 586 

 587 

The NN-1 method (Figures 14 and 15, panels a) is the most affected by the decreasing density. In fact, when the density 588 

declines, there is an higher probability that the less dense subsamples do not include the catchment that is the nearest 589 

one to each target river section. And, as we have seen in the analyses on the nested donors, in the large majority of the 590 

cases, the nearest catchment is a nested one, whereas the second best may be substantially different from the target 591 

basin. 592 

Also the output-averaging version of the nearest neighbours method (Figures 14 and 15, panels b) strongly deteriorates 593 

for less dense networks. In general, nearest neighbour methods are highly sensitive to gauging density: geographical 594 

distance results to be a good similarity measure only for densely gauged study area (like Austria), since they firmly rely 595 

on the presence of gauged catchments in the immediate surroundings that are also hydrologically very similar. If the 596 

density decreases, the closest donor may be relatively far from the target, and it may therefore have little in common 597 

with it. 598 

As far as the MS-1 (Figures 14 and 15, panels c) is concerned, its performances degrades more gracefully (with the 599 

exception of the GR6J model for the minimum density) than the NN-1 or the NN-OA. Also in this case (like for the 600 

NN-1), when the density decreases it becomes less probable that the most hydrologically similar catchment (identified 601 

by MS-1 in full density) is still part of the subsample; but it is also true there is more than one catchment in the original 602 

data set that is similar enough to the target in terms of catchment attributes.  603 

This holds also for the output–averaging MS (Figures 14 and 15, panels d), which is even less affected by a reduction in 604 

donors’ density and is the best-performing approach for any density (for both rainfall-runoff models).  605 

We may note that, also in this analysis, analogously to what resulted for the exclusion of nested catchments, for both 606 

approaches (NN and MS), the implementation of output-averaging allows to reduce the degradation in the performances 607 

in comparison to the corresponding 1-donor version.  608 
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The impact of station density is similar to that of excluding nested catchments also for the ordinary kriging approach 609 

(Figures 14 and 15, panels e), which deteriorates less than the other methods for decreasing values of station density. 610 

For the TUW model, the kriging regionalisation, starting from an already high KGE in full density, results in 611 

performances that are inferior only to those of MS-OA when the density goes below 0.9. For the GR6J model, even if 612 

the deterioration is limited, since the kriging was poorly performing for the full density regionalisation (Figure 7), the 613 

median KGE is always worse than those of all the other regionalisation approaches, for all the station densities. 614 

Overall, all methods (excluding the poorly performing NN-1 and the kriging for the GR6J) result in relatively good 615 

performances provided that the station density is at least 0.9 gauges per 1000 km2. On the other hand, leaving aside the 616 

kriging method, the median KGE drops very steeply when the density passes from 0.6 to 0.3 gauges per 1000 km2. 617 

 618 
Figure 14. Median Kling-Gupta efficiency of the 100 sampled datasets for varying station density (number of gauges 619 

per 1000 km2) for the TUW model using NN-1 (panel a), NN-OA (panel b), MS-1 (panel c), MS-OA (panel d) and KR 620 
(panel e) regionalisation methods. The colored point and dotted line in the plots indicate the original median 621 

regionalisation efficiency of the approaches when using all available donors (i.e. actual station density, corresponding to 622 
2.4 gauges/1000 km2). 623 
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 624 
Figure 15. Median Kling-Gupta efficiency of the 100 sampled datasets for varying station density (number of gauges 625 

per 1000 km2) for the GR6J model using NN-1 (panel a), NN-OA (panel b), MS-1 (panel c), MS-OA (panel d) and KR 626 
(panel e) regionalisation methods. The colored point and dotted line in the plots indicate the original median 627 

regionalisation efficiency of the approaches when using all available donors (i.e. actual station density, corresponding to 628 
2.4 gauges/1000 km2). 629 

5 Discussion and conclusions 630 

An assessment of the impact of the presence of nested catchments and of station density on the performance of 631 

parameter regionalisation techniques in a large Austrian dataset has been performed. The main motivation for this work 632 

lies in the lack of systematic studies in the literature about the effect of data-richness and information content when 633 

evaluating the accuracy of various methods for transferring rainfall-runoff model parameters to ungauged catchments. 634 

In fact, studies conducted on different study sets often do not lead to the same ranking of the tested approaches and the 635 
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obtained results are not extendable to different study regions. This is indeed due also to the diverse topological 636 

relationships between catchments (“netstedness”) in the datasets and to the diverse density of the streamgauges.  637 

 638 

The purpose of the work is to give support to the choice of the most appropriate parameter regionalisation approaches, 639 

showing and quantifying if and how the presence of several nested catchments in a dataset or the gauging density can 640 

distort the predictive power of a certain technique. 641 

 642 

The research has been conducted for a very densely gauged dataset covering a large portion of the Austrian country. 643 

Two rainfall-runoff models for simulating daily streamflow have been calibrated for the 209 study watersheds: a semi-644 

distributed version of the HBV model (TUW model), and the lumped GR6J model coupled with the Cemaneige snow 645 

routine. 646 

Both models perform very well when applied in “at-site” mode, that is when parameterised in the traditional, (not 647 

regionalised) way, and for each target section the historical gauged streamflow data are used for fitting the parameter 648 

set. The calibration and validation performances are very good for both rainfall-runoff models, with better values of the 649 

chosen goodness-of-fit indexes for the GR6J model, which demonstrates to perform very well also in this Alpine 650 

dataset. 651 

 652 

In order to assess the capability of the models when used on ungauged basins, the streamgauge data for every section 653 

was, in turn, considered not to be available, and five regionalisation approaches were implemented for using the 654 

rainfall-runoff models in such ‘ungauged’ sections over the validation period. This is indeed an exacting task because 655 

we are attempting to use the model over an ungauged catchment and for an observation period different from the one 656 

used for parameterising the gauged donor catchments. The first regionalisation approach is an ordinary kriging 657 

approach (KR), which separately interpolates each of the model parameter based on their spatial correlation in the study 658 

area. Two approaches selecting one single donor catchment and transposing its parameter set to the target basin are also 659 

tested: in the first (NN-1) the geographically nearest catchment is selected, while in the second approach (MS-1) the 660 

single donor that “lends” all its parameters to the target one is the most similar one in terms of a set of physiographic 661 

and climatic attributes. The latter two approaches are implemented also in the output-averaging (OA) version, where the 662 

entire parameter set of more than one donor is used for the simulation on the target section and the model outputs are 663 

then averaged accordingly to the distance/dissimilarity between donors and target.  664 

In regionalisation mode, the performances of the GR6J model deteriorates more than those of the TUW model, in 665 

comparison with the ‘gauged’, at-site parameterisation. For both rainfall-runoff models, the use of the output averaging 666 

approach outperform the use of a single donor (NN-OA and MS-OA performed better than NN-1 and MS-1), 667 

confirming the outcomes of other studies on the importance of exploiting the information available from more than only 668 

one donor (see e.g., McIntyre et al. 2005, Oudin et al. 2008, Viviroli et al. 2009, Zelelew and Alfredsen 2014). The 669 

output-averaging methods also outperform the parameter-averaging kriging method (especially for the GR6J model), 670 

showing that it is preferable transferring the entire parameter set of each donor, thus maintaining the correlation 671 

between the parameter values. The results of the MS-OA are close but tend to be better than those of the NN-OA, 672 

indicating that hydrological similarity is more important than geographical closeness for choosing the donors. 673 

We expect that spatial proximity alone may be even less representative of hydrological similarity in a drier climate: in 674 

fact Patil et al. (2012) and Li and Zhang (2017) shown that in dry runoff-dominated regions, nearby catchments tend to 675 

exhibit less hydrological similarity than in more humid regions. 676 
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 677 

The impact of the “richness” of the data set was then analysed, in order to assess the deterioration of the regionalisation 678 

approaches for decreasing availability and ‘worth’ of the available donors, starting from the influence of using nested 679 

basins as donors. 680 

 681 

Two criteria have been proposed for identifying a basin that is nested with the target one: the first one, already used in 682 

the few analysis of “nestedness” in the literature, classifies as nested the first upstream and the first downstream gauges 683 

on the river network. The second, novel criterion, identifies as nested all the catchments that share more than a given 684 

percentage (here chosen as 10%) of the drainage area with the target one. It results that the first criteria includes in the 685 

list of basins being nested with at least one potential donor many more sections than those identified by the second 686 

criteria. In fact, the first criterion considers as nested also a number of catchments that share less than 10% of area with 687 

the target one: this means that, in some cases, the first downstream or upstream gauge may be not representative of the 688 

same drainage area and their catchments may be governed by very different hydrological processes.  689 

 690 

All the regionalisation approaches have been repeated by excluding from the donor set the catchments assumed to be 691 

nested in relation to each target basin, according to each one of the two criteria. 692 

For both rainfall-runoff models and for all the regionalisation approaches, when using the second criterion (that 693 

excludes all the basins that share a significant portion of the same watershed), the regionalisation procedure deteriorates 694 

more than when excluding the first up/downstream river sections, whose catchment may, in some cases, not have much 695 

in common with the target one. 696 

Looking at the two rainfall-models, when excluding the nested catchments, the regionalisation performances tend to 697 

deteriorates more for the GR6J than for the TUW: this seems to indicate that the TUW model may be more robust for 698 

regionalisation purposes, even when nested donors are not available. 699 

Comparing the different regionalisation approaches, the parameter-averaging kriging is the method that is less impacted 700 

by the exclusion of the nested donors, since it does not depend only on the choice of one or few ‘sibling’ donors, that 701 

are very often the nested ones, but it takes into account a number of donors in a given radius. This is consistent to the 702 

outcomes of Merz and Blöschl (2004) and Parajka et al. (2005) who observed almost no deterioration of regionalisation 703 

performances when excluding the first down and upstream nested donors using the same ordinary kriging approach. 704 

When using, instead, a method transferring the entire parameter set from one or more donor catchments, the 705 

deterioration is more sizeable. The method that experiences the worst deterioration is the NN-1, since in 80% of the 706 

cases, the nearest basin is a nested one, and it is thus excluded from the potential donors; second worst is the MS-1, that, 707 

when free to choose any single potential donor in the entire region, would choose a nested one in 60% of the cases. The 708 

output-averaging methods degrade less severely, showing that exploiting the information resulting from more than one 709 

donor increases the robustness of the approach also in regions that do not have so many nested catchments as the 710 

Austrian one (where the importance of nested donors in regionalising model parameters is highlighted also by Merz and 711 

Blöschl, 2004).  712 

 713 

Finally, an assessment of the impact of station density on the regionalisation has been also implemented. The nearest 714 

neighbour approaches (both NN-1 and NN-OA) are the methods that suffer more from the decrease in gauging density, 715 

whereas the “most similar” methods (MS-1 and MS-OA), which use as similarity measure a set of catchment 716 

descriptors, are more capable to adapt to less dense datasets: in fact the “most similar” methods are able to find other 717 
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adequate donors, that may be anywhere in the region, whereas the nearest neighbours techniques, in a more ‘sparse’ 718 

monitoring network  risk to identify a “not so near” donor that may be very different from the target one. 719 

The impact of decreasing station density on the performance of the output-averaging approach based on spatial 720 

proximity (NN-OA) is in line to what observed by Lebecherel et al. (2016). 721 

The performances of both the output-averaging methods, in agreement with the results obtained for similar methods by 722 

Oudin et al. (2008), strongly deteriorate when the station density drops below 0.6 gauges per 1000 km2.  723 

 724 

The study confirms how the predictive accuracy of parameter regionalisation techniques strongly depends on the 725 

information content of the dataset of available donor catchments, quantifying the contribution of nested catchments and 726 

station density for different approaches and rainfall-runoff models. The outcomes obtained in reference to the Austrian 727 

data set indicate that the reliability and robustness of the regionalisation of rainfall-runoff model parameters can be 728 

improved by making use of output-averaging approaches, that use more than one donor basin but preserving the 729 

correlation structure of the parameter set. Such approaches result to be preferable for regionalisation purposes in both 730 

data-poor and data-rich regions, as demonstrated by the analyses on the degradation of the performances resulting from 731 

either removing the nested donor catchments or decreasing the gauging station density. 732 
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Appendix A: Choice of best catchment descriptors 838 

The implementation of the “most similar” approach requires the choice of the geo-morphologic and climatic attributes 839 

to be used for selecting the donor catchment(s), i.e. to calculate the dissimilarity indices of equation 7.  840 

This similarity study is part of a preliminary analysis carried out using the whole period of available daily data (from 841 

1976 to 2008, again with 1 year of warm-up) for calibrating the rainfall-runoff models. 842 

In order to individuate the best catchment descriptors (all reported in Table 1 with a brief description), the most similar 843 

approach with one single donor catchment (MS-1) is applied sequentially to the entire dataset in leave-one-out cross-844 

validation, using at each step an increasing number of attributes when defining the dissimilarity index ɸ. At each step, 845 

the method is tested multiple times, adding one by one each of the attributes and the one which gives the best 846 

regionalisation performances is selected. For greater clarity, Figure A1 (panel a) refers to TUW and panel b) to GR6J) 847 

shows the boxplots of the consecutive best combinations of descriptors: at the first step, only one attribute is used, the 848 

most similar approach is tested for all the available catchment features, and the similarity in the land cover classes 849 

(Corine) gave the best efficiency. At the second step, the operation is repeated using land cover and each of the 850 

remaining attributes one at a time, finding the geology classes to be the best attribute to add, and so on. The analysis 851 

stops when the performances are decreasing or stop improving. 852 
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As can be inferred from Figure A1, both rainfall-runoff models reach good regionalisation performances when using up 853 

to 5 attributes. Since the first best 5 attributes are the same for both models and from the sixth step the performances are 854 

not substantially improved, we decide to choose those five descriptors to characterize catchment similarity: land use 855 

classes, geological classes, mean annual precipitation, stream network density and mean elevation. 856 

 857 

 858 

Figure A1. Kling-Gupta efficiencies for TUW (a) and GR6J (b) models for the consecutive steps of the similarity 859 
analysis. Boxes refer to 25% and 75% quantiles, whiskers refer to 10% and 90% quantiles and the blue points to the 860 

average. 861 

https://doi.org/10.5194/hess-2020-38
Preprint. Discussion started: 26 February 2020
c© Author(s) 2020. CC BY 4.0 License.


