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Abstract. The transboundary Helmand River basin is the main drainage system for large parts of Afghanistan and the Sistan 10 

region of Iran. Due to the reliance of this arid region on water from the Helmand River, a better understanding of 

hydrological drought pattern and the underlying drivers in the region are critically required for effective management of the 

available water. The objective of this paper is therefore to analyse and quantify spatio-temporal pattern of drought and the 

underlying processes in the study region. More specifically we test for the Helmand River Basin the following hypotheses 

for the 1970-2006 period: (1) drought characteristics, including frequency and severity systematically changed over the study 15 

period, (2) the spatial pattern and processes of drought propagation through the Helmand River Basin also changed and (3) 

the relative roles of climate variability and human influence on changes in hydrological droughts can be quantified. 

It was found that drought characteristics varied throughout the study period, but did largely show no systematic trends. The 

same was observed for the time series of drought indices SPI and SPEI, which exhibited considerable spatial coherence and 

synchronicity throughout the basin indicating that, overall, droughts similarly affect the entire HRB with little regional or 20 

local differences. In contrast, analysis of SDI exhibited significant negative trends in the lower parts of the basin, indicating 

an intensification of hydrological droughts. It could be shown that with a mean annual precipitation of ~250 mm y-1, 

streamflow deficits and thus hydrological drought throughout the HRB are largely controlled by precipitation deficits, whose 

annual anomalies on average account for ±50 mm y-1 or ~20% of the water balance of the HRB, while anomalies of total 

evaporative fluxes on average only account for ±20 mm y-1. Assuming no changes in the reservoir management practices 25 

over the study period, the results suggest that the two reservoirs in the HRB only played a minor role for the downstream 

propagation of streamflow deficits, as indicated by the mean difference between inflow and outflow during drought periods 

which did not exceed ~0.5% of the water balance of the HRB. Irrigation water abstraction had a similarly limited effect on 

the magnitude of streamflow deficits, accounting for ~10% of the water balance of the HRB. However, the downstream parts 

of the HRB moderated the further propagation of streamflow deficits and associated droughts because of the minor effects of 30 

reservoir operation and very limited agricultural water in the early decades of the study period. This drought moderation 

function of the lower basin was gradually and systematically inverted by the end of the study period, when the lower basin 
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eventually amplified the downstream propagation of flow deficits and droughts. Our results provide plausible evidence that 

this shift from drought moderation to drought amplification in the lower basin is likely a consequence of increased 

agricultural activity and the associated increases in irrigation water demand from ~13 mm y-1 at the beginning of the study 35 

period to ~23 mm y-1 at the end and thus in spite of being only a minor fraction of the water balance. Overall the results of 

this study illustrate that flow deficits and the associated droughts in the HRB clearly reflect the dynamic interplay between 

temporally varying regional differences in hydro-meteorological variables together with subtle and temporally varying 

effects linked to direct human intervention.  

1 Introduction  40 

There is evidence that droughts have the potential to increasingly affect human societies as well as ecosystem functioning. In 

a world under change, decision-makers therefore need reliable quantitative information about drought characteristics to 

ensure the development and implementation of effective and sustainable water management procedures. To be reliable this 

information needs to be based on a solid understanding of how different types of droughts propagate through different 

hydrological systems. While meteorological droughts are controlled by precipitation deficits only, agricultural and 45 

hydrological droughts are caused by soil moisture and runoff deficits, respectively. As pointed out, amongst others, by 

Mishra and Singh (2010) the processes underlying droughts are complex because they are dependent on many interacting 

processes in terrestrial hydrological systems, such as the interaction between the atmosphere and the hydrological processes 

which feed moisture to the atmosphere. Therefore, monitoring and analysis of hydrological droughts have received increased 

attention in recent decades (van Huijgevoort et al., 2014; Pathak and Dodamani, 2016; Weng et al., 2015; Vicente-Serrano et 50 

al., 2012; Kubiak-Wójcicka and Bak, 2018; Trambauer et al., 2014; Ahmadalipour et al., 2017; Jiao and Yuan, 2019; 

Moravec et al., 2019). In general, it is well-understood that both, agricultural and hydrological droughts are modulated by the 

interactions of climate, river basin characteristics, such as geology, as well as a human influence or any combination thereof 

(e.g. Van Lanen et al., 2013; Huang et al., 2016; Liu, et al., 2016; Van Loon, et al., 2019). For example, data show that 

reservoir operations can have both, considerable positive or negative effects on downstream hydrological drought pattern 55 

(e.g. Zhang et al., 2013; Pingue et al., 2016; Wu et al., 2017), which may politically be particularly sensitive for 

transboundary rivers in arid envrionments (Al-Faraj and Scholz, 2015, Wan et al., 2018).  

The transboundary Helmand River system between Afghanistan and Iran is the primary contributor of water to the Hamun 

lake- and wetland-system in the Sistan Plain, which is the terminus of one of the largest endorheic basins in Central Asia. In 

this region, which is described as one of the driest, most remote deserts on Earth (Whitney, 2006), water from the Helmand 60 

River system plays a critical role not only to sustain agricultural production, hydropower generation and ecosystem stability 

but also for drinking water supply for some one million people living in the region, including the cities of Kandahar in 

Afghanistan and Zabol in Iran.  
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The area has recently experienced a severe, multi-year drought (1998–2004). Reduction of flow and episodic no-flow 

conditions in the Helmand River during this period have caused significant disruption of water supply. As a consequence, 65 

agricultural production dropped by almost 90% as compared to average no-drought conditions, further resulting in food 

shortage and considerable economic damage (Ebrahimzadeh and Esmaelnejad, 2013). Given the region’s extreme 

dependence on water from the Helmand River system and the associated vulnerability to hydrological droughts, a few recent 

studies started to analyse droughts in Afghanistan and the Helmand River Basin (e.g. Ahmad and Wasiq, 2004; Miyan, 

2015). For example, Alami et al. (2018) analyzed meteorological droughts in the Helmand River Basin using different 70 

methods and quantitatively documented the extreme drought in 2001. However, most of the research in this region focused 

on the application of hydrological models for the simulation of runoff to provide decision bases for integrated water 

management issues in the region. These studies include Hajihosseini et al. (2016), who assessed the Afghan-Iranian 

Helmand River Treaty (The Iranian-Afghan Helmand (Hirmand) River Water Treaty, 1973) using the SWAT model (Arnold 

et al., 1998) and data from the Climatic Research Unit (CRU; Harris et al., 2014). A study by Wardlaw et al. (2013) 75 

formulated a model for the development of water resources systems in the Helmand River Basin using the Water Evaluation 

and Planning (WEAP) model and established a list of scenarios for the future. 

Similarly, Vining and Vecchia (2007) estimated future runoff conditions of the river to evaluate the effects of different 

reservoir operation strategies under different climate change scenarios on downstream water supply. Van Beek et al. (2008) 

developed methods and tools to build the capacity to sustain agriculture and ecosystems in the downstream Sistan Plain. In 80 

spite of this growing body of literature for the region, the scarcity of reliable meteorological and hydrological data so far 

limited systematic, quantitative analysis of spatio-temporal pattern of hydrological droughts and the underlying drivers and 

processes in the Helmand River Basin.  

In a world under change, however, decision makers need such quantitative information about drought characteristics to 

ensure the development and implementation of effective and sustainable water management procedures. To be reliable this 85 

information needs to be based on a solid understanding of how different types of droughts propagate through different 

hydrological systems. While meteorological droughts are controlled by precipitation deficits only, agricultural and 

hydrological droughts are caused by soil moisture and runoff deficits, respectively. As pointed out, amongst others, by 

Mishra and Singh (2010) the processes underlying the latter two are complex because they are dependent on many 

interacting processes in terrestrial hydrological systems, such as the water and release dynamics of the subsurface as well as 90 

land-atmosphere exchange. Therefore, monitoring and analysis of hydrological droughts have received increased attention in 

recent decades (van Huijgevoort et al., 2014; Pathak and Dodamani, 2016; Weng et al., 2015; Vicente-Serrano et al., 2012; 

Kubiak-Wójcicka and Bak, 2018; Trambauer et al., 2014; Ahmadalipour et al., 2017; Jiao and Yuan, 2019; Moravec et al., 

2019). In general, it is well-understood that both, agricultural and hydrological droughts are modulated by the interactions of 

climate, river basin characteristics, such as geology, as well as human influence or any combination thereof (e.g. Van Lanen 95 

et al., 2013; Huang et al., 2016; Liu, et al., 2016; Van Loon, et al., 2019). For example, data show that reservoir operations 

can have both, considerable positive or negative effects on downstream hydrological drought pattern (e.g. Zhang et al., 2013; 
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Pingue et al., 2016; Wu et al., 2017), which may politically be particularly sensitive for transboundary rivers (Al-Faraj and 

Scholz, 2015).  

Due to the reliance of the region on water from the Helmand River, a better understanding of hydrological drought pattern 100 

and the underlying processes in the region are critically required for effective management of the available water. Most 

studies in the Helmand River Basin have so far remained limited to mere documentation and/or general 

assessments of mostly meteorological drought characteristics. We here will extend this scope also to hydrological drought 

and evaluate the meteorological drought under the additional role of atmospheric water demand. The overall objective of this 

paper is therefore to analyse and quantify changes in spatio-temporal pattern of drought charaterisitics and the underlying 105 

processes in the study region in an attempt to quantitatively attribute these changes to climate and human interventions, 

respectively. More specifically we will test for the Helmand River Basin the following hypotheses for the 1970-2006 period: 

(1) drought characteristics, including frequency and severity systematically changed over the study period, (2) the spatial 

pattern and processes of drought propagation through the Helmand River Basin also changed and (3) the relative roles of 

climate variability and human influence on changes in hydrological droughts can be quantified. 110 

2 Study area  

The endorheic Helmand River Basin (HRB; Figure 1) covers approximately 105,000 km2 or 15% of Afghanistan. From its 

source area, in the Koh-i-Baba mountains, an extension of the Hindu Kush west of Kabul, with elevations to over 4600 masl, 

the Helmand River system drains into the Hamun lake and wetland system in the Sistan plain of Eastern Iran, a closed inland 

delta with a minimum elevation of 440 masl in the south-west of the HRB, which covers 5 % of the total HRB area (Goes et 115 

al., 2016). Both, long-term mean annual precipitation (�̅�=90-480 mm yr-1; Figure 1d) and potential evaporation (𝐸𝑃
̅̅ ̅ =700-

1800 mm yr1; Figure 1e) exhibit considerable spatial variability throughout the HRB. This results in a pronounced gradient 

of aridity from sub-arid in the North-East to hyper-arid conditions in the South-West as expressed by the aridity index IA 

(𝐼𝐴 =
�̅�

𝐸𝑃̅̅ ̅̅
 [-]; Figure 1f). Precipitation falls mostly in the winter months and in the upper basin almost always occurs as snow. 

In general, snowmelt generates the annual runoff peaks in early spring and sustains flow in the HRB throughout the dry 120 

summers. For the following analysis, the HRB is divided into six sub-basins (Figure 1c; Table 1): the Upper Helmand River 

Basin (UHRB) with the main stem of the Helmand River, the Central Helmand River Basin (CHRB) and the Upper 

Arghandab River Basin (UARB) as well as the Lower Arghandab River Basin (LARB) are nested in and drain into the 

Lower Helmand River basin (LHRB) and subsequently into the Sistan plain (SISP). The UHRB accounts for 80% of the 

combined inflow into the LHRB. Flow in the LHRB is influenced by the operation of two upstream reservoirs (Figure 1b; 125 

Table 1). While the reservoir at Kajakai Dam with a storage capacity of 1800 mio. m3, located at the outflow of the UHRB, 

is a multi-purpose structure for electricity production, flood control and irrigation water supply, the smaller Dahla Dam, 

located at the outlet of the UARB into the LARB about 180 km upstream of the confluence with the LHRB, has a storage 

capacity of 450 mio. m3 and is used mainly for irrigation of the lower Arghandab valley (Goes et al., 2016).  
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 Due to the arid climate, natural vegetation is very scarce and mostly limited to seasonal grassland throughout the entire 130 

HRB. Irrigated agriculture is by far the largest consumer of water, accounting for 98 % of all abstractions (Goes et al., 2016). 

Except for a few recent irrigation projects in the LARB and LHRB, irrigation relies on traditional methods with irrigation 

canals and is thus largely confined to the valley floors along the main river channels (Figure 1b). While the irrigated area in 

the LARB remained somewhat stable at around 370 km2 (~ 0.3 % of the total HRB) over the last decades, satellite imagery 

(Landsat 7, ETM+) shows that the total irrigated area in the LHRB more than doubled from < 800 km2 (0.8 %) in the late 135 

1970s to 1650 km2 (1.6 %) in 2011 (Figure 2).  More than 200 km2 of the increase in the irrigated area is due to the 

conversion of seasonal grasslands to high-water-requirement poppy cultivation since the 1990s (Hajihosseini et al., 2019). 

By 2006 around 690 km2 in the HRB were used for poppy cultivation (UNODC, 2006). In 2011, the main crops in the HRB 

were wheat (~47 %), poppy (~ 32 – 37 %), maize and beans (~16 %), with orchards in some areas (~1–4 %), and large areas 

of opium poppy, mostly grown in the traditionally irrigated area (Wardlaw et al., 2013). most of the crops located in the 140 

traditionally irrigated areas (Wardlaw et al., 2013). 

3 Climatological and hydrological data  

The HRB is characterized by poor coverage of reliable historic in-situ observations of hydro-climatic variables, particularly 

in the upper parts of the basin where most of the water in the HRB originates from. Analysis of Hajihosseini et al. (2016) 

indicated that the spatio-temporal variation of the interpolated historical precipitation and temperature in the gridded 145 

Climatic Research Unit (CRU) dataset was largely consistent with available ground observations for Afghanistan. Therefore, 

we here used daily precipitation and temperature estimates for the 1970–2006 study period (Figure 1a), downscaled from the 

monthly CRU TS 3.10 dataset (Harris et al. 2014), based on the dGen algorithm (Geng et al., 1986) that was previously also 

applied in other studies (e.g. Schuol and Abbaspour, 2006; Schuol et al., 2008; Hajihosseini et al., 2016). The data were 

available from www.2w2e.com (Ashraf Vaghefi et al., 2017) at a spatial resolution of 0.5°×0.5°.  150 

Daily streamflow observations for the 1970-1979 period are available from the US Geological Survey (waterdata.usgs.gov) 

at six gauging stations throughout the HRB (IDs 1-2, 4-7; Figure 1; Table 1). Note, that there were observations available 

from individual gauging stations at the inlets upstream of the Kajakai Dam (ID1 – UHRBU) and Dahla Dam Reservoirs (ID4 

- UARBU)  as well as at the corresponding outlets downstream of the dams (ID2 – UHRBD; ID5 – UARBD). In addition, 

monthly flow observations for the 1970-2006 period were available at the inflow to the Sistan Plain (ID8 – SISP).  155 

4 Methods  

The analysis of the characteristics and pattern of hydrological droughts in the HRB over the recent decades in this study 

required a two-step approach. In a first step, the observed streamflow time series (1970-1979; Table 1) had to be extended to 

http://www.2w2e.com/
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cover the full 1970-2006 study period, using a hydrological model. In a second step, the modelled streamflow estimates for 

the 1970-2006 period at eight locations in the HRB were used to analyse hydrological droughts.  160 

4.1 Hydrological model 

We used a distributed implementation of a process-based hydrological model, based on the general concept of the FLEX 

model-family (e.g. Fenicia et al., 2008; Gharari et al., 2014; Bouaziz et al., 2018) to generate estimates of daily discharge 

from the sub-basins UHRBU (ID1), CHRB (ID3), UARBU (ID4), LARB (ID6), LHRB (ID7) and SISP (ID8). In addition, a 

simple reservoir routing scheme was used to estimate outflow from the two reservoirs (ID9-10), located at UHRBD (ID2) and 165 

UARBD (ID5). The distributed implementation of this model was chosen as the general model set-up was previously 

successfully applied in climatically similar regions (e.g. Gao et al., 2014, 2017) but also in many other settings worldwide 

(e.g. Fenicia et al., 2006; Kavetski et al., 2011; Nijzink et al., 2018; Hulsman et al., 2020). In general, the FLEX modelling 

concept applied here is underlain by a philosophy of model customization and rigorous testing to ensure the implementation 

of suitable model formulations and the associated more reliable model outputs in different environments (e.g. Fenicia et al., 170 

2011).  

4.1.1 Model structure at grid cell scale 

The core of the model is five storage components (Figure 3) that are linked by fluxes and that conceptually represent snow 

storage Ssn [mm], interception storage Si [mm], storage in the unsaturated root-zone Su [mm], a fast responding component Sf 

[mm] that generates preferential and overland flow, and a slow responding groundwater storage Ss [mm]. A lag function 175 

represents the lag time between storm and flood peak. The snow module is based on a simple degree-day method that has 

been effectively applied in many conceptual models (e.g. Parajka and Blöschl, 2008; Konz and Seibert, 2010; Gao et al., 

2017; Nijzink et al., 2018; Mostbauer et al., 2018). When the average daily temperature is below a threshold temperature Tt 

[oC], precipitation enters the system as snowfall Ps [mm d-1] and is stored in Ssn. When there is snow cover and the 

temperature exceeds Tt, snow melt M [mm d-1], specified by a melt factor Fm [mm oC-1 d-1], sets in from Ssn. Precipitation 180 

falling as rain Pr [mm d-1] first enters the interception reservoir Si, specified by an interception capacity Imax [mm]. Water 

evaporates as interception evaporation Ei [mm d-1] from Si at potential rates Ep [mm d-1], while water in Si that exceeds the 

storage capacity Imax reaches the soil as throughfall Ptf [mm d-1]. The total effective precipitation Pe [mm d-1] infiltrating into 

the unsaturated soil root-zone Su at any given time step is then the sum of Ptf and M (Gao et al., 2014). Water in the 

unsaturated reservoir Su is, depending on the storage capacity Sumax [mm], either stored and eventually released by plant 185 

transpiration ET [mm d-1], or directly released as groundwater recharge Rs [mm d-1] or preferential flow Rf [mm d-1]. The 

response reservoirs Sf and Ss represent a fast responding storage component and a slower responding groundwater 

component, respectively, that both drain water to the river according to their associated time scales kf [d] and ks [d], so that 

that the total flow can be expressed as Q=Qf+Qs [mm d-1].  All relevant model equations are provided in Table S1 in the 

supplementary material. 190 
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4.1.2 Reservoir routing 

Large reservoirs such as the Kajakai (ID9) and Dahla (ID10) Dam reservoirs in the HRB, can considerably alter downstream 

flow regimes (Haddeland et al., 2014; Wada et al., 2017). This has recently received growing attention and a number of 

studies have suggested methods to quantify reservoir outflow where reservoir operation rules are largely unknown (e.g. 

Coerver et al., 2018; Yassin et al., 2019). Here, the effects of the reservoirs were estimated with a simple water accounting 195 

scheme based on elevation-storage and elevation-area relationships provided in a study by Vining and Vecchia, (2007) and 

similar to previous work (e.g. Hanasaki et al., 2006; Wisser et al., 2010): 

𝑑𝑆𝑟(𝑡)

𝑑𝑡
= 𝑄𝑖𝑛(𝑡) − 𝑄𝑜𝑢𝑡(𝑡) + 𝑃(𝑡) − 𝐸𝑝(𝑡),                                                                                                                                (l)  

Where Sr is the reservoir storage, P and Ep are precipitation and potential evaporation over the surface area of the reservoir at 

the end of the previous time step, respectively. Qin is the inflow to the reservoir, Qout the outflow from the reservoir. Here, 200 

the inflows Qin to the two reservoirs were estimated by the hydrological models of the respective upstream sub-basins 

UHRBU (ID1) and UARBU (ID4). Due to the lack of more detailed data, Qout was in this study estimated based on empirical 

storage-outflow relationships that relate modeled reservoir storage Sr (Eq.1) and Qin to observations of Qout, i.e. QID2 and 

QID5. We decided to develop separate linear relationships for high- and low-flow seasons, i.e. January to June and July to 

December, respectively as preliminary analysis suggested that these were more robust than non- or piecewise-linear 205 

relationships for the entire year, as used elsewhere (e.g. Yassin et al., 2019): 

𝑄𝑜𝑢𝑡 = {
𝑎ℎ𝑆𝑟,𝑡−1 + 𝑏ℎ𝑄𝑖𝑛,𝑡 + 𝑐ℎ  → ℎ𝑖𝑔ℎ 𝑓𝑙𝑜𝑤 𝑠𝑒𝑎𝑠𝑜𝑛

𝑎𝑙𝑆𝑟,𝑡−1 + 𝑐𝑙                    → 𝑙𝑜𝑤 𝑓𝑙𝑜𝑤 𝑠𝑒𝑎𝑠𝑜𝑛
,                                                                                                         (2) 

Where a [d-1], b [-], c [mm d-1] are coefficients and the subscripts h and l indicate high and low flow seasons, respectively. 

Note, that Qin becomes negligible in the low flow season and the relationship collapses to a simple linear regression. Also 

note, that it is plausible to assume that reservoir operation is more careful during drier years than in wetter years and may 210 

have changed over the study period. Due to the lack of sufficient data, we here developped only one low flow and one high 

flow relationship for each reservoir over the entire study period. 

4.1.3 Model implementation at (sub-)basin scale 

The model was implemented in a distributed way and the flows aggregated to the (sub-)basin scale. To limit the 

computational requirements, the meteorological input data, available at a spatial resolution of 0.5o x 0.5o, were averaged to 215 

run the model at a grid cell size of 1o x 1o (Figure 1). The snow (Ssn), interception (Si) and unsaturated (Su) reservoirs in each 

model grid cell were further stratified into 500m elevation bands to account for elevation-dependent snow dynamics and the 

associated differences in liquid water input to the system. The combined groundwater recharge Rs and the combined 
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preferential drainage Rf from all elevation zones in each model grid cell was then computed as the weighted average from all 

individual elevation zones, based on the areal proportion of each elevation zone (cf. Fenicia et al., 2008; Euser et al., 2015). 220 

The flow Qi generated in each of the N grid cells of a (sub-)basin j at any time step t was subsequently routed to the (sub-) 

basin outlet in a convolution operation with triangular lag functions (e.g. Fenicia et al., 2011) based on lag times i, 

proportional to the mean flow distances from the individual i cells to the outlet. In addition, irrigation demand ID [mm d-1] 

for agriculture was accounted for by direct river water abstractions. The aggregated flow at the outlet of a (sub-)basin was 

then the sum of all flows routed to the outlet minus irrigation demand, i.e. 𝑄𝐼𝐷𝑗
= ∑ (𝑄𝑖,𝑗 ∗ ℎ(𝜏𝑖,𝑗))𝑁

𝑖=1 − 𝐼𝐷,𝑗 of that specific 225 

(sub-)basin j, i.e. ID1-7. At each time step, irrigation water ID,j was then re-applied as input to Su,i in grid cells i of the 

corresponding subbasin j that featured agricultural use. Largely being an unregulated irrigation canal system and due to the 

lack of more detailed information, estimates of ID,j were here based on crop coefficients Kc, potential evaporation Ep and 

effective precipitation Pe for each day k, as well as the agriculturally used area in each year l (Allen et al., 1998), according 

to 𝐼𝐷 = 𝐾𝑐(𝐸𝑝 − 𝑃𝑒)
𝑘,𝑙

𝐴𝑙  230 

As a baseline, crop coefficients and the agriculturally used area were estimated based on crop pattern reported by Wardlaw et 

al., (2013). In that report, the irrigated areas were estimated using satellite imagery from 2010/2011. To account for land-use 

change over the 1970-2006 study period, the estimates were adjusted to changes in the agricultural area as extracted from 

available satellite imagery in 1977, 1988, and 1998. 

The outflow of sub-basins UHRBU, i.e.QID1, and UARBU, i.e. QID4, were used as inflow to the Kajakai Dam (ID9) and Dahla 235 

Dam (ID10) reservoirs, respectively. The resulting estimates of reservoir outflows, i.e. QID2 and QID5 (section 4.1.2) were 

then used as inflows into LHRB (ID7) and LARB (ID6), respectively. In addition, LHRB (ID7) received the outflows QID3 

and QID6, while LHRB (ID7) outflow QID7 subsequently drained into SISP (ID8).  

The historical absence of significant snow cover in the sub-basins ID2 and ID5-8 allowed us to omit the snow component 

and the related parameters from the model in these sub-basins (Figure 3) and to limit the adverse effects of equifinality 240 

(Beven, 2001). Furthermore, as agriculture is largely confined to the sub-basins LARB (ID6) and LHRB (ID7), the 

redistribution of river water for irrigation was only implemented in these two sub-basins. Similarly, an additional parameter 

kL was used to account for losses between ID7 (LHRB) and ID8 (SISP)deep infiltration losses kL was used for the sub-basins 

ID6-ID8. The above differences resulted in two slightly different implementations of the model in the uplands and the 

downstream regions of the HRB, respectively, and hereafter referred to as Model-1 and Model-2 (Figure 3). Similar 245 

implementations of this model type have in the past proven successful in a range of different environments (e.g. Prenner et 

al., 2018; Hulsman et al., 2020). 

4.1.4 Model calibration and post-calibration evaluation 

The models were run on a daily time step in all sub-basins for the entire 1970-2006 period. However, in the absence of 

suitable data, the models could not be calibrated for all sub-basins and over the entire period. Rather, only the models of the 250 
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five sub-basin outlets UHRBU (ID1), UARBU (ID4), LARB (ID6), LHRB (ID7) and SISP (ID8) (Table 1; Figure 3) were 

individually calibrated for the 1970-1975 period to time series of observed flow. Note, that all model grid cells in a given 

sub-basin were run with the same parameter sets but with spatially distributed hydro-climatic forcing (e.g. Ajami et al., 2004; 

Euser et al., 2015). To limit the effects of equfinality (Beven, 2001) and to ensure robust model implementation (Euser et al., 

2013; Hrachowitz and Clark, 2017), we adopted a multi-objective (Gupta et al., 1998) calibration approach, simultaneously 255 

using the Nash-Sutcliffe Efficiency (Nash and Sucliffe, 1970) of flows (ENS,Q) and of the logarithm of flows (ENS,log(Q)) as 

objective functions. The 10 (UHRBU, UARBU) and 8 (LARB, LHRB, SISP) free calibration parameters, respectively, in the 

individual models were sampled in 106 realizations from uniform prior distributions following a Monte Carlo strategy. The 

model parameters together with their prior and posterior distributions are given Table 2. To account for trade-offs in the 

multi-objective calibration and uncertainties in the modelling process, we kept all parameter sets that fall into the area 260 

spanned by the pareto-optimal set of solutions as feasible (e.g. Fenicia et al., 2007; Gharari et al., 2013). For brevity, we will 

hereafter refer to the solution with the minimum Euclidean distance DE as the “best” solution (Hrachowitz et al., 2014): 

𝐷𝐸 =  √(1 − 𝐸𝑁𝑆,𝑄)
2

+ (1 − 𝐸𝑁𝑆,𝑙𝑜𝑔(𝑄))
2
                                                                                                                                (3) 

 Model uncertainty intervals were constructed from the parameter sets that were retained as feasible using DE as informal 

likelihood measure to weight each solution (cf. Freer et al., 1996). 265 

In addition, storage-outflow relationships for the reservoirs (ID9-10; Eq.2) to estimate water release from the associated sub-

basins downstream of the reservoirs UHRBD (ID2) and UARBD (ID5) were established as ordinary least squares estimates 

based on inflows from the calibrated upstream sub-basins (UHRBU, ID1; UARBU, ID4), Equation 1 and observations of 

reservoir water release in the 1970-1975 period. The parameter ranges for all solutions retained as feasible for all calibrated 

hydrological models and both reservoir routing schemes are given in Table 2. Note that due to physiographic similarity, the 270 

uncalibrated model for CHRB (ID3) was run with the same parameter sets as UHRBU (ID1). 

The robustness of the calibrated model and its ability to reproduce the time series of daily flow with respect to ENS,Q and 

ENS,log(Q) in the four calibration sub-basins as well as downstream of the reservoirs was evaluated for the independent 1976-

1979 test period, hereafter referred to as “validation period”. In addition, the model output was evaluated against the monthly 

time series of flow at SISP (ID8; Table 1; Figure 1) for the entire 1976-2006 study period. 275 

4.2 Drought indices 

Three previously developed drought indices, based on the general concept of standardized deficits (e.g. Moravec et al., 

2019), were used here to isolate the individual influences of different factors on hydrological drought in the HRB. The role 

of climatic variability and thus meteorological drought was quantified with the Standard Precipitation Index (SPI) as 

introduced by McKee et al. (1993), which gives information about deficits in atmospheric water supply, and with the 280 

Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), which describes the interaction of 
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precipitation and energy supply as moisture deficit 𝐷𝑖 = ∑ (𝑃𝑖 − 𝐸𝑝,𝑖)
𝑇
𝑖=1  and thus the additional role of atmospheric water 

demand. In contrast, hydrological drought was quantified with the Streamflow Drought Index (SDI; Nalbantis and Tsakiris, 

2009). Differences between SPI and SPEI on the one hand and SDI on the other hand were subsequently used to analyse for 

potential effects of anthropogenic influences, such as irrigation water abstraction. In a parametric approach, two-parameter 285 

Gamma distributions functions were here fitted to precipitation P and flow Q and then mapped to standard normal 

distributions using equal probability transformations (Edwards & McKee, 1997) to estimate the dimensionless drought 

indices SPI and SDI, respectively (e.g. Lloyd-Hughes and Saunders, 2002; Nalbantis and Tsakiris, 2009; Mishra et al., 

2018), whereas generalized extreme value (GEV) distributions were fitted to moisture deficit D to estimate SPEI for each 

sub-basin (Stagge et al., 2015). The goodness of fit of two-parameter gamma distributions for SPI, SDI, as well as for the 290 

GEV distribution for SPEI is provided in Figures S1-S3 in the Supplementary Material. The drought indices can be 

computed over different time-scales, thus leading to differences in the accumulation of deficits for the corresponding 

variables (e.g. McKee et al., 1993; Van Loon and Laaha, 2015). Here the drought indices were computed for each month 

using a time scale of the 12 preceding months as accumulation periods as these were previously found to be the most 

balanced time scale that gives a balance between short term and long term effects (e.g. Raziei et al., 2009; Gocic et al., 2013; 295 

Spinoni et al., 2014). All normalization was carried out relative to the full 1970-2006 study period. Droughts and their 

associated occurrence probabilities were classified according to the scheme suggested by McKee et al. (1993) as shown in 

Table 3. Since the drought indices are standardized, the same drought category thresholds were used here for all three of 

them.   

The three drought indices were in the following used to analyse different drought characteristics. It was investigated if 300 

drought frequency, duration, severity and intensity exhibit systematic shifts over time or changes in their longitudinal 

propagation from upstream to downstream over the 37 year study period. Drought frequency DF [months yr-1] was here 

defined as the average number of months per year over a specific period in which the respective drought index, i.e. SPI, 

SPEI or SDI, had a value < 0-1 (Table 3). Drought duration DD [months] was defined as the period of consecutive months 

with drought indices continuously < 0-1. Drought severity is defined as the total deficit Dtot [-] of SPI, SPEI or SDI, 305 

respectively, accumulated during all individual continuous drought periods over a specified period and, to allow 

comparability, normalized by the total number of months N in the time period considered, i.e. DS = Dtot/N [month-1]. Drought 

intensity is expressed as the ratio DI = Dtot/DD [month-1] (Huang et al., 2016).  

5 Results and discussion 

5.1 Drought indicesModel performance 310 

The hydrological models captured the magnitudes and dynamics of daily flow relatively well when compared to observations 

available for both, the sub-basins upstream of the reservoirs, i.e. UHRBU (ID1; Figure 4a) and UARBU (ID4) as well as for 

those further downstream, i.e. LARB (ID6) and LHRB (ID7; Figure 4c). For the calibration period the “best” solutions 
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exceeded ENS,Q > 0.70 and ENS,log(Q) > 0.75 for all five calibrated sub-basins (Table 4). Similar values were found for the 

validation period with ENS,Q > 0.70 and ENS,log(Q) > 0.75. The empirical relationships to route flows through the reservoirs 315 

during high and low flow periods (Eq.2) were characterized by R2 =0.80 and 0.57, respectively for the Kajakai Dam 

Reservoir (ID9) and R2 =0.92 and 0.76, respectively for the Dahla Dam Reservoir (ID10). Although the storage-discharge 

relationships are statistically significant (p < 0.001), the effect size for low flow periods remains modest. However, a 

preliminary sensitivity analysis, based on 100 low flow time series of reservoir outflows, sampled from the 5/95 th confidence 

intervals of the low flow storage – discharge relationships suggests that this uncertainty in the relationships has only very 320 

limited absolute effects on downstream outputs (Figure S4 in the Supplementary Material). Overall, the resulting flows at 

UHRBD (ID2) and UARBD (ID5) could be reproduced with ENS,Q > 0.79 and ENS,log(Q) >  0.81 for the calibration period and 

comparable performances during the validation period (Figure 4b, Table 4). The ability of these models to reproduce flow in 

the upstream regions resulted in a robust representation of flow in the downstream Sistan Plain (SISP; ID8) for the entire 

validation period 1976-2006 without further calibration (Figure 4d, Table 4). Hydrographs of sub-basins not shown in Figure 325 

4 are provided in Figure S1 S5 in the Supplementary Material.   

In general, the estimated water release from the reservoirs results in overall model outputs in all downstream basins are 

widely consistent with the observed daily river flow, which at station SISP (ID8) is even true for the entire 37-year study 

period. In spite of all other sources of uncertainty throughout the modelling process, this can be seen as an indication of the 

plausibility of the modelled reservoir outflow. 330 

It could be observed that annual peak flows in spring are mostly generated by a combination of snowmelt from the high-

elevation parts of the HRB, i.e. in sub-basins ID2, 3 and 4, and additional, relatively high-intensity rainfall events (Figure 4).  

The filling of the two reservoirs attenuates downstream flows, including the annual peaks, throughout spring and into early 

summer. In turn, the gradual release of water from the reservoirs sustains downstream summer and autumn flows, almost 

doubling long-term average low flow rates as compared to natural flow conditions (Figures 4, 5), to meet irrigation demand 335 

in the downstream Helmand Valley and to satisfy flow requirements of the Sistan River in Iran under the Iranian-Afghan 

Helmand River Water Treaty (1973).  

Furthermore, the models adequately reproduced the losing character of the downstream sub-basins, including LHRB (ID7) 

and SISP (ID8). Thus, in this highly water-limited environment, these sub-basins do not generate relevant volumes of flow. 

Rather, most of the precipitation and, in addition, significant volumes of water entering LHRB (ID7) and eventually SISP 340 

(ID8) as flow from upstream, eventually evaporate. Besides this, streamflow draining LHRB (ID7) and crossing a hyper-arid 

desert region is reduced by about 60% before reaching SISP (ID8), as specified by the calibrated loss factor KL. These 

streamflow reductions cannot be explained by deep infiltration losses and soil evaporation alone in this essentially 

vegetation-free environment. There is another even much more plausible source of these observed and modelled flow 

reductions: when the Helmand River reaches Iran, it bifurcates just upstream the gauge at SISP (ID8) into the Sistan river 345 

(SISP, ID8), which drains into the Hamun wetlands, and the completely ungauged Common Parian River, which follows the 

border between Iran and Afghanistan. The magnitudes of flow diversion are undocumented and merely Burger (2005) in a 
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study of the Helmand River of Afghanistan and Iran loosely mentioned potential uncertainties arising from this diversion 

into the Common Parian River. Therefore the lumped loss factor (KL) combines the effects of deep infiltration (e.g. Schaller 

and Fan, 2009; Bouaziz et al., 2018; Condon et al., 2020), evaporation and particularly the proportion of water which is 350 

diverted into the Common Parian River.  

Overall, following a multi-objective calibration strategy, i.e. simultaneously using ENS,Q and ENS,log(Q) as calibration objectives 

to ensure good representation of both, high- and low flows, our model performances with respect to daily flow in all sub-

basins (Table 4, Figure 4), exceed those of the studies of Hajihosseini et al. (2016) but also those of Hajihosseini et al. (2019) 

who assessed the monthly flow with the SWAT model in the Upper and Lower Helamand basins, respectively.   355 

5.2 Temporal pattern of drought 

5.2.1 SPI 

Multiple meteorological drought events in terms of SPI occurred in the HRB throughout the 1970-2006 study period (Figure 

6a). An average mean drought frequency across all sub-basins of the HRB of DF,SPI = 6.32.5 months year-1 characterized the 

1970-1979 decade. This is higher than in the subsequent two decades during which DF,SPI reached 50.5  and 3.90.3 months 360 

year-1, respectively. The last part of the study period, 2000-2006, experienced more precipitation deficits again, resulting in 

frequent drought spells with DF,SPI = 8.45.4 months year-1. A similar pattern was found for drought duration. While the first 

threetwo decades in the middle of the study period experienced mean drought durations across all sub-basins between DD,SPI 

= 91.2 and 10.6 months, much longer droughts occurred in the first and last decades 2000-2006 period with DD,SPI = 15.1 and 

21.1 months, respectively (Figure 6a). Reflecting the above, the mean drought severity and intensity were also more 365 

pronounced at the beginning and towards the end of the study period, with the lowest mean DS,SPI = -0.9 7 and DI,SPI = -1.2 6 

month-1, respectively, in the 2000-2006 period, as compared to the highest DS,SPI = -0.2 1 and DI,SPI = -0.3 8 month-1 in the 

wetter period between 1980 and 1999. Notwithstanding the fluctuating pattern in these drought descriptors over the study 

period, pairwise comparisons of the decadal distributions of basin-average annual SPI values using Wilcoxon rank-sum tests 

indicated that there is no significant difference between any of the decadal SPI distributions  (p > 0.05), as also shown in 370 

Figure 7a. Correspondingly, no temporal trends in the time series of annual SPI could be detected based on Mann-Kendall 

tests (Kendall, 1975) for the HRB or any sub-basin therein (p > 0.05; Figure 7b). The outputs of the drought analysis with a 

discretization of the study period into 2 20-year periods resulted in equivalent interpretations (Supplementary Material 

Figure S6a): in spite of slightly more pronounced DF,SPI, DD,SPI and DS,SPI in the 1990-2006 period, the differences to the 

1970-1989 period are statistically not significant (p > 0.05).  375 

Although these results support the findings of Miyan et al., (2015) who reported that Afghanistan experienced unusual 

droughts from 1995 onwards until the heavy snow falling in the 2002-2003 winter season, precipitation and the associated 

meteorological drought did, in spite of decadal fluctuations, not experience a systematic change in the HRB over the four 

study decades. 
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5.2.2 SPEI 380 

The temporal pattern of drought in terms of SPEI, reflecting the combined effects of precipitation water supply and 

atmospheric water demand, similarly indicates the occurrence of multiple periods of severe drought in all sub-basins 

throughout the HRB during the 1970-2006 study period (Figure 6b). The temporal fluctuations in SPEI broadly correspond 

with those in SPI, suggesting that most drought events are largely controlled by water supply and thus precipitation deficits 

rather than by increased atmospheric water demand in this arid region. More specifically, mean drought frequency across all 385 

sub-basins decreased from DF,SPEI = 6.62.8 months year-1 in the 1970-1979 decade to around 0.2 months year-1, respectively, 

in the following two decades. In the last decade of the study period, however, a pronounced increase in drought frequency to 

DF,SPEI = 8.96.1 months year-1 was observed (Figure 6b). While individual drought events had average durations between 

DD,SPEI = 8.40.8 and 12.92.4 months in the first threetwo middle decades across all sub-basins, this was substantially 

higherincreased to DD,SPEI = 9.9 months in the first decade and even increased to 20.215.8  months in the multi-yearextreme 390 

drought in of the 2000-2006 decade. Drought severity and intensity remained at relatively modest levels not falling below 

DS,SPEI = -0.4 1 and DI,SPEI = -0.6 0.8 month-1, respectively, in the 1980-1999 period. In contrast, the first and last decade 

were characterized by much higher more pronounced severity and intensity, with the lowest mean DS,SPEI = -1.00.8 and 

DI,SPEI = -1.15 month-1, respectively, occurring during the 2000-2006 period. Similar to SPI, Wilcoxon rank-sum tests 

showed that there is mostly no systematic and significant difference between the decadal distributions of basin-average SPEI 395 

(p > 0.05), with the exception of the 2000-2006 decade, during which SPEI is significantly lower than during the 1990-1999 

decade for most sub-basins (p ≤ 0.05), as shown in Figure 7c. The temporal sequence of a slight SPEI increase during the 

first three decades followed by a sharp decrease during the multi-year drought in 2000-2006 likewise illustrates that there is 

no systematic trend in the time series of SPEI in the HRB or any sub-basin therein over the study period (p > 0.05; Figure 

7d). The results of the same analysis over two 20-year periods similarly suggest that the 1990-2006 period experienced was 400 

slightly more drought affected with somewhat more frequent, longer and more severe droughts as compared to the 1970-

1989 period, yet the overall differences are statistically not significant (p > 0.05; Supplementary Material Figure S6b).          

 

5.2.3 SDI 

Streamflow drought, as specified by SDI, was quantified based on streamflow estimates as obtained from the best available 405 

model solution for each of the eight sub-basins. It could be observed that SDI largely follows the temporal pattern in SPI and 

SPEI (Figure 6c), respectively, with a relatively low lag time of ≤ 1 month in all sub-basins throughout the HRB, as 

suggested by a cross-correlation analysis between time series of monthly SPI, SPEI and SDI in the individual sub-basins (r = 

0.66 – 0.91; p < 0.05; not shown). However, it can also be observed that, overall, SDI drought events are less pronounced 

than SPI and SPEI droughts occurring at around the same time. More specifically it was found that the mean drought 410 

frequency across all sub-basins fluctuated between DF,SDI = 4.70.1 and 6.22.0 months year-1in the first three decades of the 
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study period. In the 2000-2006 decade, it experienced a marked increase to DF,SDI = 9.36.7 months year-1. Similarly, mean 

drought duration was with DD,SDI = 30.321.0 months highest in that decade. In the other these decades the mean DD,SDI did 

not exceed 16 11.3 months. Closely reflecting the pattern of SPI and SPEI, mean drought severity and intensity across all 

sub-basins were most pronounced in the first and last decades with both DS,SDI and DI,SDI reaching minimum values of -415 

0.91.0 and -1.5 month-1, respectively, in the 2000-2006 period. During the wetter decades in-between DS,SDI and DI,SDI did 

not decrease below values of -0.2 1 and -0.5 9 month-1, respectively.  

Following a pairwise comparison of all decadal basin-average SDI distributions, the slight, yet statistically insignificant 

increase of the decadal SPI and SPEI distributions (p > 0.05; Figures 7a,c) from 1970-1999 could not be observed in SDI, 

which remained rather stable during the first three decades (Figure 7e). In contrast, the decrease of SPEI in the last decade is 420 

reflected in correspondingly lower basin-average SDI in the 2000-2006 period (p ≤ 0.05; Figure 7e) (Li et al., 2019; 

Noorisameleh et al., 2019). However, the time series of basin-average SDI did not exhibit a significant trend (p > 0.05; 

Figure 7f). In contrast, comparison of the two 20-year periods (1970-1989 and 1990-2006) suggests higher drought 

frequency, longer duration and more pronounced severity and intensity, respectively, as compared to the 1970-1989 period. 

Based on a Wilcoxon rank-sum test, there is a systematic and significant difference between the basin-average SDI 425 

distributions for the two 20-year periods (p > 0.05, Supplementary Material Figure S6c), indicating a shift from mild to 

severe hydrological drought in the study area.  

       

5.3 Spatial pattern, synchronicity and propagation of drought 

5.3.1 SPI 430 

In most years of the study period meteorological drought, as specified by SPI, exhibits considerable spatial coherence and 

synchronicity throughout the HRB (Figure 6a). In other words, at any given time, the entire HRB experiences similar relative 

precipitation deficits (or surpluses), with a median r = 0.97 (p < 0.05) as obtained from a Spearman rank correlation between 

the time series of SPI across all sub-basins. Regional differences in SPI remain limited to parts in the central HRB, i.e. 

CHRB (ID3) and LARB (ID6, Figure 6a). In contrast to the remainder of the HRB, these two sub-basins are characterized by 435 

multiple periods that are, in relative terms, more humid, such as in 1974 or 1982, but also by periods that are, in comparison, 

considerably drier, such as 1987 or 1994. The elevated degree of spatial coherence and synchronicity in SPI on the scale of 

the HRB is further illustrated by the comparison of the upstream and downstream decadal SPI distributions (Figure 8a). No 

significant differences (p > 0.05) between the SPI distribution of the six most upstream sub-basins (ID1-ID6) and the SPI 

distribution of the two most downstream sub-basins, LHRB (ID7) and SISP (ID8), could be found in any of the four decades 440 

during the study period. To provide some more explicit spatial context, the spatial distribution of SPI at the resolution of the 

individual model grid cells for four selected years is shown in Figure 9a-d. Compared to the SPI aggregated at the scales of 

the individual sub-basins (Figure 6a), this more detailed picture corroborates the level of large-scale spatial coherence, in 
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spite of somewhat increased local variations in SPI (Figure 9a-d). A rather rare exception is the year 1987, which was 

characterized by a substantial North-South gradient in SPI spatial variations and whose extent is largely masked by the 445 

aggregation of SPI to the sub-basin scale in Figure 6a. 

5.3.2 SPEI 

While SPEI is widely coherent (median r = 0.94, p < 0.05) and spatially broadly follows the pattern of SPI throughout large 

parts of the HRB, it can also be observed that inter-annual differences in atmospheric water demand, here estimated based on 

EP, lead to modest, yet contrasting effects (Figure 6b). For some sub-basins and time periods characterized by comparably 450 

cool temperatures, water deficits are attenuated and SPEI thus remains higher than SPI (e.g. UARBU-ID4 in 1986 or LARB-

ID6 in 1989). For other sub-basins and warmer periods, increased atmospheric water demand reinforces water deficits (e.g. 

CHRB-ID3 in 1981). As shown in Figure 8a, the distributions of SPEI closely reflect the distributions of SPI in the first 

decade of the study period. In the following 1980-1989 decade as well as in the 2000-2006 decade SPEI is lower than SPI, 

potentially indicating the role of EP in intensifying water deficits in these periods. In contrast, the opposite effect can be 455 

observed during the 1990-1999 decade, where rather low EP had a moderating effect, leading to higher values of SPEI than 

SPI. Although these effects occur across the entire HRB, water deficits in terms of SPEI are considerably more sensitive to 

fluctuations in atmospheric water demand and the differences between SPEI and SPI are thus more pronounced in the 

downstream parts of the HRB (Figure 8a). In particular, SPEI in the hyper-arid SISP (ID8; Figure 6b) is characterized by a 

low degree of coherence and synchronicity compared to upstream SPEI, exhibiting both, markedly more severe water 460 

deficits (e.g. 1973, 1984 or 2003) but also more pronounced water surpluses (e.g. 1986, 1996 or 2005). Notwithstanding 

these varying effects of EP on water deficits and thus on the differences between SPEI and SPI, no systematic temporal trend 

of EP reinforcing/moderating water deficits could be detected. However, note that the applicability of SPEI in arid areas such 

as the study region may be limited (Pei et al., 2020). In such environments such fluctuations in EP will have a limited effect 

on EA and thus on water deficits as the systems are, by definition, water limited rather than energy limited. Changes in EP 465 

will therefore be less relevant for the intensification/moderation of drought in such arid regions than changes in precipitation. 

5.3.3 SDI 

Hydrological drought in terms of SDI during the study period exhibited a lower degree of spatial coherence and 

synchronicity (Figure 6c) across the HRB. This is reflected by a lower median r = 0.85 (p < 0.05) from pairwise Spearman 

Rank correlations between the individual time series of SDI across all sub-basins. The spatially and temporally more 470 

heterogeneous mosaic of SDI, however, allows a few insights. The data suggest that both reservoirs, at Kajakai dam and 

Dahla dam, respectively, have effects on the propagation of hydrological drought. This can be seen in the differences in SDI 

between the sub-basins upstream (UHRBU-ID1; UARBU-ID4) and the associated sub-basins downstream of the dams 

(UHRBD-ID2; UARBD-ID5) in Figure 6c. In the early phase of the study period, the reservoirs had some moderating effects 

on the propagation of hydrological droughts, most notably for the 1977 (both dams) and 1971 (Dahla dam) droughts. The 475 
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median SDI in the 1970-1979 decade was ~0.2 higher downstream than upstream of both reservoirs (p < 0.05). However, 

over the following decades, both reservoirs largely lost their drought attenuating functions and the reservoir at Dahla dam 

may have even contributed to amplifying the 1999-2002 drought downstream of the dam, with a median SDI over that period 

being ~0.18 (p < 0.05) lower at the downstream UARBD (ID5) than the upstream UARBU (ID4). 

While the distribution of SDI broadly follows the distributions of SPI and SPEI in the upstream part of the HRB (ID1-ID6), 480 

downstream hydrological drought is characterized by rather distinct dynamics (ID7-ID8; Figure 8a). In contrast to the basin-

average time series of SDI (Figure 7f), SDI in the two downstream sub-basins exhibit clear negative trends over the four 

decades of the study period (p ≤ 0.05; not shown). In addition, the data suggest that for the 1970-1979 decade the median 

downstream SDI ~ 0.2 is significantly higher (p < 0.05) than SPI, SPEI and upstream SDI, which are all characterized by a 

median of about -0.1 (Figure 8a). As also shown by the individual SDI distributions of all sub-basins in Figure 8b, 485 

hydrological drought is considerably attenuated and the relative river water deficits reduced compared to upstream parts of 

the HRB during that period. However, throughout the following two decades, the downstream moderation of hydrological 

drought weakens, i.e. the distributions of downstream SDI more closely reflect those of SPI, SPEI and upstream SDI (Figure 

8b). This pattern then eventually fully inverts into a downstream drought amplification in the 2000-2006 decade, during 

which the median downstream SDI = -1.5 is significantly lower (p < 0.05) than not only the median upstream SDI = -0.9 but 490 

also than SPI and SPEI (Figures 8a,b). This shift from downstream drought moderation to drought amplification can be seen 

clearly for the four selected years in Figure 9e-h. In spite of dry meteorological conditions throughout the HRB in 1977 

(Figure 9a) and severe hydrological drought in the North of the HRB, no drought occurred in the South of the study region 

(Figure 9e). In 1987, similarly, the increasing precipitation deficits from upstream to downstream (Figure 9b) were buffered 

and not reflected in the North-South gradient of SDI, indicating the wettest conditions in the most downstream part of the 495 

HRB (Figure 9f). The extreme opposite of the above two examples occurred in the last decade of the study period. In both 

years, 2002 and 2003, respectively, spatially relatively coherent precipitation pattern across the entire HRB (Figure 9c-d) led 

to severe hydrological drought in the most downstream parts of the HRB in particular at SISP (ID8; Figure 9g-h). This is 

particularly striking for the rather wet year 2003, in which SDI in the upstream sub-basins reflected the generally wet 

conditions of that year, while further downstream river water deficits developed, gradually amplifying to severe drought at 500 

SISP (ID8). Further analysis of the time series of the difference between upstream (ID1-ID6) and downstream (ID7-8) SDI 

(i.e. ΔSDI) shows the inversion from a negative to a positive ΔSDI over the 37 years of the study period occurred gradually 

and, according to a Mann-Kendall test, following a significant trend (p < 0.05), while the differences in SPI remain stable 

over time (Figure 8c) (Ma et al., 2019). This suggests that it may not be implausible to assume that the inversion of 

downstream hydrological drought moderation in the 1970-1979 decade into drought amplification in the 2000-2006 decade 505 

was, at least partly, an effect of systematic, longer-term shifts in the system rather than a short-term, synchronous occurrence 

of multiple drought-amplifying hydro-meteorological conditions, such as sustained high precipitation deficits and high 

atmospheric water demand (Van Loon, 2015). Such short-term influences of deficits in hydrological drivers would be likely 
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to manifest themselves in the evolution of ΔSDI characterized by a more erratic temporal pattern. Such short-term influences 

would be likely to manifest themselves in a more erratic temporal evolution of ΔSDI. 510 

5.4 Drought drivers and process attribution 

The above drought indices provide only limited information to identify dominant drivers of droughts. To gain more 

understanding of the spatio-temporal pattern of hydrological drought and to eventually attribute droughts to physical 

processes estimates of the absolute magnitudes of multiple modelled hydrological fluxes, as obtained from the best available 

model solution for each sub-basin, are in the following analysed. 515 

With a long-term mean annual precipitation of ~250 mm y-1 in the HRB, the overall magnitudes of streamflow deficits, and 

thus of hydrological droughts, are clearly dominated by fluctuations in precipitation anomalies (Figure 10a), with a mean 

absolute anomaly of around ±50mm y-1 for the entire HRB or ~ 20% of the long-term mean water balance. In contrast, 

anomalies in total evaporation EA (here: EA = EI + ET + ID) exhibit much lower variability in this arid environment, with a 

mean absolute anomaly of about ±20 mm y-1. As water supply is the limiting factor for evaporation, the highest rates of EA 520 

occur in the wettest years (Figure 10b). Conversely, EA has a proportionally less impact on streamflow in dry years. In 

general it can be seen that precipitation anomalies of ~ -50 – -100 mm y-1 lead to streamflow anomalies of ~ -20 – -30 mm y-

1 (Figure 10c). Although SPEI is typically based on potential evaporation EP, arid and thus water-limited environments are 

rather insensitive to fluctuations in EP compared to fluctuations in P. In other words, there will be little difference in the 

partitioning of water fluxes if under the same annual precipitation of e.g. 500 mm yr-1, EP is 1000 or 1500 mm yr-1, as in both 525 

cases actual evaporation EA will be close to (or even exceed) 400 mm yr-1 and as therefore most of the available water will 

be evaporated. In contrast, more water will be evaporated as EA (even if EP remains stable) in years when more water is 

available and thus P is higher. By extension, the effects of evaporation on droughts in arid regions can only be meaningfully 

assessed by changes in EA. Haung et al., (2017) mentioned that actual evaporation affected strongly the propagation time of 

meteorological to hydrological drought in the Wei River Basin (WRB), a typical arid and semi-arid region in China.       530 

The modelled data suggest that during drought years, the reservoir at Kajakai Dam released slightly less water (UHRBD-ID2) 

than it received as an inflow (UHRBU-ID1), as shown in Figure 4. The mean difference between drought period inflow to 

and outflow from the reservoir remained stable at ΔQ ~ 0.9 mm y-1 throughout the four decades of the study period. This 

implies that there is no evidence that the reservoir neither moderated nor significantly amplified downstream propagation of 

streamflow deficits, underlining the very minor role of this reservoir for the drought pattern. In contrast, the modelled flow 535 

estimates for the reservoir at Dahla Dam suggest that this reservoir had some moderation effect on downstream flow deficits 

and thus drought propagation in the first decade of the study period (Wang et al., 2019). On average, the reservoir outflow 

(UARBD-ID5) during drought periods in that decade exceeded the inflow (UARBU-ID4) by ΔQ ~ 1.1 mm y-1 

(Supplementary Figure S1). However, this difference gradually decreased over time and eventually converged towards zero 

in the 2000-2006 period. In spite of uncertainties arising from data and the modelling process, this nevertheless indicates the 540 

possibility that the Dahla Dam reservoir has lost its, albeit very minor, drought-moderating function over the study period. 



18 

 

This broadly corresponds with the results of Wu et al. (2019) who found that the influence of reservoirs on long-term 

hydrological drought is limited and may even increase the duration and severity of a drought, whereas shorter hydrological 

droughts may be shortened and moderated by adequate reservoir operation. 

For further analysis the HRB was separated into an upper and a lower basin. The upper basin comprises UHRBD (ID2), 545 

CHRB (ID3) and LARB (ID3), which together drain into the lower basin, here defined as LHRB (ID7) only and thus for 

clarity of presentation excluding SISP (ID8). As illustrated by Figure 10, and consistent with the spatial analysis of drought 

indices in Section 5.3, the general pattern of anomalies corresponds well between the upper and the lower basin, suggesting a 

considerable level of spatial coherence and drought synchronicity. However,  reflecting the evolution of ΔSDI (Figure 8c), a 

subtle but gradual shift in the difference between streamflow anomalies of the upper and lower basins from, on average, -9.4 550 

mm y-1 in the 1970-1979 decade to 5.5 mm y-1 in the 2000-2006 period is evident (Figure 10c). Thus, while anomalies were 

less negative/more positive, therefore indicating proportionally “more” water, in the lower than in the upper basin at the 

beginning of the study period, the opposite was true at the end of the study period. This entails that in the first decade of the 

study period streamflow deficits from the upper basin were to some degree attenuated in the lower basin. This effect was 

gradually reduced and finally completely inversed in the last decade of the study period. During the 2000-2006 period 555 

streamflow anomalies from the upper basin were systematically amplified in the lower basin. The absence of a similar 

systematic shift in the difference of precipitation anomalies between the upper and the lower basin (Figure 10a) strongly 

suggests alternative reasons for the above effects. Mianabadi et al. (2020) similarly indicated that in the lower Helmand 

River Basin water availability issues cannot be attributed to the changes in precipitation in the downstream area itself.  

The analysis of the relative contributions of different water fluxes from the upper and lower basins, respectively, as well as 560 

their evolution over time as estimated from the models allowed some more detailed insights into these patterns. The 

combined water balance of all three sub-basins of the upper basin for the 1970-1979 period (Figure 11a) shows that of the 

mean annual precipitation P ~ 202 mm y-1 of the upper basin, 28% drained away as streamflow (Q ~ 56 mm y-1) and the 

remainder of 72% was released as combined evaporative fluxes (EA ~ 146 mm y-1). While transpiration (ET ~ 130 mm y-1) 

and interception evaporation (EI ~ 9 mm y-1) played a role throughout the entire upper basin, irrigation demand (ID ~ 7mm y-565 

1) was limited to the agriculturally used areas of the LARB (ID6) sub-basin and thus only accounted for ~ 4% of the water 

balance of the upper basin. The flow partitioning of the lower basin for the same period exhibited a considerably different 

pattern. It can be seen in Figure 11a that of the available water in the lower basin (~ 97 mm y-1), i.e. precipitation over the 

LHRB (ID7) sub-basin plus the combined inflow from the upper basin, 51% (Q ~ 49 mm y-1) is drained as streamflow and 

49% are released as evaporative flux (EA ~48 mm y-1). In comparison to the upper basin, irrigation demand in the lower 570 

basin is with ID ~ 13 mm y-1 a substantially larger fraction of the water balance (~ 14%) than in the upper basin. irrigation 

demand accounts with ~ 14% for a substantially larger fraction of the water balance in the lower basin (ID ~ 13 mm y-1). 

During the 2000-2006 period (Figure 11b), the upper basin received slightly less precipitation (P ~ 179 mm y-1) than in the 

1970-1979 period. However, the relative contributions of the different fluxes remained rather stable over time. The fraction 

of water drained as streamflow slightly decreased to 25% (Q ~ 44 mm y-1), while the fraction of evaporative fluxes 575 
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correspondingly increased to 75 % (EA ~ 135 mm y-1) of the water balance of the upper basin with similar increases for all 

three evaporative components (Figure 11b). In contrast, substantial shifts in the flux partitioning can be observed for the 

lower basin (Figure 11b). In spite of a reduction of available water to ~ 71 mm y-1 in the 2000-2006 period, the evaporative 

release (EA ~ 49 mm y-1) reached the same level as in the 1970-1979 decade. As illustrated by Figure 11b, the high levels of 

evaporative release were sustained by significant absolute and relative increases of irrigation demand to ID ~ 23 mm y-1 or 580 

32% of the water available in the lower basin (or ~10% of the water balance of the entire HRB). This, in turn, resulted in a 

reduction of streamflow to Q ~ 22 mm y-1, equivalent to a reduction from 51% of the water balance in the 1970-1979 decade 

to 31% in the 2000-2006 decade. The increases of ID and the corresponding decreases in Q are directly related to increases in 

the agricultural area over the study period (Figure 2). It is therefore plausible to assume that the inversion of the function of 

the lower basin from moderation to amplification of flow deficits and the associated droughts is largely a consequence of 585 

increases in an agriculturally used area which resulted in increases of the related irrigation water demand (AghaKouchak et 

al., 2015; Van Loon et al., 2016; Haile et al., 2019). In addition, inefficient irrigation schemes in the study region may lead 

to an underestimation of the actual irrigation water use. Therefore higher real-world irrigation water demand would even 

further strengthen the results, that the shift form of downstream moderation to the intensification of hydrological drought 

over the study period is largely an effect of human intervention. Margariti et al. (2019) found that human activities prolonged 590 

drought durations in all the European catchments they analysed. Ma et al., (2019) showed that human inventions are likely to 

have changed the positive correlation between meteorological and hydrological droughts to negative in the semiarid Heile 

River Basin, especially during warm and irrigation seasons.  

Overall, the magnitudes of flow deficits and the associated hydrological droughts are largely driven by precipitation deficits 

across the HRB. The two reservoirs in the HRB had a very minor effect on the propagation of flow deficits, with levels not 595 

exceeding 0.5% of the water balance of the HRB in the study period. Burger (2005) stated that the extreme drought in the 

Sistan region between 1999 and 2004 was not caused by the Afghan reservoirs, but rather this period was extremely dry in 

the whole catchment but in the future, the drought might be worsened due to extend the Kajakai reservoir. In contrast, the 

increase of agricultural area, mostly in LHRB (ID7), led to an increase of the basin-wide irrigation water demand (i.e. from 

LARB-ID6 and LHRB-ID7) from ~ 7% to ~ 12% of the water balance of the HRB. While at the scale of the entire HRB this 600 

remains of minor relevance for flow deficits, and thus hydrological drought, it led throughout the study period to a 

continuous and gradual change in the downstream propagation of flow deficits from moderation to amplification. This 

clearly underlines the argument by Haile et al. (2019), indicating that human activities such as expansion of cultivation, 

overexploitation of water resources, particularly for irrigation demands have an impact on altering the hydrological processes 

which are directly linked to drought. Our results further illustrate that flow deficits and droughts in the HRB clearly reflect 605 

the dynamic interplay between temporally varying regional differences in hydro-meteorological variables together with 

subtle and temporally varying effects linked to direct human intervention (Jahanzaib et al., 2020; Jiang et al., 2019; Saeidi et 

al., 2018, Wan et al., 2017).  
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5.5 Uncertainties, unresolved questions and limitations 

All the above results are necessarily conditional on a range of uncertainties and choices made during the modelling process 610 

(Beven, 2006; Hrachowitz and Clark, 2017). This is in particular relevant in the HRB, where detailed and reliable data are 

scarce. It entails further, that although the results of this study are largely consistent with the available data, the data 

themselves may inaccurately reflect reality. In addition, whereof sufficient quality, the available data may not have sufficient 

detail to accurately represent the underlying mechanistic processes and/or changes thereof over time in a model. Two major 

sources of uncertainty, due to the lack of detailed and high-quality data need to be explicitly highlighted for this study. First, 615 

the routing of flows through the two reservoirs in the HRB was estimated with a simple empirical relationship (Eq.2) based 

on data from the 1970-1979 period, under the assumption that this relationship did not change over time. In reality, reservoir 

operation rules may have changed over the study period, yet this cannot be clarified with the available data. However, even 

if such changes occurred, their impact is likely limited, as model evaluation at SISP (ID8) showed that adequate model 

performances were achieved throughout the entire study period (Table 3, Figure 4). 620 

A second not completely resolved issue is the observed and modelled considerable reduction of stream flow between LHRB 

(ID7) and SISP (ID8). The loss of ~ 60% of streamflow as the river crosses the desert region between Afghanistan and Iran 

can plausibly be explained by the combined effects of evaporation, deep infiltration losses and, most importantly, river water 

diversion into the completely ungauged Common Parian River that bifurcates from the Helamnad River just upstream of 

SISP (ID8). In the model it was represented by an unspecified loss factor KL. A clearer mechanistic interpretation was not 625 

warranted by the available data. Another cause that cannot be completely ruled out is a potentially low quality of the 

available streamflow data either at LHRB (ID7), at SISP (ID8), or both of them.      

We explicitly reiterate here that although this modelling study allowed robust insights into the pattern of drought 

characteristics, including changes in downstream drought propagation over time, the absolute magnitudes of variables 

reported herein remain, for the above reasons, highly uncertain. These magnitudes should therefore, under no circumstances 630 

and without more detailed data and understanding of the underlying processes, be used for direct policy advice in this arid 

environment where the transboundary nature of the HRB makes water scarcity a highly sensitive issue. 

Clearly, the most reliable way forward to reduce uncertainties in flow estimations in the the HRB is to do more observations 

and generate data, which can then be confronted with the model. Deficiencies in the model to reproduce these additional data 

will then, in an iterative process, allow model improvement (e.g. Fenicia et al., 2008; Hulsman et al., 2020). However, at this 635 

stage, further model improvement is problematic as the introduction of more complexity in the model will not be warranted 

by the available data and eventually merely lead to increased equifinality (Beven, 2006). Although beyond the scope of this 

study, a future comparison of alternative data sets to inform the model and an analysis of the associated potential differences 

in model results will be highly valuable to ensure reliable interpretations of the HRB and thus to  limit uncertainty for better 

policy advice on water resource management in the HRB.  640 
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6 Conclusions 

In combined data analysis and modelling study in the transboundary Helmand River Basin (HRB) we analysed spatial 

patterns of drought and changes therein over the 1970-2006 study period, based on the drought indices SPI, SPEI and SDI, 

as well as on absolute water deficits. The results provide some evidence that: 

(1) Drought characteristics varied throughout the study period. In general, the 2000-2006 and partly the 1970-1979 periods 645 

were drier than the decades in between. Depending on the drought index, mean drought duration reached DD ~ 20 10 – 

320 months and mean drought intensity DI ~ -1.05 month-1 in these drier periods, as compared to DD ~ 8 0 – 162 months 

and DI ~ -0.31 – -0.61.0 in the 1980-1999 period.  

(2) The basin-average decadal distributions of the drought indices largely exhibited no statistically significant differences, 

with the exception of significantly lower SPEI and SDI in 2000-2006 compared to the preceding decades. In addition, no 650 

systematic trend over time was detected for any of the basin-average drought indices.   

(3) All three drought indices exhibit considerable spatial coherence and synchronicity across the HRB throughout the study 

period. This indicates that in most cases droughts similarly affect the entire HRB with little regional or local differences.  

(4) The overall magnitudes of streamflow drought in the HRB are consistently controlled by precipitation deficits, while the 

effects of the two reservoirs, as well as water abstraction for irrigation on flow deficits, remain minor during drought 655 

years, accounting for only 0.5 % and ~10%, respectively, of the water balance of the HRB.  

(5) The downstream parts of the HRB moderated the further propagation of streamflow deficits and the associated droughts 

in the early decades of the study period. This drought moderation function of the lower basin was gradually and 

systematically inverted by the end of the study period, when the lower basin eventually amplified the downstream 

propagation of flow deficits and droughts.  660 

(6) The shift from drought moderation to drought amplification in the lower basin is very likely a consequence of 

agricultural activity and the associated increased irrigation water demand in spite of being only a minor fraction of the 

water balance.  

Overall the results of this study illustrate that the flow deficits and associated droughts in the HRB clearly reflect the 

dynamic interplay between temporally varying regional differences in hydro-meteorological variables together with subtle 665 

and temporally varying effects linked to direct human intervention. 
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Table 1. Summary of sub-basins and reservoirs in the Helmand River Basin. UHRB, CHRB and LHRB denote the Upper, 

Central and Lower Helmand River Basins, respectively, UARB and LARB are the Upper and Lower Arghandab River 

Basins, respectively and SISP is the Sistan Plain. The subscripts U and D are inflows into the reservoir upstream of the dams 

and outflows from the reservoirs downstream of the dams, respectively. 

  935 

Location 

ID 

Sub-basin 

Symbol 
Station name 

Latitude 

(º) 

Longitude 

(º) 

Average 

Elevation 

(m) 

Precipitation 

(mmy-1) 

Discharge 

(mmy-1) 

Aridity 

Index          

(-) 

Observation 

Period 

(daily/monthly) 

Reservoir 

Storage 

(106 m3) 

1 UHRBU 
Dehraout –  

Kajakai Dam inflow 
32.42 65.28 2865 300 130 0.29 1970–1979 (d) ---- 

2 UHRBD Kajakai Dam outflow 32.19 65.06 2798 300 111 0.29 1970–1979 (d) ---- 

3 CHRB - - - 1994 204 - 0.13 -  

4 UARBU 
Upper Arghandab – 

Dahla Dam inflow 
31.50 65.52 2830 254 91 0.22 1970–1979 (d) ---- 

5 UARBD Dahla Dam outflow 31.57 66.02 2776 254 88 0.22 1970–1979 (d) ---- 

6 LARB Qala-i-Bust 31.30 64.23 2509 225 32 0.13 1970–1980 (d) ---- 

7 LHRB Char Burjak 30.17 62.02 2610 229 43 0.16 1970–1979 (d) ---- 

8 SISP Sistan 30.49 61.46 2584 250 15 0.16 1970–2006 (m) ---- 

9  Kajakai Dam Reservoir 32.19 65.10 963 ---- ----  ---- 1800 

10  Dahla Dam Reservoir 31.52 65.54 1070 ---- ----  ---- 450 
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Table 2: Uniform prior and posterior distributions of model parameters for the calibrated models. The posterior column 940 

distributions show the parameter values of the best available parameter set as well as the 5/95th percentile of feasible 

solutions (in brackets). Note that loss factor KL had negligible influence and was thus set to 0 for the models of ID6 and ID7 

to keep to the principle of model parsimony.  

ID Sub-basin symbols Parameter Prior distribution Posterior distribution 

 

UHRBU 

Imax [mm] 0-2 0.13 (0.11-0.55) 

 Ce [-]  0.2-1 0.44 (0.36-0.57) 

 Sumax [mm] 40-800 250 (112-550) 

 β  [-] 0.2-3 1.08 (0.68-1.55) 

1 Pmax [mm d-1] 0.009-1 0.67 (0.65-0.70) 

 Tlag [d] 2-7 3.12 (3.00-3.84) 

 Kf [d-1] 0.01-0.1 0.07 (0.06-0.08) 

 Ks [d-1] 0.0009-0.01 0.001 (0.001-0.002) 

 Tth [°C]  -2.5 – 2.5 -1.12 (-1.42 -0.69) 

 Fdd [mm ℃-1 d-1] 0-3 0.38 (0.27-0.51) 

 

UARBU 

Imax [mm] 0-2 0.45 (0.10-0.83) 

 Ce [-] 0.2-1 0.84 (0.41-0.84) 

 Sumax [mm] 40-800 200 (100-430) 

 β [-] 0.2-3 1.73 (0.93-2.27) 

4 Pmax [mm d-1] 0.009-1 0.47 (0.15-0.47) 

 Tlag [d] 2-7 2.41 (2.00-3.01) 

 Kf [d-1] 0.01-0.1 0.07 (0.03-0.08) 

 Ks [d-1] 0.0009-0.01 0.001 (0.001-0.003) 

 Tth [°C]  -2.5 – 2.5 -1.35 (-1.50 -1.14) 

 Fdd [mm ℃-1 d-1] 0-3 0.85 (0.39-1.99) 

 

LARB 

Imax [mm] 0.1-3 1.66 (0.97-2.15) 

 Ce [-] 0.1-1 0.23 (0.18-0.33) 

 Sumax [mm] 40-600 455 (200-515) 

 β [-] 0.1-3.00 2.76 (1.56-2.82) 

6 Pmax [mm d-1] 0.01-0.1 0.04 (0.03-0.05) 

 Tlag [d] 2-7 3.45 (2.12-4.18) 

 Kf [d-1] 0.01-1.00 0.02 (0.01-0.02) 

 Ks [d-1] 0.0009-0.01 0.009 (0.008-0.01) 

  KL [-] 0.00 0.00 (0.00-0.00) 

7 LHRB 

Imax [mm] 0.1-3 1.58 (0.27-1.85) 

Ce [-] 0.1-1 0.19 (0.11-0.35) 

Sumax [mm] 40-600 515 (220-585) 

β [-] 0.1-3.00 2.81 (1.86-2.88) 

Pmax (mm/day) 0.01-0.1 0.03 (0.02-0.05) 

Tlag [d] 3-10 6.61 (3.42-7.12) 

Kf [d-1] 0.01-1.00 0.03 (0.02-0.05) 

Ks [d-1] 0.0009-0.01 0.009 (0.005-0.01) 

KL [-] 0.00 0.00 (0.00-0.00) 

8 SISP 

Imax [mm] 0.1-3 1.58 (0.27-1.85) 

Ce [-] 0.1-1 0.19 (0.11-0.35) 

Sumax [mm] 40-600 515 (220-585) 

β [-] 0.1-3.00 2.81 (1.86-2.88) 

Pmax [mm d-1] 0.01-0.1 0.03 (0.02-0.05) 

Tlag [d] 3-10 6.61 (3.42-7.12) 

Kf [d-1] 0.01-1.00 0.03 (0.02-0.05) 

Ks [d-1] 0.0009-0.01 0.009 (0.005-0.01) 
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KL [-] 0-1 0.34 (0.33 – 0.36) 

9 UHRBD 

ah [d-1] - 0.27 (0.13-0.40) 

bh [-] - 0.64 (0.50-0.77) 

ch [mm d-1] - -173 (-332- -15) 

al [d-1] - 0.13 (0.09-0.17) 

cl [mm d-1] - 217 (173-262) 

10 UARBD 

ah [d-1] - 0.21 (0.11-0.31) 

bh [-] - 0.86 (0.79-0.93) 

ch [mm d-1] - -58 (-84- -32) 

al [d-1] - 0.26 (0.11-0.42) 

cl [mm d-1] - 25 (17-33) 
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Table 3. Classification of standardized drought indices DI used in this study (SPI, SPEI and SDI). 970 

 

Classification DI [-] Probability [-] 

No drought DI > 0 0.501 

Mild drought -1 ≤ DI < 0 0.341 

Moderate drought -1.5 ≤ DI < -1 0.092 

Severe drought -2 ≤ DI < -1.5 0.044 

Extreme drought DI < -2 0.023 
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Table 4. Model performance metrics for calibration and validation in all study sub-basins. The values include the best 

performing model as well as the range of all solutions retained as feasible (in brackets)  975 

   

Location ID 
Sub-basin 

Symbol 

Calibration period 

(1971 – 1975) 

Validation period 

(1976–1979) 

ENS,Q ENS,log(Q) ENS,Q ENS,log(Q) 

1 UHRBU 0.82 (0.82-0.83) 0.91 (0.90-0.91) 0.80 (0.79-0.80)  0.86 (0.86-0.87) 

2 UHRBD 0.79 (0.78-0.80) 0.81 (0.79-0.82) 0.79 (0.79-0.80) 0.85(0.84-0.86) 

4 UARBU 0.83 (0.83-0.84) 0.85 (0.85-0.86) 0.73 (0.72-0.73) 0.78 (0.78-0.89) 

5 UARBD 0.89 (0.88-0.90) 0.92 (0.91-0.92) 0.74 (0.74-0.75) 0.80 (0.79-0.81) 

6 LARB 0.70 (0.69-0.71) 0.73 (0.71-0.74) 0.81 (0.80-0.83) 0.83 (0.81-0.86) 

7 LHRB 0.82 (0.81-0.83) 0.85 (0.83-0.86) 0.84 (0.82-0.86) 0.88 (0.86-0.91) 

  (1971 – 1975) (1976 – 2006) 

8 SISP 0.88 (0.86-0.89) 0.89 (0.87-0.89) 0.73 (0.68-0.74) 0.75 (0.74-0.77) 

 

 

 

 980 
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Figure 1. (a) The location of Helmand River Basin (HRB) in central Afghanistan, (b) elevation map of the HRB, also 

indicating the sub-basin boundaries, the locations of the sub-basin outlets and the agriculturally used area (as of 2006), (c) 

outline of the sub-basins analysed in this study, including the grid cells of CRU precipitation data used, (d) long-term mean 

annual precipitation P [mm y-1], (e) long-term mean annual potential evaporation EP [mm y-1] and (f) the aridity index IA= 985 

P/EP [-] 



36 

 

 

 

 

 990 

 

 

 

 

 995 

 

    

 

 

 1000 

 

 

Figure 2. Evolution of total agricultural area in the HRB (1976-2011) and Poppy cultivated area thereof (1994-2006). 
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 1020 

Figure 3. The distributed model structure consisting of parallel components (the structure of Model-1 used for UHRB, 

CHRB and UARB, Model-2 is used in LHRB, LARB and SISP) and 32 units of CRU grid cell, representing one subbasin 

each, characterized by an individual parameter set. Variables: P total precipitation [mm d-1], Ps snowfall [mm d-1], Pr rainfall 

[mm d-1], M snowmelt [mm d-1], Ptf throughfall [mm d-1], Pe effective precipitation [mm d-1], ET transpiration [mm d-1], Ei 

interception evaporation [mm d-1], Rf recharge of fast reservoir [mm d-1], Rs recharge of slow reservoir [mm d-1], ID irrigation 1025 

demand for LHRB and LARB, respectively., 𝑄𝑖𝑛 = 𝑄𝑈𝐻𝑅𝐵𝑈
+ 𝑄𝐿𝐴𝑅𝐵 + 𝑄𝐶𝐻𝑅𝐵  [mm d-1], Qf runoff from fast reservoir [mm 

d-1], Qs runoff from slow reservoir [mm d-1], Qtot = total runoff [mm d-1], Ssn storage in snow reservoir [mm], Si storage in 

interception reservoir [mm], SU storage in unsaturated reservoir [mm], Sf storage in fast reservoir [mm], Ss storage in slow 

reservoir [mm]. Parameters: Tt threshold temperature [℃], Fdd melt factor [mm ℃-1 d-1], Imax interception capacity [mm], 

SU,max storage capacity in unsaturated reservoir [mm], β shape parameter [-],Pmax percolation capacity [mm d-1], Ce runoff 1030 

generation coefficient [-], Kf storage coefficient of fast reservoir [d-1], Ks storage coefficient of slow reservoir [d-1], KL loss 

factor [-] and, Tlag lag time [d].  
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Figure 4. Precipitation and streamflow in UHRBU (ID1), UHRBD (ID2), LHRB (ID7), and SISP (ID8). The purple bars 

show the modelled snowfall PS [mm d-1], the dark blue bars the modelled snowmelt M [mm d-1] and the light blue bars the 

modelled rainfall PR [mm d-1]. The dashed black lines indicate the observed runoff and the shaded areas the uncertainty 1035 

ranges of modelled runoff during calibration, validation and prediction periods 
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Figure 5. Mean observed and modeled inflow, outflow, and storage volume at (a) the Kajakai and (b) Dahla Dam reservoirs 

during the 1970–1979 period 1040 
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Figure 6. Time series of monthly drought indices (based on 12 months accumulation time) SPI, SPEI and SDI for the sub-

basins ID1 – ID8 for the 1970 – 2006 study period 
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Figure 7. Decadal distributions and time series of mean basin (a)-(b) SPI, (c)-(d) SPEI and (e)-(f) SDI over the study period. 1075 

The dots in the box plots indicate the median values and the whiskers the 5/95th percentiles. The dark to light shaded dots in 

the time series plots indicate the monthly drought indices (based on 12 months accumulation time) for all months of January, 

April, July and October, respectively. The dark shaded areas indicate the envelope of trend lines for the trends estimated 

based on all months of January, April, July and October, respectively. The light shaded areas show the associated envelope 

of 5/95th confidence intervals. 1080 
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Figure 8. (a) decadal distributions of SPI, SPEI and SDI for the most upstream sub-basins (ID1-ID6) and the downstream 1090 

sub-basins (ID7-ID8), (b) decadal empirical cumulative distribution functions of SPI (thins red lines upstream basins, bold 

red lines: downstream basins) and SDI (thin blue lines: upstream basins, bold blue lines: downstream basins). Note that the 

blue shaded area is added for better visualization of the shifts in downstream basins only and does not have a specific 

meaning. (c) time series of differences between mean upstream and mean downstream SPI (ΔSPI: yellow and red shades) as 

well as between mean upstream and mean downstream SDI (ΔSDI: blue shades). The symbols with shades from dark to light 1095 

indicate the monthly SPI values (based on 12 months accumulation period) for the months January, April, July and October, 

respectively. The dark shaded areas indicate the envelope of trends in ΔSPI and ΔSDI, respectively, estimated based on all 

months of January, April, July and October, respectively. The light shaded areas show the associated envelope of 5/95 th 

confidence intervals. 
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Figure 9. Spatial distribution of (a)-(d) SPI and (e)-(h) SDI for the years 1977, 1987, 2002 and 2003, based on the grid cells 

of the model application.  
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 1135 

Figure 10. (a) Precipitation anomalies, (b) actual evaporation anomalies (here: EA = EI +ET) and (c) streamflow anomalies 

over the study period. All anomalies are calculated based on the 1970-2006 mean values. The dark shaded bars indicate the 

combined flows to/from the upper basin (ID1-ID6), the light shaded bars show the flows to/from the lower basin (ID7).  
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 1170 

Figure 11. Water balances of the Upper and the Lower basins, respectively for (a) the 1970-79 and (b) the 2000-2006 

periods. The size of the outer squares is equivalent to the total water available, i.e. for the upper basin precipitation P, for the 

lower basin precipitation P plus the combined inflow Q from the upper basin. The size of the internal rectangles of each flux 

(Q: streamflow, ET: transpiration, EI: interception evaporation and ID: irrigation demand) in each sub-basin is equivalent to 

its fraction of the total available water in the upper and lower basin, respectively. The fluxes represent the decadal mean 1175 

values and are shown in [mm y-1].    
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