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Abstract. River valley bottoms have hydrological, geomorphological, and ecological importance and are buffers for protecting 

the river from upland nutrient loading coming from agriculture and other sources. They are relatively flat, low-lying areas of 

the terrain that are adjacent to the river and bound by increasing slopes at the transition to the uplands. These areas have under 10 

natural conditions, a groundwater table close to the soil surface. The objective of this paper is to present a stepwise GIS 

approach for the delineation of river valley bottom within drainage basins and use it to perform a national delineation. We 

developed a tool that applies a concept called cost distance accumulation with spatial data inputs consisting a river network 

and slope derived from a digital elevation model. We then used wetlands adjacent to rivers as a guide finding the river valley 

bottom boundary from the cost distance accumulation. We present results from our tool for the whole country of Denmark 15 

carrying out a validation within three selected areas. The results reveal that the tool visually performs well and delineates both 

confined and unconfined river valleys within the same drainage basin. We use the most common forms of wetlands (meadow 

and marsh) in Denmark's river valleys known as Groundwater Dependent Ecosystems (GDE) to validate our river valley 

bottom delineated areas. Our delineation picks about half to two-thirds of these GDE. However, we expected this since farmers 

have reclaimed Denmark's low-lying areas during the last 200 years before the first map of GDE was created. Our tool can be 20 

used as a management tool, since it can delineate an area that has been the focus of management actions to protect waterways 

from upland nutrient pollution. 

1 Introduction 

The rise in the availability of high quality spatial data, especially the representation of digital terrain models (DEMs), has 

brought an increase in the number of Geographic Information System (GIS) professionals striving to create methods to best 25 

describe and extract different landscape features. 

Delineation of valley bottom across drainage basins is becoming increasingly important due to an acceptance of the 

drainage basin area as the essential management unit for sustainable water and land management (Chowdary et al., 2009). The 

valley bottoms act as an intermediate pathway for nutrients coming from the uplands, either as surface flow, diffuse flow to 
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wet areas on floodplains, or directly through stream-bed connected to underlying groundwater bodies and have the potential 30 

to reduce nutrients thereby protecting the surrounding aquatic environment (Langhoff et al., 2006; Dahl et al., 2007). 

The Dictionary of Earth Science defines the valley floor as “The broad, flat bottom of a valley. Also known as valley 

bottom or valley plain.” (McGraw-Hill, 2003). This can be described conceptually as an area of low slopes bounded by 

increasing slopes at the transition to the uplands (Figure 1). Valley bottoms are landscape features with hydrological, 

geomorphological, and ecological importance (Gallant and Dowling, 2003; Hynes, 1975; Nardi et al., 2006). 35 

 

 

Figure 1: Conceptualization of the river valley bottom at a section of the Villestrup stream, Denmark, showing the valley bottom as 

a flat to low slope area adjacent to a river and bounded by increasing slopes (Photo by the Danish Nature Agency). 

 40 

By description, the river valley bottom delineates the river and its corresponding active floodplain (Fryirs et al., 2016; 

Wheaton et al., 2015). Confined, partly confined, or laterally unconfined (Figure 2) are classifications commonly used to 

distinguish valley bottoms (Brierley and Fryirs, 2005). Confinement of valley bottom is the percentage of natural waterway 

that borders a confining margin on either bank (Fryirs et al., 2016). In some situations, the valley bottom boundary can coincide 

with the valley confining margin (Fryirs et al., 2016). 45 

 

 

Figure 2: Different types of valley confinement (modified from Brierley and Fryirs, 2005). 
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The river valley bottom is formed by a combination of erosion, deposition, and peat formation. The valley is cut out of 50 

the landscape by erosion, either glacial or fluvial, or by tectonic processes. The formation of river valleys could fall in either 

of these processes or a combination depending on the situation. It can be difficult to distinguish the rate of glacial or fluvial 

erosion as both glaciers and rivers occupied valleys at the same time, which makes separating their contribution to valley 

formation a challenge (Roberts and Rood, 1984). However, some researchers have found a greater role of glacial erosion when 

compared to river erosion (e.g. Clayton, 1996; Hallet et al., 1996; Kirkbride and Mathews, 1997; Montgomery, 2002), while 55 

others found a lower rate of glacial erosion or little difference between the two (e.g. Hicks et al., 1990; Summerfield and 

Kirkbride, 1992; Hebdon et al., 1997; Lidmar-Bergstrom, 1997). Yet, depending on the type, valley formation during the 

glacial time was often a combination of these different processes while during the postglacial period, the formation was mostly 

related to fluvial erosion and deposition. 

Several GIS tools that delineate the valley bottom broadly fall into two categories: flooding or slope algorithms (Gilbert 60 

et al., 2016). The flooding algorithm works by filling water within the flat valley area finding a suitable water depth threshold 

that delineates the valley bottom. The slope algorithm works by finding a suitable threshold of the slope of the terrain that 

delineates the flat area of the valley bottom. Existing tools normally fall within these two categories (Table 1). Height Above 

River (HAR) uses a flooding algorithm that propagates river centerline elevations outward from the river using a distance-

weighted average and subtracts the result from the elevation (Dilts et al., 2010). Another tool that uses the flooding algorithm 65 

is River Bathymetry Toolkit (RBT), which works by detrending the DEM to remove the longitudinal slope and floods the 

result to investigate the extent of the stream or in this case the valley bottom (McKean et al., 2009). The Multi-resolution 

Valley Bottom Flatness (MRVBF) is a slope-based algorithm that uses several neighborhood calculations moving from small 

to large in an attempt to capture both small and large valleys, which are then combined into one single index (Gallant and 

Dowling, 2003). Fluvial Corridor Toolbox is a workflow that contains several tools for extracting and classifying fluvial 70 

features. The workflow consists in part of a slope-based algorithm that extracts valley bottoms by calculating an altimetric 

reference plan along the river subtracting that from the original elevations to obtain a detrended elevation. This is subjected to 

a threshold to capture elevations that are then classified as the valley bottom (Roux et al., 2015). Finally, Valley Bottom 

Extraction Toolbox (V-BET) is a relatively recent tool that uses a slope-based algorithm that works as a function of the drainage 

basin and scales results depending on the location within the basin (Gilbert et al., 2016). 75 

 

Table 1: Some existing valley bottom delineation tools, their data requirements, and defining algorithm. 

Tool Data requirements Algorithm Reference 

Height Above River (HAR) DEM, stream network Flooding Dilts et al. (2010) 

River Bathymetry Toolkit (RBT) DEM Flooding McKean et al. (2009) 

Multi-resolution Valley Bottom Flatness (MRVBF) DEM Slope Gallant and Dowling (2003) 
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Fluvial Corridor Toolbox DEM Slope Roux et al. (2015) 

Valley Bottom Extraction Toolbox (V-BET) DEM, stream network Slope Gilbert et al. (2016) 

 

Tools that use the flooding algorithm such as HAR and RBT have limitations of scaling up to the entire drainage basin 

since they use a single flood depth (Gilbert et al., 2016). This implies that a flooding depth that delineates the valley bottom at 80 

the downstream side of the drainage basin results in an underestimation of the valley bottom at the upstream areas. 

Correspondingly, a flooding depth that delineates the valley bottom at the upstream side would result in an overestimation at 

the downstream areas (Gilbert et al., 2016). Slope-based algorithms such as MRVBF and V-BET also have scale issues 

whereby slope thresholds that work for larger valleys fail to work on smaller confined ones leading to an exaggeration of the 

valley bottom and vice versa (Gilbert et al., 2016). These scaling issues proved to be prevalent during our preliminary testing 85 

of the existing tools displayed in Table 1. 

Our incentive for developing a new tool for the delineation of river valley bottom was to improve on existing methods by 

giving delineations that are more accurate while keeping the tool relatively simple to use. Due to their ideal location as a flat 

part of the landscape, valley bottoms can create conflicts of land uses between humans and the ecosystems (Burby and French, 

1981; Mount, 1995). Our approach made it possible to map whole drainage basins upscaling to a national map. We used 90 

Denmark with an area of about 43,000 km2 as an example. 

The overall objective of this paper is to present a stepwise GIS approach for the delineation of river valley bottom within 

drainage basins and use it to perform a national delineation. We hypothesize that based on novel GIS techniques along with 

spatial inputs such as a DEM, river network, and wetland areas, we can carry out our delineation tackling issues of scaling. 

2 Materials and methods 95 

2.1 Study area 

Denmark is located in Northern Europe (Figure 3) and covers an area of about 43,000 km2. The country consists of the 

peninsula Jutland and an archipelago of 443 named islands, the largest being Zealand and Funen. The country is comparatively 

flat with a mean elevation of about 31 m above sea level and the highest point standing at about 172 m above sea level. A large 

part of the terrain consists of rolling plains with sandy coastlines and large dunes located in Northern Jutland. It consists of 100 

several streams with the largest being the Gudenå (149 km), Skjern Å (96 km), and Storå (100 km) (Ovesen et al., 2000). 

Danish landscapes are a result of multiple glaciations during the Quaternary period (last 2.6 Ma) where ice covered Denmark 

several times. During the 100,000 years of the last glaciation period (Weichselian glaciation), the ice advance came from the 

Baltic, Norway, Sweden, and again from the Baltic and ended at the Main Stationary Line (MSL in Figure 3) (Pedersen et al., 

2012). The East Jutland ice advance (19,000 BP) came from the southeastern direction and ended at the East Jutland ice border 105 

(E in Figure 3). This was followed by the Baelthav readvance (18,000 BP) coming from a southeastern direction going through 
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northwestern Zealand, the Great Belt, southern and eastern Funen, and southeastern Jutland ending at the Baelthav ice border 

(B in Figure 3) (Houmark-Nielsen, 2011). 

 

 110 

Figure 3: The location of Denmark within Europe enlarged to show the major geomorphological regions that stem from the major 

ice advances within the last glaciation (arrows). MSL = Main Stationary Line, E = East Jutland ice border, B = Baelthav ice border 

(Houmark-Nielsen, 2011). 

 

2.2 Data 115 

We used four datasets in the development of our river valley bottom delineation tool (Figure 4). First, a DEM of Denmark 

(Figure 4a). This is LIDAR data collected and processed by the Danish Agency for Data Supply and Efficiency. It has a 

resolution of 40 cm and can be downloaded freely (www.sdfe.dk). For the development of the tool, we resampled the LIDAR 

data using bilinear interpolation to a 10 m spatial resolution. We did this to remove noise in the data and reduce computation 

time. Second, we used a GIS feature layer containing a river network of about 27,000 km long, spanning the entire country 120 

(Figure 4b). This dataset is prepared by the Danish Centre for Environment and Energy (DCE) at Aarhus University, Denmark, 

and is available in their database. The third dataset is a GIS feature layer of 142 river drainage basins (Figure 4c) also prepared 

by the DCE. Finally, we used a GIS feature layer of mapped historic wetland areas (Figure 4d). These are digitized from old 

topographical maps and cover an area of about 7,500 km2 of the country (Breuning-Madsen et al., 1984). We carried out a 

validation of the tool at three areas (Bjerringbro/Hvorslev, Tåstrup, and North Funen) all having GIS feature layers representing 125 
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Groundwater Dependent Ecosystems (GDE) (Figure 5). This data comes from a study by Nilsson et al. (2014) where they 

digitized GDE from an old Danish map (ca. 1770-1867). This is the earliest Danish detailed map (1: 5,000) representing the 

most undrained landscape condition before the introduction of tile drainage in the 1850s. Of the digitized nature types, meadow 

and marsh were used to represent the most widespread wetland types of GDE in river valleys in Denmark (CIS, 2014). 

 130 
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Figure 4: Spatial data used to develop the river valley bottom delineation tool consisting of (a) Digital Elevation Model (DEM) in 

meters above sea level (m.a.s.l), (b) River network, (c) Drainage basins (highlighted is the Gudenå drainage basin located in the 

peninsula of Jutland, which we subsequently use to illustrate our delineation approach), and (d) Wetlands. 
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 135 

Figure 5: Spatial data used to validate the river valley bottom delineation tool consisting of three areas: (a) Bjerringbro/Hvorslev, 

(b) Tåstrup, and (c) North Funen with expertly digitized GDE consisting of the nature types meadow and marsh from a study by 

Nilsson et al. (2014). 
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3 Methodology 

3.1 Cost distance accumulation 140 

We created a tool that uses a stepwise approach to delineate the river valley bottom using GIS techniques. We used the Python 

programming language, primarily ArcPy, a site package that is useful in customizing ESRI ArcGIS functions for geographic 

data analysis, management, and automation. The primary methodology that we used was cost distance accumulation. It works 

by quantifying surface movement based on the potential accumulative effort (known as cost) that is required to move from an 

origin (source) to outward locations (destinations). The source locations are assigned cost distance accumulations of zero and 145 

the algorithm calculates cost distance accumulations outward based on resistance factors encountered with each move. These 

factors can be a representable magnitude of a form of resistance that the user wants to model (e.g. slope, friction, wind, etc.) 

The result is often used to calculate the least costly or effortless path to traverse between two locations (e.g. best hiking route, 

least costly route for a pipeline, wildlife corridor habitats, etc.). We calculated cost distance accumulation by using the river 

centerline as the source and the slope of the terrain as the cost limiting the calculation within the boundary of drainage basins. 150 

We hypothesize that we are going to experience a greater increase in the cost distance accumulation at the boundary of the 

river valley bottom, which consists of increasing slopes when compared to the valley bottom. We demonstrate the algorithm 

in Figure 6, as well as Equations 1, 2, and 3. 

 

 155 

Figure 6: Cost distance accumulation algorithm demonstrating movement from a starting point (source) to an ending point through 

a path that incorporates perpendicular and diagonal movement. Equations 1, 2, and 3 illustrate the computation of the costs and 

accumulation. 

 

𝑎(𝑖)𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 =
𝑐𝑜𝑠𝑡(𝑖)+𝑐𝑜𝑠𝑡(𝑖+1)

2
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 … 𝑛                                                                                                         (1) 160 

 

𝑎(𝑖)𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 = 1.4142 (
𝑐𝑜𝑠𝑡(𝑖)+𝑐𝑜𝑠𝑡(𝑖+1)

2
) , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 … 𝑛                                                                                                (2) 

 

𝐶𝑜𝑠𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑎(𝑖)𝑛
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 … 𝑛                                                                                                           (3) 

 165 
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3.2 A stepwise GIS approach 

We processed the input DEM using a fill operation to eliminate any localized peaks and sinks before the analysis. Figure 7 

illustrates the first two steps using the Gudenå drainage basin (ca. 2,700 km2) located in the peninsula of Jutland (highlighted 

in Figure 4c). At step 1, the tool calculated a slope raster using the 10 m DEM shown in Figure 7a. It then conditioned the 170 

resulting slope raster by replacing values of zeros with small positive values resulting in a conditioned slope raster as seen in 

Figure 7b. We do this because the algorithm of cost distance accumulation is a multiplicative process and does not work with 

values of zero. At step 2, it calculated the cost distance accumulation within the drainage basin using the river network layer 

as the input source data and the conditioned slope raster as the input cost (Figure 7b). This resulted in a cost distance 

accumulation raster for the drainage basin as seen in Figure 7c. The cost distance accumulation increases depending on the 175 

magnitudes of the slopes starting from zero at the river network centerline. 

 

 

Figure 7: Initial steps that our approach takes to delineate the river valley bottom using an example of the Gudenå drainage basin. 

At Step 1, using (a) the DEM as input, we calculate slope and condition it to remove values of zeros, which results in (b) a conditioned 180 
slope raster. At Step 2, we use (b) together with the river network as inputs to calculate (c) the cost distance accumulation within the 

drainage basin. 

 

We then needed a basis to extract the river valley bottom from the cost distance accumulation raster. Figure 8 illustrates 

the subsequent steps that lead to the final delineation of the river valley bottom for the drainage basin. We based our delineation 185 
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on calculating an estimate of the threshold cost distance accumulation that corresponds to the boundary of the river valley 

bottom using wetland areas that are adjacent to rivers. The tool first extracted wetland areas adjacent to rivers (Figure 8a) 

through a spatial analysis of proximity between input wetland and river layers. To extract a non-skewed cost distance 

accumulation threshold value, we filtered out zero and high outlier cost distance accumulation values located within the 

extracted wetlands adjacent to rivers (Step 3 in Figure 8). The zero values correspond to values that fall directly at the river 190 

system (source) and the high values are far from the river valley bottom boundary towards the uplands. The tool extracted cost 

distance accumulation values ranging from greater than zero to a maximum of 500 (Figure 8b). The choice of this range comes 

from plotting the distribution of these values which results in a decay curve that plateaus before reaching 500 (Figure 9). The 

tool then calculated the mean of these values that we used as a threshold cost distance accumulation for extracting the river 

valley bottom for the drainage basin (Step 4 in Figure 8). For the Gudenå drainage basin, the threshold cost distance 195 

accumulation is 90 as seen in Figure 9. The final delineated river valley bottom extracted using this threshold is shown in 

Figure 8c. We then created a loop that repeated this process until all Danish drainage basins were processed and finally 

combined into one single layer. 

 

 200 

Figure 8: Subsequent steps that our approach takes to delineate the river valley bottom. At Step 3, using (a) wetland areas adjacent 

to rivers as input, we extract (b) the cost distance accumulation values falling within and filter them to remove outliers (extracting 

only values between zero and 500). At Step 4, we use (b) to calculate the mean of the values, which we use as a basis to delineate (c) 

the river valley bottom from the cost distance accumulation of the drainage basin. 
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 205 

 

Figure 9: Distribution of cost distance accumulation values in the range greater than zero to 500 within wetlands adjacent to rivers 

in the Gudenå drainage basin showing the mean value (value of 90) of cost distance accumulation (red vertical line), which we use 

as the threshold for our river valley bottom delineation. Count on the Y-axis represents the number of cost distance accumulation 

raster cells within each band. 210 

 

We carried out a validation of the stepwise GIS approach by doing a percent overlap analysis using our delineated river 

valley bottom and GDE that are adjacent to rivers within the three validation areas (Figure 5). The analysis entailed finding an 

overlap between our river valley bottom delineation and the GDE. It was then converted to a percentage by dividing its area 

by the area of the extent that is covered by our river valley delineation. We hypothesized that some of the delineated river 215 

valley bottom areas will contain some GDE habitat areas with meadow and marsh. 

4 Results 

4.1 River valley bottom map of Denmark 

We ran the tool for the entire of Denmark delineating an area about 8,500 km2 of the river valley bottom, which is 

approximately about 20% of the country. We present the resulting map and zoom into the areas that we subsequently use for 220 

validation (Figure 10). When overlaid on a relief map generated by the 10 m DEM, the delineation visually looks good and 

falls on the low areas of the terrain as we expected. The tool delineates both confined and unconfined river valleys within the 

drainage basins. Confined river valleys can be seen as the narrow, mostly headwater river valley bottom sections, while 

unconfined river valleys are wider downstream sections. 
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 225 

 

Figure 10: Delineated river valley bottom map of Denmark zoomed into the three validation areas. Confined headwater valleys have 

small widths whereas unconfined downstream valleys have broader widths. 
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4.2 Validation 230 

Our validation explored the area that GDEs close to rivers occupy within the delineated river valley bottom. This resulted in 

an overlap area between GDE and delineated river valley bottom that we represent as a percentage of the river valley bottom 

extent area, which is the area that covers the overlap and areas outside the overlap. We calculated this for the areas of 

Bjerringbro/Hvorslev, Tåstrup, and North Funen (Figure 11). We also present a summary of the validation results in Table 2. 

These percent overlaps can be translated as the approximate amount of area within our river valley bottom delineation that is 235 

wet. This implies that the larger the overlap, the better our tool can predict the river valley bottom since most of these areas 

are wet and/or have the groundwater table close to the surface. 

 

Table 2: Validation results showing the valley bottom and GDE intersection area, valley bottom extent, and overlap. 

Area Valley bottom and GDE intersection (km2) Valley bottom extent (km2) Overlap (%) 

Bjerringbro/Hvorslev 5.2 9.5 55 

Tåstrup 10.6 15.7 67 

North Funen 24.2 43.9 55 

 240 
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Figure 11: Validation of the developed river valley bottom delineation tool showing the areas of overlap between the delineated river 

valley bottom and GDE, and the extent to which the river valley bottom covers for the three validation areas. 
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 245 

5 Discussion 

Our tool delineates the river valley bottom using the slope as the determining factor for the cost distance accumulation 

algorithm. This gives an advantage when scaling, since a flat area will increase the cost distance accumulation at a slower pace 

while a steep area increases it at a faster pace. This solves the issue of scaling, since confined headwater valleys will increase 

the cost distance accumulation rapidly at a short distance away from the river centerline whereas unconfined valleys will 250 

increase the cost distance accumulation at a slower pace. The net result is that the threshold cost distance accumulation value 

for capturing the river valley bottom boundary is at relative distances for different types of valleys. This means that the 

threshold value at confined headwater valleys close to the river will be achieved at roughly the same cost distance accumulation 

as that of the unconfined valley that is further downstream. This can be seen in the results in Figure 10 where confined 

headwater valleys and unconfined downstream valleys are both automatically captured within the different areas. The wetlands 255 

input gives a further guide to finding the threshold cost distance accumulation value through working out a mean of the values 

found within the flat valley area, which in turn gives a more accurate delineation. 

It is quite difficult to carry out a validation of the river valley bottom since there is no measurable quantity (Gallant and 

Dowling, 2003). We, therefore, opted to use the GDE as a proxy of finding if our delineated river valley bottom is in agreement 

with nature types commonly found within these areas. Our validation revealed that more than 55% and in one case 67% (Table 260 

2 and Figure 11) of our delineated river valley bottoms contain GDE. We expected this since farmers have been reclaiming 

the low-lying areas in Denmark during the last 200 years before the first map was created. We believe that the validation would 

have given better results if the first mapping was conducted before the reclamation of these areas. 

The tool performs well but has some limitations. The first limitation applies to the coastal areas where the delineation 

picks up strips of the beach due to their low elevation (Figure 12a). Another limitation is in very wide laterally unconfined 265 

areas such as fluvial plains in downstream coastal areas. Due to the size of the floodplain, the tool sometimes fails to delineate 

the entire low-lying area and resolves to delineate valleys from individual rivers (Figure 12b). There are also limitations 

concerning input data such as only being able to delineate a river valley bottom in areas that have river data. It is therefore 

important to use a good layer of the river system with the right level of detail as input. Also, the DEM resolution should be at 

the level of detail of capturing the confined headwater valleys. E.g. if the interest was in capturing valleys that are less than 10 270 

m then a 10 m DEM would be insufficient for the task. 
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Figure 12: Limitations of our river valley bottom delineation tool showing (a) limitations at coastal areas in which the tool delineates 

strips of the beach and (b) limitations with wide laterally unconfined valleys where in some cases the tool fails to delineate the entire 275 
low-lying area delineating valleys from individual rivers only. 

6 Conclusion 

This study presents a new GIS tool for the delineation of the river valley bottom across multiple drainage networks. This is an 

important management tool since it can delineate an area that has been the focus of management actions in terms of protecting 

rivers against upland nutrient pollution. We use novel, automatic GIS techniques and illustrate the development of the tool 280 

through steps using the Gudenå drainage basin in Denmark. The main method is cost distance accumulation using a river 

network as the source and slope derived from a Digital Elevation Model (DEM) as cost. We then find a threshold river valley 

bottom boundary using wetland areas adjacent to rivers as a guide. We run these steps for all drainage basins of Denmark 

eventually creating a national map of the river valley bottom. The tool visually performs well by extracting valley bottoms that 

appear to be within the lowest areas of the terrain adjacent to the river network. We validate the resulting tool by finding an 285 

overlap of the delineated river valley bottom with Groundwater Dependent Ecosystems (GDE) at selected areas. The validation 

reveals that at least half to two-thirds of the river valley bottom contains GDE, which is what we expected since the GDE data 

we used to validate was collected at a historical time during which farmers had already started reclamation low-lying areas. 

However, the tool has limitations such as delineating beach areas in river coastal outlets and sometimes fails to delineate the 
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whole low-lying area in wide unconfined valleys. Additionally, the tool will only delineate a river valley bottom at an area that 290 

contains river data, and therefore a good river network with the right level of detail should be used as input. We expect that 

the resulting map can be used for planning and policy support in terms of managing the economic and sustainable use of river 

valley bottom areas in Denmark e.g. agriculture. 
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