Dear Dr. Yuan,
Thanks for your quick response. We attach the original comments from the referees, our responses (blue texts) and the marked-
up manuscript below.
Regards,
5 Yifan Zhou
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Referee #1

We thank the referee for the efforts and constructive suggestions. We clarify the year range of the simulations, revise the
section structures, and add explanations of overestimation of drought area in August based on your suggestions. The detailed
responses are listed below.

Line 46-49: Repeated statements
Response: We deleted one of the repeated statements in the revised manuscript.

Line 167: "2000-2018" and later in line 183 "from 2000 to 2017". Please double check.

Response: The “2000-2018” in line 167 is referring to the year range of spin-up simulation. We then use the restart file of Dec
31th, 2018 to initiate the retrospective run, which starts from 2000 and extends to 2017, therefore, in line 183, “the year 2000
to 2017” is referring to the year range for the retrospective simulation. We now modify the text in line 179-180 to avoid
ambiguity.

Line 275: For forecast results of multiple members, the ensemble mean is based on standardized values of each member?
Please clarify

Response: Regarding the ensemble mean of the forecast results, we average all the ensemble members first and then
standardized the averaged time series. We now clarify in line 286 as “For simplicity, the results presented in the following
sections are only based on the standardized ensemble mean for forecast simulation related analyses, for which the
standardization is applied after the calculation of ensemble mean”.

Line 286-293: It seems the correlation is particularly high in northwestern regions of the study area even after 3-6 months.
Could you please explain this?

Response: The same initial conditions are used in hindcast-RIC and retrospective simulation. The northwestern region has
relatively low precipitation and thus this region has a long hydrological memory which is drawn from the initial conditions.
This phenomenon is further explained in detail in section 3.2. We now add this explanation to line 304-306.

Section 3.4 “Case study of the 2015 South and Southeast Asia drought" and section "3.5 Application to drought". The "case
study of 2015 drought" is not an "application to drought"? Please think about this and revise them accordingly if needed.
Response: We designed these two sections as we meant to use section 3.4 to show the capability of the model to capture a
historical drought event and to use section 3.5 to illustrate the potential to use soil moisture-based drought indicators in general.
We now modified the name of section 3.5 (line 476) to “Application of drought indicator” in the revised manuscript.

Line 472-474: This overestimation of drought area from August is due to the low performance of precipitation forecast during
the monsoon season? Please clarify this overestimation.

Response: Yes, and the overestimation of drought area for August is mainly attributed to the lower precipitation prediction
from the downscaled GEOS-S2S-1, which is shown in Figure S9. We now add this explanation to line 496-497 in the revised
manuscript.
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Referee #2

We appreciate the efforts, constructive suggestions and the positive feedbacks by the referee. Following your suggestions, we
enhanced our descriptions of the downscaling / bias-correction methods, and also add discussions related to ensemble
streamflow prediction (ESP) / reverse ESP. The detailed responses are listed below.

1. The article entitled “Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and
Southeast Asian river basins” develops a subseasonal to seasonal hydrological forecasting system for South and Southeast
Asia (SAHFS-S2S). The system applies the NoahMP land surface model, driven by CHIRPS for monitoring and driven by
GEOS-S2S for forecasting. The system shows skillful predictions of root zone soil moisture one or two months in advance
when initialized in rainy seasons and up to 8 months when initialized in dry seasons, due to the contribution from initial
conditions. The results could provide end-users with water resources information to help manage local drought risks. It is an
interesting study, and the paper is easy to follow. However, the conclusion of “the impact of initial conditions on forecast skill
depends on initialized dry/wet seasons” has been presented in previous researches. What’s innovation in this paper except for
the different study regions? Refer to Yuan, X., F. Ma, L. Wang, et al., 2016: An experimental seasonal hydrological forecasting
system over the Yellow River basin-Part 1: Understanding the role of initial hydrological conditions. Hydrology and Earth
System Sciences, 20, 2437-2451. Luo, L., Sheffield, J., and Wood, E. F.: Towards a global drought monitoring and forecasting
predictability, NWS Science & Technology Infusion Climate Bulletin, 2008. Shukla, S. and Lettenmaier, D. P.: Seasonal
hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast
skill, Hydrol. Earth Syst. Sci., 15, 3529-3538 Ma, F., Luo, L., Ye, A., et al. Seasonal drought predictability and forecast skill
in the semi-arid endorheic Heihe River basin in northwestern China, Hydrol. Earth Syst. Sci., 22, 5697-5709, 2018.

Response: We acknowledge that the impact of initial conditions on forecasting skills are widely studied using different
methods and applied in different regions, while the primary focus of our manuscripts is to establish a workflow of an
operational sub-seasonal to seasonal hydrological forecast system for South Asia. Our study differs from the literature that the
reviewer mentioned in the following aspects:

1) Our study domain — South Asia — is a challenging domain of interest to establish reliable S2S hydrological forecasts
due to highly localized weather variability, complex hydrology, and active human water management. In our work,
major efforts have been made to optimize the model settings, input parameters, forcing inputs, and the initializing
dates to provide the best representation of the hydrological states and fluxes for the domain, and establish a drought
monitoring and forecasting system for the local stakeholders. In this regard, the most important unique contribution
of the paper is the development and presentation of an operational S2S hydrological forecast system in a large and
challenging region. The presentation of initial condition results for this region does echo previous literature, as the
reviewer notes, and we cite that literature as appropriate. Given the diversity of climate zones and landscapes in our
study domain, we feel it is important to understand and to quantify this initial condition sensitivity for the presented
S2S forecast system, even if the topic has been addressed elsewhere in other studies. For example, recognizing the
relatively long soil moisture memory for forecasts initialized in the dry season in the drought-prone and food
insecure Helmand Basin has important implications for the potential to provide early food insecurity warnings.

2) Our study has a different consideration of the met-forcing fields. Compared with the above-mentioned studies that
using monthly CFS, NMME-phasel, and DEMETER (Yuan et al., 2016;Shukla and Lettenmaier, 2011;Luo et al.,
2008;Ma et al., 2018), the meteorological forcings of our study are drawn from GEOS5-S2S-V1 forecasts at daily
resolution and downscaled based on GDAS+CHIRPS. Utilizing the information of day-to-day variation could
potentially help improve the forecasting skills, which may alter the importance of initial condition.

3) In the above-mentioned manuscripts, the impact of the initial conditions is evaluated by comparing ESP and
revESP. These experiments show the relative importance of perfect initial condition and perfect meteorological
forcings without emphasis on hydrological forecast driven by meteorological forcings. The SAHFS compares two
sets of hindcast simulations, hindcast with real initial conditions (hindcast-RIC) and hindcast with climatological
initial conditions (hindcast-CIC). This comparison shows the relative importance of initial conditions in an actual
forecast system driven by downscaled meteorological forecasts.
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4) In our next step, the modeling platform that we built for this forecasting system, will be implemented with data
assimilation techniques (Nie et al., 2018;Getirana et al., 2020) and is under development of including human water
management such as irrigation (Nie et al., 2019). The inclusion of these parts may help to generate a better initial
condition, thus improving the forecasting skill.

2. The GEOS-S2S forecasts have been downscaled and bias-corrected before driving the
hydrological model. Please added some more details of the downscaling algorithm and
the performance before and after bias-corrected.

Response: We replace line 188-212 with the following text:

“In the forecasting system, the same meteorological forcing variables as in the monitoring system are extracted from GEOS-
S28S data products (see details of GEOS-S2S in section 2b). Due to the coarse resolution and inevitable bias of global climate
model outputs, these forcing variables from GEOS-S2S-V1 are downscaled and bias-corrected to corresponding monitoring
system forcing variables (i.e., precipitation from CHIRPS and other variables from GDAS) using a Generalized Analog and
Regression Downscaling (GARD) algorithm (https://github.com/NCAR/GARD; Gutmann et al. (2020)).

This downscaling algorithm takes a training dataset, prediction dataset, and observation dataset as inputs. The observation
dataset contains records of variables (dependent variables) with targeted fine spatial resolution, for example, the precipitation
from the CHIRPS dataset. The training dataset includes records of coarse spatial resolution variables (independent variables),
which have the same time resolution as the dependent variables, for example, hindcasted GEOS-S2S-V1 precipitation. The
prediction dataset contains the records of the same coarse-resolution variables as the training dataset but acquired in the forecast
period—for example, new GEOS-S2S-V1 forecast precipitation. The GARD algorithm downscales the prediction dataset to
the resolution of the observation dataset with an analog-regression approach.

This analog-regression approach takes two steps to downscale one variable at one-time step in one fine-resolution grid. In the
analog step, the algorithm selects a user-defined number of training records whose values are the closest to the prediction
records from the coarse-resolution grid cell that includes the fine-resolution grid cell. In the regression step, we then regress
the selected training records on the observation records from corresponding time steps in the fine-resolution grid cell. The
prediction record is fed to this trained linear regression model to calculate the downscaled values of the variable at the targeted
fine spatial resolution.

In this application, we apply GARD to downscale each variable as a function of the same variable in the training datasets (e.g.,
precipitation to predict precipitation). GARD has the capability to use multiple predictor variables to improve downscaling
accuracy, but the influence of the different combinations of independent variables is beyond the scope of this paper.”

To address the evaluation of the downscaling method, we add Fig. S1-5 to supplements and the following text, beginning at
line 233:

“The performance of the downscaling method is evaluated at the monthly time scale in the five major river basins in South
Asia using root mean squared error (RMSE) (Fig. S1-5). The RMSE is first calculated for GEOS before and after downscaling
against the retrospective forcing (i.e. the combination of GDAS and CHIRPS) and then normalized by the range of the
retrospective forcing.

Overall, the RMSE of air temperature, surface pressure, and relative humidity is greatly reduced after downscaling. In addition
to the GARD algorithm, the applied CDF matching has further reduced the RMSE for precipitation. For other fields, the
impacts of downscaling differ across basins. For instance, downscaling leads to reduced RMSE of wind speed for the Ganges
basin while its impact on shortwave and longwave radiation is marginal.”

3. The impact of initial conditions is analyzed using the difference between hindcast-RIC and hindcast-CIC simulations. While
many studies have analyzed the role of initial conditions by two experiments: Ensemble Streamflow Prediction (ESP) and
reverse-ESP (revESP). Some discussion regarding the difference between them may be added.

Response: We acknowledge that ESP and revESP experiments have been widely used to evaluate the importance of the initial
conditions. ESP simulations sample meteorological forcings from historical years while using “perfect” initial conditions.
RevESP samples initial conditions from historical years while using “perfect” meteorological forcings. Comparing ESP and
revESP to retrospective simulations yields estimates of the relative importance of initial condition and meteorological forcing.
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In our manuscripts, we evaluate the role of the initial condition in providing skillful hydrological forecasts within SAHFS-
S2S. We compare two sets of hindcast simulations, hindcast with real initial conditions (hindcast-RIC) and hindcast with
climatological initial conditions (hindcast-CIC). Although the design of the hindcast-CIC experiment is different from the
revESP experiments, the initial conditions of both of the experiments provide no information on year-to-year variations. We
think that comparing hindcast-CIC with hindcast-RIC is sufficient to study the role of initial condition in SAHFS-S2S.

We added the following statements to line 416-419 in the revised manuscript.

“The impact of initial condition has also been studied using ESP and revESP methods (Yuan et al., 2016;Shukla and
Lettenmaier, 2011;Luo et al., 2008;Ma et al., 2018). These studies have yielded similar conclusions regarding the fact that
initial condition has a longer impact when the forecast is initialized in a dry season and a shorter impact when the forecast is
initialized in a wet season.

Minor comments

4. Line 40: The meaning of the sentence “The forecast period ... in recent years” is not well understood.
Response: We will delete this sentence as the sub-monthly to monthly forecast is beyond the scope of the discussion of this

paper.

5. Line 44: What is “land component”.
Response: We modified the phrase to the “land surface model” in line 42 the revised manuscript.

6. Line 46: The sentence “The influence of initial hydrological ...” is repeated.
Response: We delete one of the sentences.

7. The depth of root zone soil moisture is 1 m?

Response: In Noah-MP, there are four soil layers with thickness varying from 0.1, 0.3, 0.6, and 1 m from the top to the bottom.
In this study, we define the depth of root zone soil moisture to be 1 m, which we believe is a reasonable assumption for most
of the croplands. We now add the following definition to line 294: “The depth of root zone soil moisture is defined as 1 meter
in this study.”

8. Some figures, such as Fig. S1, S3, S6, S7, in supplement information are not mentioned in the paper.

Response: We add the following sentences to the manuscript to address this issue. Note the change of figure numbers are due
to additional figures are added to the supplement document.

Line 375: Short memories are generally present in areas receiving considerable summer monsoon precipitation, such as the
west coast and northeast parts of India, the southern slopes of the Himalayas, and the west coast and the southeast of the
Indochinese peninsula (Fig. 8, S8).

Line 400-401: The elimination of the initial condition is also observed rather quickly in June in the Mekong basin (Fig. S9)
Line 407-408: In the Brahmaputra basin, the impact of the initial condition also lasts for the entire 9-month prediction
period (Fig. S10).

Line 474: The SAHFS-S2S shows similar skills forecasting drought categories in the Ganges (Fig. S13), Brahmaputra (Fig.
S14), and the Indus (Fig. S15) basins.

9. The ESA-CCI SM derived from remote sensing observation has many missing data, so how to deal with the missing data?
Response: We didn’t conduct any special treatment for missing data. Rather, to make a fair comparison, when calculating the
monthly values from hindcast and retrospective simulations, we only use data at dates when ESA-CCI SM are available as
well. We now add this explanation to line 424-426.

10. In data section, many datasets are used. Here, I suggest that a data table, including data
sources, detailed information and variables used, should be listed for easily read.
Response: We now include the Table 1 in the manuscript.
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11. Human activities, such as irrigation, has great influence on soil moisture, how to consider

irrigation in the NoahMP land surface model?

Response: We thank the reviewer for pointing this out. In the work of Nie et al. (2018,2019), irrigation with source water
partitioning has been implemented into Noah-MP along with GRACE data assimilation, which has improved the simulation
of water and energy fluxes for High Plains in the US, including surface soil moisture, which is a heavily irrigated region with
groundwater depletion issue. We are working to transfer and customize this set up for South Asia and explore how this may
impact the forecasting skill.

12. Line 330: Please add a figure of monthly evapotranspiration (ET) for easily explaining.
Response: We now add Fig. S6 to the supplement document and reference Fig. S6 in line 335.

13. Line 780: Figure 7: The difference is computed as correlation between RIC and CIC?

Response: The difference isn’t referring to a direct correlation between RIC and CIC. The correlation difference is calculated
as the correlation between hindcast-RIC and retrospective simulations minus the correlation between hindcast-CIC and
retrospective simulations. This correlation difference denotes the loss of prediction skill without informative initial conditions.

14. In the Case Study of the 2015 South and Southeast Asia section, I suggest a spatial distribution map showing the
comparation of drought conditions between retrospective simulation and hindcast ensemble mean may be added.

Response: We add the spatial distribution map (Fig. S11, S12) to the supplement.

We also add the following texts to line 453.

“The forecast of RZSM standardized anomaly generally captures the spatial pattern in the first two months in both the Ganges
basin and the Mekong basin (Fig. S11, S12). «

15. Figure 9: the title of right subplots should be (b), (d), (f).
Response: We modify the title of the right subplots to be (b), (d), and (f).

Reference:

Getirana, A., Rodell, M., Kumar, S., Beaudoing, H. K., Arsenault, K., Zaitchik, B., Save, H., and Bettadpur, S.:
GRACE Improves Seasonal Groundwater Forecast Initialization over the United States, Journal of
Hydrometeorology, 21, 59-71, 2020.

Gutmann, E. D., Hamman, J. J., Clark, M. P., Eidhammer, T., Wood, A. W., Arnold, J. R., and Nowak, K.:
Evaluating the effect of regional climate inference methodologies in a common framework, In review, 2020.
Luo, L., Sheffield, J., and Wood, E.: Towards a global drought monitoring and forecasting capability, 33rd
NOAA Annual Climate Diagnostics and Prediction Workshop, 2008, 20-24,

Ma, F., Luo, L., Ye, A., and Duan, Q.: Seasonal drought predictability and forecast skill in the semi-arid
endorheic Heihe River basin in northwestern China, Hydrology and Earth System Sciences, 22, 5697-5709, 2018.
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Anderson, M. C., and Hain, C.: Groundwater withdrawals
under drought: Reconciling GRACE and land surface models in the United States High Plains Aquifer, Water
Resources Research, 54, 5282-5299, 2018.

Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Arsenault, K. R., Li, B., and Getirana, A.: Assimilating
GRACE into a Land Surface Model in the presence of an irrigation - induced groundwater trend, Water
Resources Research, 2019.

Shukla, S., and Lettenmaier, D.: Seasonal hydrologic prediction in the United States: understanding the role of
initial hydrologic conditions and seasonal climate forecast skill, Hydrology and Earth System Sciences, 15, 3529-
3538, 2011.



Yuan, X., Ma, F., Wang, L., Zheng, Z., Ma, Z., Ye, A., and Peng, S.: An experimental seasonal hydrological
forecasting system over the Yellow River basin—Part 1: Understanding the role of initial hydrological conditions,
245 Hydrology and Earth System Sciences, 20, 2437, 2016.



Table 1: Summary of datasets used in this study. The meteorological forcing fields include precipitation (precip), downward

long-wave radiation (LW), downward shortwave radiation (SW), air temperature (Ta), specific humidity (Q), surface air

250 pressure (P), zonal (U), and meridional (V) wind speed.

Data Period of Spatial Temporal Variable used Reference
Record resolution resolution
CHIRPS | 1981-present 0.05° 1 day Precip Funk et al., 2015
GDAS 2000-present 1°x1° 6 hours | LW,SW,Ta, Q,P,U, V National Climatic Data
gradually Center, 2020
improved to
0.125° x
0.125°
GEOS- 1981-2018 1°x1.25° 1 day Precip, LW, SW, Ta, Q, Borovikov et al., 2017
S2S-V1 Jan P, UV
GEOS- 1981-present 0.5°x0.5° 1 day Precip, LW, SW, Ta, Q, Molod et al., 2020
S2S-V2 P,U,V
ESA- 1978 Nov - 0.25°x0.25° 1 day Surface soil moisture Gruber et al., 2019
CCI SM 2019 Dec
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Figure S1: Comparison of Air temperature (T), precipitation (Precip), specific humidity (Q), surface pressure (P), solar radiation
(SW), longwave radiation (LW), north-south wind speed (NW), east-west wind speed (EW) among Retrospective, raw GEOS-S2S-
V1 and downscaled GEOS-S2S-V1 meteorological forcing in the Helmand basin. The root mean squared error normalized by the
range of the retrospective meteorological forcing (NRMSE) is shown as the values in each subplot. R denotes the NRMSE between
raw GEOS-S2S-V1 and retrospective forcing and D denotes the NRMSE between downscaled GEOS-S2S-V1 and retrospective

forcing.
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Figure S2: The same as Fig. S1 but in the Brahmaputra basin.
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Figure S3: The same as Fig. S1 but in the Ganges basin
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Figure S4: The same as Fig. S1 but in the Indus basin
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Figure S5: The same as Fig. S1 but in the Mekong basin
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Figure S7. The climatological monthly precipitation and evapotranspiration (ET) in the Indus basin from retrospective and hindcast-
RIC simulations.
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Figure S11. The spatial distribution of monthly RZSM standardized anomaly for 2015 South and Southeast Asia drought calculated
from the retrospective simulation
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Figure S12. The same as Fig. S11 but calculated from ensemble mean of the hindcast-RIC simulation
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Developing a hydrological monitoring and sub-seasonal to seasonal
forecasting system for South and Southeast Asian river basins
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Corresponding to: Benjamin F. Zaitchik (zaitchik@jhu.edu)

Abstract. South and Southeast Asia is subject to significant hydrometeorological extremes, including drought. Under rising
temperatures, growing populations, and an apparent weakening of the South Asian monsoon in recent decades, concerns
regarding drought and its potential impacts on water and food security are on the rise. Reliable sub-seasonal to seasonal (S2S)
hydrological forecasts could, in principle, help governments and international organizations to better assess risk and act in the
face of an oncoming drought. Here, we leverage recent improvements in S2S meteorological forecasts and the growing power
of Earth Observations to provide more accurate monitoring of hydrological states for forecast initialization. Information from
both sources is merged in a South and Southeast Asia sub-seasonal to seasonal hydrological forecasting system (SAHFS-S28S),
developed collaboratively with the NASA SERVIR program and end-users across the region. This system applies the Noah-
MultiParameterization (NoahMP) Land Surface Model (LSM) in the NASA Land Information System (LIS), driven by
downscaled meteorological fields from the Global Data Assimilation System (GDAS) and Climate Hazards InfraRed
Precipitation products (CHIRP and CHIRPS) to optimize initial conditions. The NASA Goddard Earth Observing System
Model - sub-seasonal to seasonal (GEOS-S2S) forecasts, downscaled using the National Center for Atmospheric Research
(NCAR) General Analog Regression Downscaling (GARD) tool and quantile mapping, are then applied to drive 5-km
resolution hydrological forecasts to a 9-month forecast time horizon. Results show that the skillful predictions of root zone
soil moisture can be made one to two months in advance for forecasts initialized in rainy seasons and up to 8 months when
initialized in dry seasons. The memory of accurate initial conditions can positively contribute to forecast skills throughout the
entire 9-month prediction period in areas with limited precipitation. This SAHFS-S2S has been operationalized at the
International Centre for Integrated Mountain Development (ICIMOD) to support drought monitoring and warning needs in the

region.
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1 Introduction

South and Southeast Asia is one of the most populated areas in the world, and a significant portion of livelihoods depend
directly or indirectly on smallholder agriculture. Agriculture is one of the most weather-dependent human activity (Hatfield et
al., 2011), and smallholder systems are particularly vulnerable to weather variability, including extreme events such as drought.
South and Southeast Asia have been experiencing anthropogenic warming since the 1950s (Sivakumar and Stefanski, 2010),
and the warming is projected to continue in the near future (Barros and Field, 2014). The frequency of extreme weather events,
including droughts, has also been increasing under this warming trend, with implications for food security and social stability
in a conflict-prone region that already includes extensive marginal agriculture on semi-arid lands (Samaniego et al., 2018).
Subseasonal-to-seasonal hydrological forecast systems (S2S-HFS) have the potential to aid preparedness for these extreme
events. Such systems have been implemented all over the world at the scale of large river basins (Yuan et al., 2016;Getirana
et al., 2009), countries (Xia et al., 2012;Bell et al., 2017;Shah et al., 2017), continents (Wanders et al., 2019;Sheffield et al.,
2014;Yuan et al., 2013) and the entire globe (Alfieri et al., 2013;Yuan et al., 2011;Wanders and Van Lanen, 2015).

An S2S-HFS generally includes three components—a meteorological forecast, a downscaling method, and a hydrological /
land surface model (Yuan et al., 2015;Hao et al., 2017). The presence of a land surface model in this system means that
hydrological forecasts can draw skill from both the quality of meteorological forecast and the accuracy of modelled initial
hydrological states. The influence of initial hydrological states has a more substantial impact during the early prediction period,
while meteorological forecast dominates later months (Shukla and Lettenmaier, 2011). The initial condition, however, can still
positively contribute to the forecast skill several months after the initialization (Samaniego et al., 2019). This contribution can
come from the memory of deeper soil moisture, groundwater storage and cumulated snow pack in earlier seasons, which
provides the potential for hydrological forecasts to have skills greater than meteorological S2S forecasts (Koster et al., 2010).
South and Southeast Asia present both a challenge and an opportunity in this regard. The challenge is that S2S meteorological
forecasts can be quite difficult in some areas. For example, de Andrade et al. (2019) study the skill of meteorological S2S
forecasts and find that for multiple initialization dates, the forecasts lose meaningful skill within four weeks of initialization.
Similarly, Jie et al. (2017) conclude that the operational climate models from the WCRP Seasonal to Subseasonal Prediction
Project lack the skill for prediction of the Asian summer monsoon, a major precipitation source of most areas in South Asia,
beyond one month in advance. The opportunity is that many rivers in major basins of South and Southeast Asia are sourced
from mountainous regions with significant snowpack and seasonally frozen soil water, such that a properly initialized
hydrological forecast has the potential to add considerable predictive power beyond the meteorological forecast.

In this study, we aim to establish an operational fine-resolution, continental hydrological monitoring and forecasting system
for South and Southeast Asia: The South and Southeast Asia Hydrological Forecast System-S2S (SAHFS-S2S). This system
includes downscaled meteorological fields from a dynamically-based S2S meteorological forecast system, an advanced land
surface model, and post-processing tools to derive drought indicators. The system aims to provide end-users in South and

Southeast Asia with water resources information to help manage local drought risks and strengthen food security.
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We first test the forecasting system in hindcast experiments against a retrospective run of the monitoring system, which is our
best estimate of hydrological states, and available satellite-derived estimates of soil moisture, the critical variable for our
drought monitoring goals. An additional control set of hindcast simulations are designed to evaluate the importance of initial
conditions to the hydrological forecast skill. All settings in this set of control hindcast simulations are the same as the forecast
system except that the initial conditions are set as the same climatological hydrologic states averaged from the entire hindcast
period.

Section 2.1 describes the precipitation pattern in research areas and major river basins. Section 2.2 describes the dataset used
in this study. Details of the monitoring and forecasting system are described in section 2.3 and section 2.4, respectively. The
post-processing of both systems is described in section 2.5. The comparisons among different simulations, the importance of
the initial conditions, and validation of both systems and applications of the systems are discussed in section 3. Finally, the

implications, limitations, and possible future work are discussed in section 4.

2 Methods
2.1 Research area and precipitation patterns

In this study, all simulations are performed on a domain within the South and Southeast Asia region, ranging from 8 °N to 45
°N and 58 °E to 123 °E. The analysis, however, focuses on a study domain, mainly including five major river basins and
surrounding areas (Fig. 1a). The five major river basins in this South and Southeast Asia study domain are the Helmand, Indus,
Ganges, Brahmaputra, and Mekong basins.

Among these five river basins, the Mekong, Brahmaputra, and Ganges have the highest average precipitation, annually:
1677mm, 1227mm, and 1108mm, respectively. These three basins are strongly influenced by the South Asian monsoon pattern,
and most precipitation falls in summertime monsoon season (80% in the Mekong basin, 70% in the Brahmaputra basin, and
85% in the Ganges basin). The monsoon seasons generally start in May, June, and July in the Mekong basin, the Brahmaputra
basin, and the Ganges basin, respectively, and ends in late September or early October. The Mekong and Brahmaputra basins
have considerable precipitation variations between the upper and lower basins. Moisture that enters the basins from the south
is naturally blocked by the Himalaya ranges and cannot reach the upper basins of these river systems. The upper Brahmaputra
basin suffers from a direct rain shadow effect of the Himalayas and has precipitation amount less than one-fourth of the
precipitation in the lower Brahmaputra basin (Immerzeel, 2008). Although the monsoon precipitation falls mostly in the lower
Mekong basin, snow accumulated in the upper Mekong basin provides vital water resources for the entire basin during pre-
monsoon and dry seasons (Frenken, 2012).

In the Indus basin, the seasonal cycle is also influenced by the monsoon climate (Chen et al., 2016). Most precipitation falls
during the monsoon season from July to September (199mm), accounting for 51% of the annual average precipitation
(389mm). The pre-monsoon and winter seasons, however, also contribute an essential part of the precipitation, while the post-

monsoon period is the driest season. Despite providing less total precipitation than the summer monsoon, winter precipitation
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is vital for wheat and barley crops. Indus also has significant spatial precipitation variation. Most precipitation falls in the
mountainous regions in the upper basin, while the lower basin lies in one of the driest areas in South Asia. Melting water from
snow and glaciers in these mountain ranges provides a considerable amount of fresh water to the Indus river (Fowler and
Archer, 2000).

The Helmand basin has hyperarid to arid climate (Whitney, 2006), with an annual average precipitation of only 144mm. The
seasonal cycle of precipitation is different from the other four basins, as the maximum precipitation occurs during the winter
season, which accounts for 76% of the total precipitation. The Helmand basin also suffers from high temperature and extreme

wind which intensify the aridity in the basin.

2.2 Data

Datasets used in this research include the daily Climate Hazards Center InfraRed Precipitation data (CHIRP) and Climate
Hazards Center InfraRed Precipitation with Station data (CHIRPS), National Oceanic and Atmospheric Administration
(NOAA)’s Global Data Assimilation System (GDAS), NASA’s Goddard Earth Observing System Model sub-seasonal to
seasonal forecast version 1 and version 2 (GEOS-S2S-V1 and V2), and the European Space Agency’s Climate Change
Initiative for Soil Moisture (ESA-CCI SM) (Table 1).

CHIRP is a precipitation dataset developed by Climate Hazards Center at University of California, Santa Barbara. This dataset
has a quasi-global (50 °S - 50 °N and all longitude) spatial coverage and is derived from satellite data (Funk et al., 2015). The
data is available from 1981 to near real-time present with a 2-3-day latency. This data has 0.05-degree spatial resolution, and
the daily precipitation product is used in this research. CHIRPS is a precipitation dataset derived by combining the CHIRP
dataset with in-situ station data (Funk et al., 2015). The specifications of the dataset are similar to CHIRP, except that this
dataset has about 3-week latency. In this study, the CHIRP/CHIRPS dataset provides the precipitation field in the monitoring
system (see section 2.3 for details) and CHIRPS is used as the reference for downscaling precipitation forecasts in the
forecasting system (see section 2.4 for details).

GDAS is an atmospheric analysis system developed at the National Center for Environmental Prediction (NCEP) at NOAA
(National Climatic Data Center, 2020). It is produced by assimilating surface observations into a Global Forecast System
(GFS). The assimilated surface observation includes balloon data, wind profiler data, aircraft reports, buoy observations, radar

observations, and satellite observations (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-

assimilation-system-gdas). The GDAS dataset has a 6-hourly temporal resolution and produces short-term meteorological

forecasts at 0-hour, 3-hour, 6-hour and 9-hour lead time. GDAS data are available from 2000 forward and have real-time
updates. The spatial resolution starts at about 1° x 1° in the year 2000 and has gradually improved to an equivalent grid of
0.125° x 0.125°, since early 2015. In this study, seven meteorological variables from GDAS are used as forcings in the
monitoring system (see section 2.3 for details) and baselines for meteorological downscaling in the forecasting system (see
section 2.4 for details). These variables include downward long-wave radiation, downward shortwave radiation, air

temperature, specific humidity, air pressure, zonal and meridional wind speed fields.
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GEOS-S2S-V1 is a meteorological forecast dataset produced by the GEOS atmospheric model at the Global Modeling and
Assimilation Office (GMAO) at NASA Goddard Space Flight Center. GEOS-S2S-V1 forecasts were initialized about every
five days in hindcast experiments and forecasts from 2000 to 2017 and produce daily forecasts for nine months. In each month,
one forecast initialization date contains ten ensemble members while others only have one. GEOS-S2S-V1’s spatial resolution
is 1°%x1.25°.

Eight variables from daily GEOS-S2S-V1, including the same seven variables as in GDAS and precipitation rate variables (the
eighth variable), are used in this research.

ESA-CCI SM is a global gridded surface soil moisture dataset derived from remote sensing observation (Gruber et al., 2019).
The ESA-CCI SM contains three sub-datasets: ACTIVE dataset, PASSIVE dataset, and COMBINED dataset. The ACTIVE
dataset is derived by merging satellite datasets measured by active scatterometer instruments. The ACTIVE dataset spans from
August 1991 to December 2019. The PASSIVE dataset is derived by merging satellite datasets measured by passive radiometer
instruments. The PASSIVE dataset spans from November 1978 to December 2019. The COMBINED dataset is merged and
rescaled from the ACTIVE and the PASSIVE dataset. All three sub-datasets have a daily temporal resolution and 0.25° spatial
resolution. The COMBINED dataset is used in this study to evaluate the hydrological monitoring and forecasting system.

2.3 Monitoring system

The monitoring system is an instance of a Land Data Assimilation System (LDAS), which is a technique that merges
observations with physically-based models to produce optimal estimates of terrestrial hydrological states and fluxes (Rodell et
al., 2004;Mitchell et al., 2004). For purposes of monitoring hydrological extremes, our process consists of three steps (Fig. 2):
1) meteorological data processing; 2) land surface model simulations; and 3) post-processing to obtain relevant metrics. The
first two steps are completed within NASA’s Land Information System Framework (LIS; Kumar et al. (2006)).

Our meteorological estimates consist of the seven GDAS variables listed above, plus precipitation. Total precipitation is
extracted from CHIRPS at a daily scale for retrospective analysis. Daily precipitation is disaggregated to 6-hourly estimates
based on the diurnal cycle of MERRA-2 precipitation, using LIS’s Land surface Data Toolkit (LDT; Arsenault et al. (2018)).
The remaining meteorological forcing variables are extracted from GDAS and downscaled to the spatial scale of the monitoring
system (5 km), using bilinear interpolation with lapse-rate and aspect-slope correction within LIS.

The land surface model uses information from meteorological forcing variables to estimate hydrologic variables through a
physically-based representation of hydrologic processes and land surface energy balance. For this study, we present a
monitoring system that uses the Noah-MultiParameterization (Noah-MP) land surface model. Noah-MP is an augmentation of
the Noah LSM, which was first implemented in the NCEP Eta Data Assimilation System (EDAS) mesoscale forecast suite and
NCEP Global Forecast System (GFS) to provide land surface feedback to climate models (Ek et al., 2003). The Noah LSM
provides feedback by simulating the water fluxes and energy balance among canopy, vegetation, soil, streamflow, and snow

(Livneh et al., 2010;Ek et al., 2003). Noah-MP augments the model representation of physical processes in the surface energy
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balance, snow and frozen soil, groundwater, runoff, and leaf dynamics. In addition, Noah-MP enables multiple options for a
variety of physical processes within the model (Niu et al., 2011;Yang et al., 2011).

A variety of spin-up techniques has been used to acquire initial conditions for hydrologic models (Seck et al., 2015) and land
surface models (Cai et al., 2014;Nie et al., 2018). Here, a 57-year offline spin-up is performed by simulating the period 2000-
2018, three times, to obtain equilibrium hydrological states (e.g., groundwater storage) under prevailing climate patterns for
our meteorological data sources. These equilibrium states, in principle, help monitoring simulations reach the best estimation
of hydrological outputs once the monitoring period begins. The monitoring system is then initialized on January 1st, 2000,
owing to the availability of the GDAS data product, and is run up to near real-time. The system operates at a 15-minute time
step and generates water and energy fluxes and states at a 5-km spatial resolution that we save at daily temporal resolution,
including soil moisture, evapotranspiration, terrestrial water storage, snow water equivalent, among others. The system has
satellite data assimilation capabilities (Getirana et al., 2020c;Kumar et al., 2020;Xue et al., 2019;Kumar et al., 2019), but the
simulations presented here are open-loop simulations in which satellite data are integrated via parameter fields and
meteorological forcings rather than through active land data assimilation.

Satellite-informed input parameters include the 1 km2 resolution Moderate Resolution Imaging Spectroradiometer-
International Geosphere Biosphere Program (MODIS-IGBP) land cover dataset (Friedl et al., 2010), 5S-minute FAO soil texture
dataset (http://iridl.1deo.columbia.edu/SOURCES/.NASA/.ISLSCP/.GDSLAM/.Hydrology-

Soils/.soils/.dataset documentation.html), 30-meter Shuttle Radar Topography Mission (SRTM) elevation dataset (Farr et al.,

2007), 0.144-degree global albedo maps (Csiszar and Gutman, 1999) and green vegetation fraction maps (Gutman and
Ignatov, 1998) derived from measurements made by the advanced very high resolution radiometer (AVHRR) onboard
NOAA'’s polar orbiting satellites. These parameters are represented as climatologies in our simulations.

We ran our monitoring system in retrospective mode from 2000 to 2017, which is initialized with restart file from the spin-up
simulation. This retrospective simulation serves as a baseline when evaluating the forecast system. From that time forward,
the monitoring system has run in near real-time mode. On account of the 3-week latency of the CHIRPS product, we use
CHIRP precipitation to extend retrospective simulation to real-time. The simulations during this period is re-run with CHIRPS

once CHIRPS becomes available.

2.4 Forecasting system

The forecasting system applies downscaled ensemble GEOS-S2S forecasts to drive Noah-MP simulations out to a nine-month
forecast lead. The workflow and model specifications of the forecasting system are similar to the monitoring system except
for meteorological forcing data processing (Fig. 2).

In the forecasting system, the same meteorological forcing variables as in the monitoring system are extracted from GEOS-
S2S data products (see details of GEOS-S2S in section 2b). Due to the coarse resolution and inevitable bias of global climate
model outputs, these forcing variables from GEOS-S2S-V1 are downscaled and bias-corrected to corresponding monitoring

system forcing variables (i.e., precipitation from CHIRPS and other variables from GDAS) using a Generalized Analog and
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Regression Downscaling (GARD) algorithm (https:/github.com/NCAR/GARD; Gutmann et al. (2020)). This downscaling

algorithm takes a training dataset, prediction dataset, and observation dataset as inputs. The observation dataset contains
records of variables (dependent variables) with targeted fine spatial resolution, for example, the precipitation from the CHIRPS
dataset. The training dataset includes records of coarse spatial resolution variables (independent variables), which have the
same time resolution as the dependent variables, for example, hindcasted GEOS-S2S-V1 precipitation. The prediction dataset
contains the records of the same coarse-resolution variables as the training dataset but acquired in the forecast period—for
example, new GEOS-S2S-V1 forecast precipitation. The prediction dataset contains the records of the same coarse-resolution
variables as the training dataset but acquired in the forecast period—for example, new GEOS-S2S-V1 forecast precipitation.
The GARD algorithm downscales the prediction dataset to the resolution of the observation dataset with an analog-regression
approach.

This downscaling algorithm takes a training dataset, prediction dataset, and observation dataset as inputs. The observation
dataset contains records of variables (dependent variables) with targeted fine spatial resolution, for example, the precipitation
from the CHIRPS dataset. The training dataset includes records of coarse spatial resolution variables (independent variables),
which have the same time resolution as the dependent variables, for example, hindcasted GEOS-S2S-V1 precipitation. The
prediction dataset contains the records of the same coarse-resolution variables as the training dataset but acquired in the forecast
period—for example, new GEOS-S2S-V1 forecast precipitation. The GARD algorithm downscales the prediction dataset to
the resolution of the observation dataset with an analog-regression approach.

In this application, we apply GARD to downscale each forecast variable as a function of the same variable in the training
datasets (e.g., precipitation to predict precipitation). GARD has the capability to use multiple predictor variables to improve
downscaling accuracy, but the influence of the different combinations of independent variables in GARD is beyond the scope
of this paper.

GEOS-S2S-V1 products consist of a series of meteorological forecasts initialized about every five days. To construct proper
training datasets, we only use the first several days (approximately five days) of each forecast simulation before the next
forecast is initialized to create one record of independent variables per day from the year 2000 to 2017. This approach to
creating training datasets aims to take advantage of frequent (approximately every five days) GEOS-S2S-V1 hindcasts and to
avoid outliers created by mismatched GEOS-S2S-V1 variables with corresponding GDAS/CHIRPS variables due to sharp
forecast skill decline of climate models in later forecast periods (Jie et al., 2017). CHIRPS and GDAS are used to construct
the observation dataset. Due to the changing resolution of GDAS data product, coarser-resolution data in the early years are
downscaled to 0.125° x 0.125° using bilinear interpolation with lapse-rate and aspect-slope correction to unify the spatial
resolution. This 0.125° x 0.125° resolution GDAS product is then aggregated into daily data to unite time intervals with the
training dataset.

In order to correct the evolving bias between longer lead-time GEOS-S2S-V1 precipitation hindcasts and CHIRPS, the total
precipitation variable is further post-processed using a cumulative distribution function (CDF) matching method (Yuan et al.,

2014). In each month within the 9-month forecast period, daily GARD-downscaled GEOS-S2S-V1 precipitation and CHIRPS
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precipitation from 2000 to 2017 are used to construct the precipitation forecast and observation CDF function separately. We
acknowledge that it is possible to achieve bias correction on a finer time scale by constructing GARD training dataset and CDF
functions at sub-monthly scale (e.g., weekly scale), but shortening the time scale will also reduce the size of the training data.
The downscaled meteorological variables are further disaggregated from the daily time scale to the 6-hourly time series to
capture sub-daily time variation. Total precipitation and solar radiation are disaggregated using the ratio between 6-hourly and
daily GDAS climatology data, while the other six variables are disaggregated using the difference between 6-hourly and daily
climatology data.

The performance of the downscaling method is evaluated at the monthly time scale in the five major river basins in South Asia
using root mean squared error (RMSE) (Fig. S1-5). The RMSE is first calculated for GEOS before and after downscaling
against the retrospective forcing (i.e. the combination of GDAS and CHIRPS) and then normalized by the range of the
retrospective forcing.

Overall, the RMSE of air temperature, surface pressure, and relative humidity is greatly reduced after downscaling. In addition
to the GARD algorithm, the applied CDF matching has further reduced the RMSE for precipitation. For other fields, the
impacts of downscaling differ across basins. For instance, downscaling leads to reduced RMSE of wind speed for the Ganges
basin while its impact on shortwave and longwave radiation is marginal.

A set of hindcast simulations has been initialized on May 1st from the year 2000 to 2017. The meteorological forcing of these
simulations is GEOS-S2S-V1 initialized on May 1st, downscaled following the forecasting system workflow and the initial
conditions of these simulations are obtained from retrospective simulations (i.e. “real” initial condition; Fig. 2). Each initialized
hindcast simulation has ten ensemble members and lasts for nine months (i.e., May to January of next year). May 1st was
chosen as the initialization date of this experiment to capture the monsoon seasons in the monsoon regions and dry season in
the western part of the domain (see Section 2.1 for details). This set of hindcast simulations with “real” initial conditions
(hereafter referred to as hindcast-RIC simulations) is designed to evaluate the performance of the forecast workflow.

An additional set of control hindcast simulations with climatological initial conditions (hereafter referred to as hindcast-CIC
simulations; Fig. 2) is designed to study the impact of initial conditions on the forecast skill. In this set of hindcast-CIC
simulations, the workflow and all settings are the same as hindcast simulations except for initial conditions. All 18 hindcast-
CIC simulations use the climatological initial conditions (CIC) calculated by averaging May 1st hydrological states from 2000
to 2017 obtained from retrospective simulations.

In additional to the hindcast simulations, the forecast system is also running operationally, monthly, with the same forecast
workflow but driven by downscaled GEOS-S2S-V2 product instead of downscaled GEOS-S25-V1 product. GEOS-S25-V2
dataset also provides 9-month daily meteorological forecasts about every five days, but with finer spatial resolution of
0.5° x 0.5°. Evaluation of the operational forecast system is planned for the future, however, because GEOS-S2S-V2 offers
only a small ensemble prior to 2017, making evaluation less reliable at this time, this paper focuses on the evaluation of the

hindcast simulations driven by downscaled GEOS-S2S-V1 from 2000 to 2017.
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In the hydrological forecasting system, meteorological forecast forcing data are sourced from all ensemble members launched
on a common GEOS-S2S forecast initialization date; i.e., the one date per month that offers the ten-member ensemble. It is
possible to include other GEOS-S2S meteorological forecasts in the hydrological forecasting system, but proper bias-
correction methods are needed to correct inconsistent forecast skill/bias among GEOS-S2S meteorological forecasts with
different initialization dates. For example, in the hindcast-RIC hydrological simulations initialized at May 1st, a combination
of April 26th and May 1st GEOS-S2S-V1 meteorological forecasts can be used to enlarge the size of the ensemble members.
However, sub-monthly/monthly GARD/CDF post-processing methods would need to be applied to April 26th and May 1st

forecasts separately.

2.5 Post-processing

In this study, the evaluation of the monitoring and forecast systems is performed on monthly scales. All simulations are first
averaged from daily to monthly timescale. The ensemble mean of forecast simulations generally shows much less variance
than retrospective simulations due to averaging effects (Koster et al., 2004). To compare simulations from both systems and
other datasets, all simulation results and data products are standardized before comparison.

Climatological monthly mean and standard deviations for retrospective simulations are calculated for each month separately
(January to December) with simulation results from 2000-2017. The retrospective simulation results are then standardized in

the form of the standardized anomaly with the following equation,

valyyyymm — Valmm
stdymm

)

stdamlyyyyymm =

where stdamly,,ymm is the standardized anomaly for year yyyy and month mm, val,,,ym:, are the original values from

simulations and analysis datasets for year yyyy and month mm, val,,,, is the climatology mean for month mm and std,,,,
is the climatological standard deviation for month mm. We note that GDAS is an operational analysis system chosen for its
low latency. It is not a time-consistent reanalysis product. This means that over the study period GDAS underwent several
significant changes in input and data structure, including changes in spatial resolution. All GDAS data were regridded to a
common resolution, and lapse rate and slope-aspect corrections were applied to downscale to topography. Nevertheless, the
use of this operational product does mean that anomalies calculated against the long-term mean can contain some statistical
artefacts. As the primary purpose of these anomalies is application to drought monitoring, we accept this limitation with the
understanding that the system can be used to capture significant drought events but that it is not optimized for trend detection
or for precise ranking of event intensities over time.

The forecast simulation results are standardized similarly. For simplicity, the results presented in the following sections are
only based on the standardized ensemble mean for forecast simulation related analyses, for which the standardization is applied

after the calculation of ensemble mean.
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3 Results and discussion
3.1 Retrospective simulations vs. hindcast-RIC simulations

For purposes of agricultural drought prediction, we are most concerned with our ability to predict soil moisture anomalies. As
large-scale networks of root zone soil moisture (RZSM) observations are rare in South and Southeast Asia, we evaluate the
prediction skill of the forecast system of SAHFS-S2S by comparing RZSM estimates in hindcast-RIC simulations to RZSM
in the retrospective simulations. The depth of root zone soil moisture is defined as 1 meter in this study. Since the retrospective
run and the hindcast-RIC simulations use the same land surface model, these comparisons aim to evaluate the impact of
meteorological forcing on the prediction skill of RZSM. The comparison is performed by calculating the inter-annual
correlation coefficients (R) of monthly RZSM at different lead times, from May (1-month lead time) to January (9-month lead
time). Fig. 3 shows maps of these correlation coefficients across forecast lead times. Higher correlations indicate more skillful
RZSM hindcasts. In May (1-month lead time), the correlation between hindcast-RIC and the retrospective simulations is
positive in most of the region, and the correlation is significant at 0.95 significant level except for northeast India. As expected,
correlations drop in strength and significance as lead time increases. In June (2-month lead time), the correlation remains
positive and significant in the Indochinese Peninsula and the west of the research domain. The prediction skill of the RZSM
drops quickly and becomes insignificant in most of the regions except for the north-western regions of the domain two or three
months after the forecast initialization date. The high forecast skill in the north-western regions is drawn from the “real” initial
conditions (i.e. long hydrological memory) due to low precipitation. This phenomenon is further explained in detail at the
basin scale below and in section 3.2.

We repeat this analysis at the basin scale for the five major river basins of the South and Southeast Asia area (highlighted in
Fig. 1). Fig. 4 shows RZSM and precipitation comparison in the Ganges basin, which receives considerable precipitation
during the summer monsoon. Please note that the time axis in Fig. 4 is rearranged, so that data of a specific lead month are
grouped. Fig. 4a shows the monthly precipitation time series averaged for the Ganges basin. In each month, the magnitudes of
precipitation from retrospective (i.e., CHIRPS) and hindcast simulations (i.e., downscaled GEOS5-S2S-V1) are similar to each
other due to the application of CDF matching (see section 2b). The inter-annual variation of the hindcast precipitation and
retrospective precipitation both are higher in wet seasons than in dry seasons. The inter-annual variation of hindcast
precipitation, however, is smaller than that of the retrospective precipitation, especially in months with large lead time. This
difference in inter-annual variability is the result of averaging across large forecast ensemble spread in later months.

Fig. 4b shows the climatology RZSM (i.e., average RZSM from the year 2000 to the year 2017) for May to January from
retrospective and hindcast-RIC simulations. The climatologies of RZSM from retrospective and hindcast-RIC simulations have
similar magnitude and seasonality. The magnitudes of inter-annual variability of each month, which are represented by inter-
annual standard deviation and are shown as error bars in 4b, are smaller in hindcast-RIC simulations. The reason for this
magnitude difference is, again, the effect of averaging the large ensemble spread of hindcast-RIC simulations.

Climatologically, as the monsoon season picks up in July, RZSM increases dramatically due to intense precipitation. The
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RZSM climatology peaks in August, indicating some delay between the precipitation peak and the annual maximum in soil
water storage.

Fig. 4c shows the RZSM standardized anomaly and rainfall inter-annual correlations between retrospective and hindcast-RIC
simulations for each month in the Ganges basin. Precipitation has positive correlations during the rainy seasons, but this
prediction skill is never statistically significant. At the end of the monsoon (October), precipitation skill drops dramatically to
near zero. In contrast, the correlation for RZSM (yellow line in Fig. 4b) fluctuates around the significant line (dashed line in
Fig. 4b, R=0.484) as lead time increases. This fluctuation of RZSM skill within the monsoon season is closely driven by the
performance of the meteorological forecast of precipitation (green line in Fig. 4b). Although the skill in precipitation drops
rapidly after the monsoon season, the RZSM forecast skill maintains around the significant line with a mild decline trend. This
difference indicates that the low precipitation amount after monsoon seasons has little influence on the interannual variability
of the RZSM. The high basin-scale RZSM correlation during July to December (yellow line in Fig. 4b) is a contrast to the
relatively low pixel-scale RZSM in Ganges Basin (Fig. 3c-h). This difference reflects the fact that small spatial mismatch
between retrospective and hindcast-RIC simulations, which is likely due to the same mismatch of meteorological forcings,
especially precipitation (see blue line in Fig. 4b and Fig. S6), can lead to disagreement at pixel scale that averages out at basin
scale.

Fig. 4d shows the monthly RZSM standardized anomaly (see section 2e) from retrospective and hindcast-RIC simulations.
The ensemble means of RZSM from hindcast-RIC simulations are shown in red dots, and the error bars represent the standard
deviation of the ensemble. The spread of the ensemble members is relatively small in May, which represents high confidence
in the prediction from the forecast system. This confidence originates from the relatively low uncertainty of meteorological
forcing variables in May. The spread increases quickly in June (i.e., 2-month lead time) and later lead months.

The timing of the Indus basin rainy season is similar to the Ganges, but the magnitude of precipitation is far less (Fig. 5). As a
result, the average RZSM from all years is much lower in the Indus (Fig. 4b and Fig. 5b). Precipitation amount increases from
May to June, but high evapotranspiration (ET) in June causes a deficit in the water budget that causes a decrease of RZSM in
June (Fig. S7). Though climatology of precipitation is low from November to January, monthly RZSM climatology still
increases during this period due to low ET. Hindcast-RIC simulations underestimated climatological RZSM in every month,
and the underestimation grows in later dry months. This underestimation is, in part, due to the high bias of ET in the hindcast-
RIC simulations, which is an issue of ongoing study. The precipitation correlations between hindcast-RIC and retrospective
simulations are low and statistically insignificant for all months, as the maximum correlation is 0.22 in May (red line in Fig.
5¢). Though hindcast-RIC simulations show lower prediction skill in precipitation in the Indus than in the Ganges basin, the
RZSM correlations in the Indus are still significant in the first three months (orange line in Fig. 5¢). This relatively strong
RZSM prediction skill is again a result of a drier climate. The relatively low amount of precipitation in the Indus basin allows
the skill derived from initial conditions to persist longer.

In the Helmand basin, the magnitude of precipitation is smaller than in either the Ganges or Indus basin. More importantly,

the seasonal precipitation cycle is different as well (Fig. 6a). The Ganges and Indus basins experience peak precipitation during
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the summertime South Asian monsoon, such that our May forecast initialization captures the onset of the rainy season. The
Helmand basin receives precipitation in winter/spring, with the dry season setting in in May, just as our forecasts initialize
(Fig. 6a). This allows us to see the behavior of a forecast that is nearly pure persistence: there is some precipitation in May,
for which hindcasts show skill, but for the following 5-6 forecast months, there is effectively no precipitation, and soil moisture
shows a steady decline (Fig. 6b). This allows skill present in the initial conditions to persist, as seen in the high RZSM
correlation between hindcast-RIC and retrospective simulations through November (Fig. 6¢). This high correlation starts to
drop from November but remains significant until December, even though precipitation has low prediction skills in November
and December. While this result might not be indicative of seasonal forecast skill in the Helmand basin in general, since
forecasts initialized for the rainy season might be of broader relevance, the result does provide a useful example of how our

forecast system behaves in basins initialized during the dry season.

3.2 Impact of initial conditions

The RZSM forecast skill is a product of the accuracy of both the forecast meteorological forcing variables and initial
hydrological states. In this section, we examine the impact of initial conditions on prediction skills by comparing hindcast-RIC
simulations to our hindcast-CIC simulations (see section 2d for details). We focus on RZSM correlations with the retrospective
simulation as our performance metric, since we are most concerned with the ability of quality forecast initialization to improve
the simulation of interannual RZSM variability. Fig. 7 shows the contribution of initial conditions as the difference in
correlation with retrospective RZSM between hindcast-RIC and hindcast-CIC simulations. In these maps, shades of red
indicate areas and times where hindcast-RIC have improved skills relative to hindcast-CIC simulations. For lead-one forecasts
(May), we see a positive contribution of initial conditions to RZSM forecast skills primarily in India. For lead-two forecasts
(June), the area with the largest correlation difference moves to the west of the domain, and the area with a significant
correlation difference in southern India also shrinks. In later months, from July to December, the areas with significant
differences of correlations continue to shrink because precipitation, along with other meteorological forcing variables,
gradually reduces or even eliminates the impact of initial conditions. In portions of the west of the domain (Helmand basin),
where the precipitation is low from May to November, the difference in correlations remains significant until December.

Fig. 8 shows the number of lead months before the difference in RZSM forecast skill—measured as correlation with the
retrospective simulation—from the two sets of hindcast simulations (hindcast-RIC and hindcast-CIC) drops to a negligible
value (in this case, 0.01). Given that the only difference in the two sets of hindcast simulations is the initial conditions, Fig. 8
indicates the duration of the impact of the initial conditions on the performance of hindcast simulations. Blueish color in this
figure indicates areas with short memories of the initial condition. We note that our hydrological hindcasts are based on
“offline” simulations in which surface conditions like soil moisture do not affect meteorological forcings. The influence of the
initial conditions, then, is limited to direct impacts of water storage on the water balance, and does not include any potential
land-atmosphere feedbacks. Short memories generally present in areas receiving considerable summer monsoon precipitation,

such as the west coast and northeast parts of India, the southern slopes of the Himalayas, the west coast, and the southeast of
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the Indochinese peninsula (Fig. 8, S8). The soil in these wet areas becomes saturated during the monsoon seasons due to intense
precipitation. The memories of the initial conditions are thus weakened or eliminated. In contrast, having less precipitation,
the yellow areas have longer memories of the initial conditions. This result is specific to our initialization month, and will
differ with respect to the timing of the rainy season.

At basin scale, we see significant variability in the role that initial conditions play in RZSM forecasts. For the Ganges basin,
the correlation of RZSM between the retrospective simulations and the hindcast-CIC simulation is -0.04 in May (Fig. 4c green
line) due to low precipitation correlation and inconsistent initial condition between the retrospective and hindcast-CIC
simulations. A significant difference between hindcast-RIC RZSM (Fig. 4c orange line) and hindcast-CIC RZSM (Fig. 4¢
green line) in terms of correlation with retrospective RZSM in May suggests that an accurate initial condition is crucial to have
meaningful RZSM prediction. This difference, however, becomes less in June and July. The RZSM predictions from hindcast-
RIC and hindcast-CIC simulations become almost identical after July as the memory of the initial condition is eliminated by
the accumulating effects of meteorological forcing variables. The elimination of the initial condition is also observed rather
quickly in June in the Mekong basin (Fig. S9)

In the drier Indus basin, the difference in RZSM prediction skills between the hindcast-RIC and hindcast-CIC (Fig. 5c yellow
and green lines) reduces over the first three months. This difference, however, is never eliminated. The difference between
these two correlations becomes roughly constant from August to January. In January, nine months after initialization, the
RZSM from hindcast-RIC simulations still shows skillful prediction while the RZSM correlation between the hindcast-CIC
and retrospective simulations becomes negative. This result indicates that in a drier basin, the impact of the initial conditions
is reduced but can still positively contribute to the prediction skills of RZSM even nine months after the initialization date. In
the Brahmaputra basin, the impact of the initial condition also lasts for the entire 9-month prediction period (Fig. S10).

In the Helmand basin (see the location of Helmand basin in Fig. 1), both hindcast-RIC and hindcast-CIC simulations have
significant correlations with RZSM in retrospective simulations at lead-one month (May) due to high agreement between
hindcast and retrospective precipitation products, but the hindcast-RIC simulation is still significantly better than hindcast-CIC
in this month. The predictability of RZSM in hindcast-CIC simulations brought by skillful precipitation prediction in May is
quickly lost in June and drops to negative values from July to January, while the hindcast-RIC simulation has skillful RZSM
predictions through December on account of the long memory of initial conditions through the protracted Helmand basin dry
season.

The impact of initial condition has also been studied using Ensemble Streamflow Prediction (ESP) and reverse-ESP methods
(Yuan et al., 2016;Shukla and Lettenmaier, 2011;Luo et al., 2008;Ma et al., 2018). These studies have yielded similar
conclusions regarding the fact that initial condition has a longer impact when the forecast is initialized in a dry season and a

shorter impact when the forecast is initialized in a wet season.

13



420

425

430

435

440

445

450

3.3 Comparison with satellite estimates

The top-10cm surface soil moisture (SSM) from retrospective and hindcast-RIC simulations is also evaluated against the ESA-
CCI SM products (see Section 2b for details). SSM values extracted from the ESA-CCI SM product, retrospective simulations,
and hindcast-RIC simulations are pre-processed to a monthly time scale before comparison. The monthly ESA-CCI SM data
are calculated by averaging all available daily data for that month. To make a fair comparison, we calculate retrospective and
hindcast-RIC monthly SSM data by first upscaling daily data to the same resolution as ESA-CCI SM (0.25° X 0.25°) and then
averaging to monthly time scale using only data from days when ESA-CCI SM daily data are also available.

Fig. 9 shows the inter-annual correlation map between retrospective monthly SSM and ESA-CCI SM (left) and the inter-annual
correlations between hindcast-RIC monthly SSM and ESA-CCI SM (right) using data in May, July, and September between
2000-2017. The retrospective SSM in May has a high agreement with ESA-CCI SM in areas in south India, the Indochinese
Peninsula, and Northern Afghanistan. In July and September, the retrospective simulation captures more spatial patterns of
ESA-CCI SM than in May in Pakistan and India, but less in Afghanistan and the Indochinese Peninsula.

Hindcast-RIC SSM generally has a lower correlation with ESA-CCI SM than retrospective SSM. In May, hindcast-RIC SSM
has a significant positive correlation with ESA-CCI SM in the Indochinese Peninsula and Northern Afghanistan. In July and
September, the forecast skill of SSM dramatically drops. Areas with significant SSM only appear sporadically in India, Nepal
and the Indochinese Peninsula.

Fig. 10 shows basin-scale comparisons with ESA-CCI SM, with precipitation seasonality included for context (Fig. 10a). At
this scale we see high correlations between the retrospective simulation and ESA-CCI SM in most basins in most months:
correlations are significant in the Indus basin in all months; in the Helmand basin in all months but September; in the
Brahmaputra basin in all months except for November; in the Ganges basins in all months except for November and December;
and in the Mekong basin in all months except for August and September.

As expected, correlations are lower for the hindcast-RIC simulations. In May, there are significant skills in all basins but the
Ganges basin, where the hindcast-RIC had also shown low skill relative to retrospective simulations (see Fig. 4). In June, skill
drops off surprisingly quickly in the Indus and Helmand basins, both of which showed extended RZSM forecast skill when
evaluated against the retrospective simulation (see Fig. 5 and Fig 6). This occurs despite the fact that ESA-CCI SM and the
retrospective run have a relatively high correlation in these months. One reason that skill relative to ESA-CCI SM might drop
off so quickly in these drier basins is that the memory of SSM, as opposed to RZSM, is short, especially in dry areas, and SSM
can be highly sensitive to modest rainfall. This could make the ESA-CCI SM evaluation more sensitive to errors in forecast
precipitation (see precipitation correlation in Fig 5 (¢), 6 (¢)) than the RZSM evaluation was, leading to a rapid loss of skill
due to imperfect precipitation forecasts in the first few months of the simulations. From July onward the basin-scale hindcast-
RIC evaluations relative to ESA-CCI SM are noisy; all basins drop to non-significant correlations in July and August, but there
is a rebound to skillful prediction in the Mekong and Helmand in September due to the rebound of the precipitation forecast

skill (see precipitation correlation in Fig. 6 (c) and A2 (c)). We also note that in the Helmand basin, the SSM correlation in
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October shows the opposite tendency from the precipitation correlation (Fig. 6¢). The difference could be due to errors in ESA-
CCI SM or CHIRPS, the influence of missing data in ESA-CCI SM, or noise in the forecasts. By November, the correlation
between ESA-CCI and hindcast-RIC SSM drops to insignificant levels for all basins. It is worth noting that although on the
basin scale we see significant SSM correlation in the Brahmaputra basin in September, spatial SSM correlations suggest lower
forecast skills (Fig. 9). This difference in correlation suggests a spatial mismatch in the SSM predictions. A similar difference

in correlation of spatial precipitation and basin-scale precipitation is also found in the Brahmaputra basin (Fig. 5(c) and A4).

3.4 Case study of the 2015 South and Southeast Asia drought

The 2015 El Nifio event caused widespread drought in South to Southeast Asia. This drought had significant impacts on health,
food security, and fire risks in more than nine countries in south-southeast Asia (Van Der Schrier et al., 2016;Qian et al., 2019).
Fig. 11 shows the performance of our system in monitoring and forecasting the development of the 2015-2016 drought in the
Ganges and Mekong basins. This hindcast is initialized on May 1st, 2015.

In the Ganges basin, the precipitation (Fig. 11a) and RZSM (Fig. 11e) values from the hindcast generally match the magnitudes
of the retrospective simulations. There is some month-to-month discrepancy in precipitation hindcast relative to the CHIRPS
record used in the retrospective simulation, but over the course of the monsoon season, these differences nearly average out—
the hindcast only slightly overestimates precipitation (and thus underestimates the severity of the drought). This results in an
RZSM forecast that is generally consistent with the observations, albeit somewhat less dry overall and noisier month-to-month,
up until the final month of the forecast.

In the Mekong basin, in contrast, the forecast underestimates monsoon season precipitation (overestimates drought severity)
(Fig. 11b, d). This results in a hindcast in which drought is both more severe and more persistent than observed (Fig. 11 f, h).
Thus, the direction of the drought is captured in this basin, but in application the hindcast might overestimate the predicted
impacts of this 2015 drought.

The forecast of RZSM standardized anomaly also captures the spatial pattern in the first two months in both the Ganges basin

and the Mekong basin (Fig. S11, S12).

3.5 Application of drought indicator

Applying a hydrological monitoring and forecast system to drought applications requires that the ensemble simulation output
be converted to meaningful and interpretable drought indicators. Here we use the Mekong and the Helmand basins as examples
to illustrate one method for doing so. This process starts with the monthly RZSM values from both retrospective and hindcast-
RIC simulations. In each month, the percentile of the monthly RZSM values is calculated on a gridded basis, based on a normal
distribution fitted from the 18-year data record at each grid cell. The severity of drought at each grid cell is then categorized
based on the same drought categories used in the United States Drought Monitor (Svoboda et al., 2002): the location is
classified as exceptional drought (D4), extreme drought (D3), severe drought (D2), moderate drought (D1), or abnormally dry
(D0) using RZSM percentile thresholds of 2%, 5%, 10%, 20%, and 30%, respectively.
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Figs. 12 and 13 show the fractional area of each drought category for the retrospective simulation and the hindcast-RIC
simulations, for all lead times, in the Meckong and the Helmand basins, respectively. In the Mekong basin, the hindcast
simulations capture the major drought events reasonably well in May (1-month lead time), though they overestimate the
drought areas in 2005 and underestimate them in 2010 (Fig. 12a). From June to August (2-month lead time to 4-month lead
time), the hindcasts simulations predict significantly larger drought areas in 2005 and 2016 compared to retrospective
simulations, while hindcast-RIC and retrospective simulations estimate relatively similar drought areas in other drought years
(Fig. 12b-d). After August, the drought areas become poorly estimated in hindcast-RIC simulations compared to the
retrospective simulations (Fig. 12e-i) due to unskillful hindcast-RIC RZSM estimates in the Mekong basin (Fig. S2c¢). If we
focus on the 2015 drought event, the hindcast-RIC and retrospective simulations agree well in the first three months (Fig. 12a-
c). Starting from August, the hindcast-RIC simulations estimate larger drought areas than the retrospective simulations,
especially in the “exceptional drought” category (Fig. 12d-i). This overestimation of the drought area is consistent with the
lower prediction of the RZSM standardized anomaly in Fig. 11 and this overestimation is mainly attributed to the lower
precipitation forecast from the downscaled GEOS-S2S-1 (Fig. S9). The progress of a specific drought event can also be
tracked by comparing drought categories cross different months (see red rectangle in Fig. 12 and Fig. S5 for 2015 drought).
The SAHFS-S2S shows similar skills forecasting drought categories in the Ganges (Fig. S13), Brahmaputra (Fig. S14), and
the Indus (Fig. S15) basins.

Consistent with a high correlation of RZSM between retrospective and hindcast simulations (Fig. 6b), the fractional drought
area in the Helmand basin agrees well for the first seven months (Fig. 13a-g). From the year 2000 to 2004, the Helmand basin
experienced severe drought conditions. In 2005, above-average rainfall ended this prolonged period of drought conditions. In
2016, the drought condition is relatively stable from May to October and then becomes more severe in November and
December according to retrospective and hindcast-RIC simulations. In January, however, retrospective simulations report a
less severe drought than December, while hindcast-RIC simulations report a more severe drought. It is worth noting that an
intensification of drought from one month to the next does not necessarily mean that the soil moisture is drier than the previous
month. Each month’s drought indices are calculated relative to the distribution of historical soil moisture conditions in that

month.

4. Conclusion

In this study, we present a high-resolution soil moisture monitoring system and sub-seasonal to seasonal forecasting system
for a South and Southeast Asia region, SAHFS-S2S. SAHFS-S2S consists of a physically-based land surface model, analysis
and observation-based meteorological forcing datasets, and downscaled dynamically-based meteorological forecasts. We
compare 18 hindcast-RIC simulations, each of which is initialized on May 1st in a year from 2000 to 2017, with corresponding
retrospective simulations. The comparisons show that the RZSM in hindcast-RIC simulations have considerable skill for the

first two months, especially in the western part of the study domain, the Indochinese Peninsula, and southern India. The
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hindcast-RIC simulations continue to have high skills in the western part of the research domain—which are the driest areas
in the domain—for another five months while showing generally low skill in other regions. Results presented here only capture
system skill for forecasts initialized in May, but diverse seasonality across the study domain allows us to examine forecast
performance for both wet and dry season initialization dates.

To study the impact of the hydrological initial conditions on forecast skill, we designed a set of control hindcast simulations,
which are initialized with climatological hydrological conditions (hindcast-CIC). In May (1-month lead time), the hindcast-
RIC simulations outperform hindcast-CIC simulations in most parts of the domain except for the Indochinese Peninsula, where
heavy precipitation quickly eliminates the memory of the initial conditions. The difference between the hindcast-RIC and
hindcast-CIC simulations decreases as lead month increases, and the accumulated influence of meteorological forcing
gradually overwhelms the impact of the initial condition. In the Indochinese Peninsula, India, and surrounding areas, where
precipitation is relatively intense in summer seasons, the influence of initial condition on the forecast skill is eliminated after
two to three months. The correlation of precipitation dominates the prediction skills of RZSM when such a considerable
precipitation influence emerges. When precipitation is low, however, the prediction skill of RZSM depends on the RZSM
prediction in the previous month, with relatively less influence from other meteorological forcing variables. This pattern
becomes particularly important in regions where the initialization dates (i.e., May 1st) of hindcast-RIC simulations are around
the beginning of day seasons. For example, in the Helmand basin, where the precipitation is mainly from mountain precipitation
during the winter and early spring months (see section 2.1), the accurate initial conditions help the prediction skills remain
statistically significant for eight months.

We also compared the surface soil moisture (SSM) from retrospective simulations and hindcast-RIC simulations with the ESA-
CCI SM data product in the five major river basins in the study domain. The comparison shows that the retrospective
simulations capture interannual variability in most of the months within the five basins. The SSM hindcasts in four out of five
major basins (all but the Ganges) generally have a high correlation with ESA-CCI SM data in the first one or two months. The
correlation then decreases for another one or two months, then increases again and reaches a second maximum after the peak
monsoon rains (for which precipitation forecast skill is limited) before decreasing for the rest of the forecast period.

The prediction skill of the forecasting system of SAHFS-S2S depends on the land surface model, initial conditions, and
meteorological forecasts. In this study, an accurate initial condition has been shown to have a positive contribution for
prediction skills over much of the simulation domain, and particularly in dry areas and seasons. Future effort should be made
to improve the accuracy if initial conditions estimated by the land surface model. This could include (1) assimilating ground
or satellite-based observations into the land surface model (Getirana et al., 2020a;Getirana et al., 2020c; Wanders et al., 2013),
and (2) better representation of anthropogenic influences, for example, irrigation (Nie et al., 2019) and reservoirs (Wanders
and Wada, 2015;Getirana et al., 2020b), in the land surface model / hydrological model. Errors in the meteorological forecast
are also a clear limitation on the forecast skill. Improved dynamically-based S2S meteorological forecast systems (Pegion et
al., 2019), advanced statistical-dynamical forecast methods (Madadgar et al., 2016;Shukla et al., 2014), and improved bias

correction and downscaling methods (Rodrigues et al., 2018) are all areas of significant research effort. The results presented
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here show that current capabilities offer meaningful skill over shorter time horizons for much of the domain, and also that
performance can be improved as each component of the forecast system improves.

Due to the difficulty of acquiring reliable, long-term streamflow observation, it is difficult to evaluate the streamflow
monitoring and forecasting in this study domain. However, Yang et al. (2011) evaluated Noah-MP forced by Global Land
Data Assimilation System (GLDAS) in the Mekong and Ganges basins in this study domain and found that Noah-MP captured
the seasonality of the streamflow in both basins and magnitude in the Mekong basin but underestimated the magnitude in the
Ganges basin. Ghatak et al. (2018) found that Noah LSM forced by GDAS and CHIRPS captured the timing of a one-year
flood event in the Indus basin but underestimated the magnitude and captured both seasonal cycles and magnitude of
streamflow in the Kosi basin within the Ganges basin. The streamflow from the SAHFS-S2S monitoring system has been
found to have similar results to those in Ghatak et al. (2018).

The SAHFS-S2S has been operationally implemented at the International Centre for Integrated Mountain Development
(ICIMOD). The monitoring system updates about every ten days and the forecast system launches a 9-month hydrological
forecast at the beginning of each month. The outputs of SAHFS-S2S have been integrated to ICIMOD’s Regional Drought
Monitoring and Outlook System (RDMOS), which focuses on crop and drought conditions mainly within countries in the
Hindu Kush Himalaya regions. This integrated system is designed to support local decision makers and government agencies

concerned with food security and drought preparation.

Data availability
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Table 1: Summary of datasets used in this study. The meteorological forcing fields include precipitation (precip), downward

long-wave radiation (LW), downward shortwave radiation (SW), air temperature (Ta), specific humidity (Q), surface air

pressure (P), zonal (U), and meridional (V) wind speed.

Period of Spatial Temporal
Data Variable used Reference
Record resolution resolution
CHIRPS | 1981-present 0.05° 1 day Precip (Funk et al., 2015)
1°x1°
gradually } I
) (National Climatic Data
GDAS 2000-present | improved to 6 hours | LW, SW,Ta, Q,P, U, V
Center, 2020)
0.125° x
0.125°

GEOS- 1981-2018 Precip, LW, SW, Ta, Q, ;

1°x1.25° 1 day (Borovikov et al., 2017)
S2S-V1 Jan P,U,V
GEOS- Precip, LW, SW, Ta, Q,

1981-present 0.5°x0.5° 1 day (Molod et al., 2020)
S2S-V2 P,U,V
ESA- 1978 Nov -
0.25°x0.25° 1 day Surface soil moisture (Gruber et al., 2019)

CCI SM 2019 Dec
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Figure 1: (a) The extent of simulation area, research domain and five major river basins in South and Southeast Asia; Seasonal
precipitation climatology for 2000-2018 (b) December, January, and February; (¢) March, April, and May; (d) June, July and
August; (e) September, October and November. The seasonal precipitation climatology is estimated from Climate Hazards Center
InfraRed Precipitation with Station (CHIRPS) data.
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Figure 2: A schematic workflow of the South and Southeast Asia monitoring and forecasting system. Retrospective simulations
(open-loop), hindcasts with “Real” initial condition (hindcast-RIC) simulations, and hindcasts with climatological initial condition
(hindcast-CIC) simulations are designed to evaluate the monitoring and forecasting system.
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Figure 3: Interannual correlation of RZSM between retrospective simulations and hindcasting simulations which is computed using
RZSM data from year 2000 to 2017 in months May (1-month lead time) to January (9-month lead time) (subplot (a) to subplot (i)).
800 The hatches denote the areas with statistically significant correlation at 0.95 confidence level.
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Figure 4: Comparison between retrospective simulations and hindcast simulations in the Ganges basin of (a) monthly time series of
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standard deviation of separate hindcast ensemble members). Please note that the time axis for monthly time series are rearranged
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Same as Fig. 4, but for the Indus basin.
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Figure 6: Same as Fig. 4, but for the Helmand basin.
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Figure 7: Interannual correlation difference of root zone soil moisture (1 m) between hindcast simulations using real initial condition

(RIC) and climatological initial condition (CIC) against the retrospective simulations. The difference is computed as the correlation

of RZSM between hindcast simulations and retrospective simulations minus the correlation between hindcast simulations and
820  retrospective simulations. The hatched areas denote the statistically significant correlation difference at 0.95 confidence level.
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Figure 8: The smallest lead month when the forecast skills of root zone soil moisture (1m) between hindcast simulations using real
825  initial condition and climatological initial condition (CIC) against retrospective simulations is less than 0.01.
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Figure 9: Surface soil moisture (top 10cm) correlation between European Space Agency Climate Change Initiative (ESA CCI) soil
830 moisture product and (a) retrospective simulations, and (b) forecasting simulations in May, July, and September. The hatched areas

denote the statistically significant correlation at 0.95 confidence level.
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Figure 10: Comparison of (a) monthly retrospective precipitation climatology, (b) interannual correlation between monthly ESA-
CCI SM product and monthly retrospective surface soil moisture (top 10cm) and (c¢) interannual correlation between monthly ESA-
CCI SM product and monthly forecasting SSM in five major river basins in South and Southeast Asia. Please note that the SSM
data for a basin in a year is flagged as missing data if more than 50% of data points in a basin are missing in ESA-CCI SM monthly
data. The criterion of significance of correlation are then different due to different sample sizes.
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hindcast-RIC simulations from (a) May to (i) January.
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Figure 13: Same as Fig. 12 but for the Helmand basin.
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Figure S1: Comparison of Air temperature (T), precipitation (Precip), specific humidity (Q), surface pressure (P), solar radiation
(SW), longwave radiation (LW), north-south wind speed (NW), east-west wind speed (EW) among Retrospective, raw GEOS-S2S-
V1 and downscaled GEOS-S2S-V1 meteorological forcing in the Helmand basin. The root mean squared error normalized by the
range of the retrospective meteorological forcing (NRMSE) is shown as the values in each subplot. R denotes the NRMSE between
raw GEOS-S2S-V1 and retrospective forcing and D denotes the NRMSE between downscaled GEOS-S2S-V1 and retrospective
forcing.
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20  Figure S2: The same as Fig. S1 but in the Brahmaputra basin.
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Figure S3: The same as Fig. S1 but in the Ganges basin
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Figure S4: The same as Fig. S1 but in the Indus basin
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Figure S5: The same as Fig. S1 but in the Mekong basin
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Figure S6: Interannual correlation of precipitation between retrospective simulations (i.e. CHIRPS) and hindcasting simulations
(i.e. downscaled GEOS-S2S-V1 precipitation) which is computed using precipitation data from year 2000 to 2017 in months May (1-
month lead time) to January (9-month lead time) (subplot (a) to subplot (i)). The hatches denote the areas with statistically significant
correlation at 0.95 confidence level.



3.0 —e— Hindcast-RIC ET climatology
,‘;’ —e— Retrospective ET climatology
,:,'7 -+- Hindcast-RIC P climatology
25 ¥ =-e= Retrospective P climatology
2.0
a0
£15
£
1.0
0.5
0.0
05 06 07 08 09 10 11 12 01
Month

40
Figure S7. The climatological monthly precipitation and evapotranspiration (ET) in the Indus basin from retrospective and hindcast-

RIC simulations.
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Figure S8: The largest lead month when the difference of RZSM forecast skills between hindcast-RIC and hindcast-CIC against
retrospective simulations still remains statistically significant.
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Figure S9: Comparison between retrospective simulations and hindcast simulations in the Mekong basin of (a) monthly time series of
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so that the data for the same month is grouped.
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Figure S10: Same as Fig. S9, but for the Brahmaputra basin.
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Figure S13: Fractions of areas of different drought categories in Ganges basin calculated using RZSM data from retrospective and
hindcast-RIC simulations from (a) May to (i) January.
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Figure S14: Same as Fig. S13 but for the Brahmaputra basin.
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Figure S15: Same as Fig. S13 but for the Indus basin.
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