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General Comments: This article correctly identifies a knowledge gap in rainfall-runoff
models wherein calibration typically considers uncertainty only in the model’s param-
eters, neglecting the uncertainty in forcing data. Additionally, to the best of my knowl-
edge, tying the DREAM calibration methodology to SWMM using a modified PySWMM
API is a new and useful contribution. For these reasons, the research that the author’s
propose is of great interest to the hydrologic community. However, the work done in
this paper towards addressing that knowledge gap is un- convincing. The authors aim
to “settle [the] problem” of rainfall uncertainty being left out of the calibration process.
Yet, at the end of the paper the problem remains unsettled and their arguments un-
defended. Deficiencies in the simplistic case study and calibration approach call into
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question the conclusions that the author’s method definitively demonstrates the dom-
inance of forcing data uncertainty in the calibration process. The rainfall uncertainty
model itself does not provide convincing evidence for the true magnitude of the rain-
fall uncertainty issue their calibrated rainfall model implies an underestimation of rain
depth greater even than the worst case described in the literature. Given the implica-
tions of the assertions posed in the introduction, and the lack of convincing evidence to
support those assertions, the contribution of this research to the hydrologic community
is hard to justify. Specific Comments:

Reply: Yes, you are right. the reason for the dominance of forcing data uncertainty is
that the model structural uncertainty was not considered. In the revised manuscript,
we added a first-order autoregressive model to represent the autocorrelation of the
residuals and thus to consider the structural uncertainty of the SWMM model. The un-
certainty associated with forcing data decreased obviously after considering the model
structural uncertainty. See Figure 1, thank you.

In Eq. 3 the authors offer the Sum of Squared Residuals as a common objective func-
tion for minimizing the residual. In the results, though, the authors swapped the SSR
in favor of the Nash-Sutcliffe Efficiency Index. Why? The Nash-Sutcliffe Index is well
known to have deficiencies for optimizing hydrograph behavior, and the author’s cali-
bration attempts in the case study seem to fail both this metric and the eye test. I would
recommend using more than one objective function to help ameliorate the drawbacks
of calibrating to any one function. The authors admit that the peak flow was poorly
captured by the “parameter-only” calibrated model; it may be beneficial for another ob-
jective function to be targeted at that hydrograph feature. Peak Difference=|Peak_sim
- Peak_obs|

Reply: Yes, you are right. Peak flow differences, total streamflow differences as well as
squared residuals were used as objective functions for the calibration and the Nash-
Sutcliffe Efficiency index, the peak flow bias and the total streamflow bias were used to
evaluate the calibration efficiency in the revised manuscript. Thank you.
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The poor calibration of a relatively simple case study system does much to undermine
the researcher’s conclusions on the impact of the rainfall uncertainty. Another option
would be to allow for parameters to vary for each subcatchment independently. This
increases the dimensionality of the calibration problem 34-fold, but the MCMC method-
ology within DREAM, and the pre-processing sensitivity analysis, make this reasonably
achievable.

Reply: Yes, you are right. However, those parameters with clear physical meanings,
such as the surface slope and Manning’s roughness, can be regarded as the same
between different subcatchments with the same land use type since the study area is
relatively small. Therefore, we still kept these parameters the same for subcatchments
with the same land use type considering the efficiency of computation. The parameter
“width” is sensitive to the shape of the subcatchment, so we allowed this parameter to
vary for subcatchments with different shapes in the revised manuscript. Specifically, the
subcatchments of the study area in this manuscript were divided into 8 types according
to their shapes, so there are 8 parameters for the parameter “width” in the revised
manuscript. Thank you.

The preponderance of my experience in calibrating SWMM has been focused on the
subcatchment parameter set (credit to the authors for identifying the myopia of the
community on that front). However, I find it hard to believe that the two options for
considering rainfall uncertainty are an additive correction factor and a multiplicative
one. This simplistic approach feels like less of a foray into an unexplored frontier of
calibrating rainfall-runoff models, and more of just adding another parameter to be
calibrated in the same manner as any other.

Reply: Yes, you are right. The storm depth multiplier model is relatively simple. But as
far as I know, most of the studies about input uncertainties use this multiplicative model
to identify the rainfall uncertainty and get reasonable results. I guess the main reason
why you think this model is not credible is the large underestimation of the rainfall depth
the model shows. However, one reason for the large errors of rainfall depths may be
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that we did not consider the structure uncertainty of the SWMM model and some errors
caused by model deficiencies were integrated into the rainfall depth errors; the other
reason may be that rainfall intensity is more easily underestimated in urban areas since
the measurement of rainfall intensity by rain barrels can be influenced by turbulent flow
near the orifice caused by urban wind and shading of rainfall by buildings. In the revised
manuscript, the model structure uncertainty was considered. The results illustrated that
uncertainties associated with rainfall decrease after considering the model structural
uncertainty. See Figure 1, thank you.

From my understanding, a narrow posterior distribution for a parameter is evidence of
a high confidence in that parameter’s optimal value. The conclusion from Fig 4 that
“most parameters are approximately Gaussian” is puzzling. Rather than relying on the
“approximately” disclaimer, why wasn’t a statistical test to demonstrate Gaussian-ness
performed.

Reply: Yes, you are right. a narrow posterior distribution for a parameter means a high
confidence in the parameter’s optimal value, which implies that the calibration method
can find reasonable values of parameters. Besides, all the parameters are calibrated in
a same Bayesian inference framework, which means that they have the same chance
to get their reasonable values, so the narrower the parameter distribution, the more
sensitive the parameter. Thank you.

I remain vexed as to the purpose of Figures 6 and 8. I wish they were explained in
the text rather than just referenced. I don’t have any clue what constant vs varied
mean in either Figure’s context. The authors claim that the narrowness of the 95%
confidence interval band around the median hydrograph “confirms the existence of
equifinality”. That seems logically inconsistent. Equifinality describes the phenomenon
that multiple parameter sets might yield the same hydrograph. It does not suggest that
every parameter set will yield the same hydrograph. If anything, that observation calls
into question the initial sensitivity analysis.
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Reply: Sorry, the evidence of the equifinality is not explained clearly in the manuscript.
In the revised version, we added some explanations about the equifinality as follows:
“The figure shows that the uncertainty of the simulated runoff is not as much as that
the posterior marginal probability distributions of the model parameters imply. In other
words, the uncertainty of the parameters is greater than that of the simulated runoff,
which means that there are some different parameter sets having similar simulated
results. This confirms the existence of the phenomenon of equifinality in the SWMM
model.” Thank you.

The general aim of this paper was to demonstrate that the uncertainty introduced by
forcing data is a significant contributor to the uncertainty in system behavior. However,
seeking to prove that by showing the improvement of a calibrated model by adding a
rainfall multiplier as another calibration parameter presents a catch-22. The better that
the initial calibration is, the less impactful the rainfall calibration will seem. The au-
thor’s conclusions are better supported the less carefully the system’s parameters are
calibrated. It would be a much more compelling paper structure to compare the calibra-
tion refinement from a rainfall uncertainty model vs another weakly studied uncertainty
source.

Reply: Yes, you are right. The identification of the influence of the rainfall uncertainty
is controlled by the initial calibration. As you suggest, we added a structure uncertainty
model into the calibration framework and compared the performance of the calibration
framework with and without rainfall uncertainty in the revised manuscript. Thank you.

Technical Corrections: To restate a previous question as a suggestion. Consider using
metrics beyond the NSE to evaluate the calibrated solutions.

Reply: The NSE, the peak flow bias, and the total streamflow bias were used to evalu-
ate the calibrated solutions in the revised manuscript. Thank you.

In Section 2.5, the linkage between DREAM and SWMM is described. The steps
enumerated don’t add any description value to Figure 1. Rather than a regurgitation
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of the Figure, I’d be interested to see some of the other questions I had be answered
in the delineation of this workflow. Such as, is there any difference in the workflow for
considering just the subcatchment parameters and the combined forcing/subcatchment
parameter sets?

Reply: The workflow of different calibration frameworks (with and without the storm
depth multiplier model) is similar. The multipliers of the storm depth multiplier model
are sampled in the framework considering the rainfall uncertainty but set to be 1 in
the framework not considering the rainfall uncertainty model. The workflow steps were
rewritten as follows. Thank you.

“Step 1. The parameters of the integrated model, combining the SWMM model, AR-1
model, and storm depth multiplier model, are sampled through the DREAM module
according to their prior probability distributions. If rainfall uncertainty is not considered,
the values of all the storm depth multipliers will be set to be one. Step 2. The sampled
parameter values are passed to the integrated model though the developed APIs. The
streamflow is then simulated by the model and the posterior probabilities are calcu-
lated based on the simulated and observed streamflow. Step 3. The Markov chain is
expanded through the DREAM algorithm according to the obtained posterior probabil-
ities. The termination condition of the Markov chain is then checked. If the termination
condition is met, stop the calibration, otherwise, return to Step 1.”

There are a number of capitalization/grammar mistakes. Such as The last sentence in
the abstract. Capitalize “The” “3.3 parameter sensitive analysis” should be “3.3 Param-
eter Sensitivity Analysis”

Reply: They have been revised, thank you.

The parenthetical citations seem. . . wrong.

Reply: It has been revised, Thank you.
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Fig. 1.
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