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Abstract.  8 

The setup of a rainfall-runoff model in a river section where no streamflow measurements are available for its calibration 9 

is one of the key research activities for the Prediction in Ungauged Basins (PUB): in order to do so it is possible to estimate 10 

the model parameters based on the hydrometric information available in the region. The informative content of the data 11 

set (i.e. which and how many gauged river stations are available) plays an essential role in the assessment of the best 12 

regionalisation method. This study analyses how the performances of regionalisation approaches are influenced by the 13 

“information richness” of the available regional data set, i.e. the availability of potential donors, and in particular by the 14 

gauging density and by the presence of nested donor catchments, that are expected to be hydrologically very similar to 15 

the target section.  16 

The research is carried out over a densely gauged dataset covering the Austrian country, applying two rainfall-runoff 17 

models and different regionalisation approaches. 18 

The regionalisation techniques are first implemented using all the gauged basins in the dataset as potential donors, and 19 

then re-applied decreasing the informative content of the data set. The effect of excluding nested basins and the status of 20 

“nestedness” is identified based on the position of the closing section along the river or the percentage of shared drainage 21 

area. Moreover, the impact of reducing station density on regionalisation performance is analysed. 22 

The results show that the predictive accuracy of parameter regionalisation techniques strongly depends on the informative 23 

content of the dataset of available donor catchments. The “output-averaging” approaches, which exploit the information 24 

of more than one donor basin and preserve the correlation structure of the parameter, seem to be preferable for 25 

regionalisation purposes in both data-poor and data-rich regions. Moreover, the use of an optimised set of catchment 26 

descriptors as similarity measure, rather than the simple geographical distance, results to be more robust to the 27 

deterioration of the informative content of the set of donors.  28 

 29 

1 Introduction 30 

In the hydrological practice, it is often needed to gain information on ungauged river sections and one of the most 31 

informative ways to do so is implementing a rainfall-runoff model, when, as it is often the case, the meteorological input 32 

variables are retrievable in reference to its drainage area. In such cases, however, the model parameters may not be 33 

obtained through a calibration procedure and it is necessary to regionalise them, exploiting the information of 34 

hydrologically similar catchments in the study area. 35 
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Regionalisation approaches for model parameterisation can be classified into two wide categories (He et al., 2011), 36 

“regression-based” and “distance-based” methods: 37 

1) Regression-based methods define relationships between each model parameter and geomorpho-climatic catchment 38 

attributes (see e.g., Seibert 1999) and apply these relationships to estimate model parameters at ungauged sites. 39 

2) Distance-based methods, instead, identify a set of similar donor catchments and transfer their calibrated parameters 40 

to the ungauged (“target”) catchment. This type of approaches includes: 41 

2-i) “output-averaging” methods which transfer the entire set of model parameters from donor catchments, thus 42 

maintaining correlation among parameters (which run the model multiple times and average the simulations),  43 

2-ii) “parameter-averaging” methods which derive each target parameter independently, as a function (generally a 44 

weighted average) of the calibrated donors. To this class (distance-based group of the parameter-averaging type) 45 

also belong the kriging methods, where the parameters are regionalised based on their spatial correlation and 46 

independently from each other (Merz and Blöschl, 2004; Parajka et al., 2005). 47 

In the last two decades, hydrologic scientists from all around the world have focused on the determination of the more 48 

accurate regionalisation techniques for different case studies and rainfall-runoff models (see e.g., the reviews of Merz et 49 

al. 2006, He et al. 2011, Peel & Blöschl 2011, Parajka et al. 2013, Hrachowitz et al. 2013, Razavi and Coulibaly 2013).  50 

Synthesis of existing studies presented in Parajka et al. (2013) has shown that different groups of regionalisation 51 

approaches have similar efficiency. Still, the regionalisation performance is related to data availability and the number of 52 

catchments used for the analysis. So, a very important aspect for choosing the most adequate regionalisation technique is 53 

the informative content of the study region, i.e. how many gauged stations are available for inferring the hydrological 54 

behaviour at the target, ungauged section. In particular, in very densely gauged areas, spatial proximity is expected to be 55 

a good similarity measure, as demonstrated by Merz and Blöschl (2004) and Parajka et al. (2005), who tested different 56 

regionalisation approaches on a dense dataset of more than 300 watersheds across Austria. Similar results are presented 57 

in Oudin et al. (2008), who examined spatial proximity on a set of 913 French catchments without snow impact. But 58 

different outcomes may be obtained when the gauged stations are less dense and less interconnected (that is with less 59 

availability of stations along the same river). For example, Samuel et al. (2011) regionalised the parameters of HBV 60 

model for a sparsely gauged dataset (135 watersheds on the wide area of Ontario, Canada) and found that the best approach 61 

for such study area was an inverse-distance parameter-averaging of a pre-selected set of physically similar catchments.  62 

 63 

The availability in the data set of gauged river stations representative of hydrological conditions similar to the ungauged 64 

ones plays an essential role in the assessment of the best regionalisation method. This availability can be, in some way, 65 

estimated with the station density (i.e. number of stations per km2) and with the topological relationship between 66 

catchments. In particular, the presence of several nested catchments (i.e. gauged river sections on the same river) in the 67 

study region can strongly influence the performance of some regionalisation techniques. If for an ungauged basin model 68 

parameter sets are available for down/upstream gauged river sections, then donor and target watersheds share part of their 69 

drainage area, and thus they may also be hydrologically very similar. Such similarity may lead to very good 70 

regionalisation performances for a given approach, but may not represent the accuracy that would be obtained in different 71 

conditions. Therefore, regionalisation performances obtained for datasets with a high degree of “nestedness” may be not 72 

transferrable to study regions poor of nested basins. 73 

 74 
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So far, very few studies examined the impact of the presence of nested catchments on the performances of parameter 75 

regionalisation techniques. Merz and Blöschl (2004), Parajka et al. (2005) and Oudin et al. (2008) tested the effect of the 76 

removal of nested catchments from the available donor catchments, but only for one or two regionalisation techniques, 77 

without analysing in detail the differences between different types of approaches. Additionally, the contribution of the 78 

immediate downstream and/or upstream gauged stations has never been compared to that of the other nested catchments 79 

that share significant portions of drainage area with the ungauged one. 80 

 81 

Also, the influence of gauging density on the regionalisation of rainfall-runoff model parameters has been little explored, 82 

with two notable exceptions. Oudin et al. (2008) applied the spatial proximity and physical similarity output-averaging 83 

techniques for decreasing values of station density in France and Lebecherel et al. (2016) tested the robustness of the 84 

spatial proximity output-averaging approach to an increasing sparse hydrometric network on the same study region. In 85 

Austria, the effect of station density has been investigated by Parajka et al. (2015), but in reference to the interpolation of 86 

streamflow time-series and not to the parameterisation of rainfall-runoff models.  87 

 88 

The purpose of the present paper is to analyse the role of the informative content of the available regional data set, that is 89 

which and how many gauged catchments are available to be used as donors for the regionalisation in a target, ungauged 90 

section. This will be done comparing first the impact of the presence of nested donors and then the effect of the reduction 91 

of station density on the performances of different parameter regionalisation techniques for a dataset of 209 catchments 92 

across Austria.  93 

The tested regionalisation approaches include a set of consolidated techniques, applied to two different continuous-94 

simulation daily rainfall-runoff models, for generalisation purposes: the first is the TUW model (semi-distributed version 95 

of HBV, used by Parajka et al. 2005), and the second model, never used so far for regionalisation in the Austrian region, 96 

is the GR6J model implemented with the Cemaneige snow routine (Coron et al., 2017b). 97 

We believe that the present analysis may provide further insights for assessing the performances and selecting the 98 

parameter regionalisation approaches most suitable to a specific study region, keeping into account the impact of data 99 

availability, and in particular of gauging density and of the presence of nested catchments.  100 

The paper is organised as follows: Section 2 introduces the case study and data. Section 3 first describes the rainfall-101 

runoff models, the tested regionalisation schemes and the methodology for assessing the impact of nested catchments and 102 

station density. The results are presented in Section 4. Finally, Section 5 reports the discussion and conclusions. 103 

2 Study region and data 104 

The case study is composed of 209 catchments (see Figure 1, panel a) covering a large portion of Austria. Their size 105 

varies considerably, mainly under 1000 km2 (90% of the basins) and just three watersheds extend over more than 3000 106 

km2. The topography of the country varies significantly from the flat and hilly area in the north-east to the Alps in the 107 

centre and the south-west, and it is particularly steep in the extreme west. The annual precipitation ranges from about 600 108 

mm in the east, where the evaporation plays an important role in the water balance, to more than 2000 mm in the west, 109 

mainly due to orographic lifting of north-westerly airflows at the rim of the Alps (Viglione et al., 2013). Land use is 110 

mainly agricultural in the lowlands and forest in the medium elevation ranges. Alpine vegetation and rocks prevail in the 111 

highest catchment (Parajka et al., 2005). The aridity index varies from 0.2 to 1, meaning that the watersheds are mostly 112 

wet or weakly arid (annual evapotranspiration is never higher than precipitation).  113 
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Data have been provided by the Institute of Hydraulic Engineering and Water Resources Management (Vienna University 114 

of Technology), which previously screened the runoff data for errors and removed all stations with significant 115 

anthropogenic effects. Hydro-meteorological data include daily streamflow and daily inputs to the rainfall-runoff models 116 

for the 33 years period 1976-2008: daily average precipitation, temperature and potential evapotranspiration defined for 117 

200 meters elevation zones for all the study catchments. The potential evapotranspiration is estimated by a modified 118 

Blaney-Criddle method (Parajka et al., 2003) using interpolated daily air temperature and grid maps of potential sunshine 119 

duration (Mészároš et al., 2002).  120 

To implement some of the parameter regionalisation approaches, we make use of several geo-morphoclimatic catchment 121 

attributes, briefly described in Table 1. Topographic characteristics such as mean catchment elevation and mean slope are 122 

derived from 1 x 1 km digital elevation model. Climatic characteristics such as mean annual precipitation, and aridity 123 

index are derived from climate input time series. Figure 1 (panels b, c and d) shows the spatial pattern of mean annual 124 

precipitation, snow depth and aridity index across the study area. Mean annual solar irradiance is computed trough 125 

GRASS GIS software (http://grass.osgeo.org). Stream network density was calculated from the digital river network map 126 

at the 1:50000 scale for each catchment (Merz and Blöschl, 2004) as the ratio between the channel length and the 127 

catchment area. FARL (flood attenuation by reservoir and lakes), boundaries of porous aquifers, areal portions of regional 128 

soil types and main geological formation were the same used and described in detail in Parajka et al. (2005). Finally, Land 129 

use coverage is derived from CORINE Land Cover maps updated to the year 2012 (https://land.copernicus.eu/pan-130 

european/corine-land-cover/clc-2012). For land cover classes, as well as for geology and soil type classes, each basin is 131 

described by the portions of the total catchment area corresponding to each class. For this reason, the catchments are not 132 

associated with one single attribute and Table 1 does not report the min/median/max values of such descriptors. 133 

 134 

 135 

Figure 1. Panel a) Study area; blue points refer to stream gauges and black lines to catchment boundaries. Panels b), c) and d) 136 
Spatial patterns of some climatic catchment attributes across the study area. 137 

 138 

 139 

http://grass.osgeo.org/
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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Table 1. Available catchment attributes. 140 

Code Unit Min Median Max Description 

Elev m a.s.l. 287 915 2964 Mean elevation 

Area km2 14 168 6214 Drainage area 

Slope m/m 0.9 12.4 28.5 Mean slope 

meanP mm 675 1230 2310 Mean annual total precipitation 

maxP mm 35 49 84 Mean annual maximum daily precipitation 

meanPET mm 281 608 715 Mean annual total evapotranspiration 

SnowF - 0.06 0.17 0.60 

Fraction of precipitation falling as snow (i.e. 

precipitation fallen in days below 0°) 

SnowD mm 1 14 68 Mean annual snow depth 

Aridity - 0.21 0.46 0.96 Aridity index (meanPET/meanP) 

Irrad kWh/(m2*day) 1750 1899 2274 Mean annual solar irradiance 

RiverD m/km-2 0 830 1256 Stream network density 

FARL - 0.56 1 1 Flood attenuation index by reservoir and lakes 

Corine  % - - - Portions of land use coverage 

Geology % - - - Portions of geological formations 

Soils % - - - Portions of regional soil types 

Forest - 0 0.47 0.93 Fraction of catchment covered in forest 

AcqPort - 0 0.01 0.83 Fraction of catchment with porous aquifers 

3 Materials and methods 141 

3.1 Rainfall-runoff models structure and calibration 142 

Two models for simulating daily streamflow were applied in this study. This choice is made to analyse the effect of nested 143 

catchments and station density on the performance of parameter regionalisation methods for different model structures. 144 

3.1.1 TUW model 145 

The first is the TUW model, a semi-distributed version of the HBV model (Bergström 1976, Lindström et al., 1997) 146 

developed by Parajka and Viglione (2019). It consists of a snow module, a soil moisture module and a flow response and 147 

routing module. The model processes the elevation zones as autonomous entities that contribute separately to the total 148 

outlet flow. The inputs are daily air temperature, precipitation and potential evapotranspiration over the different elevation 149 

zones (Figure 2). Finally, the different outputs from the elevation zones are averaged based on the sub-catchment areas. 150 

The snow module is based on a simple degree-day concept, and it is ruled by five parameters: two threshold temperature 151 

parameters distinguishing rain and snow, Tr and Ts, a melting temperature Tm, a snow correction factor SCF and the 152 

degree-day factor DDF. The soil moisture module represents soil moisture state changes and runoff generation. It involves 153 

three parameters: the maximum soil moisture storage FC, a parameter representing the soil moisture state above which 154 

evapotranspiration is at its potential rate, LP, and a parameter β ruling the non-linear function of runoff generation. Finally, 155 

an upper and a lower soil reservoirs and a triangular transfer function compose the runoff response and routing module, 156 

involving seven additional parameters. The sum of excess rainfall and snowmelt enters the upper zone reservoir and 157 

leaves this reservoir through three paths: i) outflow from the reservoir based on a fast storage coefficient k1; ii) percolation 158 

to the lower zone with a constant percolation rate CPERC, iii) if a threshold of the upper storage state LUZ is exceeded, 159 

through an additional outlet based on a very fast storage coefficient k0. Water leaves the lower zone based on a slow 160 
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storage coefficient k2. The outflows from both reservoirs are then routed by a triangular transfer function representing 161 

runoff routing in the streams, where the base of the transfer function, BQ, is estimated with the scaling of the outflow by 162 

the CROUTE and BMAX parameters. More details about the model structure and application in R can be found in Parajka et 163 

al. (2007) and Ceola et al. (2015), respectively. 164 

The model is run for all the study catchments with the semi-distributed model structure obtained by dividing them into 165 

200-meters elevation zones. While model daily inputs (precipitation, temperature and potential evapotranspiration) and 166 

model states are defined over such zones, model parameters are assumed to be the same for the entire catchment. 167 

Following the work by Parajka et al. (2005) on the same study area, 4 out of the 15 total parameters are pre-set, and 11 168 

are calibrated: threshold temperatures Tr and Ts are fixed respectively to 2 and 0 °C, Tm to 0 °C and the maximum base 169 

of the transfer function at low flows BMAX to 10 days. Table 2 presents the parameters to be calibrated and the 170 

corresponding ranges. 171 

 172 

Table 2. TUW model parameters and their ranges. 173 

Parameter Units Range Description 

SCF - 0.9 - 1.5 Snow correction factor 

DDF mm/(°C*day) 0 - 5 Degree day factor 

LP - 0 - 1 Parameter related to the limit of evaporation 

FC mm 0 - 600 Field capacity, i.e., max soil moisture storage 

β - 0 - 20 Non linear parameter for runoff production 

k0 days 0 - 2 Storage coefficient for very fast response 

k1 days 2 - 30 Storage coefficient for fast response 

k2 days 30 - 250 Storage coefficient for slow response 

LUZ mm 0 - 100 Threshold storage state, very fast response starts if exceeded 

CPERC mm/day 0 - 8 Constant percolation rate 

CROUTE days2/mm 0 - 50 Scaling parameter 

 174 
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 175 

Figure 2. TUW model scheme – Lumped version. 176 

 177 

3.1.2 CemaNeige-GR6J model 178 

The second model is the French CemaNeige-GR6J (Coron et al., 2017b). It is the combination of the CemaNeige snow 179 

accounting routine (Valéry et al., 2014) with the GR6J model (Pushpalatha et al., 2011), a daily lumped continuous 180 

rainfall-runoff model, developed at INRAE (Antony, France), by the Équipe Hydrologie des Bassins versants. The 181 

software is freely available in the airGR R-package (Coron et al., 2017a). 182 

The inputs of the model are spatially-averaged catchment daily air temperature, precipitation and potential 183 

evapotranspiration. Catchment hypsometric curve is also required. 184 

The CemaNeige snow accounting routine is based on a degree-day concept, where the thermal inertia of the snowpack is 185 

also taken into account. It involves two parameters, a snowmelt factor, θG1, and a cold-content factor, θG2. Although the 186 

module requires daily lumped inputs, for better simulating snow accumulation and melting it allows dividing the 187 

catchment into more elevation zones of equal area, through the use of the hypsometric curve. Inputs for each elevation 188 

zone are extracted through interpolation of the mean catchment values using precipitation and temperature gradients 189 

(Valéry et al., 2010), and not from “clipping” of the actual spatial fields like for the TUW elevation zones. The module 190 
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functions are applied with a lumped set of calibrated parameters. Internal states are instead allowed to vary over each 191 

elevation layer according to the different extrapolated inputs. On each elevation layer, two outputs are computed: rain 192 

and snowmelt, which are summed in order to find the total water quantity feeding the hydrological model. At every time 193 

step, the total liquid output of CemaNeige at the catchment scale is the average of every elevation zone outputs. Here we 194 

decide to maintain, as default, the number of elevation layers equal to five. For a detailed description of CemaNeige 195 

routines, the readers may refer to Valéry et al. (2014).  196 

The total liquid output of CemaNeige module and potential evapotranspiration provide the inputs of the GR6J rainfall-197 

runoff model. In the model, the water balance is controlled by a soil moisture reservoir and a conceptual groundwater 198 

exchange function. The routing procedure of the module includes two flow components routed by two unit hydrographs, 199 

a non-linear store and an exponential-store, with a total of six parameters. The structure of the model is represented in 200 

Figure 3, and a detailed description of the model routines is given in Pushpalatha et al. (2011). 201 

The CemaNeige-GR6J model is fed by mean catchment daily precipitation, air temperature and potential 202 

evapotranspiration. All the eight parameters of the combined model (2 for CemaNeige, 6 for GR6J) are calibrated. Lower 203 

and upper bounds of the parameters space are kept as default (note that the parameters are normalised in the calibration 204 

procedure). Table 3 reports brief parameters description and boundaries. For the sake of brevity, we will refer to this 205 

model just with the acronym GR6J, even if it will always include the CemaNeige snow module. 206 

Table 3. Cemaneige-GR6J model parameters and their transformed real value ranges.  207 

Parameter Units Range Description 

θG1 mm/(°C*day) 0 - 109 Snowmelt (degree-day) factor 

θG2 - 0 - 1 Cold content factor 

X1 mm 0 - 21807 Non-linear production storage capacity 

X2 mm/day -1903 - 1903 Groundwater exchange coefficient 

X3 mm 0 - 21807 Non-linear routing store capacity 

X4 days 0 - 22 Time parameter for unit hydrographs routing 

X5 - 0 - 1 
Threshold parameter for water exchange with 

groundwater 

X6 mm 0 - 21807 Exponential routing store capacity 
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 208 

Figure 3. GR6J model scheme (Pushpalatha et al. 2011). 209 

 210 

3.1.3 Model calibration 211 

The sets of parameters for both rainfall-runoff models are estimated for all the study catchments with an automatic model 212 

calibration procedure, using the Dynamically Dimensioned Search algorithm (DDS, Tolson et al. 2007).  213 

The objective function to be maximised is the Kling-Gupta Efficiency (Gupta et al., 2009) between observed and 214 

simulated streamflow, defined as: 215 

 216 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2    Eq. 1 217 

 218 

where 𝑟 is the Pearson product-moment correlation coefficient, α is the ratio between the standard deviations of the 219 

simulated and observed values and β is the ratio between the means of the simulated and observed values.  220 

The 33 years of observation (1976-2008) are split into two sub-periods: the first one, from 1 November 1976 to 31 October 221 

1992, is used for model calibration, and the second one, from 1 November 1991 to 31 October 2008, for model validation. 222 

Warm-up periods of one year are used in all cases. Calibration and validation performances for both models are reported 223 

in Section 4.1.  224 

3.2 Regionalisation approaches 225 

In order to assess the impact of the presence of nested catchments and station density on the performance of the parameter 226 

regionalisation methods, a set of consolidated approaches for the study area are implemented. Three types of techniques 227 

are tested. All belong to the distance-based group, since recent studies have demonstrated that they are generally to be 228 
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preferred to regression-based techniques (see e.g. Kokkonen et al. 2003, Merz and Blöschl 2004, Oudin et al. 2008, Reichl 229 

et al. 2009, Bao et al. 2012, Steinschneider et al. 2015, Yang et al. 2018, Cislaghi et al. 2019).  230 

3.2.1 Ordinary Kriging (KR) 231 

The first is a parameter-averaging technique, based on an Ordinary Kriging approach (termed in the following KR), where 232 

each model parameter is regionalised independently from each other, based on their spatial correlation. Catchment 233 

position is defined by the coordinates of the catchment centroid and the Ordinary Kriging is based on an exponential 234 

variogram with a nugget of 10% of the observed variance, a sill equal to the variance, and a range of 60 km both for TUW 235 

and Cemaneige-GR6J model parameters. 236 

3.2.2 Nearest Neighbour (1 donor, NN-1) 237 

The second approach is the Nearest Neighbour method (NN-1), where the entire set of model parameters is transposed 238 

from the geographically nearest donor catchment. 239 

3.2.3 Most Similar (1 donor, MS-1) 240 

In the third technique, termed “Most Similar” approach (MS-1), a single donor catchment is again identified, for 241 

transposing the entire parameter set. Instead of choosing the catchment that is geographically the closest, the 242 

“hydrologically most similar” donor is identified, based on a set of geomorphological and climatic descriptors. Five 243 

descriptors are used for assessing such similarity: mean catchment elevation, long-term mean annual precipitation, stream 244 

network density, land cover classes, geology classes. Such set of descriptors was selected by preliminary tests: since it is 245 

not the focus of the work, the analysis for the assessment of the best catchment descriptors is reported in Appendix A. 246 

The donor catchment is identified as the catchment with the smallest dissimilarity index ɸ (e.g. Burn and Boorman, 247 

1993):  248 

 249 

ɸ = ∑
𝑑𝑗(𝐷,𝑈)

max(𝑑𝑗)

5
𝑗=1       Eq. 2 250 

 251 

which represents the sum of the differences 𝑑𝑗 of the 5 descriptors of the donor catchment 𝐷 and of the ungauged 252 

catchment 𝑈, normalised by their maximum. For the attributes described by a single value (mean catchment elevation, 253 

long-term mean annual precipitation and stream network density), 𝑑𝑗 is expressed by the absolute difference between the 254 

descriptors 𝑋𝑗
𝐷 and 𝑋𝑗

𝑈 of the donor and target catchments respectively (Eq. 3). For land cover and geology, whose 255 

attributes 𝑋𝑗 are the vectors containing the portions of the total catchment area 𝑋𝑗,𝑐 corresponding to each class c, the 256 

difference 𝑑𝑗 is calculated as the Euclidean distance between such vectors (Eq. 4). 257 

 258 

𝑑𝑗(𝐷, 𝑈) = |𝑋𝑗
𝐷 − 𝑋𝑗

𝑈|      Eq. 3 259 

 260 

𝑑𝑗(𝐷, 𝑈) = √∑ (𝑋𝑗,𝑐
𝐷 − 𝑋𝑗,𝑐

𝑈 )2
𝑐      Eq. 4 261 

 262 
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3.2.4 Output-averaging version of NN and MS techniques (NN-OA and MS-OA) 263 

Nearest Neighbour (NN) and Most Similar (MS) approaches allow to maintain correlation among model parameters and 264 

to overcome the well-known limitation of the regression approach due to interaction between them. In the regression-265 

based methods, as well as in the parameter-averaging approaches (e.g, KR technique), parameters are regionalised 266 

independently from each other, possibly affecting simulation performances. On the other hand, one single donor 267 

catchment (as in NN-1 and MS-1 approaches) is often not fully representative of the hydrological behaviour of the target 268 

watershed. Recent studies have been demonstrating that averaging the outputs of the simulations (rather than model 269 

parameters) obtained with different donor parameter sets may be preferred (see e.g., Oudin et al. 2008, Viviroli et al. 270 

2009). For this reason, NN and MS techniques are also tested with an output-averaging approach (introduced by McIntyre 271 

et al., 2005), in which n donor catchments are identified based on their spatial proximity (for the Nearest Neighbour 272 

method) or on their similarity (for the Most Similar method) to the target. The regionalised streamflow for the ungauged 273 

catchment is calculated from all the simulations 𝑄(𝑑, 𝑃𝑖), obtained by running the model (fed by the meteorological input 274 

of the target catchment) with each one of the n parameter sets (𝑃𝑖 , with i in [1 : n]) corresponding to each of the donor 275 

catchments. Streamflow for day d, 𝑄(𝑑), is computed as the weighted average of the simulated outputs: 276 

 277 

𝑄(𝑑) = ∑ 𝑤𝑖  𝑄(𝑑, 𝑃𝑖)𝑛
𝑖=1       Eq. 5 278 

 279 

where 𝑤𝑖  is the weight associated with each donor catchment i, computed as a function of a measure of dissimilarity 280 

between the donor and the target catchments. Such versions of the methods are here termed NN-OA and MS-OA. In the 281 

NN-OA case, the dissimilarity is defined by the spatial distance Di between the centroids of donor i and target catchments 282 

(Eq. 6), while in the MS-OA method it corresponds to the dissimilarity index ɸ𝑖 (see Eq. 2) and the corresponding weights 283 

are computed accordingly to Eqs. 6 and 7, respectively. 284 

 285 

𝑤𝑖 =

1

𝐷𝑖

∑
1

𝐷𝑖

𝑛
𝑖=1

      Eq. 6 286 

 287 

𝑤𝑖 =

1

ɸ𝑖

∑
1

ɸ𝑖

𝑛
𝑖=1

       Eq. 7 288 

 289 

3.2.5 Choice of the number of donor catchments for NN-OA and MS-OA 290 

The choice of the number of donor catchments for output-averaging represents a central issue in the methodology. 291 

Previous studies showed that the optimal number of donors is strongly related to the rainfall-runoff model and, of course, 292 

to the case study. McIntyre et al. (2005) were amongst the first to apply an ensemble (output-averaging) approach and to 293 

explore the use of different numbers of donors on the performance of the Probability Distribution Model (PDM, Moore, 294 

1985) for a set of more than 100 UK catchments. They tested the impact of an increasing number of donors, either 295 

selecting the first n catchments with the smallest dissimilarity measure or including all the donors with a value of 296 

dissimilarity below a defined threshold (in the latter case, the number of donors may thus vary depending on the target-297 

donors attributes). They found that a fixed number of ten donors resulted in the best regionalisation performances. Oudin 298 

et al. (2008) applied an output-averaging regionalisation for the TOPMO and GR4J models to a large French dataset of 299 
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almost 1000 basins, but with no weights in flow averaging, since they used an arithmetic average (thus not taking into 300 

account magnitude of donor dissimilarities). They found that the two models performed optimally with a different number 301 

of donor catchments (seven and four respectively) and the efficiency of the regionalised model decreased almost linearly 302 

when increasing the number of donors above such values. The higher is the number of donor basins included in the 303 

regionalisation process, the more dissimilar will be the donors for the target watershed, possibly leading to a deterioration 304 

of the results. The use of weights in flow averaging may indeed help to smooth this effect, giving less and less importance 305 

to the donors as their similarity decreases. 306 

In the present work, the effect on regionalisation performances due to the number of donor basins is explored in detail, 307 

applying NN-OA and MS-OA for increasing number n of donor catchments, as discussed in Section 4.2. 308 

 309 

3.3 Impact of nested catchments: which catchments should be considered (to be) nested? 310 

As already introduced, one of the main purposes of the present analysis is to quantify the impact of the presence of several 311 

nested catchments on the regionalisation techniques. In particular, since nested catchments may have a strong hydrological 312 

similarity with the ungauged one, they are expected to play an essential role in the determination of method performances.  313 

Once the performances have been evaluated using all the study catchments as potential donors, the regionalisation 314 

procedures are repeated for each target basin (assumed to be ungauged) by excluding, from the donors set, the watersheds 315 

which are considered to be nested in relation to the target section.  316 

In general, two or more catchments are nested between each other if their closure sections are located on the same river, 317 

i.e. they share part of their drainage area. Since several gauged stations can be located on the same river, we propose to 318 

follow two different criteria to identify the nested basins: 319 

- Criterion 1: the gauged sections that are immediately downstream and upstream of the target section (Figure 4, 320 

panel a)). 321 

- Criterion 2: all the catchments sharing a given percentage of drainage area with the ungauged one (Figure 4, 322 

panel b)). 323 

 324 

 325 

Figure 4. Criteria for excluding nested catchments when regionalising model parameters. 326 

 327 
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3.4 Impact of station density 328 

Another way to evaluate the performances of regionalisation methods taking into account the richness in hydrometric 329 

information of the study area is to analyse the spatial density of the potential donors. 330 

It is expected that the effect of the presence of several nested watersheds in a dataset is related to the effect due to station 331 

density. Because of that, the further purpose of the study is to analyse the impact of station density on regionalisation 332 

accuracy. Parajka et al. (2015) tested the impact of the station density for the direct weighted interpolation of daily runoff 333 

time-series with the topological-kriging (or Top-kriging) approach (see Skøien et al., 2006), and found that direct 334 

interpolation is superior to hydrological model regionalisation if station density exceeds 2 stations per 1000 km2. Here, 335 

the same approach for analysing the density is applied to all the parameters regionalisation techniques. 336 

The full station density in the dataset is about 2.4 gauges per 1000 km2, estimated dividing the total number of stations 337 

by the area of Austrian territory, which is approximately 84000 km2. All the applied regionalisation approaches are tested 338 

for decreasing station density in the catchments dataset. Seven different values of station density (ranging from 0.3 to 2.1 339 

gauges per 1000 km2) are tested, which correspond to a total number of stations between 25 and 175. For each value of 340 

station density, the corresponding number of gauged stations is randomly sampled (simple automatic non-supervised 341 

sampling) from the original set of 209 catchments, and the regionalisation approaches are applied on this subsample 342 

(catchments input dataset) in leave-one-out cross-validation. In turn, each of the catchment in the subsample is considered 343 

to be ungauged, and the remaining basins are used as potential donors. This operation is repeated 100 times to consider 344 

different samples of watersheds with the same density across the study area. Figure 5 shows an example of three samples 345 

for two different station densities, corresponding to 25 and 100 stations in the input dataset. 346 

 347 

 348 

Figure 5. Example of three samples for two different station densities. 349 

 350 

3.5 Evaluation of model performances 351 

As mentioned above, the rainfall-runoff models are calibrated against Kling-Gupta Efficiency (Eq. 1). In addition to KGE, 352 

model performances are evaluated through Nash-Sutcliffe Efficiency (Eq. 8) as well. While KGE considers different types 353 
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of model errors (the error in the mean, the variability and the dynamics of runoff), NSE is a standardised version of the 354 

mean square error. 355 

 356 

𝑁𝑆𝐸 = 1 −
∑(𝑄𝑠𝑖𝑚−𝑄𝑜𝑏𝑠)2

∑(𝑄𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2     Eq. 8 357 

 358 

where 𝑄𝑠𝑖𝑚 is the simulated runoff, 𝑄𝑜𝑏𝑠 is the observed runoff and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the average observed runoff. 359 

The regionalisation approaches are tested through leave-one-out cross-validation for all the described analyses. The 360 

parameter sets of the donor catchments are obtained through a calibration procedure over the years 1977-1992. In contrast, 361 

for assessing the performances of the regionalisation methods, only the results obtained over the validation period (1992-362 

2008) are reported. Spatiotemporal transfer of model parameters is, therefore, the most exacting task (as confirmed by 363 

the study of Patil et al. 2015) since we are using parameters obtained over different catchments (in regionalisation) and 364 

over a different observation period. On the other hand, this is exactly what would happen in a real-world forecasting 365 

application or for assessing the impact of a climate change scenario, where you have to identify the parametrisation of a 366 

model to be used for independent hydro-climatic conditions and in any possible river section in the region. 367 

4 Results and discussion 368 

4.1 Model performances “at-site” 369 

Table 4 shows the model performances obtained by calibrating the models “at-site”, that is over the streamflow measured 370 

in each catchment during the calibration period (1977-1992) and validated over the years 1992-2008 (no regionalisation 371 

procedure is involved).  372 

Both rainfall-runoff models behave well for the study area. While the median Kling-Gupta efficiencies are 0.85 for TUW 373 

and 0.88 for GR6J model in the calibration period, they deteriorate to 0.76 and 0.81 in the validation period, respectively. 374 

In the calibration period, KGE is always above 0.66 (TUW) and 0.76 (GRJ6). In contrast, the KGE is over 0.72 for both 375 

models for 75% of the basins (even if it drops below 0.3 for one and two basins, respectively for GR6J and TUW) in the 376 

validation period. 377 

Looking at Nash-Sutcliffe efficiency, the difference between the two models is even more marked than for the KGE. It is 378 

interesting that despite the lower number of parameters GR6J model tends to perform better than TUW. 379 

 380 

Table 4. At-site performances: values of the 25% (1st quar.), 50% (med.) and 75% (3rd quart.) quantiles for Kling-Gupta 381 
(KGE) and Nash-Sutcliffe (NSE) efficiencies. 382 

     KGE [-]   NSE [-] 

  

    
1st 

quart. 
med. 

3rd 

quart. 
  

1st 

quart. 
med. 

3rd 

quart. 

T
U

W
 

Calibration 1977 - 1992   0.82 0.85 0.90   0.65 0.72 0.80 

Validation 1992 - 2008   0.72 0.76 0.82   0.59 0.66 0.72 

G
R

6
J
 

Calibration 1977 - 1992   0.86 0.88 0.91   0.72 0.77 0.81 

Validation 1992 - 2008   0.75 0.81 0.84   0.67 0.74 0.79 

 383 
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4.2 Regionalisation performances using all catchments as potential donors 384 

4.2.1 Choice of the donors for the output-averaging regionalisation methods  385 

Before comparing performances of regionalisation methods, it is necessary to choose the optimal settings for the output-386 

averaging versions of Nearest Neighbour (NN-OA) and Most Similar (MS-OA) techniques. 387 

As introduced in the methodology Section 3.2.5, we first investigate the effect of using different numbers of donors: in 388 

particular, values between 1 and 50 are tested for both regionalisation techniques. 389 

Regionalisation methods are repeated through leave-one-out cross-validation for each number of donors n and the median 390 

Kling-Gupta efficiency obtained for each value of n over all the 209 catchments is computed. Tests are performed for 391 

calibration and validation periods, but results are reported only for the validation period.  392 

Figure 6 shows the median Kling-Gupta efficiency when the changing number of donors for TUW (upper panel) and 393 

GR6J (lower panel). Looking at the figures, results show that in all the four cases, the index always deteriorates when 394 

more than 10 donors are chosen. On the other hand, there is not a unique optimal number of donors for the two models 395 

nor for the two regionalisation techniques. The optimal number of donors identified according to the median of the KGE 396 

varies between 3 and 7 depending both on the rainfall-runoff model (TUW or GRJ6) and on the regionalisation approach 397 

(NN-OA or MS-OA). Since the KGE differences between 3 and 7 donors are small (around 0.02), we decided to use 3 398 

donors for both regionalisation methods and both models, which is also the most parsimonious option. The choice of a 399 

low number of donors is convenient also in view of the analysis to be done on decreasing density, where a large number 400 

of donors would imply the use of catchments that are less and less similar to the target one. 401 

It may be noted that the results by Oudin et al. (2008) highlighted a clearer pattern of model performances when increasing 402 

the number of donors, with a stronger decrease in efficiency when using high numbers of donors. This result may be 403 

explained by the fact that they were using a simple not-weighted average of outputs. Here instead, the influence of the 404 

additional donors is gradually poorer, due to the weights implemented in the output-averaging procedure (Eq. 5). When 405 

adding further donors to the approaches, the corresponding weights in the average are gradually lower according to the 406 

increasing distance (for NN-OA) or dissimilarity index (for MS-OA) from the target. Thus, the impact of the less similar 407 

catchments is dampened, compared to what may be achieved using a not-weighted output average. 408 

 409 
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 410 

Figure 6. Impact of the number of donors on output-averaging Nearest Neighbour (NN-OA) and Most Similar (MS-OA) 411 
regionalisation methods for TUW (panel a)) and GR6J (panel b)) model. 412 

 413 

4.2.2 Performances of the regionalisation methods 414 

This section shows the performances of the regionalisation methods without excluding any candidate donor. The above 415 

described regionalisation methods are tested over all the 209 study catchments through leave-one-out cross validation, 416 

for both models. Here all the basins in the dataset are used as potential donors. In turn, each basin is considered to be 417 

ungauged, and all the remaining (208) catchments are available in the donors set for testing the regionalisation approaches.  418 

Figure 7 reports Kling-Gupta and Nash-Sutcliffe efficiency boxplots for the two models when regionalising following 419 

each of the techniques.  420 

For TUW (Figure 7, upper panels), all regionalisation methods provided good simulations concerning the validation 421 

model performances obtained when the models have been calibrated on the target section (at-site simulations, white 422 

boxes). The loss in model efficiency is, overall, small. The Nash-Sutcliff efficiencies of KR, MS-1 and NN-1 methods 423 

are consistent with the findings of Parajka et al. (2005), who computed only the NS. Their results are very similar to the 424 

present ones, even if they worked on a greater number of Austrian catchments and calibrating the model against a different 425 

objective function. 426 
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For the GR6J model (Figure 7, lower panels), the efficiencies of the Nearest Neighbour (NN-1 and NN-OA) and Most 427 

Similar (MS-1 and MS-OA) regionalisations are closer to those of the TUW in respect to what happened when the models 428 

are calibrated at-site. In fact, with respect to the corresponding at-site calibration, the performances in the ungauged case 429 

(that is when parameters are regionalised) suffer a larger deterioration for GR6J than for TUW. In addition, we notice 430 

that, for GR6J model, the Ordinary Kriging has performances always poorer than all the other regionalisation methods. 431 

 432 

For both rainfall-runoff models MS-OA tends to provide the best results and, in general, the two methods based on output 433 

average (NN-OA and MS-OA), that exploit the information from more than one donor, outperform NN-1 and MS-1, in 434 

particular in terms of Nash-Sutcliffe efficiency. It confirms the usefulness of regionalising based on more than one donor, 435 

as indicated by previous studies (e.g. McIntyre et al. 2005, Oudin et al. 2008, Viviroli et al. 2009, Zelelew and Alfredsen 436 

2014). 437 

 438 

To verify if there is an influence of the catchment area on the results, due to the lumped structure of the model, an 439 

additional analysis (not shown here for the sake of brevity), showed that despite the different drainage areas of the 440 

catchments in the dataset regionalisation accuracies do not show a clear relation with the size of the watershed, even if 441 

for some of the smaller catchments the performances were suboptimal. This result is consistent with previous evidence 442 

from the literature (see, e.g. Parajka et al 2013). 443 

 444 
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 445 

Figure 7. Original performances of the regionalisation methods for TUW (upper panels) and GR6J model (lower panels) for 446 
the 209 Austrian catchments in the validation period 1992-2008. Boxes extend to 25% and 75% quantiles while whiskers refer 447 
to 10% and 90% quantiles. 448 

 449 

4.3 Impact of nested donors: performance losses in regionalisation 450 

4.3.1 Catchments identified as nested by the two criteria 451 

As introduced in Section 3.3, two different criteria are implemented for identifying which donor catchments are 452 

considered to be nested concerning a target catchment: Criterion 1 (Figure 4, panel a)) assumes that the only nested donors 453 

are the first downstream and the first upstream gauged sections. Following this approach, 81% of the catchments in the 454 

dataset have at least one downstream or upstream nested donor (red dots in Figure 8, panel a)). 455 

Instead, Criterion 2 (Figure 4, panel b)) excludes all the potential donors sharing a given percentage of drainage area with 456 

the target catchment. It requires the definition of a percentage threshold value of shared drainage area. A preliminary 457 

sensitivity analysis (not reported here) was performed, investigating the effect of different values between 5% and 20% 458 

for such percentage. Results show that differences in terms of regionalisation performance are not significant, and the 459 

threshold was fixed to 10%. The choice of the threshold influences the number of catchments which can be included in 460 

the study: in fact, the higher is the threshold, the lower is the number of basins classified as nested following Criterion 2. 461 
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Using 10% as a threshold allows to include most of the watersheds in the analysis: 65% (137 catchments) of the basins 462 

have at least one nested donor catchment sharing at least the 10% of its area (red dots in Figure 8, panel b)). 463 

All the watersheds having potential nested donors according to the second criterion have nested gauged catchments also 464 

according to the first criterion, but not vice versa. The impact of nested catchments on regionalisation performances is 465 

therefore evaluated only for those 137 catchments that have at least one nested catchment according to both criteria.  466 

It is important to highlight that the remaining 35% of the basins are still used as potential donor catchments. The 467 

regionalisation approaches are not repeated using such basins as targets (since they have no nested donors, their 468 

performance would not change and they would distort the results). 469 

Among the 137 catchments considered for the analysis of the nestedness, 43% have only downstream nested donor(s), 470 

28% only upstream nested donor(s), and 29% at least one upstream and one downstream nested donors. 471 

 472 

 473 

Figure 8. Panel a) Red dots (170) refer to catchments with at least one upstream or downstream nested gauged catchment 474 
(Criterion 1). Panel b) Red dots (137) refer to catchments with at least one nested gauged catchment sharing more than 10% 475 
of the drainage area (Criterion 2). 476 

 477 

4.3.2 Performance losses in regionalisation when excluding nested donors 478 

The regionalisation methods are applied again in leave-one-out cross-validation, but excluding from the available donors 479 

the catchments which are nested in relation to the target (ungauged) basin. This approach is done for both “nestedness 480 

criteria” (down/upstream or overlapping of drainage area) and the analysis applies exclusively to the 137 catchments 481 

classified as nested according to both of them (red dots in Figure 8, panel b)). The figures of this section (Figures 9 and 482 

10) therefore refer to such subset. 483 

 484 

Figure 9 compares the different performances (Kling-Gupta and Nash-Sutcliffe efficiencies in the upper and lower panels 485 

respectively) obtained in regionalisation (always over the validation period), when nested catchments are available or not 486 

as candidate donor basins for both TUW model (Figure 9, upper panels) and GR6J (Figure 9, lower panels). Each group 487 
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of boxplots refers to a different regionalisation method: within such groups, the first box indicates the performance when 488 

no basins are excluded from the donor set, while the second and the third boxes report the performances due to the 489 

exclusion of the nested donors following Criterion 1 or 2 respectively. 490 

 491 

The performance deterioration is highlighted by bar plots in Figure 10, showing the mean loss in Kling-Gupta and Nash-492 

Sutcliffe efficiencies when excluding nested donors following the two criteria. 493 

 494 

Finally, Table 5 reports the interquartile variability of Kling-Gupta and Nash-Sutcliffe efficiencies for both models and 495 

all the regionalisation approaches when nested donors are excluded or not. 496 

 497 

The less affected method is the Ordinary Kriging, especially for the TUW model. It is because the Ordinary Kriging is 498 

not based on the identification of one or more “sibling” donors which may have been excluded if nested. On the other 499 

hand, it should also be highlighted that such a method is the regionalisation approach that performs worst when nested 500 

basins are available. 501 

 502 

As expected, for both TUW and GR6J, NN-1 is always the most heavily affected method (dark green bars in bottom 503 

panels of Figure 10). This is likely because the nearest donor is a nested one in more than 80% of the catchments for both 504 

criteria and its exclusion seriously compromise the performance.  505 

 506 

Excluding the nested catchments also has a strong impact on MS-1 (dark blue bars in bottom panels of Figure 10), even 507 

if to a lesser extent than for NN-1, since for more than 60% of the catchments the most similar donor is a nested one 508 

according to both criteria.  509 

 510 

The degradation of performance moving from Criterion 1 (upstream/downstream) to Criterion 2 (overlapping drainage 511 

area) highlighted in Figure 9 demonstrates that considering as donors not only the immediate downstream or upstream 512 

gauged river sections (Criterion 1), but also all the catchments partially sharing their drainage area with the target one 513 

(Criterion 2), has a strong positive influence on the regionalisation performance.  514 

 515 

Furthermore, the use of output-averaging for both Nearest Neighbour and Most Similar approaches (NN-OA and MS-516 

OA) not only outperforms the NN-1 and MS-1 when using all (nested and non-nested) donors (see also Section 4.2.2), 517 

but it also improves the robustness of the methods when the nested donors are excluded. The bottom panels of Figure 10 518 

show that the loss in the efficiencies of  NN-OA and MS-OA are always smaller than those corresponding to the single 519 

donor approaches (NN-1 and MS-1), for both rainfall-runoff models and regionalisation methods. This confirms that the 520 

use of output-averaging and the use of more than one donor basin is preferable for regionalisation purposes also for 521 

regions that do not have so many nested catchments as the Austrian study area. 522 

 523 

Finally, the values reported in Table 5 (as well as Figure 10) show how, especially for NSE, the losses resulting when 524 

excluding nested donors from the regionalisation are higher for the GR6J model than for the TUW. The GR6J seems to 525 

be slightly more affected by the presence of nested basins, except for MS-1 and MS-OA whose performances remain 526 

more similar to those of TUW. It may be due to the different structure and parameter transferability of the models, which 527 

would indeed deserve a dedicated study. 528 
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 529 

 530 

Figure 9. Effect of the exclusion of nested catchments for the subset of 137 watersheds classified as nested: Kling-Gupta (left 531 
panels) and Nash-Sutcliffe (right panels) efficiencies when regionalising the TUW (upper panels) and GR6J (lower panels) 532 
models. “No exclusion”: all the donors are available. “Criterion 1” or “Criterion 2”: nested catchments are excluded from 533 
donor set. Box colours refer to the different methods: green is Nearest Neighbour (1 donor is dark green and three is light 534 
green), blue is Most Similar (1 donor is dark blue and three is light blue) and magenta is Ordinary Kriging. Boxes extend to 535 
25% and 75% quantiles while whiskers refer to 10% and 90% quantiles.  536 
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 537 

Figure 10. Kling-Gupta and Nash-Sutcliffe efficiencies and mean losses in the same methods resulting when excluding the 538 
nested donors with Criterion 1 and 2 (bottom panels) for TUW and GR6J models.  539 

 540 

Table 5. Inter-quartile values of Kling-Gupta and Nash-Sutcliffe efficiencies when regionalising TUW and GR6J models 541 
excluding or not excluding nested donor catchments. 542 

      Inter-quartile KGE [-] 

      NN-1 NN-OA MS-1 MS-OA KR 

T
U

W
 No nested excluded   0.64/0.79 0.66/0.81 0.64/0.79 0.63/0.81 0.63/0.80 

Criterion 1   0.50/0.76 0.54/0.79 0.52/0.78 0.57/0.78 0.60/0.78 

Criterion 2   0.42/0.75 0.53/0.76 0.46/0.77 0.53/0.78 0.61/0.78 

G
R

6
J
 No nested excluded   0.65/0.82 0.65/0.83 0.62/0.83 0.64/0.83 0.53/0.79 

Criterion 1   0.44/0.79 0.52/0.79 0.53/0.80 0.56/0.80 0.52/0.74 

Criterion 2   0.34/0.78 0.45/0.77 0.44/0.78 0.52/0.79 0.52/0.73 

      Inter-quartile NSE [-] 

      NN-1 NN-OA MS-1 MS-OA KR 

T
U

W
 No nested excluded   0.53/0.71 0.56/0.73 0.51/0.70 0.56/0.73 0.50/0.70 

Criterion 1   0.33/0.68 0.47/0.70 0.46/0.66 0.50/0.70 0.49/0.69 

Criterion 2   0.18/0.66 0.41/0.68 0.35/0.65 0.46/0.70 0.49/0.67 

G
R

6
J
 No nested excluded   0.57/0.77 0.60/0.77 0.54/0.77 0.61/0.78 0.50/0.73 

Criterion 1   0.26/0.71 0.45/0.74 0.48/0.74 0.52/0.75 0.46/0.71 

Criterion 2   0.13/0.71 0.34/0.73 0.33/0.72 0.48/0.75 0.45/0.69 
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4.4 Impact of station density: performance losses in regionalisation 543 

The last results concern the analysis of the impact of station density on regionalisation performances. As introduced in 544 

Section 3.4, for each of the seven assigned density values, the described procedure provides 100 different sets of 545 

regionalised target catchments. For a given density, each of 100 subsamples is formed by the same number of target 546 

catchments, resulting in the same number of efficiencies to be analysed. 547 

First, it is important to verify that catchment samples are evenly distributed across the country: to do so we consider the 548 

distance of each catchment from its closer potential donor as shown in panel a) of Figure 11. The average of the distances 549 

(d1, d2, d3, d4, d5) of each catchment from the closest catchment (i.e. a potential donor) in a sample can be considered as 550 

a measure of the sample spatial distribution: the higher the distance, the less dense the sample. As above said, for each 551 

density, 100 different samples are generated, so that for each density, we have 100 different values for such averages. 552 

Panel b) of Figure 11 shows the average “distance within sample” of the closest available donor catchment across the 100 553 

generated sub-sets for the different values of station density (each boxplot refers to the 100 values of average distance 554 

calculated for each sub-set). The average distance from the closest donor in the original, full density dataset (grey point 555 

in the figure) is around 8.5 km. As expected, the median target/donor distance (middle black solid line in each box) 556 

increases with decreasing density. It may be noticed that also the variability of the distance, as shown by box size and 557 

whiskers, gradually increases with the reduction of station density. Still, such increase is overall modest: even for the 558 

lowest density, it is limited to +/- 18% of the median for the 80% of the samples. The fact that, on average, the distance 559 

between a target catchment and the closest gauged catchment consistently increases with decreasing density proves that 560 

the samples with lower density do not tend to cluster/concentrate the catchments in a small region, but they are evenly 561 

distributed over the country. 562 

 563 

 564 
Figure 11. Panel a) Example of distance from the closest donor. Panel b) Boxplots of the average distance within a sample from 565 
the nearest available potential donor catchment across the 100 generated sub-sets, for different values of station density 566 
(gauges/1000km2). Whiskers extend to 10th and 90th percentiles. The grey point indicates the average distance from the closest 567 
donor in the original dataset. 568 

 569 
To analyse the results, the median regionalisation performances of each subsample are computed and presented here: 570 

thus, for each gauging density, the results consist of 100 values of median performances. 571 
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For the sake of brevity, only the median Kling-Gupta efficiencies over the validation periods are reported. They are shown 572 

in Figure 12 for both TUW and GR6J models: each plot contains the boxplots of the median Kling-Gupta efficiencies for 573 

each station density (i.e. number of gauges per 1000 km2), i.e. each boxplot presents the 100 values of median Kling-574 

Gupta efficiencies obtained applying the regionalisation approaches to the 100 subsamples generated with an assigned 575 

density. The coloured point and the dotted line in the plots indicate the “original” (and maximum) median regionalisation 576 

efficiency of the approaches, that is the one obtained when using all available donors (i.e. full station density, 577 

corresponding to 2.4 gauges/1000 km2). 578 

 579 

The NN-1 method (Figure 12, panels a) and f)) is the most affected by the decreasing density. In fact, when the density 580 

declines, there is a higher probability that the less dense subsamples do not include the catchment that is the nearest one 581 

to each target river section. And, as we have seen in the analyses on the nested donors, in the large majority of the cases, 582 

the nearest catchment is a nested one. In contrast, the second best may be substantially different from the target basin. 583 

Also, the output-averaging version of the Nearest Neighbour methods (Figure 12, panels b) and g)) strongly deteriorates 584 

for less dense networks. In general, Nearest Neighbour methods are highly sensitive to gauging density. Geographical 585 

distance results to be a good similarity measure only for densely gauged study areas (like Austria), since they firmly rely 586 

on the presence of gauged catchments in the immediate surroundings that are also hydrologically very similar. If the 587 

density decreases, the closest donor may be relatively far from the target, and it may therefore have little in common with 588 

it. 589 

As far as the MS-1 (Figure 12, panels c) and h)) is concerned, its performances degrade more gracefully (except for the 590 

GR6J model for the minimum density) than the NN-1 or the NN-OA. Also in this case (like for the NN-1), when the 591 

density decreases it becomes less probable that the most hydrologically similar catchment (identified by MS-1 in full 592 

density) is still part of the subsample. The results also indicate that there is more than one catchment in the original data 593 

set that is similar enough to the target in terms of catchment attributes.  594 

This also holds true for the output–averaging MS (Figure 12, panels d) and i)), which is even less affected by a reduction 595 

in donors’ density and is the best-performing approach for any density (for both rainfall-runoff models).  596 

We may note that, also in this analysis, analogously to what resulted for the exclusion of nested catchments, for both 597 

approaches (NN and MS), the implementation of output-averaging allows to reduce the degradation in the performances 598 

in comparison to the corresponding 1-donor version.  599 

The impact of station density is similar to that of excluding nested catchments also for the Ordinary Kriging approach 600 

(Figure 12, panels e) and j)), which deteriorates less than the other methods for decreasing values of station density. For 601 

the TUW model, the Kriging regionalisation, starting from an already high KGE in full density, results in performances 602 

that are inferior only to those of MS-OA when the density goes below 0.9. For the GR6J model, even if the deterioration 603 

is limited since KR was poorly performing for the full density regionalisation (Figure 7), the median KGE is always worse 604 

than those of all the other regionalisation approaches, for all the station densities. 605 

Overall, all methods (excluding the poorly performing NN-1 and KR for the GR6J) result in relatively good performances 606 

provided that the station density is at least 0.9 gauges per 1000 km2. On the other hand, leaving aside the Kriging method, 607 

the median KGE drops very steeply when the density reduces from 0.6 to 0.3 gauges per 1000 km2. 608 
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  609 

Figure 12. Median Kling-Gupta efficiency of the 100 sampled datasets for varying station density (number of gauges per 1000 610 
km2) for the TUW and GR6J models using NN-1 (panels a) and f)), NN-OA (panels b) and g)), MS-1 (panels c) and h)), MS-611 
OA (panels d) and i)) and KR (panels e) and j)) regionalisation methods. The coloured point and dotted line in the plots indicate 612 
the original median regionalisation efficiency of the approaches when using all available donors (i.e. full station density, 613 
corresponding to 2.4 gauges/1000 km2). 614 

5 Conclusions 615 

An assessment of the impacts of the presence of nested catchments and station density on the performance of parameter 616 

regionalisation techniques in a large Austrian dataset has been performed. The main motivation for this work lies in the 617 

lack of systematic studies in the literature about the effects of data-richness and informative content on the accuracy of 618 

various methods for transferring rainfall-runoff model parameters to ungauged catchments. Studies conducted on different 619 

study sets often do not lead to the same ranking of the tested approaches and the obtained results are not transferable to 620 

different study regions. This finding is indeed due to the diverse topological relationships between catchments 621 

(nestedness) in the datasets and the diverse density of the streamgauges. 622 

 623 

The purpose of the work is to give support to the choice of the most appropriate parameter regionalisation approaches 624 

based on the available hydrometric information in the region. The study shows and quantifies how the informative content 625 

of the available gauged sections, here expressed by the presence of several nested catchments in a dataset or by the 626 

gauging density of the study region, can influence the predictive power of a certain technique.  627 

 628 
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The research has been conducted for a very densely gauged dataset covering a large portion of Austria. Two rainfall-629 

runoff models for simulating daily streamflow have been calibrated for the 209 study watersheds: a semi-distributed 630 

version of the HBV model (TUW model), and the lumped GR6J model coupled with the Cemaneige snow routine. 631 

 632 

Both models perform very well when applied in the at-site mode, where the calibration and validation performances are 633 

very good for both rainfall-runoff models. The selected model efficiencies are somewhat larger for the GR6J model, 634 

which demonstrates to perform very well also in this Alpine dataset. 635 

 636 

In order to assess the model performance when used in ungauged basins, the streamgauge data for every section was, in 637 

turn, considered not to be available, and five regionalisation approaches were implemented for using the rainfall-runoff 638 

models in the validation period. This is indeed an exacting task because we are attempting to use the model over an 639 

ungauged catchment and for an observation period different from the one used for parameterising the gauged donor 640 

catchments. The first regionalisation approach is an Ordinary Kriging approach (KR), which separately interpolates each 641 

of the model parameter based on their spatial correlation in the study area. Two regionalisation approaches that select one 642 

single donor catchment and transpose its parameter set to the target basin have also been tested: in the first (NN-1) the 643 

geographically nearest catchment is selected, while in the second approach (MS-1) the single donor is the most similar 644 

one in terms of a set of physiographic and climatic attributes. The latter two approaches are implemented also in the 645 

output-averaging (OA) version, where the parameter sets of more than one donor are used for the simulation on the target 646 

section and the model outputs are then averaged accordingly to the distance/dissimilarity between donors and target.  647 

In regionalisation mode, the performances of the GR6J model deteriorates more than those of the TUW model, in 648 

comparison with the “gauged”, at-site parameterisation. Reasons for this behaviour may lie in the different model 649 

structures and in the different transferability of model parameters (depending also on their meaning and their relation with 650 

the available catchment attributes). Such issue would deserve further attention and investigation but it would need a 651 

separate ad-hoc analysis, since the comparison of the structures and physical meaning of the parameters of the two models 652 

is not the specific objective of our work. For both rainfall-runoff models, the use of the output-averaging approach 653 

outperforms the use of a single donor (NN-OA and MS-OA performed better than NN-1 and MS-1), confirming the 654 

outcomes of other studies on the importance of exploiting the information available from more than only one donor (see 655 

e.g., McIntyre et al. 2005, Oudin et al. 2008, Viviroli et al. 2009, Zelelew and Alfredsen 2014). The output-averaging 656 

methods also outperform the parameter-averaging Kriging method (especially for the GR6J model), showing that it is 657 

preferable transferring the entire parameter set of each donor, thus maintaining the correlation between the parameter 658 

values. The results of the MS-OA are close but tend to be better than those of the NN-OA, indicating that hydrological 659 

similarity is more important than geographical proximity for choosing the donors. 660 

We expect that spatial proximity alone may be even less representative of hydrological similarity in a drier climate: Patil 661 

et al. (2012) and Li and Zhang (2017) have shown that in dry runoff-dominated regions, nearby catchments tend to exhibit 662 

less hydrological similarity than in more humid regions. 663 

 664 

The impact of the richness of the data set (i.e. the informative content of the region) was then analysed to assess the 665 

deterioration of the regionalisation approaches for decreasing availability and “worth” of the available donors, starting 666 

from the influence of using nested basins as donors. 667 

 668 
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Two criteria have been proposed for identifying a basin that is nested with the target one. The first one, already used in 669 

the few analysis of nestedness in the literature, classifies as nested the first upstream and the first downstream gauges on 670 

the river network. The second, novel criterion, identifies as nested all the catchments that share more than a given 671 

percentage (here chosen as 10%) of the drainage area with the target one. It results that the first criterion identifies a larger 672 

number of nested catchments with at least one potential donor. The first criterion considers as nested also a number of 673 

catchments that share less than 10% of area with the target one: this means that, in some cases, the first downstream or 674 

upstream gauge may be not representative of the same drainage area and their catchments may be governed by very 675 

different hydrological processes.  676 

 677 

All the regionalisation approaches have been repeated by excluding from the donor set the catchments assumed to be 678 

nested with each target basin, according to each one of the two criteria. 679 

For both rainfall-runoff models and all the regionalisation approaches, when excluding all the basins that share a 680 

significant portion of the same watershed (second criterion), the regionalisation procedure deteriorates more than when 681 

excluding the only first up/downstream river sections: in fact, such first up/downstream catchment may, in some cases, 682 

not have much in common with the target one. 683 

Looking at the two rainfall-models, when excluding the nested catchments, the regionalisation performances tend to 684 

deteriorates more for the GR6J than for the TUW: this seems to indicate that the TUW model may be more robust for 685 

regionalisation purposes, even when nested donors are not available. 686 

Comparing the different regionalisation approaches, the parameter-averaging Kriging is the method that is less impacted 687 

by the exclusion of the nested donors, since it does not depend only on the choice of one or few “sibling” donors, that are 688 

very often the nested ones, but it takes into account some of the donors in a given radius. This is consistent to the outcomes 689 

of Merz and Blöschl (2004) and Parajka et al. (2005) who observed almost no deterioration of regionalisation 690 

performances when excluding the first down and upstream nested donors using the same Ordinary Kriging approach. 691 

When using, instead, a method transferring the entire parameter set from one or more donor catchments, the deterioration 692 

is more noticeable. The method that experiences the worst deterioration is the NN-1, since in 80% of the cases, the nearest 693 

basin is a nested one, and it is thus excluded from the potential donors. The second worst is the MS-1, that, when free to 694 

choose any single potential donor in the entire region, would choose a nested one in 60% of the cases. The output-695 

averaging methods degrade less severely, showing that exploiting the information resulting from more than one donor 696 

increases the robustness of the approach also in regions that do not have so many nested catchments as in Austria (where 697 

the importance of nested donors in regionalising model parameters is highlighted also by Merz and Blöschl, 2004).  698 

 699 

Finally, an assessment of the impact of station density on the regionalisation has also been implemented. The Nearest 700 

Neighbour approaches (both NN-1 and NN-OA) are the methods that suffer more from the decrease in gauging density. 701 

In contrast the Most Similar methods (MS-1 and MS-OA), which use as similarity measure a set of catchment descriptors, 702 

are more capable of adapting to less dense datasets. In fact, in a more “sparse” monitoring network, the Most Similar 703 

methods are able to find other adequate donors, that may be anywhere in the region. On the other hand, the Nearest 704 

Neighbour techniques, when applied in low station density networks, risk to identify a “not so near” donor that may be 705 

very different from the target one. The impact of decreasing station density on the performance of the output-averaging 706 

approach based on spatial proximity (NN-OA) is in line with what observed by Lebecherel et al. (2016). The performances 707 

of both the output-averaging methods, in agreement with the results obtained for similar methods by Oudin et al. (2008), 708 

strongly deteriorate when the station density drops below 0.6 gauges per 1000 km2.  709 
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 710 

The study confirms how the predictive accuracy of parameter regionalisation techniques strongly depends on the 711 

informative content of the dataset of available donor catchments, quantifying the contribution of nested catchments and 712 

station density for different approaches and rainfall-runoff models. The outcomes obtained for the Austrian data set 713 

indicate that the reliability and robustness of the regionalisation of rainfall-runoff model parameters can be improved by 714 

making use of output-averaging approaches, that use more than one donor basin but preserving the correlation structure 715 

of the parameter set. Such approaches result to be preferable for regionalisation purposes in both data-poor and data-rich 716 

regions, as demonstrated by the analyses on the degradation of the performances resulting from either removing the nested 717 

donor catchments or decreasing the gauging station density. 718 

 719 
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 854 

Appendix A: Choice of best catchment descriptors 855 

The implementation of the Most Similar approach requires the choice of the geo-morphologic and climatic attributes to 856 

be used for selecting the donor catchment(s), i.e. to calculate the dissimilarity indices of equation 2.  857 

This similarity study is part of a preliminary analysis carried out through a regionalisation experiment using the whole 858 

period of available daily data (from 1976 to 2008, again with 1 year of warm-up) for calibrating the rainfall-runoff models. 859 

In order to individuate the best catchment descriptors (all reported in Table 1 with a brief description), the Most Similar 860 

approach with one single donor catchment (MS-1) is applied sequentially to the entire dataset in leave-one-out cross-861 

validation, using at each step an increasing number of attributes when defining the dissimilarity index ɸ. At each step, 862 

the method is tested multiple times, adding one by one each of the attributes and the one which gives the best 863 

regionalisation performances is selected. For greater clarity, Figure A1 (panel a) refers to TUW and panel b) to GR6J) 864 

shows the boxplots of the consecutive best combinations of descriptors: at the first step, only one attribute is used, the 865 

Most Similar approach is tested for all the available catchment features, and the similarity in the land cover classes 866 

(Corine) gave the best efficiency. At the second step, the operation is repeated using land cover and each of the remaining 867 

attributes one at a time, finding the geology classes to be the best attribute to add, and so on. The analysis stops when the 868 

performances are decreasing or stop improving. 869 

As can be inferred from Figure A1, both rainfall-runoff models reach good regionalisation performances when using up 870 

to 5 attributes. Since the first best 5 attributes are the same for both models and from the sixth step the performances are 871 

not substantially improved, we decide to choose those five descriptors to characterise catchment similarity: land use 872 

classes, geological classes, mean annual precipitation, stream network density and mean elevation. 873 

 874 
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 875 

Figure A1. Kling-Gupta efficiencies for TUW (panel a)) and GR6J (panel b)) models for the consecutive steps of the similarity 876 
analysis. Boxes refer to 25% and 75% quantiles, whiskers refer to 10% and 90% quantiles and the blue points to the average. 877 


