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Dear Editor and Reviewers,  
 
Thank you for your detailed comments and suggestions about our manuscript now entitled “Even event-
scale hydrological response characterization benefits from high density rain gauge observations”.  
The paper has been revised accordingly. Please find hereafter the details of the changes in the form of 
an item-by-item response (in green) to your comments (in black). If our corrections are direct 
implementations of your remarks, the answer to the comment is simply ‘Ok’. Please note that the line 
numbers indicated hereafter refer to the ones of the track-change revised manuscript attached below the 
answers. The not unduly increase the length of this rebuttal, we refer at times to the public discussion.  
 
We hope that our responses address all the raised concerns,  
 
Best regards,  

Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, Bettina Schaefli 
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Responses to the comments of Reviewer #1: 

1a - The title states “value of high density rain gauge observations for… hydrology”. I’m struggling 
with this holistic formulation.  

The title has been changed from “On the value of high density rain gauge observations for small Alpine 
headwater catchment hydrology” to “Even event-scale hydrological response characterization benefits 
from high density rain gauge observations”. 

1b - Indeed, the value is “only” (please don’t get me wrong here) based on prediction of RC and 
deltaP/Q. While a realistic estimate of these characteristics is valuable, the uncertainties resulting from 
the final network with 3 rain gauges for these two criteria is not shown and should be added in a later 
version of the manuscript. 

Thanks for this important suggestion. To go further with the uncertainties resulting from the best 3-
raingauge network we added and discuss in “4.4.3 Optimum network evaluation” the Figure 14 (new) 
showing the RC and lag time ∆P/Q calculated from the best 1-station and 3-station network compared to 
the full raingauge network (L534-543). 

1c - In general, I’m missing the runoff peak as important characteristic in the manuscript. Maybe the 
authors can involve it/comment on it why it was not considered.  

This point has been clarified in the public discussion.     
(https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=g
et_comm_sup_file&_ms=87052&c=189590&salt=10720610621776386148) and we added the figure 
showing the peak flows to the Supplementary Material (Figure S5). 

1d - Also, although the analysis is designed mainly for discharge estimation, results should be also 
interpreted in terms of rainfall (e.g. resulting areal rainfall (extremes) for different rain gauge network 
densities, spatial rainfall characteristics…). 

The impact of the raingauge density over i) the maximum rainfall intensities and ii) the number of 
misestimated events has been added in the new subsection “4.4.1 Raingauge density analysis” (L498-
514) coming with the Figure 7 (new). 

2 - Based on the comment before, the impact of the rain gauge network densities (and rain gauge 
locations) on the runoff is not analysed. In the additionally uploaded comment the main author states a 
rainfall-runoff modelling would go beyond the scope of the study. I do not agree with that and 
recommend this modelling approach to analyse the impact on the resulting runoff itself instead on single 
runoff statistics. To attribute the spatial rainfall variability, a distributed rainfall-runoff model would be 
the best solution. 

We decided to add a modelling component to this paper; the model is discussed in the public discussion 
(https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=g
et_comm_sup_file&_ms=87052&c=189590&salt=10720610621776386148).  
Corresponding modifications of the paper are i) at the end of the introduction (L92-94), ii) presenting 
the model used in the method part “3.6 Rainfall-runoff model” (L335-350), iii) in the results section in 
“4.4.3 Optimum network evaluation” (L544-555), iv) with the Figure 15 summarizing the results of the 
different simulations and v) in the Supplementary Material part 1 with the Figure S9 (map of 
subcatchments), Figure S10 (the results of all simulations per event) and Figure S11 (the results of 
simulations per event, cumulated over time). 

3 - Also, I was wondering why is there not a consistent number of events analysed throughout the 
manuscript. I understand that there are always measuring issues and maybe some observations are 
questionable, but then please remove them at the beginning. There could be one number of rainfall 
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events considered and one subset of them for discharge analysis, but at the current state results from 
different subsections cannot be compared with each other due to the different populations of considered 
events. 

The different subsets used through this study are visually clarified by the table 2 (new) and introduced 
in the main text when discussing of the rainfall events subsets are brought up for the first time in “4.1.1 
Areal rainfall and asymmetry” and in the same way with streamflow events in “4.2.1 Observed 
streamflow events”. This table is also referred to several times later throughout the paper when using 
different subsets. 

4 - L25-27 It should be mentioned here again that this issue is related to mountainous areas and is not a 
problem in general. 

Ok (L30). 

5 - Fig. 2 I don’t see the additional worth of showing Fig. 2 and recommend to leave it out, especially 
since it is included in the supplement as Fig S2 as well. 

The figure showing a picture of the hydrological station (previously Figure 2) has been removed from 
the paper. The Figure S2 in the Supplementary Material part 1 fulfills the aim of illustrating the 
measurement site. 

6 - L90 “average elevation” Please change to mean or median, depending on how you determined the 
“average” value. 

Ok. The misuse of “average” has been changed to “mean” when needed throughout the whole paper. 

7 - L117-118 The construction of the rating curve is not interesting for the manuscript and can be left 
out, also the elements regarding its construction in the supplement. 

The details about the rating curve have been moved from the main text to the caption of Figure S2 and 
Figure S3 in the Supplementary Material part 1. 

8a - L154-155 The term interpolation is not suitable in my opinion due to the rainfall generation 
mechanisms behind. I suggest “areal rainfall is generated after Benoit et al. (2018a) by constraining 
actual observations at rain gauge locations”. The authors should give a less brief explanation, since in 
the cited manuscript different versions are applied for rainfall generation (three versions due to different 
covariance models) and it remains unclear for the reader, which model is used for the current study.  

The explanation of the rainfall generation has been revised and extended to make the gridding process 
clearer (L170-177). The reference to 'interpolation' is kept for the general gridding process only but has 
been removed from the description of the stochastic model. In practice, the stochastic model used in the 
present study corresponds to the model version C in Benoit et al. 2018a because it is the best suited 
version for high resolution data. This is now clearly specified in the revised manuscript. In addition, we 
provide an open-source MatLab implementation of the model to help interested readers better grasp each 
step of the gridding process. 

8b - Why did the authors choose this rainfall generation instead of a regionalization approach as kriging 
(maybe with altitude as additional information), inverse distance weighting or Thiessen polygons. The 
latter is chosen later in the manuscript nevertheless due to computational efforts, so why not for the 
whole study? Was it the authors intention to add an uncertainty analysis. 

Indeed, we choose the stochastic rainfall generation for the valuable estimation of the errors it provides. 
The Thiessen method also used throughout this paper fills the weak points of the stochastic approach, 
namely i) the computation time, which is very short using the Thiessen method and allows to explore 
within a reasonable amount of time all the possible combinations of raingauge networks for their 
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optimization, and ii) to calculate rainfall fields even with a low number of raingauges. For this last point 
the stochastic method require at least 5 stations to capture correctly the spatial and temporal rainfall 
characteristics. 

9 - L154-163 The authors should bring this argument in context with the catchment concentration time. 

We clarify the justification about inter-event time chosen to separate 2 consecutive events, introducing 
the catchment’s response time and the recent paper of Beven (2020) that extensively clarify this concept. 
This justification reads as: “Accordingly, we assume that this event gives a rough estimate of the 
catchment’s response time (Beven, 2020) i.e. of the time required until the entire catchment contributes 
to the streamflow response, including the delay caused by runoff transfer to the stream network and 
from there to the outlet from the hydrologically most distant parts of the catchment. The 90 minutes 
were therefore selected to maximize the chances of observing a distinct streamflow response for two 
distinct consecutive rainfall events.” (L183-186) 

10 - L165-166 The location of the line chosen for the splitting of the catchment seems to be chosen 
arbitrary. Would a line constructed perpendicular to the main flow direction of the river (or even better, 
not a straight line but following the lines perpendicular to the isohypses to separate flows exactly) lead 
to more representable results, since the catchment is then split into a real upper and lower part? Or 
(thinking the other way around) does it not matter at all and the splitting line could be also drawn from 
South to North as long as both parts have the same area? 

The possible geometries of the splitting line used to compute IASYM is now discussed in “5.1 Spatial 
heterogeneity of rainfall”. This justification reads as: “It is noteworthy that this analysis could be 
affined by investigating different splitting geometries, e.g. by splitting the catchment into west and 
east parts, thereby  separating the large slopes (west) from the steep slopes (east).This and similar 
spatial asymmetry metrics  are case-specific as they rely on the particular  geomorphology and 
topography of the catchment and are thus not directly applicable to other catchments. In particular 
IASYM cannot be used as a tool to compare different catchments.” (L570-573) 

Furthermore, we also justify the use of the current north/south splitting line when introducing it for the 
first time in “3.2.2 Spatial rainfall pattern metrics”, discussing the Strahler stream order. This 
justification reads as “This heuristic splitting into two parts is interesting here due to i) the elongated 
catchment shape and furthermore ii) the clearly distinct stream network organisation in the upper 
(southern) part of the catchment with more branching than in the northern part (reflected in the 
Strahler stream order that does not further increase in the norther part, see Figure 1). Accordingly, we 
assume the rainfall events falling exclusively on one or the other part of the catchment lead to a 
distinct streamflow response, with a faster and stronger response for events falling on the northern part 
(closer to outlet, steeper hillslopes, less storage potential than for the southern part).” (L196-201) 

11 - L211-215 I suggest to move this paragraph to the beginning of section 3.3.2 

This comment refers to the statement on how baseflow is separated (“The beginning and the end of the 
streamflow response determine the initial and final baseflow, respectively; the streamflow volume above 
the line connecting these two points is considered here as fast runoff.”) and we think that it is an integral 
part of event identification. However, we changed the subsection title “3.3.1 Event identification” to 
“3.3.1 Identification of streamflow events and fast runoff”. 

12 - L217-218 The authors declare volume and lag time as “the two key characteristics of streamflow 
reaction”. I do not agree with that. The most important characteristic is peak flow, followed by volume 
and then lag time and flatting behaviour. Even if all characteristics are considered equal important, the 
authors should state why peak is not considered in the study. If there were attempts to include peaks 
which did not work, the authors should state so as “lessons learned” in the manuscript. 



5 
 

L234-239: we corrected the beginning of section 3.3.2. It now read as: “The key metrics to characterize 
the streamflow response are the peak flow, the fast streamflow volume, the lag time elapsed between 
rainfall and streamflow response, and the flatting behaviour. For technical reasons we discarded the 
peak flow (see section 3.3.1Erreur ! Source du renvoi introuvable.) and consequently the flatting 
behaviour. We use the fast streamflow volume through the runoff coefficient (RC), which is obtained 
by dividing the fast runoff volume by the total rainfall for the given event. The lag time […]” (L262-
266). 

And at the end of the section 3.3.1: “It is noteworthy that we do not use peak streamflow to characterize 
streamflow events, for two reasons: i) given the small size of the catchment and the complex temporal 
distribution of rain intensities, the streamflow response has rarely a single, well identifiable peak (all 
events are plotted in Figure S5 in Supplementary Material Part 1); ii) peak streamflow identification is 
further complicated by the noise in the stage recordings.” 

13 - L219-221 Is this criterion developed by the authors or should a reference be cited in this context? 
How was 1/3 chosen as threshold? This value should be catchment-dependent in my opinion, or not? 
Please clarify. 

L241-244: we clarified how the 1/3 threshold on rainfall and streamflow reaction was selected. It now 
reads as: “Since the start of excess rainfall is not known, the concept of peak flow is difficult to apply 
to our observed events (Section 3.3.1) and given the varying shape of our hydrographs, we empirically 
tested different lag formulations; the lag between 1/3 of the rainfall event volume and 1/3 of the 
streamflow event volume gives the best results in the regression analysis, and is therefore retained. It is 
noted ΔP/Q in the following.” (L271-275). 

14 - L222 Why is this criterion “1/3 of the rainfall amount” more robust than “start of the rainfall event”, 
although both starting points are linear correlated? 

The formulation was not well chosen and has been reformulated along with the sentence of the previous 
point (L271-275). 

15 - L275 Same differences lead to higher asymmetry values for smaller values. To avoid a 
misinterpretation (“Interestingly…”) Pnorth and Psouth could be normalized by the mean event rainfall 
amount. This would provide deeper insights, especially since larger differences between both parts 
cannot be seen in the current approach if they occur for events with high rainfall amounts. 

We added the columns PNORTH/PALL and PSOUTH/PALL in the Table 3. 

16 - L323-327. I cannot follow the argumentation here. Please explain in detail how you achieve this 
conclusion and consider at least one or two sentences for each argument. 

The paragraph has been reformulated. It now reads as: “The correlation analysis (Table 4) reveals a 
strong correlation between rainfall amounts and QFAST (0.77, Erreur ! Source du renvoi introuvable.). 
This suggests that streamflow responses are triggered by saturation-excess, rather than by infiltration 
capacity-excess: If saturation is exceeded, every unit of rainfall leads to a corresponding unit increase 
of streamflow, which in turn leads to  a strong linear correlation between rainfall amounts and fast 
streamflow volumes. Furthermore, saturation-excess also implies that a longer rainfall event leads to a 
higher streamflow response volume (once the saturation threshold is reached, all rainfall contributes to 
streamflow). This is confirmed by the high correlation (0.74) between the rainfall duration PDURATION 
and QFAST. If, on the contrary, the driving process was the exceedance of the soil infiltration capacity, 
then only rainfall intensities above the capacity threshold would trigger a corresponding streamflow 
increase; small rainfall amounts would trigger almost no response. In this case (infiltration-excess), there 
would be no linear correlation between rainfall amounts or rainfall duration and streamflow amounts, 
but a strong correlation between fast streamflow amounts and high or maximum precipitation intensity; 
positive correlations between QFAST and Pmax ALL, Pmax NORTH or Pmax SOUTH are however all absent (values 
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of -0.17, -0.16 and -0.08, Table 4). In addition, saturation-excess as a main driver of the fast streamflow 
response is further confirmed   by the clear threshold effect for the generation of streamflow as a function 
of total event rainfall (Erreur ! Source du renvoi introuvable.); a streamflow response only occurs for 
total rainfall higher than 5 mm.“ (L429-443) 

17 - L330 “to reach a higher “RC” Please rephrase, the manuscript is about observations, not modelling. 

We rephrased "to reach a higher RC, we need a higher level of saturation [...]" by "we observe a higher 
RC when the level of saturation increases [...]" (L447). 

18 - L341 composites: If there is a differentiation into wet and dry state, how do the authors achieve 
only one value for each criterion? Are two values estimated (for wet and dry) and then the arithmetic 
mean is mentioned? Please clarify! 

First, we changed the name “composite network” to “pseudo-dynamic network” in the entire document. 
A column has been added to Table 3 to show which network (dry/wet) is used for each of the 15 rainfall 
events having a streamflow reaction, and the missing explanation of the network extent and pseudo-
dynamic network calculation is now explained in “3.4.1 Pseudo-dynamic stream network extent”. It 
reads as:  

“In absence of exact observations of the stream network extent before the start of each streamflow event, 
we propose here to use a pseudo-dynamic stream network extent which assigns the dry or the wet 
network to each streamflow. The network state is chosen based on a measure of the initial catchment 
wetness conditions.” (L284-285) 

“This correlation analysis yields an optimum antecedent wetness indicator corresponding to the rainfall 
over the 3 days preceding the start of a rainfall event, noted W3days. Using this indicator, the pseudo-
dynamic network extent is obtained by assigning the dry network state to rainfall events that have W3days 

< 20 mm and the wet network state to rainfall events that show W3days ≥ 20 mm. This threshold of 20 mm 
is selected by maximizing the correlation coefficient between DHILLS and RC (see Section Erreur ! 
Source du renvoi introuvable.).” (L95-299). 

19 - L351-355 It would be nice to have a table with all criteria, where it is stated which one was removed 
(and why) and which ones were kept. Maybe the information can be added to Table 5 or 6?! 

We discuss in this section (“4.3 Identification of dominant hydrologic drivers via regression analysis”) 
only the best models. Among all the models tested through this regression analysis (combining models 
having one or two explanatory variables), the selection is exclusively based on AICc ranking and R². 
The rejection of the models having a lower rank is therefore not detailed in the text or in the tables. We 
made the model selection method clearer in the text and it now reads as: “The tested models, based on 
one or two explanatory variables, are summarized in Erreur ! Source du renvoi introuvable. for RC 
and in Erreur ! Source du renvoi introuvable. for ΔP/Q. The analysis is based on 14 events (after 
removing the 24 July event, subset #4 of Table 2) and the best models are selected based on their AICc 
ranking and coefficient of determination (R²).” (L480-482) 

20 - L354 Again, it feels as the number of considered events changes among all subsections. 

This has been clarified (see also point 3 above). 

21 - L380 What is the reason for IASYM preference in the Southern part? Due to the steeper areas? I 
would have estimated Northern part, since the hydrograph would have already been smoothed when 
originated in the South. Please try to find physical explanations to your results. 

Thanks for pointing this out. Due to a legacy effect the sentence “And for a single station network, the 
metric IASYM prefers a station location in the southern part rather than in the northern part” is false and 
has been removed, as well as the plot of the best 1-station network for IASYM in the figure 12. 
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22 - General: Please double-check the abbreviation for “meter above sea level”; I have only seen “m 
a.s.l.” and “m asl” so far, but not “m asl.” 

The abbreviations of meter above sea level have been corrected from “m asl.” to “m asl” throughout the 
whole paper. 

23 - L155 Benoit et al. 2018 <- a or b? I assume a. 

Ok (it is “2018a” indeed). 

24 - Eq 2, 3, 4 I’m a bit confused what rainfall characteristic is used as input for these equations. Is every 
raster cell with rainfall used (so I understood it from the text) or only the centre of the rainfall events (as 
mentioned in Table 1)? 

The rainfall characteristics and space-time resolution used into the Equations 2, 3 and 4 have been 
clarified. The text now reads as “[…] where i and j are the coordinates of rainfall location within the 
grid, P(i,j,t) is the rainfall amount previously calculated using the stochastic method (section 3.2.1) for 
each of the 10 x 10 meters grid cell at each 2-minute time step t, and 𝑑 (𝑖, 𝑗) is the distance of this 
grid cell to the nearest stream network grid cell (following the line of steepest descent in the 2 x 2 m 
DEM (swissALTI3D, 2012)).” (L217-220) 

25 - L163 “overlooked” -> ignored 

Ok. 

26 - Eq. 2, 3, 4 The term in the numerator should be put in brackets (Eq. 2: “P(..)dHills” -> 
“(P(..)dHills)”) 

The equations formulation (missing brackets) have been corrected for DHILLS, DSTREAM and HHAND 

(Equations 2, 3 and 4, respectively). 

27 - L195 DHAND is not a distance as indicated by the D, and in the text the variable is introduced with 
HAND. I suggest to stick to HAND throughout the manuscript to avoid confusions with the other two 
“real” distances”. 

We now use the abbreviation HHAND instead of DHAND throughout the whole paper, figures and associated 
documents. 

28 - L202 Section 3.5 includes no network extent description. Is it missing in the manuscript? 

The missing explanation of the network extent is now explained in “3.4.1 Pseudo-dynamic stream 
network extent” (L278-299). 

29 - L268 317.8 mm – Is it areal rainfall amount sum or sum over all stations? 

We specified (L355) that the value of 317.8 mm is the areal rainfall amount. 

30 - L268-269 please provide also the mean values, not only the highest and lowest values, so that the 
reader get a “feeling” for the rainfall events. 

The mean values have been added (L356). 

31 - L275 again, please don’t use the term average, use mean or median to be more concise. Since Iasym 
can be positive and negative, the median of its absolute values would be worth to show instead of just 
the mean, since positive and negative values are levelling out each other. 

Indeed, in this case using the median value of IASYM (0.025) is better than using the mean, it has been 
corrected (L363-364). Also, the misuses of “average” has been corrected when needed throughout the 
whole paper. 
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32 - Fig. 5 and 6 For a logical order the figures should show the rainfall events first, followed by the 
discharge plot. 

The figures showing rainfall events records (Figure 3 and Figure 4 in the main text, and all the figures 
of the Supplementary Material part 2) have been rearranged to have rainfall data above streamflow data.  

33 - L279 “One strongly asymmetric and high intensity event” -> “One strong asymmetric and very 
intense event” 

Ok. 

34 - L283 A volume can’t be fast (check also for later occurrences…) 

Ok. 

35 - L288 In the sentence before authors mention that the number of events under consideration are 
reduced by “1”, but here again 48 events are studied (also in the following subsections). 

Indeed, it is confusing. The line it is referred to “This event and its streamflow reaction are excluded 
from further analysis” has been replaced by “This event and its streamflow reaction are excluded from 
further analysis involving the hydrological response” (L373-374). 

36 - L289 The authors should state what wet and dry networks are. I found it later in the caption of Table 
1 in S1, but it would lead to clarifications here. Also, the Table 1 in S1 should be shown in the 
manuscript, since the written part in Section 4.1.2 is more confusing than explaining for me. 

The dry and wet networks are now introduced in “2 Study area”. It now reads as: “The actual extent of 
the stream network is based on observations during Summer 2017 (dry and wet periods) and its exact 
path was calculated using the Swiss digital elevation model at a resolution of 2 m (swissALTI3D, 
2012).” (L126-127) 

It is detailed later on in “3.4.1 Pseudo-dynamic stream network extent” and it reads as “The extent of 
the stream network evolves as a function of the catchment wetness conditions. Its minimal and maximal 
extent (Erreur ! Source du renvoi introuvable.) are determined manually by identifying the uppermost 
points of the catchment where streamflow was observed in the field during summer baseflow (minimum 
extent, called dry state) and during summer high flow (maximum extent, called wet state).” 

37a - Fig9 “events without reaction are not shown” belongs to part b), not a). Please correct the caption.  

Ok. 

37b - General: Maybe I missed it, but which temporal resolution was used to calculate the correlation 
(and other criteria)? 2min as this is the resolution of the rain gauge? Or are values aggregated up to e.g. 
1h? This has a high impact on the values of the correlation coefficient. 

The temporal resolution of times series used for correlation calculations is 2 minutes. The correlation 
between events is done at the event-scale. This is now clarified in the text. 

38 - L339 “absence of correlation”. Correlation cannot be absent. Better to speak of low correlation or 
provide absolute values. 

Ok. 

39 - L384-386 “is assessed”, “is evaluated” – two verbs, please rephrase the sentence. 

Ok. It now reads as “Considering the small dataset underlying this analysis (23 events), the robustness 
of the best networks is assessed for two selected metrics (for the PALL and IASYM) by re-computing the 
optimal network if between 1 and 3 events are removed from the dataset.” (L329-331) 
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40 - L402 “what we previously thought”? What was the hypothesis of the authors before? 

We reformulated the explanation about the outperformance of DSTREAM over DHILLS for the prediction of 
RC and lag time. It now reads as: “We could expect that in that kind of steep environments, the residence 
time in hillslopes strongly dominates over residence times in the stream network (Nicotina et al., 2008); 
the fact that DSTREAM outperforms here DHILLS for the prediction of RC and lag time may show that even 
in steep environments, with a priori fast instream processes and limited storage, the riparian area and 
related subsurface exchange processes could play a more prominent role. The fact that the travel distance 
in the stream network explains more of the RC variation than DHILLS might be an indirect effect: the 
longer the travel distance in the stream network, the more likely are delays due to exchange with 
groundwater in the riparian area.” (L578-584) 

41 - L421 “three station network” It would be nice to provide the resulting density here as well as 
“(general) recommendation”. 

The results are now also presented in term of raingauge density in the figure 7 and in the text referring 
to (L505-506) and later in the text L536-537. 
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Responses to the comments of Reviewer #2: 

1) I already reviewed the initial version of this paper, which aims at highlighting the values of high 
density rain gauges networks for hydrological purposes in a small catchment of mountainous areas. I 
still believe that the topic is interesting and relevant for the community. It furthermore has other potential 
applications in urban areas which are also small and quickly reactive catchments where rainfall 
variability has strong consequences.  

A reference to urban hydrology (Cristiano et al., 2017) has been added into the introduction. It now 
reads as “While our analysis focuses here on a small natural headwater catchment, it is noteworthy that 
the developed rainfall monitoring and data analysis framework might also be of interest for  urban 
hydrology, which deals with similar questions regarding how spatial rainfall patterns, runoff generation 
processes and flow network geometry lead to peak flows in urban drainage systems (for a review, see 
the work of Cristiano et al., 2017).” (L77-81) 

2) The minor difficulties with regards to the presentation and understanding of the paper have been 
corrected. Results are now better presented with the new figures. However, the main point was not 
addressed, i.e. the fact that the authors aims at showing the importance of grasping the spatio-temporal 
variability of the rainfall process in the prediction of flows, but the chosen indicators are only event 
based averages. 

We removed the misleading formulation “runoff prediction” from the abstract, that has also been 
adapted to the changes made to the paper.  

3) Furthermore, the main rainfall variability (which is at the core of the paper) indicator used is too 
simplistic since it is basically an asymmetry indicator on the total depth splitting the catchment in two. 
So I still think that indicators actually accounting for the spatiotemporal variability of the rainfall and 
hydrologic response should be implemented to actually address the stated topic of the paper. 
Implementing them requires major modifications of the paper. I guess that this would enable to highlight 
more precisely the importance of dense networks of rainfall measurement devices. 

We agree that IASYM is a simple indicator to capture the key rainfall field properties for the hydrological 
response. In other studies and namely in urban hydrology such an indicator is typically based e.g. on the 
variogram or on the spatial moments of rainfall with continuously observed rainfall fields (radar 
images). We added this comment in “3.2.2 Spatial rainfall pattern metrics” and it reads as: “Spatial 
rainfall patterns are classically characterized with geostatistical tools, including variograms (Berne et 
al., 2004) or with spatial moments of rainfall (Smith et al., 2002;Zoccatelli et al., 2011;Mei et al., 2014), 
in particular in presence of observed rainfall fields, e.g. from radar images. Here we propose to use more 
hydrological-process oriented metrics that explicitly account for known features of the catchment and 
the stream network.” (L190-194) 

The asymmetry indicator is just one of the indicators used in the study, along with the geomorphological 
distances, which corresponds to the above first order spatial moments, albeit decomposed according to 
hillslope and stream network flow distances. As we answered in the public discussion, we tried the 
second order moment of distance metrics, but it does not show any noticeable correlation with a rainfall 
or streamflow metric. We added this result in the text: “It is noteworthy that these two metrics, 𝐷  
and 𝐷  correspond to the aforementioned first order spatial rainfall moments, albeit decomposed 
according to hillslope and stream network distances, similar to what was proposed by Zoccatelli et al., 
2015 in their analytical framework to quantify the smoothing of spatial rainfall organisation effects by 
channel residence time. It would be tempting to use also higher order rainfall moments; however, no 
significant correlation could be found the retained streamflow metrics.” (L229-233) 

Finally, we also added the section “4.1.3 Temporal evolution of rainfall metrics”, please see our answer 
to the point 7 below. 
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4) l. 110 – 115: “The actual extent of the stream network is based on observations during dry and wet 
periods during Summer 2017 and its exact path was calculated using the Swiss digital elevation model 
at a resolution of 2 m (swissALTI3D, 2012).” I think that the intrinsic fractal nature of river networks 
should be mentioned and discussed. The concept of variable network used after also seems interesting. 

We implemented at the end of “5.1 Spatial heterogeneity of rainfall” a comment about the fractality of 
the river network. It reads as: “However, future work on the role of water residence time in the stream 
network will necessarily require more detailed field data on the temporal evolution of the stream 
network. This will in addition open new perspectives to quantify how the stream network extension is 
imprinted in the streamflow response: in fact, as discussed by Rinaldo et al. (1995), the intrinsic fractal 
nature of the stream network is not transferred to the streamflow response and, accordingly, there is 
potential to infer the stream network extension from observed streamflow records, provided that we 
have high resolution rainfall data to disentangle the different effects.” (L587-592) 

5) l. 150-151: “Some additional artefacts were recorded, probably generated by strong winds creating 
resonance. These periods have been manually removed from the data”. It should clarified how the data 
was selected for being removed and what portion was removed. 

We clarified how raw rainfall data were selected and some parts removed. It now reads as: “Additional 
artefacts were recorded, probably generated by strong winds creating resonance. Some stations in fact 
recorded very strong and highly variable rainfall over several hours during periods with high wind 
velocity but during days without any observed rainfall in the combined MeteoSwiss radar-rain gauge 
data (Sideris et al., 2014). Four periods (over 4 different days) have been manually removed from the 
data.” (L164-167) 

6) 1. 154-157: It is a great improvement to use this stochastic procedure. Nevertheless, I believe that 
more details on the interpolation procedure are needed. It should be clarified how the 20 samples are 
used (computing the error bars in 8-10)? 

We added details about the stochastic procedure and error bar computation. It now reads as: “Before 
further analysis, the rainfall amounts measured by each station were interpolated to a 10 by 10 m grid at 
a 2 min time step using a high-resolution stochastic approach developed by Benoit et al. (2018a). In a 
nutshell, it generates an ensemble of stochastic space-time rain fields constrained by the actual 
observations at the rain gauge locations. The resulting ensemble (here composed of 20 realizations) can 
be used to analyze spatial rainfall uncertainty or to construct a single rainfall estimator. Following Benoit 
et al. (2018a), a non-separable and asymmetric covariance function was used to perform the simulations, 
which allows modelling rainfall advection and diffusion observed in the raw data. Areal rainfall time 
series are calculated for each of the 20 realization, and from these a single time series (mean and standard 
deviation) of the areal rainfall.” (L170-177) 

7) Eq. 1 on I_ASYM. As already mentioned, it seems a too simplistic indicator to grasp spatio-temporal 
variability of the rainfall process. An initial simple suggestion could for instance be to look for the 
temporal evolution of I_ASYM during an event. But other indicators are needed 

We added figures showing the evolution of DSTREAM, DHILLS and IASYM in the supplementary Material, 
and added in the text a qualitative discussion of the temporal evolution of the rainfall metrics in “4.1.3 
Temporal evolution of rainfall metrics”. It reads as:  

“We computed the temporal evolution of the rainfall metrics to unravel potential temporal evolution 
patterns in IASYM, DHILLS and DSTREAM and their relation to the streamflow response (full results are 
available in the Supplementary Material part 1). The temporal evolution of the two distance metrics is 
overall rather flat with no clear fluctuation patterns. There is only one event with a pronounced temporal 
trend for DHILLS (Q event #1).  
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For IASYM, some events show interesting temporal patterns. For example, during the double peak 
runoff of Erreur ! Source du renvoi introuvable., IASYM shows an almost constant negative value 
suggesting that the corresponding double peak rainfall event remained stationary on the northern part 
of the catchment over its entire duration and therefore caused the double peak streamflow response. 

For the first two streamflow events, the IASYM metric switches from strongly positive to close to zero 
during the event, implying that the rainfall field moved towards the outlet during the event; in other 
words, the rainfall cloud follows the overall water movement through the catchment and thereby leads 
to a stream response concentration. This might explain why these two events are the only ones that 
show a pronounced single peak streamflow response. However, given the low number of observed 
events and the diversity of temporal patterns, these insights cannot be further used for a quantitative 
analysis.” (L391-404) 

8a) l. 212-215: the explanation on why not using streamflow variations (notably peak flow) is not very 
convincing.  

This point has been clarified in the public discussion.     
(https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=g
et_comm_sup_file&_ms=87052&c=189590&salt=10720610621776386148) and we added the figure 
showing the peak flows to the Supplementary Material (Figure S5). 

8b) If the purpose is to investigate the importance of spatiotemporal variability, I guess studying the 
temporal variability of the simulated streamflow is needed. 

We decided to add a modelling component to this paper; the model is discussed in the public discussion 
(https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=g
et_comm_sup_file&_ms=87052&c=189590&salt=10720610621776386148).  
Corresponding modifications of the paper are i) at the end of the introduction (L92-94), ii) presenting 
the model used in the method part “3.6 Rainfall-runoff model” (L335-350), iii) in the results section in 
“4.4.3 Optimum network evaluation” (L544-555), iv) with the Figure 15 summarizing the results of the 
different simulations and v) in the Supplementary Material part 1 with the Figure S9 (map of 
subcatchments), Figure S10 (the results of all simulations per event) and Figure S11 (the results of 
simulations per event, cumulated over time. 
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Abstract.  

Spatial rainfall patterns exert a key control on the catchment scale hydrologic response. Despite recent advances in radar-based 

rainfall sensing, rainfall observation remains a challenge particularly in mountain environments. This paper analyzes the 10 

importance of high-density rainfall observations for a 13.4 km2 catchment located in the Swiss Alps where rainfall events were 

monitored during 3 summer months using a network of 12 low-cost, drop-counting rain gauges. We developed a data-based 

analysis framework to assess the importance of high-density rainfall observations to help predict hydrologic processes.the 

hydrological response. The framework involves the definition of spatial rainfall distribution metrics based on hydrological and 

geomorphological considerations, and thea regression analysis of how these metrics explain the hydrologic response in terms 15 

of runoff coefficient and lag time. The gained insights on dominant predictors are then used to investigate the optimal 

raingaugerain gauge network density for predicting the hydrologicalstreamflow response  metrics in, including an extensive 

test of the studied catchment.effect of down-sampled rain gauge networks and an event-based rainfall-runoff model to evaluate 

the resulting optimal rain gauge network configuration. The analysis unravels that besides rainfall amount and intensity, the 

rainfall distance from the outlet along the stream network is a key spatial rainfall metric. This result calls for more detailed 20 

observations of stream network expansions, as well as the parameterization of along stream processes in rainfall-runoff models. 

In addition, despite the small spatial scale of this case study, the results show that an accurate representation of the rainfall 

field (with at least three rain gauges) is of prime importance to capture the key characteristics of the hydrologic response in 

terms of generated runoff volumes and delay. In the present case, at least three rain gauges were required for proper runoff 

prediction.The potential of the developed rainfall monitoring and analysis framework for rainfall-runoff analysis in small 25 

catchments remains to be fully unraveled in future studies, potentially including also urban catchments.  

1 Introduction 

Rainfall is known to be highly variable in space even at small scales, in particular in mountain areas (Henn et al., 2018;Tetzlaff 

and Uhlenbrook, 2005). Despite recent progress in the observation of spatial rainfall in mountainous areas with the help of Commenté [AM1]: Precision added according to Reviewer #1 – 
Point 4 
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radar (Berne and Krajewski, 2013;Germann et al., 2006;Germann et al., 2015), it remains crucially difficult to observe and 30 

spatially interpolate (Foehn et al., 2018a;Sideris et al., 2014).  

Understanding the interrelation between spatial rainfall patterns and the hydrologic response has been of concern for many 

decades, ranging from a theoretical viewpoint (Shah et al., 1996;Singh, 1997;Woods and Sivapalan, 1999), to a rainfall-runoff 

model perspective (Obled et al., 1994;Nikolopoulos et al., 2011), and extending to a hydrological process understanding 

perspective (Guastini et al., 2019;Zillgens et al., 2007). Even earlier work in this field focused on the model-based investigation 35 

of optimal rain gauge density for reliable areal rainfall estimation (Bras and Rodriguez-Iturbe, 1976a) and runoff prediction 

(Bras and Rodriguez-Iturbe, 1976b;Tarboton et al., 1987). Chacon-Hurtado (2017) provides a recent review on rain gauge 

network optimisation. 

A wide range of methods has been proposed to analyze the hydrologic response as a function of spatial rainfall patterns. We 

can broadly distinguish between empirical methods that identify systematic response patterns by scrutinizing individual 40 

observed events (Blume et al., 2007) and model-based methods that try to identify systematic or theoretical relationships 

between rainfall and the hydrologic response. In this latter category, we first of all find stochastic methods that describe the 

stochastic aspects of the hydrologic response as a function of the rainfall field properties. These approaches range from 

simplified stochastic models (Tarboton et al., 1987) to full space-time representations of rainfall forcing and streamflow 

generation (Mei et al., 2014;Pechlivanidis et al., 2017;Viglione et al., 2010;Woods and Sivapalan, 1999;Zoccatelli et al., 2015). 45 

These stochastic tools are developed to understand the relative importance of the two key components of the hydrologic 

response, i) the runoff generation processes at the hillslope scale and ii) the routing mechanisms in the channel network. Such 

an assessment of the relative role of unchanneled-state and channeled-state processes (Rinaldo et al., 1991;Rinaldo et al., 

2006a) gives key insights into the relative role of runoff generation processes and of the geomorphology of a catchment. This 

can also be achieved with virtual modelling experiments with hydrological models that explicitly account for 50 

geomorphological dispersion along the channel network. An example is the work of Nicótina et al. (2008) who assessed the 

importance of well representing spatial rainfall variability for medium size catchments (a few hundreds to thousands km²) 

where saturation-excess overland flow dominates (rather than Hortonian flow). They conclude that for rainfall events with a 

spatial correlation length larger than the hillslope size, an exact representation of the spatial rainfall variability is not required 

to well represent the hydrologic response - provided that the mean areal rainfall is preserved at each time step. They explain 55 

this result by the fact that if the total catchment-scale residence time is controlled by the travel time within the hillslopes, large 

enough rainfall events sample all possible residence times, independent of the actual spatial rainfall configuration. Their 

findings were subsequently confirmed by the work of Volpi et al., (2012) amongst others, where a simplified modelling 

approach based on a geomorphological unit hydrograph was used. While the conclusions were similar, this study also added 

that spatial variability does not matter “when the integral scale of the excess-rainfall field is much smaller or much larger than 60 

the basin drainage area”. 

Similar results were obtained in studies that assess the impact of undersampling or of coarse graining an observed rainfall field 

on the performance of streamflow simulations obtained with more or less complex process-based hydrologic models (Bardossy 
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and Das, 2008;Moulin et al., 2009;Lobligeois et al., 2014;Shah et al., 1996;St-Hilaire et al., 2003;Stisen and Sandholt, 2010;Xu 

et al., 2013). A key result of these model-based studies is that the hydrologic response depends more on the accurate estimate 65 

of the mean areal rainfall than on the actual exact form of the rainfall field, (Obled et al., 1994). However, such model-based 

studies face the challenge that conceptual hydrological models require recalibration when used with different input fields, 

which makes disentangling effects from rainfall versus parameters a cumbersome exercise (Bardossy and Das, 2008;Bell and 

Moore, 2000;Stisen and Sandholt, 2010). 

The above hypothesis that the area-averagemean areal rainfall might play a more important role for the streamflow response 70 

than the actual spatial rainfall pattern is largely based on modelling experiments and remains to be tested in the field. In this 

paper, we therefore propose to investigate this hypothesis with a data-based analysis offramework to analyze the importance 

of rain gauge density for the event-specific hydrologic response (Ross et al., 2019) of a small, high elevation Alpine headwater 

catchment (13.4 km2) where the hydrologic processes have been intensely monitored since 2015. Studying such a small 

catchment has, in addition, the potential to shed new light on the often used assumption that for catchments smaller than a few 75 

tens of km2, a single rain gauge is sufficient for reliable runoff prediction. While our analysis focuses here on a small natural 

headwater catchment, it is noteworthy that the developed rainfall monitoring and data analysis framework might also be of 

interest for  urban hydrology, which deals with similar questions regarding how spatial rainfall patterns, runoff generation 

processes and flow network geometry lead to peak flows in urban drainage systems (for a review, see the work of Cristiano et 

al., 2017). 80 

To assess the number of point observations required to properly capture the hydrologic response of our target catchment, we 

set up a dense rain gauge network made of commercially available and low cost devices, which increases the interest of this 

case study for future hydrologic studies in similar settings. These high-density rain gauge observations (approximately one 

rain gauge per km2) are then used to answer two key questions: 

i. Which spatial characteristics of the rainfall field explain the timing and the amplitude of the hydrologic response? 85 

ii. What is the required spatial design of the rain gauge network to capture these characteristics? 

To answer these questions, we developed a methodological framework to analyze the rainfall events, the hydrological response, 

and ultimately the optimal rain gauge density. This framework can be summarized as follows: i) define appropriate metrics to 

describe the rainfall fields and the hydrological response, ii) understand the relationships between these metrics through 

correlation analysis, iii) identify the main drivers (i.e. the corresponding metrics) through regression analysis, and finally iv) 90 

use the gained insights to optimize the rain gauge network based on selected metrics. We conclude the analysis with an event-

scale modelling of all recorded runoff response events with a semi-distributed model to evaluate the identified rain gauge 

network configuration.  

The remainder of the paper is structured as follows. First, Section 2 describes the target area of the study, namely the Vallon 

de Nant catchment located in the Western Swiss Alps. Next, Section 3 presents the observational methods and the analysis 95 

framework. The results are presented in Section 4 and discussed in Section 5, with a focus on the impact of rainfall 

heterogeneity on the streamflow response. Section 6 summarizes the main conclusions. 

Commenté [AM2]: Added according to Reviewer #2 – Point 1 
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2 Study area 

The area of interest is the Vallon de Nant, a 13.4 km² catchment located in the Western Swiss Alps (Figure 1). The elevation 

ranges from 1,200 m asl at the outlet of the Avançon de Nant river () to 3,051 m asl (Grand Muveran),) and has an averagea 100 

mean elevation of 1,975 m asl. The catchment benefits from a protected status (Natural Reserve of the Muveran) since 1969 

and is of national importance for Switzerland in terms of biodiversity (Cherix and Vittoz, 2009). The Vallon de Nant has been 

intensively studied over the recent years, in disciplines ranging from hydrology (Beria et al., 2020a) and hydrogeology 

(Thornton et al., 2018), to geomorphology and pedology (Lane et al., 2016;Rowley et al., 2018), to biogeochemical cycling 

(Grand et al., 2016), and to stream ecology (Horgby et al., 2019). 105 

The Vallon de Nant belongs to the reverse side of the Morcles nappe, a structural geological unit that determines the 

catchment’s shape. The old Cretaceous and Tertiary layers are recognizable as a succession of thick, blocky lithologies 

overlooking and surrounding the valley. They lie on a substratum of flysch, i.e. softer rocks (schistose marls and sandstone 

benches), which explains the deepening and widening of the valley at its southern part (Badoux, 1991). 

Figure 2 summarizes the dominant hydrological units of the Vallon de Nant. The western side is mainly characterized by 110 

grassy slopes, with deep soils and a relatively high water storage capacity as revealed by gauging along the stream during the 

late summer and autumn yearly streamflow recession period (Horgby, 2019). The northern part of these western slopes shows 

a less dense drainage network than the rest of the catchment (Figure 1), explained by steeper slopes, a large hydraulic 

conductivity or locally deeper soils.  

The eastern side of the catchment is characterized by steep and rocky slopes that react quickly to rain events due to shallow 115 

soils that drain quickly. At the foot of the rock walls, large alluvial cones and screes extend down to the river. The bottom of 

the valley is mainly composed of fine alluvial deposits with a large water storage capacity. In the southern part of the valley, 

the Glacier des Martinets (area less than 1 km2) is now confined to a small area shaded by the Dents de Morcles. The water 

flow paths of rainfall inputs over this southern (and higher elevation) part of the catchment, composed of moraines and 

permafrost, remain unclear and have not been investigated so far. 120 

The Avançon de Nant river shows a typical snow dominated streamflow regime marked by a high flow period during spring 

and early summer when the snowpack accumulated during the winter melts (Supplementary Material Figure S1). The river 

length within the study area reaches 6 km in early summer, while during autumn and winter low flow, the river may start to 

flow as low as 1480 m asl (close to the gauge No. 5 on the Figure 1), reducing the instream flow distance to the outlet to 2.95 

km. The actual extent of the stream network is based on observations during Summer 2017 (dry and wet periods during Summer 125 

2017) and its exact path was calculated using the Swiss digital elevation model at a resolution of 2 m (swissALTI3D, 2012). 

The streamflow at the outlet is monitored via river height measurements using a sonar above the middle point of a trapezoidal 

shaped weir (). It averages water height every 1 minute continuously since September 2015. The height is thenan optical height 

sensor and is converted into streamflow using a rating curve (Supplementary Material Figure S3) based on 55 salt streamflow 

measurements (Ceperley et al., 2018). 130 

Commenté [AM4]: Modified according to Reviewer #1 – Point 
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 We fit a power-relationship using the nonlinear least squares fitting algorithm of MatLab's "fit" function with the trust region 

algorithm and least absolute residual method to obtain a 95% confidence interval. The annual averagemean streamflow in 2018 

is between 0.60 and 0.72 m3.s-1 (between 3.89 and 4.61 mm.day-1); averagemean annual water temperature is 5.0°C, ranging 

from a frozen river during some days in winter to an averagea mean temperature of 8.5°C during summer (from July 1st to 

August 31st, 2017). The maximum streamflow measured at the gauging station was between 10.4 and 12.4 m3.s-1 (between 135 

67.2 and 80.0 mm.day-1) during an intense rainfall event (August 6th, 2018). 

Meteorological variables are monitored at three locations (Michelon et al., 2017) along a north/south transect (at 1253 m asl, 

1530 m asl and 2136 m asl) since September 2016. The average From these stations, the mean air temperature at the mean 

elevation of 1,975 m asl is estimated from these stations equalsto 3.1 °C in 2017. 

We do not use any further data from the Swiss meteorological network since there are no ground measurement stations nearby, 140 

and the Vallon de Nant catchment is largely in the shadow of the Swiss weather radar network (Foehn et al., 2018b), which 

might see here at best rainfalls above 2800 m asl (Marco Gabella personal communication, February 27th 2019). 

3 Instruments and methods 

3.1 Instruments 

A network of 12 Pluvimate drop-counting rain gauges (www.driptych.com) was distributed across the Vallon de Nant 145 

catchment from July 1st to September 23rd 2018 to monitor rainfall (Figure 1). A similar deployment during the cold season 

would not be possible due to snowfall at all elevations throughout the winter. The sites were selected to represent the 

distribution of slope orientations and elevation, but also to meet constraints of accessibility and disturbance risk (livestock, 

hikers). The distance between measurement locations within the network ranges from 350 m to 1,550 m (630 m on average), 

and the greatest distance from any point in the basin to a rain gauge is 1,670 m. 150 

The gauges are low-cost (around 600 USD each), consisting of a tube (11 cm of diameter, 40 cm of length) mounted to an 

aluminum funnel (Figure 2). The collected rainwater is concentrated to a nozzle that creates a drop of water of calibrated size 

(0.125 mL), which then falls on the impact-sensitive surface of the sensor, 30 cm below. The datalogger counts and records 

the number of drops over a time set up to 2 minutes. In the field, the devices are set up vertically, attached to a wooden stick. 

The funnel aperture is between 0.8 and 1.2 m above the ground. 155 

The Pluvimates were set-up to count drops over an interval of 2 minutes, with an accuracy of 0.3 mm/h. Benoit et al. (2018a) 

experimentally evaluated the device uncertainty to 5 % for rainfall intensities under 20 mm/h. Given that some of the rainfall 

intensities measured in the present study exceed this value (intensities up to 140 mm/h were recorded), we extended the 

calibration to intensities up to 150 mm/h, and few saturation effects were noticed (Appendix A). 

To prevent clogging, steel sponges were disposed in the funnel of each Pluvimate. This appeared to have caused i) a dampening 160 

effect on low rainfall intensities as it delayed slightly the beginning of very small events (lower than 1 mm/h) and ii) created 

drops remaining after the end of an event. The data are not corrected for these effects. 
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Some Additional artefacts were recorded, probably generated by strong winds creating resonance. TheseSome stations in fact 

recorded very strong and highly variable rainfall over several hours during periods with high wind velocity but during days 

without any observed rainfall in the combined MeteoSwiss radar-rain gauge data (Sideris et al., 2014). Four periods (over 4 165 

different days) have been manually removed from the data. 

3.2 Rainfall events event characterisation 

3.2.1 Event identification 

Before further analysis, the rainfall amounts measured by each station were interpolated to a 10 by 10 m grid at a 2 min time 

step using a high-resolution stochastic interpolation procedureapproach developed by Benoit et al. (20182018a). In a nutshell, 170 

it aims at generatinggenerates an ensemble of stochastic space-time rain fields constrained by the actual observations at 

raingaugethe rain gauge locations (over. The resulting ensemble (here composed of 20 realizations), and ) can be used to use 

this ensemble analyze spatial rainfall uncertainty or to interpolate sparse rain observationsconstruct a single rainfall estimator. 

Following Benoit et al. (2018a), a non-separable and asymmetric covariance function was used to perform the simulations, 

which allows modelling rainfall advection and diffusion observed in the raw data. Areal rainfall time series are calculated for 175 

each of the 20 realization, and from these a single time series (mean and standard deviation) of the areal rainfall. 

Using the interpolatedareal rainfall fields, time series, the rainfall events wereare identified as rainy periods with rainfall higher 

than 1 mm separated by at least 90 minutes without rain.with rainfall smaller than 1 mm. This inter-event duration was selected 

based onof 90 minutes corresponds to the observed delay between the rainfall onset and the streamflow response for the large 

event recorded on August 23rd (detailed in the part 2 of supplementary material);for details see Supplementary Material), 180 

which occurred during an otherwise dry period. The streamflow reactionresponse to the first half-hour of this rainfall event 

was caused only by rainfall in the southern half of the catchment (stations 8 to 12). Ninety minutes was), corresponding thereby 

to the most distant event (from the outlet). Accordingly, we assume that this event gives a rough estimate of the catchment’s 

response time (Beven, 2020) i.e. of the time required until the entire catchment contributes to the streamflow response, 

including the delay caused by runoff transfer to the stream network and from there to the outlet from the hydrologically most 185 

distant parts of the catchment. The 90 minutes were therefore selected to maximize the chances of observing a distinct 

streamflow reactionresponse for two distinct consecutive rainfall events. In addition, events with a total amount of rainfall 

under 1 mm are overlooked in the following. 

3.2.2 Spatial rainfall pattern metrics 

To investigate the relationship between dominant spatial rainfall patterns and streamflow responseSpatial rainfall patterns are 190 

classically characterized with geostatistical tools, including variograms (Berne et al., 2004) or with spatial moments of rainfall 

(Smith et al., 2002;Zoccatelli et al., 2011;Mei et al., 2014), in particular in presence of observed rainfall fields, e.g. from radar 
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images. Here we propose to use more hydrological-process oriented metrics that explicitly account for known features of the 

catchment and the stream network. 

To build a first such metric, the catchment is split into two parts of equal area by a west-east line (Figure 1), delimiting an area 195 

close to the outlet in the northern part, and an area farther away in the southern part. This heuristic splitting into two parts is 

interesting here due to i) the elongated catchment shape and furthermore ii) the clearly distinct stream network organisation in 

the upper (southern) part of the catchment with more branching than in the northern part (reflected in the Strahler stream order 

that does not further increase in the norther part, see Figure 1). Accordingly, we assume the rainfall events falling exclusively 

on one or the other part of the catchment lead to a distinct streamflow response, with a faster and stronger response for events 200 

falling on the northern part (closer to outlet, steeper hillslopes, less storage potential than for the southern part). 

The interpolated amounts of rainfall received by the southern and northern parts of the catchment, PNORTH and PSOUTH, are 

compared and normalized by the total amount of rainfall to create an index of spatial rainfall asymmetry IASYM: 

𝐼 =
( )

,           (1) 

If rainfall is equally distributed between the northern and the southern parts, then IASYM = 0. The extreme values -1 and 1 205 

express rainfall concentration exclusively in the northern or the southern part of the catchment, respectively. We consider a 

rainfall event as asymmetric when at least 2 times more rain ishas precipitated over one part of the catchment than over the 

other, i.e. when IASYM is below -0.33 or above +0.33. 

To further analyze the relationships between the spatial distribution of rainfall and the streamflow response, we characterize 

the geomorphological distance of incoming rainfall from the outlet, assuming that this distance should reflect to some degree 210 

the timing and the shape of the streamflow  reactionresponse of the catchment: following the terminology of Rinaldo et al. 

(2006b), transport at the basin scale can be analyzed in terms of travel in the unchannelled state (i.e. in the hillslopes) and 

travel in the channelled state (i.e. in the stream network). 

Accordingly, we estimate for each rainfall event the weighted averagemean unchannelled distance to the stream network as: 

𝐷 = ∑
∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
∑

∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
 ,                             215 

   (2) 

where t is the time step, i and j are the coordinates of rainfall location within the grid, P(i,j,t) is the rainfall amount previously 

calculated using the stochastic method (section 3.2.1) for each of the 10 x 10 meters grid cell at each 2-minute time step t, and 

𝑑 (𝑖, 𝑗) is the distance of this grid cell to the nearest stream network grid cell (following the line of steepest descent in the 

2 x 2 m DEM (swissALTI3D, 2012)). 220 

Similarly, we compute the weighted averagemean channelled distance between a point of introduction into the stream network 

and the outlet as: 

𝐷 = ∑
∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
∑

∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
 ,      

   (3) 
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where 𝑑 (𝑖, 𝑗) is the distance along the stream network from the point of introduction to the outlet. For each cell of the 225 

stream network, this distance is calculated once based on the 2 x 2 m DEM. 

The DHILLS metric gives an estimate of the average distance that incoming rainfall has to travel on the hillslopes before reaching 

the stream network, and DSTREAM the average distance for the water particle entering the stream network to reach the outlet. 

It is noteworthy that these two metrics, 𝐷  and 𝐷  correspond to the aforementioned first order spatial rainfall 

moments, albeit decomposed according to hillslope and stream network distances, similar to what was proposed by Zoccatelli 230 

et al., 2015 in their analytical framework to quantify the smoothing of spatial rainfall organisation effects by channel residence 

time. It would be tempting to use also higher order rainfall moments; however, no significant correlation could be found to 

retained the streamflow metrics. 

In addition to the above two metrics related to the theory of geomorphological dispersion (Rinaldo et al., 2006b), we use the 

height above the nearest drainage (HANDHHAND) terrain metric (Renno et al., 2008;Gharari et al., 2011;Nobre et al., 2011) to 235 

account for the topography. Based on the 2 x 2 m DEM, the normalized terrain heights dHANDhHAND are calculated by comparing 

the elevation of each grid cell to the elevation of the nearest stream network cell in which the water is routed. The average 

HANDmean HHAND value for a rainfall event is given by: 

𝐷 𝐻 = ∑
∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
∑

∑ ∑ ( ( , , ) ( , ))

∑ ∑ ( , , )
.      

    (4) 240 

Since the extent of the stream network is dynamic, its minimal and maximal extent () are determined manually by identifying 

the uppermost points of the catchment where streamflow has been observed in the field during summer baseflow (minimum 

extent) and during high flow (maximum extent). The 3 distance metrics are computed with respect to both the dry and wet 

river network extentsextent; the network extent to be used per rainfall event is then determined during the rainfall-streamflow 

response analysis (Section 3.4.1). 245 

3.3 Streamflow response  

3.3.1 Event identification 

3.3.1 Identification of streamflow events and fast runoff 

The beginning and the end of each streamflow event are identified manually using a data visualization tool (developed in 

MathWorks MatLab 2017a, see Figure 3 and Figure 4). This choice of a visual expertise was made based on the observation 250 

that automatic identification of streamflow events would require almost a case-by-case filtering and parametrization, and thus 

would not be generalizable. This is partly related to a potentially high signal-to-noise ratio for river stage recordings during 

sediment transport events, a phenomenon potentially very important after a strong streamflow variation. The result of this 

visual identification for each streamflow event is displayed in the part 2 of Supplementary Material. 
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The beginning and the end of the streamflow response determine the initial and final baseflow, respectively; the streamflow 255 

volume above the line connecting these two points is considered here as fast runoff. It is noteworthy that we do not use peak 

streamflow to characterize streamflow events, for two reasons: i) given the small size of the catchment and the complex 

temporal distribution of rain intensities, the streamflow response has rarely a single, well identifiable peak; (all events are 

plotted in Figure S5 in Supplementary Material Part 1); ii) peak streamflow identification is further complicated by the noise 

in the stage recordings. 260 

3.3.2 Streamflow metrics 

The key metrics to characterize the hydrologicstreamflow response in terms of are the peak flow, the fast streamflow volume, 

the lag time elapsed between rainfall and streamflow response, and the flatting behaviour. For technical reasons we discarded 

the peak flow (see section 3.3.1timing,) and consequently the flatting behaviour. We use the runoff coefficient and the lag 

time, the two key characteristics of streamflow reaction.fast streamflow volume through the runoff coefficient (RC)), which is 265 

obtained by dividing the fast runoff volume by the total rainfall for the given event. A metric for the elapsed  

The lag time between the rainfall event and the streamflow reaction is obtainedusually defined as the lag between the moment 

when one third of the rainfall event has fallen and when one third of the corresponding streamflow volume has passed the 

gauge and is called ΔP/Q. Given the visual assessment of the start of the streamflow event, this measure is deemed more robust 

than the elapsed time between the start of the event, and is indicative for the time when a significant part of excess rainfall (the 270 

part of rainfall that causes the streamflow response) and the peak flow (McCuen, 2009). Since the start of excess rainfall is not 

known, the concept of peak flow is difficult to apply to our observed events (Section 3.3.1) and given the varying shape of our 

hydrographs, we empirically tested different lag formulations; the lag between 1/3 of the rainfall event volume and 1/3 of the 

streamflow volume has reached the outletevent volume gives the best results in the regression analysis, and is therefore 

retained. It is noted ΔP/Q in the following. 275 

3.4 Rainfall-streamflow response characterization 

3.4.1 We analyze Pseudo-dynamic stream network extent 

The extent of the relationships between the spatial distribution of rainfallstream network evolves as a function of the catchment 

wetness conditions. Its minimal and maximal extent (Figure 1) are determined manually by identifying the hydrological 

response based on a correlation analysisuppermost points of the above metrics, followed by a regression analysis to identify 280 

the key variables that explain the runoff coefficient and catchment where streamflow lag time. This analysis requires a was 

observed in the field during summer baseflow (minimum extent, called dry state) and during summer high flow (maximum 

extent, called wet state). 

In absence of exact observations of the stream network extent before the start of each streamflow event, we propose here to 

use a pseudo-dynamic stream network extent which assigns the dry or the wet to each streamflow. The network state is chosen 285 
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based on a measure forof the initial catchment wetness conditions, which areis known to be the major variable explaining the 

dynamics of the hydrological response to different rainfall events (Penna et al., 2011;Rodriguez-Blanco et al., 2012), in 

particular through the creation of runoff thresholds (Zehe et al., 2005;Tromp-van Meerveld and McDonnell, 2006). Many 

studies use the baseflow before the start of a streamflow event as an indicator for the antecedent moisture statewetness 

conditions of the catchment. For snow-influenced catchments with a highly seasonal streamflow regime, this indicator might 290 

not reflect the actual saturationwetness conditions. Hence, we rather quantify initial wetness conditions in terms of antecedent 

rainfall, i.e. using the cumulative rainfall (in mm) that occurred during a period from 1 to 5 days before ana given rainfall 

event. All usedThe actual time span is selected based on a correlation analysis between antecedent rainfall over 1 to 5 days 

and the retained streamflow metrics (Section 4.2.1are summarized in Table 1.  and following). 

This correlation analysis yields an optimum antecedent wetness indicator corresponding to the rainfall over the 3 days 295 

preceding the start of a rainfall event, noted W3days. Using this indicator, the pseudo-dynamic network extent is obtained by 

assigning the dry network state to rainfall events that have W3days < 20 mm and the wet network state to rainfall events that 

show W3days ≥ 20 mm. This threshold of 20 mm is selected by maximizing the correlation coefficient between DHILLS and RC 

(see Section 0). 

3.4.2 Regression analysis 300 

We analyze the relationships between the spatial distribution of rainfall and the hydrological response based on a correlation 

analysis between the spatial rainfall pattern metrics (Section 3.2.2) and the streamflow metrics (Section 3.3.2) at the event 

scale, followed by a regression analysis to identify the key variables that best explain the runoff coefficient, RC, and  the 

streamflow lag time, ΔP/Q. All used metrics are summarized in Table 1. 

After the initial screening via correlation analysis, we use a pure quadratic regression to further investigate which combination 305 

of rainfall pattern characteristicsmetrics and initial wetness conditions arecondition yields the best predictors of the runoff 

coefficientprediction of RC and the lag timeΔP/Q. Pure quadratic regression (i.e. without multiplication of explanatory 

variables) is chosen because the small number of observed streamflow events prevents using more complex models. Model 

selection is performed using the Akaike Information Criterion (AIC)(Akaike, 1974), noted here as IAIC: 

𝐼 = 𝑛 ln + 2𝑘 + 𝐶 ,          (5) 310 

where n is the number of events, k the number of coefficients, SRSS the residual sum of squares and C a constant that can be 

ignored when comparing different models based on the same data set. As we manage small sample sizes (Burnham et al., 

2011), we compute and use a corrected version of the AIC (AICc, noted here IAICc): 

𝐼 = 𝐼 +
( )

                                           (6) 

For both AIC and AICc, the best model is the one having the lowest score.  315 
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3.5 MeasurementRain gauge network configuration analysis 

Assuming that the actual rainfall measurement network is sufficient to capture the full spatial distribution of rainfall in the 

studied catchment, we assess the ability of partial networks to reproduce the identified best explanatory variables. The aim is 

twofold: i) identifying the best configuration for a future permanent observation network and ii) evaluate the added value of 

additional rain gauges in a partial network with respect to the identified key metrics (Section 4.4 and 0). 320 

The quality of a partial network configuration is evaluated comparing the value (e.g. total rainfall) by event obtained with the 

partial network to the reference value obtained with the full network setup. We evaluate all the possible combinations of partial 

networks composed of less than 12 stations, i.e. 4094 possibilities. Each configuration is evaluated based on the root mean 

square error (RMSE): 

RSME ≔  ∑
( ) ( ) 

∀ ,          (7) 325 

where Xk is the selected rainfall metric (e.g. rainfall amount) at time step t corresponding to the k-th network configuration, 

Xref the respective value obtained reference network set-up, and N the number of time steps. The rainfall amounts measured by 

each station were interpolated to a 10 by 10 m grid at a 2 min time step using the Thiessen polygons method. The interpolation 

method developed by Benoit et al. (see section 3.2) cannot be used in this context because i) it requires at least 5 measuring 

points to perform adequately and ii) the computation time would be excessive to explore the 4094 combinations of stations for 330 

each event. 

The best network for each number of stations is the one with the lowest RMSE. A sensitivity analysis is completed by removing 

from 1 to 3 rainfall events to the 23 events dataset, yielding 2047 datasets evaluated for each partial network configuration. 

The most frequent network configuration validates the robustness of the result. 

3.6 Rainfall-runoff model 335 

To further validate the obtained optimal rain gauge network configuration, we set up a  a semi-distributed, event-based rainfall-

runoff model. This model first simulates the mobilization of water at the sub-catchment scale (25 sub-catchments) using a Soil 

Conservation Service Curve Number (SCS-CN) approach (SCS, 1972). Next, the streamflow response is obtained by 

convolving the resulting hillslope responses with a travel path distribution derived from the stream network geometry (Schaefli 

et al., 2014). The subcatchments and the stream network geometry are identified using TopoToolbox 340 

(https://topotoolbox.wordpress.com), in which travel paths correspond to the distance between the bottom part of each sub-

catchment and the catchment outlet. In this model we focus on the fast response (i.e. runoff) of the catchment, and baseflow 

(defined here as the average discharge during the 30 min preceding event start) is subtracted from the actual discharge prior to 

runoff modeling. For calibration, the model is run using the mean of the 20 stochastic rainfall realizations as reference input; 

it is then calibrated against observed runoff (i.e. discharge - baseflow) through likelihood maximization assuming that the 345 

model residuals are normally distributed (e.g. Schaefli et al., 2007). After calibration the event-based runoff model is applied 

to the different network configurations to test how rain gauge network geometry influences the simulated runoff response. As 
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the stochastic rainfall interpolation cannot be performed with a number of observation points as low as 3 stations (or less), we 

use the Thiessen polygons method to interpolate the rainfall fields from the 1 to 3-station rain gauge network obtained during 

optimal network analysis. . 350 

4 Results 

4.1 Rainfall events 

4.1.1 AmountsAreal rainfall and asymmetry 

The available 3-month measurements window between July 1st and September 23th 2018 captured 48 rain events (detailed in 

the part 2 of the Supplementary Material) for a total areal rainfall amount of 317.8 mm. The areal rainfall amount per event 355 

ranges from 1 mm to 43.5 mm, (mean of 6.6 mm), and event duration ranges from 32 minutes to 10.5 hours.  (mean of 2.8 

hours); these records do not show any evidence of altitude effect on the rainfall amount (R² = 0.06). Despite the sequential 

deployment of the 12 rain gauges and other technical issues (see section 3.1), the rainfall events were all measured by at least 

7 stations; 36 out of 48 events were recorded by at least 10 stations and 23 events were recorded by 12 stations. The different 

subsets used in this study are detailed in Table 2. Details for all recorded rainfall events and the corresponding streamflow are 360 

shown in summary plots, as illustrated in Figure 3 and Figure 4 (all events are presented in the Supplementary Material). Most 

events show a relatively homogeneous spatial distribution of rainfall events (see an example in Figure 4), with only few events 

showing a strong asymmetry (Figure 5): the correlation between PNORTH and PSOUTH equals 0.91, with an averagea median 

IASYM of -0.01025. Interestingly, strong spatial asymmetry mainly affects events with low rainfall amounts, with 7 out of 8 

asymmetric events (when |IASYM| > 0.33) receiving below 5 mm (Figure 5). For the events that actually triggered a streamflow 365 

reactionresponse, the correlation between PNORTH and PSOUTH is thus significantly lowerhigher (r=0.69, Table 4). 

One stronglystrong asymmetric and high intensityvery intense event occurred on July 24th at 6:32 PM (Figure 3). The rainfall 

map shows a heterogeneous distribution of rainfall, centered close to the outlet in the northern part of the catchment, over 6 

out of the 12 stations. One of the rain gauges recorded up to 35.3 mm of rainfall, whereas 1.8 km upstream, half of the stations 

(on the southern and western parts of the catchment) did not record any rainfall. The interpolated amount of rainfall over the 370 

basin was 8.0 ± 1.3 mm, and a fast runoff volume between 28.3 and 32.5 mm was measured, resulting in a runoff coefficient 

between 3.0 and 4.8 that remains difficult to explain. One possible explanation is that important rainfall amounts fell on the 

north-eastern part of the catchment, over steep slopes that are difficult to access and were therefore not gauged. This event and 

its streamflow reactionresponse are excluded from further analysis involving the hydrological response (see also Section 4.2 

and the summary of analysed events in Table 2). 375 
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4.1.2 Geomorphological and topographicalStream network distance metrics 

For the 48 recorded rainfall events, allthe three distance metrics DHILLS, DSTREAM and HHAND show a significantly different 

distribution of the distancesmedian values if they are computed with respect to the wet network than with respect to the dry 

network; we can reject for each metric the hypothesis that the distributionsthey have the same median value for the wet state 

and the dry state with a Wilcoxon rank sum test at level 0.05 (see distributions in Figures S4S6 and S5). The threeS7 of the 380 

Supplementary Material part 1). However, each of the distance metrics showshows a strong correlation between its values for 

the wet and for the dry network state (from 0.94 for DHAND HHAND to 1.00 for DSTREAM, Figure 7). The between-metric 

correlation between the distance metricsfor all 48 rainfall events (Table S2 in Supplementary Material part 1) ranges for the 

wet state range from 0.7078 (DHILLS - DSTREAM) to 0.95 (DHILLS - DHANDHHAND) and for the dry state from 0.7570 (DSTREAM - 

DHANDHHAND) to 0.95 (DHILLS - DHAND). For theHHAND). Considering only the rainfall events with streamflow reactionresponse, 385 

these correlations are slightly lower (Table 3), but with a clear correlation between DHILLS and DHANDHHAND for both the wet 

and the dry state; accordingly, we do not further use the DHANDHHAND metric in this analysis. None of the distance metrics 

shows a strong correlation (>0.6) with the rainfall spatial distribution metrics, i.e. PSOUTH, PNORTH or IASYM. They also do not 

show any correlation higher than 0.6 with the hydrologic response metrics (Table 4). This confirms our hypothesis that the 

network state needs to be included in a dynamic way (see Section 0).  390 

4.1.3 Temporal evolution of rainfall metrics 

We computed the temporal evolution of the rainfall metrics to unravel potential temporal evolution patterns in IASYM, DHILLS 

and DSTREAM and their relation to the streamflow response (full results are available in the Supplementary Material part 1). The 

temporal evolution of the two distance metrics is overall rather flat with no clear fluctuation patterns. There is only one event 

with a pronounced temporal trend for DHILLS (Q event #1).  395 

For IASYM, some events show interesting temporal patterns. For example, during the double peak runoff of Figure 3, IASYM 

shows an almost constant negative value suggesting that the corresponding double peak rainfall event remained stationary on 

the northern part of the catchment over its entire duration and therefore caused the double peak streamflow response. 

For the first two streamflow events, the IASYM metric switches from strongly positive to close to zero during the event, implying 

that the rainfall field moved towards the outlet during the event; in other words, the rainfall cloud follows the overall water 400 

movement through the catchment and thereby leads to a stream response concentration. This might explain why these two 

events are the only ones that show a pronounced single peak streamflow response. However, given the low number of observed 

events and the diversity of temporal patterns, these insights cannot be further used for a quantitative analysis. Commenté [AM33]: Added according to Reviewer #2 – Point 7 
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4.2 Hydrologic response  

4.2.1 Observed streamflow events 405 

For 13 days (6 of the 48 rainfall events (13 days in total), the water stage sensor was disturbed by the proximity of a rock (see 

picture of the Figure S2 in the part 1 of the Supplementary Material), resulting in missing streamflow data. For the remaining 

42 rainfall events, a streamflow response was observed for 15 of them (see Table 2( and Table 3).  

The fast streamflow volume during these events, QFAST,  shows a strong correlation with total rainfall and with PSOUTH (Figure 

8a); however, the event on 24 July with only 8.0 mm of rain and 30.4 mm of fast streamflow falls far away from this 410 

relationship, which further motivated the exclusion of this event from the analysis.  

The 14 remaining events are distributed over the entire observation period, covering a wide range of streamflow conditions, 

which is reflected in the initial streamflow before each event, ranging from 7.9 mm in early July to 2.6 mm by mid-September 

(Table 3), with an almost linear decrease between the dates (correlation between initial streamflow and day of the year of -

0.90, see also Figure S3 in the Supplementary Material S1).  415 

The correlation of this initial flow before events with QFAST or with the runoff coefficient RC is extremely low (correlation of 

-0.02 and -0.05). ), which confirms our hypothesis that antecedent streamflow is not a good proxy for antecedent moisture.  

The highest correlation between RC and antecedent precipitation occurs for a time span of 3 days preceding the streamflow 

event (0.67); this metric, called W3 days, is thus retained as a proxy for antecedent moisture for further analysis. The role of 

initial wetness conditions can also be discussed more qualitatively by comparing a pair of rainfall events with very similar 420 

spatial patterns and amounts (Figure 4). For the first event (24 August), the measured rainfall ranges from 6.2 mm to 11.8 mm, 

corresponding to 8.5 mm of rainfall over the catchment in 2 h 38 min. For the second event (29 August), the rainfall ranged 

between 5.4 mm and 11.4 mm, corresponding to 8.4 mm over the catchment during 1 h 14 min. Despite the similar total 

amount of rainfall and event duration (during the first event 76 % of the total rain happened for a duration similar to the second 

event), the first event shows a fast runoff volume of 7.4 mm, whereas for the second event the streamflow response is almost 425 

invisible. This difference can be explained by the initial wetness conditions, with 29.5 mm of rainfall during the 3 days 

preceding the first event, compared to 12.4 mm for the second event. 

4.2.2 Streamflow generation processes, RC and lag 

TheThe correlation analysis (Table 4) reveals a strong correlation between rainfall amounts and QFAST (0.77, Table 4)). This 

suggests that streamflow reactionsresponses are triggered by saturation-excess, rather than by infiltration capacity-excess. This 430 

is confirmed by i) the absence: If saturation is exceeded, every unit of correlation between maximum rainfall intensity over 10 

minutes and the RC (), ii) the leads to a corresponding unit increase of streamflow, which in turn leads to  a strong linear 

correlation between rainfall duration and QFAST (0.73) and iii)amounts and fast streamflow volumes. Furthermore, saturation-

excess also implies that a longer rainfall event leads to a higher streamflow response volume (once the saturation threshold is 

reached, all rainfall contributes to streamflow). This is confirmed by the high correlation (0.74) between the rainfall duration 435 
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PDURATION and QFAST. If, on the contrary, the driving process was the exceedance of the soil infiltration capacity, then only 

rainfall intensities above the capacity threshold would trigger a corresponding streamflow increase; small rainfall amounts 

would trigger almost no response. In this case (infiltration-excess), there would be no linear correlation between rainfall 

amounts or rainfall duration and streamflow amounts, but a strong correlation between fast streamflow amounts and high or 

maximum precipitation intensity; positive correlations between QFAST and Pmax ALL, Pmax NORTH or Pmax SOUTH are however all 440 

absent (values of -0.17, -0.16 and -0.08, Table 4). In addition, saturation-excess as a main driver of the fast streamflow response 

is further confirmed   by the clear threshold effect for the generation of streamflow as a function of total event rainfall (Figure 

8); a streamflow reactionresponse only occurs for total rainfall higher than 5 mm.  

This threshold effect supports the formulation of the lag time (afterΔP/Q as the time whenbetween one third of the rainfall event 

volume has occurred)and one third of the streamflow event volume, since a lag time between the starts of the events would 445 

here be misleading. Accordingly, the streamflow events show a relatively strong correlation (0.71, Table 4)) between the RC 

and the lag ΔP/Q: to reachwe observe a higher RC, we need when the level of saturation increases; reaching such a higher level 

of saturation, requires more time,  which results in a longer lag before a significant amount of streamflow reaches the outlet.  

We furthermore find a positive correlation between IASYM and the lag ΔP/Q (0.59, Table 4), which supports our initial assumption 

that negative IASYM values (corresponding to rainfall concentrated on the northern part, close to the outlet) correspond to low 450 

lag times.  However, the assumed negative correlation between RC and IASYM (higher RC values for rainfall events with 

negative IASYM values) is not confirmed by the observed data (the correlation is 0.44, Table 4), thereby not confirming our 

hypothesis that rainfall on the northern catchment part (showing less water storage potential) leads to more fast streamflow.  

However, there is also a non-negligiblestrong negative correlation between ΔP/Q and the maximum rainfall intensity over 10 

minutes, especially with which is stronger for Pmax NORTH (r=-(-0.71, Table 4).) than for Pmax SOUTH.(-0.58). This probably 455 

reflects the fact that in the northern part of the catchment, there is a lack of soil storage capacity due to the large rock walls on 

the right stream side, which is not compensated by the available soil storage on the left stream side, with ensuing Hortonian 

(infiltration-excess) streamflow generation processes becoming more dominant important in the northern part than in the 

southern part of the catchment. This significant difference in streamflow generation processes is also visible in the drainage 

density, which is much higher on the right stream side in the northern part than on the left stream side (Figure 1). 460 

4.2.3 Dynamic stream network state 

Given the absence of correlation betweenAs discussed in 4.1.2, the rainfall distance metrics andif computed with respect to 

the dry or the hydrologic responsewet stream network state show very low correlations with the streamflow metrics. 

Accordingly, we attribute either the dry or the wet network state to each streamflow event as a function of the antecedent 

wetness W3 days, which is used as a measure for the stream network expansion. In the following, we call these new distance 465 

metrics “pseudo-dynamic” since only two different states are observed. Setting a W3 days threshold to 20 mm to discriminate 

between the dry and the wet state yields correlations between DHILLS – compositepseudo-dynamic and RC of -0.70, and between 
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DHILLS-compositepseudo-dynamic and ΔP/Q of -0.66 (Table 5). DSTREAM –composite pseudo-dynamic shows correlations of 0.53 

and 0.60 with the RC and with the ΔP/Q in this case, and we retain both compositepseudo-dynamic distances for further analysis.  

A sensitivity test showed that setting a W3 days threshold of between 12 mm and 20 mm to discriminate between the dry and the 470 

wet state yields very similar results, and accordingly, we retain a threshold of 20 mm for W3daysW3 days to compose the 

combinedpseudo-dynamic network state. It should however be kept in mind that this compositethese pseudo-dynamic distance 

metrics represent simply a heuristic solution to overcome the absence of detailed stream network state observations before 

each event. The resulting composite distance metrics do not show correlations >0.6 with the other rainfall metrics; accordingly, 

all rainfall metrics are retained for further analysis in addition to the composite distance metrics. 475 

4.3 Identification of dominant hydrologic drivers via regression analysis 

The above correlation analysis results in a range of potential explanatory variables for RC and ΔP/Q referring to the rainfall 

amounts, maximum intensity and asymmetry, the compositepseudo-dynamic rainfall distance metrics and initial wetness 

conditions (W3 days). However, according to the correlation analysis, we retain the maximum rainfall intensities as explanatory 

variables only for ΔP/Q. The tested models, based on one or two explanatory variables, are summarized in Table 6Table 5 for 480 

RC and in Table 7Table 6 for ΔP/Q. The analysis is based on 14 events (after removing the 24 July event). , subset #4 of Table 

2) and the best models are selected based on their AICc ranking and coefficient of determination (R²). 

In terms of AICc, The best ranked model (in terms of AICc) for RC is a single predictor model using DSTREAMS 

(compositepseudo-dynamic) as explanatory variable, which yields better results than using antecedent moisture W3 days as a 

single predictor; it should be kept in mind here that the compositepseudo-dynamic distance metrics also embed information 485 

on antecedent moisture conditions (since W3 days decides on the moisture state). However, the coefficient of determination (R2) 

becomes considerably higher (0.75) using PALL and DSTREAM (compositepseudo-dynamic) as explanatory variables. Slightly 

less good results are obtained with DHILLS (compositepseudo-dynamic) as a single predictor or in combination with PSOUTH. 

The fact that DSTREAM (compositepseudo-dynamic) plays a prominent role to explain the RC might be surprising; a possible 

explanation lies in the fact that the length of instream flow paths is also a metric for runoff storage and exchange within the 490 

riparian area, especially in the southern part of the catchment. 

For ΔP/Q, the best model (in terms of AICc) has the two explanatory variables Pmax SOUTH and IASYM with a R2 of 0.83 and is 

considerably better in terms of R2 than any single predictor model. The best model including a distance metric is Pmax,All in 

combination with DSTREAM (R2  0.78), which underlines the prominent role of DSTREAM (compositepseudo-dynamic) to explain 

the hydrologic response in this catchment.  495 
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4.4 Measurement network analysis 

4.4.1 Raingauge density analysis 

During the observation period, 23 out of 48 events (subset #2, Table 2) were captured by the full network of 12 stations, 

measuring a total amount of rainfall of 120.7 mm. We tested what a partial rain gauge network (all possible combinations of 

networks composed with less than 12 stations) would record compared to the full rain gauge network of 12 stations taken as a 500 

reference, using the Thiessen polygons method to interpolate the rainfall fields (since, as discussed earlier, the stochastic 

method cannot be applied to a small station number). 

Figure 6a shows, in term of rain gauge density, the number of events having the total amount of rainfall PALL overestimated or 

underestimated by a factor 2. We globally observe a misestimation inversely proportional to the rain gauge density, with up to 

3 events overestimated by a factor 2 and 8 events underestimated by a factor 2 with the lowest rain gauge density of 0.07 rain 505 

gauge per km² (1 rain gauge). It is necessary to reach 0.82 rain gauges per km² (11 rain gauges) to no longer have events 

misestimated by a factor 2. In presence of few rain gauges, Figure 6a also shows a strong tendency to underestimate rather 

than overestimate rainfall amounts. This can be explained by the fact that for a heterogeneous rainfall event, it is more likely 

to miss a localized important part of the rainfall field rather than to capture it. 

Figure 6b presents in the same way the maximum error encountered on the maximum rainfall intensity over 10 minutes 510 

PMAX(10 min). We notice the expected inversely proportional trend, reducing the error if the rain gauge density increases. The 

figure also shows that in general a low rain gauge density tends to overestimate more than underestimate the PMAX(10 min). 

This bias originates from the large footprint associated to each station in presence of a low rain gauge density, increasing the 

disparities between the observation points while interpolating the rainfall fields. 

4.4.2 Optimum network identification 515 

Based on the hydrologic driver analysis, we retain PALL, Pmax,ALL, IASYM and DSTREAM (compositepseudo-dynamic) as key 

metrics for the optimal rain gauge network analysis. Figure 10 shows the best network configurations for 1 to 5 stations and 

the corresponding RMSE for the select reference metric for the network optimisation (one metric per line). 

For a 1-station network, PALL is best captured when the station is located in the middle of the catchment, while a 2-station 

network improves substantially the RMSE by arranging the measuring points between the northern and southern parts. 520 

Additional stations still improve the RMSE, although to a lesser extent. With a 4-station and 5-station network, the stations 

tend to align along a north-south transect. For IASYM and Pmax,ALL, we see very similar evolution of the spatial patterns as for 

PALL for increasing network sizes; for Pmax,ALL, the RMSE continues however to considerably decrease with the number of 

stations, which is to be expected for this measure that is more sensitive to spatial-temporal variations of rainfall amount. And 

for a single station network, the metric IASYM prefers an station location in the southern part rather than in the northern part. 525 
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For DSTREAM as a network optimisation metric, the optimal network configuration first selects stations at the extreme ends of 

the stream network before organizing along a transect as for the other metrics, with one lateral station on the left stream side 

included in the 5-station network as for Pmax,ALL (the same) and for IASYM (a different one).  

Considering the small dataset underlying this analysis (23 events), the robustness of the best networks is assessed for two 

selected metrics (for the PALL and IASYM) is evaluated by re-computing the optimal network if between 1 and 3 events are 530 

removed from the error computation.dataset. Figure 11 shows how frequent a given configuration is identified as being the 

optimal solution for networks composed of 1 to 3 stations and clearly confirms the optimal solutions found previously.  

4.4.3 Optimum network evaluation 

To evaluate this optimum network analysis, we compare in a first step the RC and lag time ∆P/Q obtained from the full stochastic 

rainfall field (median field) to the RC and ∆P/Q values obtained from the best 1-station and 3-station networks and from the 535 

worst 3-station network (Figure 12). The corresponding rain gauge densities are 0.07 rain gauge per km² for a 1-station 

network, 0.15 rain gauge per km² for a 3-station network and 0.90 rain gauge per km² for the full network. For both the RC 

and ∆P/Q, the dispersion of the values obtained with the reduced rain gauge network decreases from the best 1-station network 

to the best 3-station network but remains sensibly the same for the worst 3-station network, underlining thereby that a 3 rain 

gauge can give could results conditional on a good location selection.  540 

It is noteworthy that for the lag, even a 1-station network can reproduce this metric correctly for most of the events but can 

also be completely off (Figure 12b). With the best 3-station rain gauge network, the RMSE with respect to the full stochastic 

rainfall field reduces from 23.18 to 8.12 compared to the best 1-station network.  

In a second evaluation step of the identified optimum rain gauge network, we simulated the event-based streamflow response 

for the best 1-station network and the best and the worst 3-station network, to compare the result to the simulation with the 545 

original rainfall field and thereby obtain a validation on the entire streamflow dynamics rather than on RC or lag only (all 

simulations are available in Supplementary Material part 1). It is important to point out here that the semi-distributed 

hydrological model cannot reproduce all observed events equally well as shown by low correlation coefficients between 

observed and simulated streamflow inFigure 13. Even with the stochastic generation of rainfall fields, fast streamflow tends 

to be underestimated with the model; improving the simulation quality for all events would require an in-depth analysis of 550 

different subsurface flow mechanisms related also to snow melt and shallow-groundwater recharge, work that is ongoing in 

this catchment (Beria, 2020b). 

Despite of this, we clearly see that the best 1-station network and the worst 3-station network considerably underperform with 

respect to the full network and that the best 3-station network yields a simulation performance close to the original rainfall 

field, confirming the results obtained for the summary streamflow response metrics RC and lag.  555 
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5 Discussion 

5.1 Spatial heterogeneity of rainfall 

One of the key identified metrics to characterize the spatial distribution of rainfall, in relation to RC and lag prediction is IASYM 

splits. Itsplits the catchment into two parts, and averagesaggregates rainfall observations into two values. Among the records 

showing a strong rainfall asymmetry, 7 out of the 8 events are too small to cause a detectable streamflow reactionresponse 560 

(Figure 5), but one does create a reactionstreamflow response although it only rains over half of the 12 rain gauge stations. 

Despite of this absence of a strong asymmetry in the 14 rainfall events that cause a streamflow response, the regression analysis 

based on 14 out of 48 rainfall events suggests that for rainfall events that create a streamflow reaction, the spatial distribution 

might play an important role for the explanation of the lag time. The importance of this asymmetry predictor can be related to 

the fact that it captures the key feature of the spatial catchment organisation in terms of distance to the outlet, drainage density 565 

and subsurface storage potential. 

The second dominant metric of spatial rainfall distribution to predict the RC and the lag is DSTREAM (pseudo-dynamic). This 

suggests that for this catchment, the rainfall distance to the outlet is the overall the dominant predictor for the analyzed 

streamflow response metrics. 

It is noteworthy that this analysis could be affined by investigating different splitting geometries, e.g. by splitting the catchment 570 

into west and east parts, thereby  separating the large slopes (west) from the steep slopes (east).This and similar spatial 

asymmetry metrics  are case-specific as they rely on the particular  geomorphology and topography of the catchment and are 

thus not directly applicable to other catchments. In particular IASYM cannot be used as a tool to compare different catchments. 

The rainfall distance metrics to the stream network (DHILLS) and along the stream network (DSTREAM) were designed here to 

overcome the limitations of the simple asymmetry measure. The prominent role of DSTREAM - compositepseudo-dynamic to 575 

explain the lag time and RC underlines the importance of characterizing the spatial heterogeneity in terms of geomorphological 

distances to the actual stream network, which requires more detailed network expansion analyses in future studies.  

We could expect that in that kind of steep environments, the residence time in hillslopes strongly dominates over residence 

times in the stream network (Nicotina et al., 2008); the fact that DSTREAM outperforms here DHILLS for the prediction of RC and 

lag time is an interesting result: it underlinesmay show that even in steep environments, with a priori fast instream processes 580 

and limited storage, the riparian area and related subsurface exchange processes could play a more prominent role than what 

we previously thought.. The fact that the travel distance in the stream network explains more of the RC variation than DHILLS 

might be an indirect effect: the longer the travel distance in the stream network, the more likely are delays due to exchange 

with groundwater in the riparian area. This implies that along-stream processes might need a better representation in rainfall-

runoff models, even for small and steep catchments; to date, these processes are often ignored in rainfall-runoff hydrological 585 

models at this scale, or are represented with a simple constant velocity transport term (e.g. Schaefli et al., 2014). 

However, future work on the role of water residence time in the stream network will necessarily require more detailed field 

data on the temporal evolution of the stream network. This will in addition open new perspectives to quantify how the stream 
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network extension is imprinted in the streamflow response: in fact, as discussed by Rinaldo et al. (1995), the intrinsic fractal 

nature of the stream network is not transferred to the streamflow response and, accordingly, there is potential to infer the stream 590 

network extension from observed streamflow records, provided that we have high resolution rainfall data to disentangle the 

different effects.  

5.2 Rain gauge network density 

The selected metrics showed the importance and potential of a high density rain gauge network to capture rain events, and to 

investigate the dynamics of the hydrologic response. The rain gauge network analysis can then be used as a preliminary 595 

investigation to implement a permanent network, composed of fewer stations. The reliability of the study is directly dependent 

on the number of observed rainfall events, i.e. on deployment duration of the rain gauge network. Despite the small size of the 

catchment, there could potentially be storms that are not or only partially seen by the rain gauge network.  

This possibility of missing localized events is highlighted by the event of July 24th (Section 4.1.1), which was considerably 

underestimated despite of the high density of the deployed network (1 station for 0.9 km² on average, maximal distance of 600 

1,670 m from a point to a rain gauge). The best partial networks composed of 1, 2 or 3 stations (Section 4.4) give for this 

extremely localized event a total amount of rainfall respectively 12.0 mm, 9.4 mm and 9.2 mm, not far from the 10.6 mm 

measured with the full network, but these partial networks were trained on the dataset containing the particular event.  

With only one station, there is a high risk of totally missing an event, whereas a 2-station network design measuring at least 

the northern and the southern part of the catchment would i) capture most of the events and ii) give a first estimation of the 605 

rainfall spatial distribution.  

Overall, the network optimisation analysis with different metrics clearly suggests that to optimally reproduce the hydrologic 

response in terms of RC and ΔP/Q, we would need to implement at least a three station network in this catchment, organized 

along a north-south transect, with one of the stations being located in the remote southern part. The north-south organization 

can be explained by i) the shape of the catchment that also extends longitudinally or ii) a general tendency for rainfall events 610 

to move longitudinally, emphasizing the importance, for this case study, to capture spatial configuration of rainfalls over a 

north-south transect rather than over a west-east transect and iii) the general increasing trend of elevation along this transect. 

6  Conclusion 

Our analysis of the role of rainfall patterns for the streamflow response is one of the first data-based studies carried out at such 

a small scale in an Alpine environment. The detailed analysis of 48 events from one summer suggests that spatial rainfall 615 

patterns might play a key role to explain the hydrologic response in small Alpine catchments. The novelties of the study include 

the use of a low-cost rain gauge network to capture rainfall patterns, and the design of a newdata-based framework to analyze 

the rainfall-runoff response. The main conclusions from our analysis are: 
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 A high density rain gauge observation network is a major asset to identify critical areas that are influenced by local 

rainfall forcing, and give an estimation of the rainfall amount errors made by a partial network. 620 

 A detailed analysis of the hydrological response as a function of rainfall patterns and geomorphology requires a rain 

gauge network specifically designed for this purpose in conjunction with detailed observations of the stream network 

expansion before events. 

 Such a network should take into account the spatial distribution of distances to and along the stream network.  

 As shown here, even for small catchments the rainfall distance to the outlet along the stream network might play a 625 

key role to explain the hydrologic response. Accordingly, future hydrological modelling studies in small Alpine 

catchments should investigate the representation of instream transport and storage processes.  

The analysis framework developed here is readily transferable to other settings, including natural or even urban 

catchments. Given the low cost of the deployed rainfall sensor network, the approach has potential for future detailed studies 

in to-date sparsely gauged catchments. 630 



 

22 
 

 

Data availability. Rainfall and streamflow data used for this paper, and the MatLab code written to visualize the data are 

available online at https://doi.org/10.5281/zenodo.3946242. 

 

Code availability: The stochastic space-time rain field generator of Benoit et al., (2018a) is freely available at: 635 

https://github.com/LionelBenoit/Local-rainfall-model 

 

Author contributions. AM and BS conceived the ideas and designed methodology; AM, LB and HB collected the rainfall data; 

AM and LB analyzed the data; AM and BS led the writing of the manuscript. All authors contributed critically to the drafts 

and gave final approval for publication.  640 

 

Competing interests. Author BS is a member of the editorial board of the journal, but otherwise there are no competing interests 

present that the authors are aware of. 

 

Acknowledgements. The work of the authors is funded by the Swiss National Science Foundation (SNSF), grant number 645 

PP00P2\_157611.1576



 

23 
 

Appendix A: Drop-counting rain gauge calibration and data correction 

Technical characteristics of the Pluvimate drop-counting rain gauges (see Section 3.1) are detailed in the work of Benoit et al. 

(2018a); for this study we extended the experimental tests to intensities up to 150 mm/h. It appears that for intensities up to 20 

mm/h (99.88 % of the measured 2-min intensities during the 2018 observation period, see Figure A1) the linear relationship 650 

between drop count and rain intensity gives a good estimate (uncertainty below 5 %); beyond 20 mm/h the linear relationship 

underestimates the rainfall intensities, to reach 10 % of error at 60 mm/h and 15 % at 150 mm/h (Figure A1). For this study, 

rainfall intensities over 20 mm/h are corrected using a polynomial law based on the experimental measures. 

 

 655 

Figure A1. Calibration curve (on top) of the Pluvimate rain gauges based on experimental measures with controlled 
rainfall input, and (at the bottom) the data frequency measured in situ.
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Figure 1. Map of the Vallon de Nant and location of the 12 rain gauges. The streamflow is measured on the main 
river at the outlet (46.25301 N / 7.10954 E in WGS84 coordinates). The red dashed line splits the catchment area 
into two parts of equal area. The small numbers next to the streams indicate the Strahler stream order (Strahler, 
1957).825 
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Figure . River stage measure at the outlet. The streamflow is here measured between 0.96 and 1.13 m3.s-1. 
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Figure 2. Drop-counting rain gauge used for rainfall measures. The Pluvimate is set-up vertically between 0.8 and 
1.2 meters above the ground level (a). A tip at the end of the funnel (b) creates a calibrated drop of water that falls 840 
on the sensor, (c) which counts and records the number of drops during a given amount of time.  
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Figure 3. Summary of the recorded rainfall and streamflow for the rainfall event of July 24th 2018 at 6:32 PM 845 
(UTC). 
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 855 

Figure 4. Summary of the recorded rainfall and streamflow for the rainfall events of August 24th 2018 at 2:46 AM 
(top) and August 29th 2018 at 11:52 AM (bottom).  
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Figure 5. Scatterplot of the rainfall amounts over the northern and the southern parts of the catchment for all 48 860 
rainfall events. The dotted lines show the 1/2 and 2/1 lines which correspond to twice more rainfall in one part of 
the catchment than in the other or to |IASYM| > 0.33. The highest event is an outlier (event of 6-Aug with 43.5 mm 
of rainfall in total)): is flagged without river reaction asstreamflow response because the river stage measure was 
disturbed during this period. 
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 865 
 
Figure 6. A) Number of rainfall events for which the total amount of rainfall is overestimated or underestimated by 
a factor 2, according to the rain gauge density, going from 0.07 to 0.82 rain gauges per km² (respectively 1 to 11 
rain gauges within the catchment). B) Error on the maximum rainfall over 10 minutes PMAX(10 min) according to 
the raingauge density. For each rain gauge density, all possible combinations of rain gauge networks are tested. 870 
The reference value is estimated from the full 12-rain gauge network. The bottom and top of each boxes are the 
25th and 75th percentiles of the sample, the middle line the sample median. The whiskers go up to 1.5 times the 
interquartile range; values beyond the whiskers (outliers) are marked with circles. Commenté [AM45]: Added according to Reviewer #1, point 1d 
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Figure 7. Scatterplots of the distance metrics for the dry network state versus the wet state, for all 48 rainfall events. The bars 875 
indicate the standard deviation obtained from the 20 rainfall field realisations. r2 indicates the linear correlation. 
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Figure 8. . Scatterplots of A) total rainfall amounts againstversus fast streamflow, separating (highlighting the 
threshold for streamflow response) and B) of rainfall amounts in the northern and the southern parts of the 880 
catchmentpart against fast streamflow (for separation line, see Figure 1); events without reaction are not shown. 
The events 24 July (PALL=8.0 mm, QFAST = 30.4 mm and of 6 Aug (PALL=43.5 mm, Q not recorded) are out of the 
axis. B) total rainfall amounts against fast streamflow, highlighting the threshold for streamflow reaction.). The 
bars show the standard deviation of estimated rainfall (Section 3.2) and of streamflow (Section 2). The events of 
24 July (PALL=8.0 mm, QFAST = 30.4 mm) and of 6 Aug (PALL=43.5 mm, Q not recorded) are out of the axes in A 885 
and in B
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Figure 9. Runoff coefficient against DHILLS, highlighting events with high rainfall amounts in the southern part, i.e. 
events with PSOUTH>4.5 mm,; the 24 July event with 3.02 <RC<4.85 and DHILLS=740±140 m has been discarded 
(see Section 4.1.1). 890 
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 895 

Figure 10. First. Best (green) and second best (purple) best networks and associated RMSE values for 1 to 5 stations 
resulting from the minimization of the RMSE over 23 events for the PALL, PMAX, IASYM and DSTREAM. The red dashed 
line splits the catchments into two parts of equal area. 
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 900 

Figure 11. Sensitivity test over the best network from 1 to 3 stationstations, evaluated by removing from 1 to 3 
events over the 23 events (2047 combinations) for the PALL and IASYM. The result is presented graphically: larger 
dots and wider links represent configurations that are found more frequently than others over the different altered 
simulations. The red dashed line splits the catchments into two parts of equal area.
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Figure 12. Comparison of streamflow response metrics ratios between a partial network (best 3-station, best 1-station and 

worst 3-station networks) and the full rain gauge network, using the RC (left) and lag time ∆P/Q (right). The dataset is subset#4 

of Table 2. Larger dots highlight events where events where only 2 of 3 stations were operational (see Section 4.1.1). Commenté [AM46]: Added according to Reviewer #1, point 

1d 
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 910 
Figure 13. Analysis of 15 rainfall-runoff model events (subset #3, Table 2) with the correlation coefficient between 
simulated and observed streamflow for different rainfall fields inputs: the stochastic generation of rainfall fields 
based on all available rain gauge stations, the best 3-stations and the best 1-station network, and the worst 3-stations 
network. Larger dots highlight events where events where only 2 of 3 stations were operational (see Section 4.1.1). Commenté [AM47]: Added according to Reviewer #1 – Point 2 

and Reviewer #2 – Point 8b 
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Table 1. List of used in this studymetrics, with corresponding parameter name or abbreviation used in the text. 915 

Description Notation, Unit 
Rainfall interpolated over entire catchment PALL, mm 
Rainfall interpolated over north half of catchment PNORTH, mm 
Rainfall interpolated over south half of catchment PSOUTH, mm 
Rainfall event duration PDURATION, min 

River reaction event durationMaximum rainfall intensity over the event, i = {ALL, NORTH, SOUTH} QDURATION, 

minPmax i, mm 
Index of spatial asymmetry of rainfall  IASYM, - 
Mean Distance of rainfall spatial center of mass to stream network (along hillslopes) DHILLS, m 
Mean Distance of rainfall spatial center of mass to outlet along the stream network  DSTREAM, m 
Mean height above the nearest drainage DHANDHHAND, m 
Cumulated amount of rainfall for the last X days WX days, mm 
Streamflow at the start of the streamflow event QINIT, mm 
Fast streamflow amount QFAST, mm 
Streamflow response event duration QDURATION, min 
Rainfall runoff coefficient RC, - 
Lag time between the first third of cumulated rainfall and the first third of cumulated river 
quickflowfast streamflow 

ΔP/Q, min 
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Table 2. Summary of the different subsets of rainfall events used within this study. The streamflow response outlier 
event discarded in subset #4 corresponds to July 24th 2018. 

 

920 

Commenté [AM48]: Subsets details added according to Reviewer 
#1, point 3 
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Table 3. List of recorded precipitation events with streamflow reaction (in 2018response (event series #3 of Table 
2). Full details are available in the Supplementary Material. 

Date PDURATION 
[min] 

QDURATION 
[min] 

ΔP/Q  
[min] 

PALL 
[mm] 

PNORTH 
[mm] 

PSOUTH 
[mm] 

PNORTH /PALL 

[-] 

PSOUTH /PALL 

[-] 

IASYM 
[-] 

W3 days 
[mm] 

Stream 
network 

QINIT 
[mm] 

QFAST 

[mm] 
RC 
 [-] 

DHILLS 

[m] 
DSTREAM 

[m] 

HAND
HHAND 

[m] 
2-Jul 42 44 24 7.7 4.1 3.6 0.53 0.47 -0.06 3.2 dry 7.9 0.9 0.12 1521 4008 611 

3-Jul 40 135 23 12.1 7.4 4.6 0.62 0.38 -0.24 12.7 dry 7.5 8.5 0.71 1336 3842 550 

5-Jul 224 309 71 8.2 4.0 4.2 0.49 0.51 0.03 29.8 wet 6.0 6.0 0.74 755 4374 350 

6-Jul 478 587 65 20.2 8.6 11.6 0.43 0.57 0.15 40.3 wet 5.8 25.9 1.29 874 4450 355 

14-Jul 358 302 49 18.7 10.5 8.2 0.56 0.44 -0.12 0.0 dry 4.5 12.9 0.69 1263 3574 554 

15-Jul 136 281 33 10.7 6.0 4.7 0.56 0.44 -0.13 18.9 dry 5.5 9.5 0.89 1122 3377 528 

20-Jul 288 228 49 18.8 8.6 10.2 0.46 0.54 0.09 3.4 dry 4.8 14.2 0.76 1282 3823 541 

24-Jul 220 229 45 8.0 7.5 0.5 0.94 0.06 0.02 12.2 dry 3.1 30.4 3.78 740 2184 419 

14-Aug 204 152 47 11.1 4 7.1 0.37 0.64 0.27 10.2 dry 4.0 7.8 0.70 1286 4305 540 

17-Aug 152 109 38 11.9 6.2 5.7 0.52 0.48 -0.04 17.5 dry 3.2 4.9 0.42 1122 3780 490 

23-Aug 388 237 47 22.1 8.8 13.3 0.40 0.60 0.20 5.4 dry 2.4 13.5 0.61 1371 3756 563 

24-Aug 158 107 40 8.1 4.4 3.7 0.54 0.46 -0.08 29.5 wet 4.1 6.5 0.81 692 4114 320 

29-Aug 72 116 48 4.8 2.2 2.6 0.46 0.54 0.07 12.4 dry 3.0 2.3 0.48 1207 3526 524 

01-sept 628 341 101 11.4 4.3 7.2 0.38 0.63 0.25 20.4 wet 3.4 16.4 1.44 725 4487 331 

13-sept 370 59 45 10.9 7.0 3.8 0.65 0.35 -0.29 0.0 dry 2.6 4.4 0.40 1291 3594 556 

 

Commenté [AM49]: Columns added according to Reviewer #1, 
point 15 

Cellules insérées

Commenté [AM50]: Added according to Reviewer #1 – point 18 



 

52 
 

Table 4. Correlations between rainfall amounts, asymmetry metrics and hydrologic response metrics for the 14 
events with streamflow reaction (after discarding the 24 July event). series #4 of Table 2. Absolute values equal or 925 
overhigher than 0.60 are in bold. 

 PALL 
[mm] 

PNORTH 
[mm] 

PSOUTH 
[mm] 

Pmax ALL 
[mm.h-1] 

Pmax NORTH 
[mm.h-1] 

Pmax SOUTH 
[mm.h-1] 

IASYM 
[-] 

W3 days 
[mm] 

QINIT 
[mm] 

QFAST 
[mm] 

PDURATION 
[min] 

QDURATION 
[min] 

ΔP/Q  
[min] 

PALL [mm] -             

PNORTH [mm] 0.89 -            

PSOUTH [mm] 0.94 0.69 -           

Pmax ALL [mm.h-1] 0.01 0.19 -0.12 -          

Pmax NORTH [mm.h-1] 0.09 0.33 -0.11 0.96 -         

Pmax SOUTH [mm.h-1] 0.19 0.19 0.16 0.87 0.78 -        

IASYM [-] 0.25 -0.20 0.55 -0.42 -0.56 -0.06 -       

W3 days [mm] -0.19 -0.30 -0.09 -0.22 -0.27 -0.23 0.18 -      

QINIT [mm] -0.13 0.00 -0.21 0.52 0.54 0.27 -0.28 0.26 -     

QFAST [mm] 0.77 0.58 0.80 -0.17 -0.16 -0.08 0.43 0.33 -0.01 -    

PDURATION [min] 0.56 0.38 0.62 -0.59 -0.52 -0.48 0.44 0.14 -0.43 0.74 -   

QDURATION [min] 0.56 0.39 0.61 -0.27 -0.27 -0.17 0.42 0.52 0.11 0.89 0.64 -  

ΔP/Q [min] 0.13 -0.11 0.29 -0.71 -0.71 -0.58 0.59 0.41 -0.33 0.52 0.81 0.60 - 

RC [-] 0.31 0.13 0.40 -0.25 -0.29 -0.22 0.44 0.65 -0.05 0.81 0.67 0.80 0.72 
 



 

53 
 

Table 5. Correlations between distance metrics for the 14rainfall events with streamflow reaction (after discarding 
the 24 July event).response (series #4 of Table 2). Absolute values equal or overhigher than 0.60 are in bold. For 
correlations coveringCorrelations for all rainfall events, see the part 1 of  are available in the Supplementary 930 
Material. 

  DHILLS DHILLS DSTREAM DSTREAM 
DHANDHHA

ND 
DHANDHHA

ND DHILLS DSTREAM 
DHANDHHA

ND 

 
River network Wet Dry Wet Dry Wet Dry 

Composit
ePseudo-
dynamic 

Composit
ePseudo-
dynamic 

Composit
ePseudo-
dynamic 

DHILLS Wet -         

DHILLS Dry 0.96 -        

DSTREAM Wet 0.59 0.61 -       

DSTREAM Dry 0.54 0.53 0.99 -      
DHANDHHA

ND Wet 0.91 0.93 0.51 0.44 -     

DHANDHHA

ND 
Dry 0.75 0.89 0.40 0.28 0.90 -    

DHILLS 
CompositePseud
o-dynamic 

0.42 0.45 0.08 0.04 0.51 0.49 -   

DSTREAM 
CompositePseud
o-dynamic 

0.32 0.31 0.75 0.77 0.18 0.09 -0.57 -  

DHANDHHA

ND 
CompositePseud
o-dynamic 

0.26 0.30 -0.05 -0.10 0.40 0.42 0.98 -0.68 - 

RC  -0.20 -0.21 0.10 0.13 -0.28 -0.28 -0.70 0.53 -0.70 

ΔP/Q   -0.10 -0.05 0.21 0.21 -0.13 -0.06 -0.66 0.60 -0.68 
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Table 6. List of the tested predictors for the RC with a pure quadratic regression, and their corresponding statistics: 
root mean square error (RMSE), coefficient of determination (R²), variance of residuals (var. residuals), p-value, 
corrected Akaike criterion (AICc) and AICc ranking. The acceptable p-values (≤0.05) and first 3 ranks are 935 
highlighted. The analysis is over the 14 events (without the outlier event of 24-Jul).series #4 of Table 2.  

Predictor 1 Predictor 2 RMSE R² var. residuals p-value AICc rank AICc 

PALL - 0.34 0.14 0.10 0.44 -24.96 17 

PNORTH - 0.36 0.02 0.11 0.88 -23.20 18 

PSOUTH - 0.31 0.28 0.08 0.17 -27.44 12 

IASYM - 0.33 0.22 0.09 0.25 -26.37 16 

W3 days - 0.27 0.48 0.06 0.03 -31.90 7 
DHILLS (compositepseudo-
dynamic) 

- 0.26 0.52 0.06 0.02 -33.00 3 

DSTREAM (compositepseudo-
dynamic) 

- 0.23 0.61 0.04 0.01 -36.13 1 

PALL IASYM 0.33 0.35 0.07 0.36 -19.88 19 

PNORTH IASYM 0.34 0.29 0.08 0.50 -18.53 21 

PSOUTH IASYM 0.33 0.35 0.07 0.37 -19.84 20 

W3 days IASYM 0.25 0.62 0.04 0.05 -27.38 13 
DHILLS (compositepseudo-
dynamic) 

IASYM 0.23 0.68 0.04 0.03 -29.55 9 

DSTREAM (compositepseudo-
dynamic) 

IASYM 0.25 0.62 0.04 0.05 -27.30 14 

PALL 
DHILLS (compositepseudo-
dynamic) 0.22 0.70 0.03 0.02 -30.65 8 

PNORTH 
DHILLS (compositepseudo-
dynamic) 

0.26 0.60 0.05 0.06 -26.76 15 

PSOUTH 
DHILLS (compositepseudo-
dynamic) 

0.21 0.74 0.03 0.01 -32.80 4 

W3 days 
DHILLS (compositepseudo-
dynamic) 

0.24 0.65 0.04 0.04 -28.34 11 

PALL 
DSTREAM (compositepseudo-
dynamic) 

0.20 0.75 0.03 0.01 -33.18 2 

PNORTH DSTREAM (compositepseudo-
dynamic) 

0.21 0.74 0.03 0.01 -32.55 5 

PSOUTH DSTREAM (compositepseudo-
dynamic) 

0.21 0.74 0.03 0.01 -32.46 6 

W3 days 
DSTREAM (compositepseudo-
dynamic) 0.24 0.67 0.04 0.03 -29.10 10 
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Table 7 As Table 6 but for the lag ΔP/Q. 

 corresponding statistics: root mean square error (RMSE), coefficient of determination (R²), variance of residuals 
(var. residuals), p-value, corrected Akaike criterion (AICc) and AICc ranking. The acceptable p-values (≤0.05) and 940 
first 3 ranks are highlighted. The analysis is over 14 events (without the outlier event of 24-Jul). 

Predictor 1 Predictor 2 RMSE R² var. residuals p-value AICc rank AICc 

Pmax ALL - 13.07 0.64 144.52 0.00 76.99 3 

Pmax NORTH - 12.70 0.66 136.56 0.00 76.20 2 

Pmax SOUTH - 16.52 0.43 231.05 0.05 83.56 11 

IASYM - 17.25 0.37 251.75 0.08 84.76 13 

W3 days - 19.83 0.17 332.65 0.35 88.66 19 
DHILLS (compositepseudo-
dynamic) 

- 16.28 0.44 224.27 0.04 83.14 10 

DSTREAM (compositepseudo-
dynamic) 

- 13.39 0.62 151.71 0.00 77.67 4 

Pmax ALL IASYM 11.10 0.79 85.35 0.00 78.72 5 

Pmax NORTH IASYM 12.89 0.71 115.01 0.02 82.89 8 

Pmax SOUTH IASYM 10.06 0.83 70.06 0.00 75.95 1 

W3 days IASYM 15.86 0.57 174.17 0.08 88.70 20 
DHILLS (compositepseudo-
dynamic) 

IASYM 12.97 0.71 116.52 0.02 83.07 9 

DSTREAM (compositepseudo-
dynamic) IASYM 13.83 0.67 132.39 0.03 84.86 15 

Pmax ALL 
DHILLS (compositepseudo-
dynamic) 

14.18 0.65 139.25 0.03 85.57 17 

Pmax NORTH 
DHILLS (compositepseudo-
dynamic) 

13.95 0.67 134.65 0.03 85.10 16 

Pmax SOUTH 
DHILLS (compositepseudo-
dynamic) 

16.57 0.53 190.15 0.12 89.93 21 

W3 days  
DHILLS (compositepseudo-
dynamic) 

15.65 0.58 169.50 0.07 88.32 18 

Pmax ALL 
DSTREAM (compositepseudo-
dynamic) 

11.40 0.78 89.99 0.01 79.46 6 

Pmax NORTH 
DSTREAM (compositepseudo-
dynamic) 11.55 0.77 92.36 0.01 79.82 7 

Pmax SOUTH 
DSTREAM (compositepseudo-
dynamic) 13.37 0.69 123.70 0.02 83.91 12 

W3 days 
DSTREAM (compositepseudo-
dynamic) 13.82 0.67 132.18 0.03 84.84 14 

 


