

Figure S1. Zambia districts and the land cover distribution at 20-m resolution from ESA-CCI (2016).

Table S1. Implementation of the Recursive Feature Elimination approach.

Recursive Feature Elimination

- 1. Train the RF model using the entire training predictor set;
- 2. Calculate R^2 performance on the testing sample and set it as the baseline R^2 ;
- 3. Calculate the importance of each predictor by:
 - Re-training the RF model without the selected predictor;
 - Calculate the new R² performance;
 - Calculated the change in performance as delta R^2 = baseline R^2 new R^2 . The higher the positive change in delta R^2 the more important is the predictor.
- 4. Rank the predictors based on their importance (higher delta R^2 to lowest delta R^2);
- 5. Remove the least important predictor (lowest delta R²), and update the predictor set;
- 6. Repeat step 1–5 until stop when the lowest delta R^2 is < 0.001;
- 7. Compute the importance rank (step 3–4) for the final predictor set.

Figure S2. Relationship between field-scale mean annual maize yields and coefficient of variation, as estimated by the random forest model. We observe an inverse relationship (Pearson correlation of -0.31) that shows that locations of lower mean annual yields tend to have higher variation on their inter-annual yields, while locations of consistent high yield productivity tend to show minimal variation.

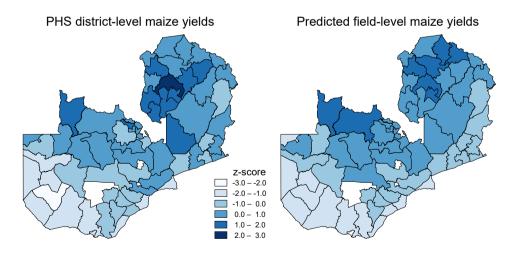
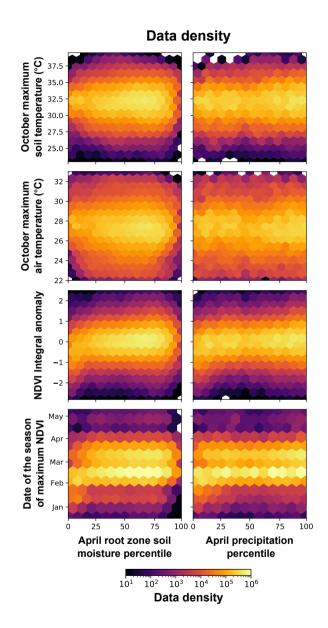
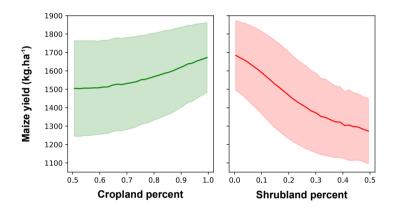




Figure S3. The z-score of the field-scale maize yields aggregate to the district-level in comparison with the z-score from the PHS district-level data.

 $\textbf{Figure S4.} \ \ \text{The number of grid cells used to calculate the mean yield anomaly values of each hexbin in Figure 8}$

3

Figure S5. Mean field-scale maize yield for different cropland and shrubland percent. Shrubland percent characterized how much the agricultural area is fragmented, and it showed to be a strong predictor (inversely correlated) to maize yield. The shade shows the standard deviation.