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Abstract. Vegetation optical depth (VOD) retrievals from passive microwave sensors provide analog

estimates of above-ground canopy biomass. This study presents the development and analysis of

assimilating VOD retrievals from X-, C-, and L-band passive microwave instruments within the

Noah-MP land surface model over the Continental U.S. The results from this study demonstrate

that the assimilation of VOD retrievals have a significant beneficial impact on the simulation of5

evapotranspiration and GPP, particularly over the agricultural areas of the U.S. The improvements

in the water and carbon fluxes from the assimilation of VOD from X- and C-band sensors are found

to be comparable to those obtained from the assimilation of vegetation indices from optical sensors.

The study also quantifies the relative and joint impact of assimilating surface soil moisture and VOD

from the Soil Moisture Active Passive (SMAP) mission. The utility of soil moisture assimilation for10

improving ET is more significant over water-limited regions, whereas VOD DA is more impactful

over areas where soil moisture is not the primary controlling factor on ET. The results also indicate

that the information on moisture and vegetation states from SMAP can be simultaneously exploited

through the joint assimilation of surface soil moisture and VOD. Since passive microwave-based

VOD retrievals are available in nearly all weather conditions, their use within data assimilation15

systems offers the ability to extend and improve the utility obtained from the use of optical/infrared

based vegetation retrievals.

1 Introduction

Remote sensing estimates of vegetation are typically developed by exploiting the relationship be-

tween the stomatal stress and the spectral reflectance of leaves and canopies (Knipling (1970)).20

1



Multi- and hyperspectral optical and thermal satellite sensors have been used to provide retrievals of

variables such as Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), fraction

of photosynthetically active radiation (fPAR), solar induced fluorescence (SIF), and biomass (My-

neni et al. (2002); Tucker et al. (2005); Zheng and Moskal (2009); Myneni et al. (2011); Kumar and

Mutanga (2017)). The multi-spectral vegetation indices are typically derived from atmospherically25

corrected bidirectional surface reflectance in the near-infrared and visible bands (Price and Bausch

(1995); Huete et al. (1997)). Similarly, hyperspectral imaging is used to characterize vegetation

type, health and function (Goetz et al. (1985)) at very fine (∼30 m) spatial resolution. As vegeta-

tion stress and stomatal closure influence canopy temperatures, thermal remote sensing also offers

the possibility of estimating vegetation conditions. For example, Landsat (Anderson et al. (2012))30

and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS;

ecostress.jpl.nasa.gov) provide fine resolution (∼ 70 -100 m) estimates of surface temperature and

evapotranspiration. Houborg et al. (2015) presents a summary of the major advances in the remote

sensing of vegetation from these platforms.

A significant shortcoming of the optical/thermal infrared (TIR) sensors is that cloud cover can35

severely limit the acquisition of data, restricting the coverage to cloud-free, clear days. Gap-filling

strategies, such as using the nearest clear-day observation, are often used to improve the cloud-

related gaps in spatio-temporal coverage from optical/TIR instruments (Hall et al. (2010)). Passive

microwave measurements, on the other hand, are nearly all-weather and are not limited by cloud

cover. Holmes et al. (2016), for example, used microwave estimates of land surface temperature as40

an alternate to TIR measurements to retrieve evapotranspiration (ET) during cloudy time periods.

Microwave radiometry over land has traditionally been used for retrieving estimates of surface soil

moisture, by exploiting the sensitivity to low frequency microwave radiometric measurements to

changes in soil moisture (Njoku and Entekhabi (1996)). As this radiance passes through vegetation,

the microwave signal is attenuated by vegetation, the level of which is described by the vegetation45

optical depth (VOD) parameter. Due to its sensitivity to plant water content, VOD can be used as an

analog of above-ground canopy biomass (Owe et al. (2001); Liu et al. (2011b); Konings et al. (2016,

2019); Teubner et al. (2018, 2019)). The VOD retrievals from various microwave frequencies such as

K-, X-, C- and L-bands have been used for a variety of studies for examining vegetation seasonality

(Jones et al. (2012)), characterization of extremes such as drought (Liu et al. (2015); Konings and50

Gentine (2017); Smith et al. (2020)), assessment of dryland vegetation dynamics (Andela et al.

(2013)), and the determination of land degradation and deforestation (Liu et al. (2013); van Marle

et al. (2016)).

Despite the availability of vegetation measurements from various sensing platforms, the incorpo-

ration of these measurements within data assimilation systems for land surface hydrology is rela-55

tively new. Most studies to date have focused on the assimilation of LAI retrievals to improve the

characterization of vegetation biomass, evapotranspiration, root zone soil moisture and CO2 fluxes
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within land surface models (Sabater et al. (2008); Barbu et al. (2011, 2014); Albergel et al. (2017,

2018); Fox et al. (2018)). More recently, Kumar et al. (2019b) demonstrated the beneficial impact of

LAI assimilation on improving water, energy, and carbon fluxes over the Continental U.S. (CONUS).60

Most prominent improvements from LAI assimilation are observed over the agricultural areas, where

assimilation improved the representation of vegetation seasonality impacted by cropping schedules.

As the use of all-weather VOD measurements from microwave sensors provides the opportunity

to extend the spatial and temporal coverage of vegetation observations into overcast and clouded

conditions, here we examine the influence of assimilating VOD retrievals from microwave radiom-65

etry. Specifically, we explore the utility of assimilating VOD retrievals from X-, C-, and L-band

microwave sensors in the Noah multi-parameterization (Noah-MP) land surface model (LSM). The

study uses VOD retrievals from a range of microwave frequencies, as their current and future avail-

ability vary significantly. For example, the L-band sensing platforms such as NASA’s Soil Moisture

Active Passive (SMAP; Entekhabi et al. (2010)) mission are relatively new, whereas the X-band70

and C-band retrievals of VOD are available for significantly longer time records, with observations

from multiple satellites. In addition, given the plans for sensors operating in the higher microwave

frequencies (e.g. Advanced Microwave Scanning Radiometer; AMSR, the Global Precipitation Mea-

surement Microwave Imager; GMI, Joint Polar Satellite System; JPSS-2, Copernicus Imaging Mi-

crowave Radiometer; CIMR), future observations in X- and C-band frequencies are also likely guar-75

anteed. Quantifying the relative utility of VOD retrievals in these frequencies is, therefore, important.

The model simulations are conducted over CONUS in the North American Land Data Assimilation

System phase-2 (NLDAS-2; Xia et al. (2012)) configuration. As noted in prior data assimilation

studies such as Kumar et al. (2019b), NLDAS-2 configuration provides an environment with high-

quality boundary conditions informed by radar and gauge corrected precipitation and bias-corrected80

shortwave radiation, which also leads to high skill in the simulated land surface conditions. Partly

as a result of the high skill of the NLDAS-2 meteorology, data assimilation of variables such as soil

moisture and snow has only reported marginal success in this configuration (Kumar et al. (2014)).

The assimilation of LAI, on the other hand, has been more impactful as it was shown to detect im-

pacts of agricultural activity, which is not easily captured through high quality boundary conditions85

alone (Kumar et al. (2019b)). In general, demonstration of additional improvements through data

assimilation in the NLDAS-2 configuration is indicative of the significant utility of remote sensing

inputs, as such high quality boundary conditions are not routinely available in other regions of the

world.

As described in detail in Konings et al. (2017), a number of approaches have been used to retrieve90

VOD from microwave sensors. Here we employ VOD retrievals primarily from two approaches for

data assimilation. The Land Parameter Retrieval Model (LPRM; Owe et al. (2008)) uses single fre-

quency, polarized brightness temperature in the range of 1-20 GHz to retrieve both soil moisture and

VOD. In this study, we use the C-band (6.9 GHz) and X-band (10.7 GHz) based VOD retrievals from
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LPRM. The C- and X-band measurements are less sensitive to cloud water content and more sensi-95

tive to soil moisture and vegetation canopy, which are also prone to Radio Frequency Interference

(RFI). NASA’s SMAP mission operates in a protected L-band over the U.S., which minimizes the

impact of RFI contamination. The sensitivity of L-band to cloud water content is lower compared

to C- and X-band. In addition, the L-band measurements provide more sensitivity to deeper soil

moisture and canopy layers.100

To our knowledge, this is one of the first reported studies of continental scale assimilation of VOD

retrievals within LSMs. Specifically, this article addresses the following research questions:

– What is the impact of assimilating VOD retrievals from X-, C-, and L-band passive microwave

remote sensing instruments on water and carbon states?

– How does the utility of passive microwave VOD assimilation compare to that of assimilating105

vegetation (LAI) retrievals from optical instruments?

– Does assimilating L-band VOD provide independent benefits to that from incorporating sur-

face soil moisture retrievals? Can improved simulation of water and carbon states be developed

from the simultaneous use of VOD and soil moisture?

These questions are addressed by examining the impact of assimilation with the use of a large110

suite of independent reference datasets of soil moisture, evapotranspiration, gross primary produc-

tivity (GPP), streamflow, and terrestrial water storage (TWS). Section 2 describes the details of the

model configuration, datasets used, and the assimilation configuration. The results of various data

assimilation simulations are described in 3. Finally, Section 4 summarizes the main findings of the

study.115

2 Study settings

2.1 Data

VOD, an integrated measure of the vegetation structure and water content, is typically estimated

as part of the radiometric soil moisture retrieval approach based on the first order τ -ω model (Mo

et al. (1982)). In this model, the L-band brightness temperature (Tb,p) estimates at the top of the120

atmosphere for horizontal and vertical polarizations (denoted by the subscript p) are represented as:

Tb,p = Ts(1− rp)γ+Tc(1−ω)(1− γ)(1+ rpγ) (1)

where Ts is the surface soil temperature, Tc is the canopy temperature, rp is the rough surface

reflectivity, ωp is the scattering albedo, and γ is the vegetation transmissivity. γ, which represents the
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attenuation of the emission due to vegetation is a function of VOD and the measurement incidence125

angle θ.

γ = exp−(
VOD
cosθ

) (2)

VOD is determined by the canopy structure and the dielectric properties of the canopy layer.

When VOD is low (∼ 0), the attenuation of the microwave signal is small. Soil moisture is estimated

from rp using Fresnel equations that relate rp to the dielectric constant of the soil. A more detailed130

description of the VOD formulation is provided in Grant et al. (2016).

As mentioned earlier, the X- and C-band based VOD datasets used in this study are based on

LPRM to retrieve VOD and soil moisture from dual-polarized passive microwave observations.

LPRM uses the τ -ω model to characterize the emission and radiative transfer of low-frequency

(1-20 GHz) microwave emission from the soil, vegetation, and atmosphere to the top-of-atmosphere135

brightness temperature recorded by the satellite. Unique to LPRM, the method includes the ana-

lytical solution of the τ -ω model for polarized emission that describes the relationship between

the microwave polarization difference ratio (MPDI) and VOD (Meesters et al. (2005)). Within the

framework of the τ -ω model, this allows for the retrieval of both VOD and soil moisture and has

been implemented with all existing passive microwave satellites with frequencies from L- to Ku-140

band and from 1979 to present (Owe et al. (2008); Parinussa et al. (2011); der Schalie et al. (2016)).

The spatial resolution of this product is 0.25 degree with a global extent of the non-frozen land

surface. The temporal resolution is 1-2 days for the morning overpass. In this study, we employ

the VOD retrievals from LPRM version 6 (Van der Schalie et al. (2018)), available from the VOD

climate archive (VODCA; Moesinger et al. (2019)). VODCA provides products from multiple sen-145

sors, including the Advanced Microwave Scanning Radiometer - Earth observing system (AMSR-

E) aboard NASA’s Aqua satellite, the AMSR2 instrument onboard the Global Change Observation

Mission-Water (GCOM-W), WindSat microwave radiometer aboard the joint DoD/Navy Coriolis

platform, the Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), and the

Global Precipitation Measurement (GPM) Microwave Imager (GMI). The C-band VOD retrievals150

rely on AMSR-E, AMSR2, and WindSat, whereas the X-band VOD retrievals include data from

AMSR-E, AMSR2, WindSat, TMI, and GMI.

The SMAP satellite launched in January 2015 is a mission dedicated to measuring soil moisture

and freeze/thaw states, employing a passive microwave radiometer to collect measurements of ver-

tical and horizontal polarizations of L-band brightness temperature data at an incident angle of 40◦.155

The retrievals from SMAP are also developed using the τ -ω model. The soil moisture retrievals

are made using a single channel algorithm using the vertical polarizations (Chan et al. (2018))

whereas the VOD retrievals employ both polarized brightness temperature observations (Chaubell

et al. (2020)). Though the sampling resolution of the SMAP radiometer is approximately 36 km,
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oversampling of the antenna overpasses is used to enhance the spatial resolution to 9 km. This 9km,160

level 2 SMAP dataset (SPL2SMP−E) is used in this study.

2.2 Model configuration

The model domain used in this study covers the Continental United States (CONUS) with an extent

of 25-53◦N and 125-67◦W at 1/8◦ spatial resolution (Figure 1). Hourly NLDAS-2 meteorological

inputs are used to drive the Noah-MP land surface model (version 3.6), which is the next genera-165

tion version of the Noah LSM. Compared to Noah, Noah-MP provides multiple options for various

land surface physics computations, including multilayer snow pack, options for surface water in-

filtration, runoff, and groundwater, representation of an unconfined groundwater aquifer, and a dy-

namic vegetation model (Niu et al. (2011); Yang et al. (2011)). Note that the prognostic vegetation

model of Noah-MP v3.6 was used by Kumar et al. (2019b) to demonstrate the impact of assimilat-170

ing LAI retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the

Terra and Aqua satellites. In addition to Noah-MP, the Hydrological Modeling and Analysis Plat-

form (HyMAP; Getirana et al. (2012)) model is used to develop estimates of routed streamflow using

the gridded surface runoff and baseflow fields from Noah-MP. In this study, the impacts of regulation

and reservoir operations on streamflow are not modeled within HyMAP.175

The model and data assimilation integrations in this study are conducted during a time period of

2000 to 2018. The initial conditions are generated through a long spinup of Noah-MP. The model is

initialized with uniform conditions and is run from 1979 to 2018 twice. It is then reinitialized in 1979

with the climatological average conditions derived from the spinup. Finally, the initial conditions at

the beginning of year 2000 are used for the model simulations in this article.180

The NASA Land Information System (LIS; Kumar et al. (2006)) is used to facilitate the model

simulations presented in this article. LIS is a comprehensive land surface modeling system that in-

cludes the interoperable support for a large suite of land surface models, data assimilation algorithms,

and observational data sources. As part of this study, the DA capabilities in LIS are extended to en-

able the assimilation of VOD retrievals, described in Section 2.3. The LIS framework also includes185

a verification system known as the Land surface Verification Toolkit (LVT; Kumar et al. (2012)),

enabling the systematic verification and evaluation of modeled land surface states against indepen-

dent measurements and datasets. LVT-based evaluations are used in this study to assess the utility of

VOD assimilation approaches.

2.3 Data assimilation configuration190

Similar to the assimilation strategy employed in Kumar et al. (2019b), a 1d Ensemble Kaman Filter

(EnKF; Reichle et al. (2002)) method is used for the assimilation of VOD retrievals. The EnKF

algorithm works with an ensemble of model states, which is propagated forward in time using the
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LSM and updated toward the observation based on the relative uncertainty of the model states and

the observation. The model state update at time k is represented by the following equation:195

xi+k = xi−k +Kk

[
yik −Hkx

i−
k

]
, (3)

where xi−k and xi+k represents the model state for the ith ensemble member before and after the up-

date, respectively. The observation vector is represented by yk which is connected to the model states

through the observation operator Hk. The relative weight given to the innovations (
[
yik −Hkx

i−
k

]
)

in the analysis update is determined by the Kalman gain term (Kk). In this study, the innovation200

calculations employ observations interpolated to the model grid using a nearest neighbor approach.

As described in Kumar et al. (2019b), the innovations in the LAI DA configuration are specified

by comparing the model prognostic LAI variable with the observations. The yk in this case is the

remotely sensed LAI and Hkx
i−
k is the model’s LAI estimate. In case of VOD assimilation, the

computation of the innovations is tricky as Noah-MP does not directly estimate VOD within the205

model. To overcome this limitation, the VOD observations are rescaled into the LAI space in the data

assimilation configuration. The rescaling is performed using a seasonally varying CDF-matching

(Kumar et al. (2015)) and by using the MODIS-based LAI observations from the Global Land Cover

Facility (GLCF) Global LAnd Surface Satellites (GLASS; Xiao et al. (2016)) project at University of

Maryland as the LAI reference. The MODIS-based LAI retrievals from the GLASS LAI product are210

generated using a general regression neural network approach, enabling a spatially and temporally

continuous record of LAI available at 8-day intervals on a 0.05◦ regular latitude-longitude global

grid. We use GLASS data as the LAI reference, due to the improved spatio-temporal coverage as

well as the high quality of the product established in intercomparison studies (Liao et al. (2012);

Fang et al. (2013); Xiao et al. (2016)). Monthly CDFs using multi-year information are computed215

for both the VOD and LAI datasets using all available data, at every model grid point. For example,

the LPRM X-band and C-band CDFs are computed using datasets from 2002-2018 whereas SMAP

CDFs are computed using the available data from 2015 to 2019. To increase the sampling density

in the SMAP CDF calculations, a spatial sampling window of 2 pixels is employed. The GLASS

LAI CDFs are computed using a time period of 2000 to 2018. Note that the rescaling strategy used220

here also relies on the fact that the systematic errors between the GLASS LAI data and the NoahMP

LAI are small, as demonstrated in Kumar et al. (2019b). In this prior study when GLASS LAI

retrievals were assimilated within NoahMP, the demonstrated improvements were primarily from

the adjustment of vegetation/crop seasonality, rather than from the correction of systematic errors.

In addition, the positive impacts from the use of this strategy shown in the following sections, further225

confirm that this rescaling approach is reasonable.

The rescaling is performed with the assumption that there is a strong correlation between VOD

and LAI. The use of VOD as an analog to existing vegetation measurements such as optical-infrared

indices and fluorescence has been suggested in prior studies (Konings et al. (2017)). For exam-
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ple, Albergel et al. (2018) demonstrated that the modeled LAI and VOD derived from the C-band230

backscatter measurements from the ASCAT sensor (Vreugdenhil et al. (2016, 2017)) had high cor-

relations over most of the CONUS. Figure 2 presents a similar comparison, where maps of the

correlation of X-, C-, and L-band retrievals of VOD against the MODIS-based LAI retrievals from

the GLASS project are shown. Based on the mutual availability of datasets, the correlation maps are

generated using a time period of 2002-2018 and 2015-2018 for the LPRM and SMAP comparisons,235

respectively. Strong correlations are observed in the LPRM X-band VOD vs LAI comparisons in

most parts of the domain except over the arid, southwest region of the U.S. The agreements between

the LPRM X-band VOD and LAI are particularly strong over the eastern U.S., agricultural areas

of the Midwest, central California valley, which are regions of high vegetation density. The level of

agreement between VOD and LAI is weaker in the C-band and L-band comparisons compared to the240

X-band. This is consistent with the fact that the attenuation of the lower frequency measurements

from vegetation is less compared to that for X-band. The documented influence of RFI contami-

nation over CONUS (Njoku et al. (2005)) is also evident in the C-band comparisons. Interestingly,

the SMAP-based L-band retrievals of VOD show stronger correlations with LAI than those from

C-band, particularly in the eastern U.S. This is likely a function of data from different sensing plat-245

forms, the use of different retrieval algorithms, and different data record lengths. As documented in

prior studies, the high frequency VOD measurements are more sensitive to the top of the vegetation

(Konings et al. (2017)). The L-band measurements, on the other hand, are more representative of

the vegetation changes in the deeper layers of the canopy. The strong relationship between VOD

and LAI observed in Figure 2 confirms that the rescaling procedure used in the DA configuration is250

reasonable.

This article also compares and contrasts the impact of assimilating VOD with that from incorpo-

rating soil moisture retrievals from the L-band microwave instruments. Soil moisture in the LSMs

is a model-specific quantify, an index of the moisture state (Koster et al. (2009)). As a result, there

are significant differences in soil moisture estimates from different LSMs, even when forced with255

the same meteorology and land surface parameters (Dirmeyer et al. (2006)). Similarly, remote sens-

ing based estimates of soil moisture are also indirect measurements generated through a retrieval

model from direct measurements of the microwave emission of the land surface. Therefore, direct

assimilation of soil moisture without resolving these inconsistencies is meaningless. Here we apply

the commonly used strategy of CDF-matching (Reichle and Koster (2004)) to address the relative260

differences between the remote sensing and LSM-based soil moisture by rescaling the soil moisture

retrievals into the LSM climatology before assimilation. The CDFs are computed separately at each

grid point on a monthly basis. Note that such a configuration only incorporates the anomaly infor-

mation in the soil moisture retrievals and ignores the information inherent in the mean soil moisture

signals (Kumar et al. (2015)). Similar to the strategy used in prior studies, soil moisture retrievals are265

excluded near water bodies, for being at the edge of the swath, when soil is frozen/covered by snow,
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and when the vegetation cover is thick (Kumar et al. (2019a)), to account for the known limitations

of passive microwave-based soil moisture retrievals. Similar flags except for thick vegetation are

also applied to screen out VOD retrievals.

An ensemble size of 20 is used in the data assimilation integrations, with perturbations applied270

to a number of meteorological fields and the model state vector to develop representations of model

uncertainty. Based on the settings used in recent DA studies in the NLDAS-2 configuration (Kumar

et al. (2019a, b)), the precipitation (P ) and downward shortwave radiation (SW ) fields are perturbed

with multiplicative perturbations with mean of 1 and standard deviations of 0.3 and 0.5, respectively.

Further, additive perturbations with mean zero and standard deviation of 50W/m2 are applied to the275

downward longwave radiation (LW ) fields. The hourly forcing perturbations also include cross cor-

relations (ρ) between the forcing variables, with values of ρ(SW,P ) =−0.8, ρ(SW,LW ) =−0.5,

and ρ(LW,P ) = 0.5. For VOD DA, additive perturbations with a standard deviation of 0.01 are ap-

plied to the model LAI fields (Kumar et al. (2019b)), every 3 hours. The updated LAI from DA is

divided by the specific leaf area to revise the leaf biomass variable within Noah-MP. The state vector280

used in the soil moisture DA consists of the top soil moisture layer of Noah-MP, which is perturbed

with an additive noise of 0.02 m3/m3, applied every 3 hours. The perturbations also include time

series correlations employed through a first order autoregressive (AR(1)) model with timescales of

24 and 3 hours, for the forcing and model state variables, respectively. The input observation error

standard deviation is set to 0.04 m3/m3 for assimilating SMAP soil moisture retrievals, whereas285

the observation error standard deviation is set to 0.05 for the scaled VOD retrievals, based on set-

tings from recent studies employing soil moisture (Kumar et al. (2019a)) and LAI (Kumar et al.

(2019b)) retrievals. The assimilation of each dataset is performed in a sequential manner, based on

their respective measurement or overpass times.

3 Results290

This section presents an evaluation of the impact of assimilating VOD retrievals on key terrestrial wa-

ter and carbon states and fluxes. The impact of assimilating the X-band and C-band VOD retrievals

is presented first, followed by the evaluation of assimilating L-band VOD retrievals from SMAP.

Since soil moisture is typically considered the primary retrieval from microwave remote sensing,

we also evaluate the relative benefits of assimilating both SMAP surface soil moisture and VOD295

retrievals. The impact of DA is quantified by comparing to a large suite of reference measurements

of soil moisture, evapotranspiration, GPP, and streamflow.

3.1 Impact of assimilating X-band and C-band VOD retrievals

The impact of assimilating VOD retrievals on the simulated ET estimates is shown in Figure 3,

which shows the change in RMSE and correlation (R) of ET in the DA simulation relative to the OL.300
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These evaluation metrics are computed using two reference data products: (1) the gridded 0.5 deg,

monthly FLUXNET multi-tree-ensemble (MTE) product based on tower ET measurements (Jung

et al. (2009); available from 1982-2008) and (2), the 4 km, daily Atmosphere-Land Exchange Inverse

(ALEXI; Anderson et al. (2007)) model product, developed using TIR measurements, available from

2001 onwards. Strictly speaking, ALEXI is a model product with associated biases and errors of its305

own. Comparatively, FLUXNET MTE can be considered as a close analog to a true ground-reference

product, since it is derived by empirically upscaling eddy covariance measurements, though it is also

affected by the sampling density and consistency of site measurements. Therefore, RMSE is used

as the metric of evaluation in the FLUXNET MTE comparison, whereas R is used to assess the

improvements in ET from DA relative to ALEXI. Figure 3 indicates that the assimilation of VOD310

generally provides beneficial impacts on ET, consistently in the comparisons against both reference

datasets. In addition, most prominent improvements are obtained over the agricultural areas over

the Midwest U.S., lower Mississippi basin, the central California valley, and parts of Mexico. Prior

studies have documented that ALEXI is particularly skillful in detecting spatial features from agri-

cultural management impacts (Hain et al. (2015)). The fact that the spatial pattern of improvements315

in ET in Figure 3 is well correlated with the crop areas provides added confirmation that VOD as-

similation is helpful in improving the representation of managed vegetation (as noted in Kumar et al.

(2019b)).

The impact of VOD assimilation on the carbon fluxes is assessed by focusing on GPP, which

represents the total carbon fixation through photosynthesis. The model simulated GPP is compared320

against two datasets: (1) gridded 0.5 deg estimates of GPP from the FLUXCOM project (Tramon-

tana et al. (2016); Jung et al. (2017)) and (2) remote sensing retrievals of solar induced fluorescence

(SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2) aboard the MetOp-A satellite

(Joiner et al. (2014); Guanter et al. (2014)). Similar to FLUXNET MTE, the FLUXCOM estimates

are produced by upscaling point measurements using machine learning approaches. SIF, which is a325

measure of the re-emission of light during photosynthesis, is considered an observational analog of

GPP. Figure 4 provides an evaluation of GPP against these two reference datasets using two different

metrics. Compared to FLUXCOM, the improvements in RMSE from the X-band and C-band VOD

are shown in the top panel of Figure 4. The bottom panel of Figure 4 show the improvements in

correlation (R) of GPP against the GOME-2 SIF measurements from VOD DA. These independent330

comparisons against two different products further confirm the beneficial role of VOD DA over the

agricultural regions, similar to the patterns in the ET comparisons of Figure 3. The RMSE of simu-

lated GPP is reduced and the correlation with the SIF retrievals is improved through the assimilation

of VOD.

Figures 3 and 4 also offer assessments of the relative utility of X-band and C-band VOD re-335

trievals. While the spatial patterns of improvements are generally similar in both X- and C-band

assimilation configurations, the assimilation of X-band VOD provides stronger improvements. This
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is consistent with the fact that the attenuation of the microwave signal reduces for lower frequency

measurements. As both Figures 3 and 4 indicate the strong influence of vegetation type in the im-

provement maps of ET and GPP, we quantify the domain-averaged percentage improvements by340

vegetation type, shown in Figure 5. For simplicity, we use a simpler vegetation classification scheme

by grouping the Evergreen Needleleaf, Broadleaf Needleleaf, Deciduous Needleleaf, and Deciduous

Broadleaf forests into a “Forest” category, the Mixed Forests, Woodlands, and Wooded Grasslands

into a “Mixed Forests” category, and Closed Shrublands and Open Shrublands into a “Shrublands”

category. Note also that the percentage improvements shown in Figure 5 are for different metrics.345

For FLUXNET and FLUXCOM comparisons, the percentage improvements are shown for RMSE,

whereas for ALEXI and GOME-2, the percentage improvements in R are shown. Figure 5 confirms

that the largest impact of VOD assimilation is over Croplands, providing up to a domain-averaged

improvement of 10% and 38% in ET and GPP, respectively. Significant improvements are also ob-

served over areas with moderate vegetation such as Grasslands and Shrublands, while over Forests350

and Mixed Forests, the level of improvements reduces. Over bare soil and urban areas, the impact of

VOD assimilation is very small, due to the lack of vegetation influence on ET and GPP. As seen in

Figure 5, compared to X-band VOD-DA, the level of improvements with C-band VOD-DA reduces.

For ET, at a domain averaged scale, the assimilation of C-band and X-band VOD retrievals provide

4.6% and 6.8% improvements in RMSE, respectively, when compared to FLUXNET MTE. Com-355

pared to ALEXI, C-band VOD DA provides 3.1 (2.0)% domain-wide improvements in RMSE (R)

of ET, respectively. These percentage improvements in RMSE(R) increase to 4.0 (2.7)% for X-band

VOD assimilation. Similarly, the domain averaged percentage improvement in RMSE of GPP with

C-band VOD assimilation is 17.3 and it improves to 22.3 with X-band VOD assimilation. The do-

main averaged correlation of the OL-based GPP with GOME-2 SIF is 0.53 and it improves to 0.62360

and 0.66 with C-band and X-band assimilation, respectively.

The impact of VOD assimilation on other land surface states such as soil moisture, terrestrial water

storage, and streamflow is also evaluated using a number of reference products. The in-situ measure-

ments from the International Soil Moisture Network (ISMN; Hollinger and Isard (1994); Jackson

et al. (2010); Dorigo et al. (2011, 2013)) are used for evaluating soil moisture fields. Similar to the365

Kumar et al. (2019b) study, hourly data from 934 stations from 9 different networks within ISMN

is used for evaluating the soil moisture estimates. The surface and root zone soil moisture values

are defined as the soil moisture content of the top 10 cm and 1 meter of the soil column, respec-

tively. These are computed from the layer soil moisture values as suitably weighted vertical averages

based on the thickness of the soil layers. As it is well known that model simulated soil moisture370

and in-situ measurements are significantly biased relative to each other, the soil moisture evaluations

are performed using the anomaly correlation (R) metric. The anomaly R value at each grid point

is computed based on daily soil moisture anomalies (of model and in-situ observations) calculated

by subtracting the multi-year monthly mean values from the daily averages. The surface and root
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zone soil moisture anomalies are computed as the differences between the daily soil moisture and375

the respective monthly mean values.

Overall, VOD assimilation has marginal impacts on the simulated soil moisture estimates. The

domain averaged anomaly R values for the OL surface and root zone soil moisture are 0.54 and

0.47, respectively. With the C-band assimilation, these values marginally improve to 0.55 and 0.48,

respectively. Similarly, the X-band assimilation also lead to domain averaged anomaly R values of380

0.55 for surface soil moisture and 0.49 for root zone soil moisture. Though these domain averaged

changes from assimilation are not statistically significant, there are larger regional improvements,

particularly for the root zone estimates. Notably, regional improvements are observed over the central

plains and the lower Mississippi regions (not shown), consistent with the spatial patterns seen in the

ET and GPP evaluations.385

The impact of VOD assimilation on streamflow is evaluated by comparing to the U.S. Geological

Survey (USGS) daily gauge measurements at locations minimally impacted by reservoir operations

(Kumar et al. (2014, 2019b)). The impact of DA is quantified using the Normalized Information Con-

tribution (NIC) metric on Nash Sutcliffe Efficiency (NSE) of streamflow (Kumar et al. (2014)), with

positive and negative NIC values indicating benefit and degradation from assimilation, respectively.390

Overall, there is a small, but beneficial impact from VOD assimilation on streamflow. The domain

averaged NIC improvements from X-band and C-band VOD DA is 0.03 and 0.02, respectively, with

larger improvements noticed over the agricultural areas of the Midwest U.S.

Finally, the simulated TWS anomalies are also evaluated against the Gravity Recovery and Cli-

mate Experiment (GRACE) satellite-based Tellus product ((http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland/),395

available on 1◦ horizontal resolution grids (Landerer and Swenson (2012)), during the lifespan of

the mission (2003-2017). The domain averaged anomaly R for the OL-based TWS is 0.45, and it

improves to 0.48 with C-band and X-band VOD assimilation. These improvements are statistically

significant. In addition, larger improvements in anomaly R (as high as ∼0.28) are observed over the

agricultural areas of Central Plains and central California (not shown).400

3.2 Comparing assimilation of optical sensor-based LAI and passive microwave-based VOD

The impact of passive microwave based VOD assimilation relative to assimilating LAI retrievals

from optical instruments is presented in Table 1. The percentage improvements in various terrestrial

water and carbon components against reference datasets, from the assimilation of MODIS LAI (from

the Kumar et al. (2019b) study) and the X- and C-band VOD retrievals are presented in this table.405

Note that both Kumar et al. (2019b) and the current study use the exact same model configuration,

land surface parameters and boundary conditions. Overall, the magnitude of improvements from

VOD assimilation is comparable to that of assimilating LAI. There is a marginal improvement in the

aggregate soil moisture skill, where the domain averaged anomaly R values for both surface and root

zone soil moisture are improved from LAI and VOD assimilation. Both VOD and LAI assimilation410
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improves ET estimates, with the percentage improvements in RMSE ranging from 3-7%, depending

on the reference dataset used. Overall, comparable improvements in ET are obtained with X-band

VOD DA and LAI DA, with ET estimates from C-band VOD DA being marginally less skillful

than those from LAI DA. Both LAI and VOD assimilation provides significant improvements (with

approximately 17-24 % domain averaged improvements) in GPP. Similar to the changes in soil415

moisture, marginal improvements in TWS and streamflow are obtained from both VOD and LAI

assimilation. Note that though the magnitude of added improvements is small for certain variables,

larger regional improvements are observed in these comparisons.

Overall, the comparison in Table 1 confirms that VOD DA is an effective option for incorporating

remote sensing-based inputs of vegetation conditions. Note that the spatial resolution of passive420

microwave retrievals is typically coarser than those from the optical/IR sensors. In addition, passive

microwave measurements are only available from low earth orbits (LEO) due to the antenna size

requirements, so they can’t provide the diurnal view as available for optical/IR instruments from

geostationary satellites. Since the results suggest that assimilation of passive microwave-based VOD

retrievals provide comparable skill to that from optical sensor-based LAI, assimilation of both types425

of datasets will allow minimizing the sensing, coverage, and spatial resolution-based limitations of

each sensor.

3.3 Impact of assimilating L-band VOD retrievals from SMAP

In this section, the impact of assimilating L-band VOD retrievals from SMAP is evaluated and is

contrasted with corresponding improvements obtained with higher frequency VOD assimilation. As430

SMAP data availability is limited to 2015 April - present, all evaluations in this section are limited

to 2015 April - 2018 December. Note that not all reference datasets used in Section 3.1 are available

during this limited time period.

Figure 6 quantifies the impact of assimilating L-band VOD retrievals from SMAP on ET and GPP.

Similar to the results seen with the X- and C-band VOD assimilation, SMAP VOD DA also provides435

systematic improvements in the simulated ET and GPP, comparable to those from X-band VOD as-

similation. The patterns of improvements in ET in the ALEXI comparison are similar to those in

Figure 3. Strong improvements in ET and GPP over the corn and soybean areas of the Midwest and

lower Mississippi are observed in the SMAP VOD DA evaluations. The ALEXI comparison indi-

cates that the assimilation of VOD retrievals also improves the simulation of ET over the Southeast440

U.S., an area with thick vegetation density. Similar patterns are seen in the comparisons to GOME-2

SIF, where significant improvements in the correlation of simulated GPP with SIF observations are

obtained over the Southeast U.S. and agricultural areas of the Midwest. These results suggest that

the significant utility of the VOD retrievals are over the agricultural areas and locations with strong

vegetation seasonality. Note that the patterns in Figures 3 and 6 are not exactly equivalent due to the445

different time periods used in the evaluations.
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To further examine the impact of VOD DA, Figure 7 shows the time series of VOD, rescaled VOD

(using CDF-matching) as LAI, and the corresponding change in ET in DA simulations (relative to

OL) at two locations. Location A is in Iowa with cropland as the dominant landcover and location

B is in Montana with grassland as the dominant landcover (Figure 1). The cropland location is used450

as an analog of an area where agricultural activity is likely present, whereas the grassland location

is representative of a region where the natural variability is the dominant factor in the vegetation

and ET seasonality. Note also that at location A, large improvements in ET and GPP are observed,

whereas at location B, only marginal improvements are noticed in ET and GPP.

Over the cropland location A, both the L-band and X-band VOD estimates are consistent with each455

other, in terms of the amplitude and seasonality. The peak VOD seasonality is in the late summer and

early fall, which is reflected in the rescaled LAI estimates. The model OL based LAI, on the other

hand, has an earlier peak, in the summer months. The assimilation of the rescaled VOD estimates

leads to corrections in both the magnitude and phase of the LAI relative to the OL estimates. This also

leads to a corresponding phase shift and increase in the peak ET estimates from DA. The changes in460

the ET in the DA simulations over location A ranges from approximately -30 to 40 W/m2 during the

summer and fall months.

Compared to location A, over the grassland location B, there are small climatological differences

in the VOD retrievals from X- and L-band. These amplitudinal differences are reduced by the CDF

matching, as the rescaled X- and L-band VOD estimates are similar to each other. Overall, the465

changes in LAI in the assimilation runs relative to the OL are small, likely because this is an area with

sparse vegetation. In year 2017, the main impact of DA is to increase the amplitude of LAI, whereas

in 2018, the LAI estimates in the DA and OL are fairly consistent, except for a small phase shift. In

the summer and fall months, the assimilation leads to approximately ± 10 W/m2 changes in ET. The

independent evaluations of ET in Figure 3 confirm that these phase and magnitude corrections in470

LAI through the VOD DA (particularly at location A) are accurate. Similar, but more muted impacts

relative to the X-band DA are seen from the C-band DA (not shown).

3.4 Comparison of soil moisture and VOD DA

As there is a long legacy of retrieving soil moisture from microwave radiometry, the key focus of

the associated missions and data assimilation studies has been on evaluating and demonstrating the475

utility of retrieved soil moisture measurements (Reichle et al. (2007); Liu et al. (2011a); Draper et al.

(2012); Hain et al. (2012); Kumar et al. (2014); Lievens et al. (2017)). These studies demonstrate

the potential of remote sensing soil moisture retrievals to improve the simulation of moisture states.

Efforts to translate the improvements in the soil moisture states to other water and energy stores, on

the other hand, have only reported marginal success. Though changes in soil moisture states from480

DA impacts the land-atmosphere fluxes at diurnal temporal scales (Santanello et al. (2016)), their

impacts at broader spatial and temporal scales are small. For example, studies at continental scales
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such as Peters-Lidard et al. (2011) and Martens et al. (2016) reported minor impacts in the simulated

ET estimates from the assimilation of LPRM soil moisture retrievals. Here we compare and contrast

the relative utility of assimilating the soil moisture and VOD retrievals from SMAP on various water485

and carbon states.

Figures 8 to 10 show the impacts of separately assimilating SMAP soil moisture and VOD re-

trievals on various land surface water and carbon states. Using the in-situ soil moisture measurements

from ISMN as the reference, Figure 8 shows the changes in anomaly R of surface and root zone soil

moisture from soil moisture and VOD assimilation. Overall, soil moisture DA has a positive impact490

on the simulation of surface soil moisture, particularly in the Western U.S. and Highplains. Approx-

imately 2.14% improvement in domain averaged anomaly R is obtained from SMAP soil moisture

assimilation. The impact of soil moisture DA over the Eastern U.S. is small, as these regions of high

vegetation density are generally excluded from soil moisture DA. Comparatively, VOD assimilation

has little impact on surface soil moisture, as the changes in anomaly R are not statistically signifi-495

cant in most locations. Both soil moisture and VOD assimilation also impact root zone soil moisture

estimates, with varying levels of improvements and degradations across the domain. The assimila-

tion of SMAP soil moisture improves the root zone estimates over the lower Mississippi and parts

of the Western U.S. including California, Nevada, and Colorado. The patterns of improvements and

degradations in root zone soil moisture are more mixed in the VOD assimilation results, over these500

same areas.

Figure 9 shows the impact of soil moisture assimilation on ET and GPP. Consistent with prior

studies, the impact of soil moisture assimilation on ET and GPP is small over most of the domain.

Compared to ALEXI, SMAP soil moisture assimilation marginally improves the correlation of sim-

ulated ET over parts of central California, Washington, Montana, Texas and lower Mississippi, with505

small degradations over several Western States. The SMAP soil moisture assimilation has little im-

pact on the simulation of GPP, as the change map of R against the GOME-2 SIF measurements shows

no distinct spatial patterns of improvements or degradations. Comparatively, VOD assimilation has

a strong and mostly beneficial impact on the simulation of ET and GPP, as shown in Figure 6. In

the comparisons against ALEXI and GOME-2, strong patterns of improvements are observed over510

the agricultural areas of the U.S. such as the central Plains, lower Mississippi basin and central

California, from VOD DA.

Similar to the description in Section 3.1, the normalized NSE improvements are represented using

the Normalized Information Contribution (NIC) metric Soil moisture assimilation has a beneficial

impact on the streamflow simulation with improvements over the Midwest and Eastern U.S. and515

degradations over the Southeast and parts of the Missouri basin and Western locations. The impact

of VOD assimilation on streamflow is marginal and is mostly restricted to the Midwest areas, which

also are correlated with the corn growing areas. Note that though there are some regional patterns
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of improvements are degradations in streamflow from soil moisture or VOD DA, these changes are

small (most of the NIC changes are in the range of +/- 0.05 to 0.02).520

To further investigate the relative utility of VOD and soil moisture DA, we compare the time series

of changes in surface soil moisture, ET, transpiration and bare soil evaporation at two locations (C

and D) in the domain, in Figure 11. Location C is in the arid western U.S. with moderate vegetation,

whereas location D is in the eastern U.S., representing a wet region with thick vegetation. In the

arid location C, soil moisture DA leads to changes in surface soil moisture primarily in the summer525

months, with differences as large as 0.05 m3/m3 relative to the OL. The changes in soil moisture

subsequently drives the changes in ET estimates. The comparison of the time series of transpiration

and bare soil evaporation indicates that the changes in ET at location C are more directly connected

to the changes in bare soil evaporation. There is essentially no change in transpiration from soil

moisture DA at this location, but larger changes in bare soil evaporation occur as a result of changing530

soil moisture. Comparatively, at location C, VOD DA has little impact on soil moisture and ET.

The changes in LAI introduced by VOD DA lead to a small increase in transpiration and a minor

reduction in bare soil evaporation. These changes in the evaporative fluxes are not driven by the soil

moisture changes, rather by the small change to the vegetation coverage.

In contrast, over location D, there are little changes in soil moisture and ET from soil moisture535

DA, because not many observations are assimilated over this area with thick vegetation. The time

series of transpiration and bare soil evaporation confirms that soil moisture DA has little impact on

the evaporation regime. VOD DA, on the other hand, leads to large changes in ET as a result of the

changes in LAI. The increased LAI leads to increased transpiration and root uptake of soil moisture.

The reduction in root zone soil moisture also leads to reduced bare soil evaporation. Overall, VOD540

DA leads to increased ET in the summer months at this location because of these changes. These

comparisons indicate that there is information in both soil moisture and VOD retrievals of SMAP

that is useful in improving estimates of ET. Soil moisture information is more impactful over water-

limited regions, where moisture conditions on the land are the primary controls on the evaporative

fluxes. Over areas with high vegetation and little water limitation, vegetation growth and stomatal545

control, more than surface moisture conditions, influence the ET evolution. Since passive microwave

retrievals of soil moisture are unreliable over such areas, the use of VOD provides an effective

alternative. The above cases show a direct impact on the relative importance of transpiration vs bare

soil evaporation in the ET generation. Accurate estimation of this ET partitioning is important for a

proper connection to the carbon cycle (Kumar et al. (2018)).550

The small improvements in hydrological budget terms such as ET and streamflow from soil mois-

ture DA are also partly due to the mechanisms used in soil moisture DA configurations. As noted

earlier, because of the use of rescaled retrievals (using CDF matching) in soil moisture DA, the anal-

ysis updates only reflect the corrections in the anomalies of soil moisture, rather than large changes

in mean soil moisture estimates. The transformed VOD retrievals, on the other hand, are ingested555
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directly as LAI within the LSM, essentially allowing the incorporation of the information inherent in

the mean VOD/LAI signals. The limited use of the information in the soil moisture DA configuration

is partly the reason for the limited impact on water budget states such as ET.

3.5 Joint assimilation of soil moisture and VOD retrievals

As the results in the previous section indicate that assimilation of soil moisture and VOD can provide560

mutually exclusive information, an assimilation configuration that employs these retrievals simulta-

neously is developed. Note that in this joint configuration, rather than augmenting the observation

vector to encompass both VOD and soil moisture retrievals, we simply combine the two separate

sequential univariate assimilation instances within a single integration. Similar to the univariate con-

figurations, in this multivariate configuration, soil moisture retrievals are used to update the surface565

soil moisture state, whereas VOD retrievals are used to update the prognostic LAI variable within

the LSM.

Figure 12 summarizes the impact on key water budget terms as a result of the joint assimilation

of soil moisture and VOD. Overall, the joint assimilation consolidates the beneficial impact from

the univariate assimilation configurations. For example, the multivariate DA configuration provides570

improved skills in both surface and root zone soil moisture, whereas the univariate VOD DA has

little impact on surface soil moisture. Similarly, the univariate soil moisture DA configuration has

little influence on the ET skill, whereas the ET improvement maps from the joint assimilation mirrors

the patterns of changes obtained with univariate VOD DA. The spatial influence of the individual

assimilation configurations is also evident in these comparisons. For example, the ET improvement575

map (with ALEXI as the reference) from the joint DA shows strong patterns of improvements in

the eastern U.S. similar to the result from the VOD DA configuration. The improvement in ET is

accompanied by even higher percentage improvements in GPP. It is interesting to note the strong

improvements centered on the Mississippi, as in where partitioning contributes to ET uncertainty

(Kumar et al. (2018)). In the western U.S., there are some patterns of degradation in ET, similar to580

what is observed when assimilating soil moisture alone. Similarly, in the streamflow comparisons,

the joint assimilation shows strong patterns of improvements in areas east of Mississippi, whereas

the impact of assimilation is mostly disadvantageous in the western parts of the domain. As noted

earlier, these patterns reflect the larger impact of soil moisture and VOD in the water-limited (western

U.S.) and water sufficient (eastern U.S.) domains.585

4 Summary

Vegetation conditions have a significant influence on the terrestrial water, energy, and carbon ex-

changes and feedbacks. Through stomatal control, plants influence transpiration, root uptake of soil

moisture, and evaporative fluxes. The presence of vegetation also impacts the evolution of snow by
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influencing surface albedo and the amount of net radiation on the land surface. In addition to the590

changes in vegetation phenology driven by natural variability, anthropogenic activities such as agri-

culture and vegetation disturbances also significantly alter the vegetation characteristics on the land

surface. Data assimilation of remotely sensed estimates of vegetation conditions within land surface

models enable the refinement of modeled estimates, enhancement of the spatio-temporal coverage

of remote sensing measurements, and the extension of the remote sensing vegetation information to595

water, energy, and carbon states and fluxes.

Remote sensing based estimates of vegetation conditions are typically developed from multi- and

hyperspectral optical and thermal satellite sensors. Though passive microwave sensors are often

used for retrieving soil moisture estimates, they also enable the estimation of vegetation optical

depth, an analog of above-ground canopy biomass. As microwave measurements are not influenced600

by clouds, they can be made in virtually all weather conditions. This article examines the utility of

VOD retrievals from passive microwave sensors by assimilating them within the dynamic phenology

model of Noah-MP LSM.

The study is conducted in the NLDAS-2 configuration over the Continental U.S. A suite of pub-

licly available VOD retrievals from X-, C- and L-band instruments is assimilated in Noah-MP using a605

1d ensemble Kalman filter algorithm. The X-and C-and retrievals from the Land Parameter Retrieval

Model, whereas the L-band retrievals of VOD are from SMAP. Since Noah-MP does not include a

prognostic representation of VOD, the assimilation is conducted by transforming the VOD retrievals

into LAI estimates, using the MODIS-based GLASS LAI product. The impact of assimilating VOD

on key water and carbon budget terms is evaluated by comparing against a large suite of reference610

datasets.

The assimilation of VOD from the passive microwave sensors is found to have a significant bene-

ficial impact on improving the simulation of ET and GPP, particularly over the agricultural areas of

the U.S. The assimilation of X-band based VOD retrievals is found to provide larger improvements

in ET, relative to the assimilation of C-band VOD retrievals. The impacts on soil moisture, terres-615

trial water storage, and streamflow from VOD DA are found to be marginal. Regionally, the largest

impacts on these variables are also observed over the agricultural areas. Though the time period of

available data is limited, the assimilation of L-band VOD retrievals from SMAP is also found to

have significant beneficial impacts on the simulation of ET and GPP, similar to that from the X-band

VOD DA. It must be stressed that as the retrieval algorithms used to develop these VOD products620

are different, this particular study is not structured to assess the relative merits of each algorithm.

Though passive microwave-based measurements are available in nearly all-weather conditions,

their spatial resolution and temporal frequency is coarser than the optical/IR based vegetation esti-

mates. This study compared the impact of VOD assimilation to that of assimilating optical sensor-

based LAI from a prior study. Overall, the magnitude of improvements from VOD DA is comparable625

to that from assimilating MODIS LAI. These findings confirm that assimilation of VOD retrievals
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can provide an effective augmentation or alternative to assimilating data from optical sensors, en-

abling the mitigation of sensing, coverage, and spatial resolution-based limitations of each type of

sensor.

The relative and joint utility of assimilating soil moisture and VOD retrievals from SMAP are630

also examined in this study. Overall, the assimilation of soil moisture retrievals has a positive impact

on the simulation of surface soil moisture and little impact on evaporative fluxes. In contrast, VOD

DA has significant impacts on the simulation of vegetation conditions, root zone soil moisture, and

evapotranspiration. Over water-limited domains with sparse vegetation where soil moisture is the

primary control on ET, the assimilation of surface soil moisture is more beneficial than VOD DA.635

Over regions with dense vegetation and where water availability is not limiting, transpiration has a

significant influence on evapotranspiration. The assimilation of VOD is more beneficial in develop-

ing improvements in ET over such locations. In addition, when vegetation coverage is dense, the soil

moisture retrievals have large uncertainty and are unreliable. In those areas, the use of VOD pro-

vides an alternate way to develop improved estimates of terrestrial hydrologic responses informed640

by remote sensing. The results in the paper also confirm that the soil moisture and VOD retrievals

provide information that can be jointly exploited through their simultaneous assimilation.

As noted in the description of the data assimilation methodology, the VOD retrievals are assimi-

lated by rescaling them to the GLASS MODIS LAI climatology. This approach was employed as the

prior study Kumar et al. (2019b) demonstrated significant positive impacts from the assimilation of645

the GLASS LAI data. Such an approach is needed also because the LSM does not have a prognostic

representation of VOD. Though the beneficial impacts observed in the results indicate that this is a

reasonable strategy, the rescaling essentially ignores the information on vertical heterogeneity in the

canopy from these sensors. For example, the X-band data is documented to be more sensitive to the

vegetation, whereas the L-band data is more representative of the lower canopy. A more direct use650

of the VOD data is likely to help in resolving these sensitivities within modeling. Extensions to this

study that either uses a prognostic representation of VOD or a forward model that simulates VOD

will enable such approaches. The current study serves as a useful benchmark for such future efforts.

Finally, as noted earlier, NLDAS-2 configuration is a conservative environment to evaluate the

utility of data assimilation configurations due to availability of high quality boundary condition655

data. The significant utility of VOD DA demonstrated in this paper suggests that larger benefits from

VOD DA are likely over areas with lower quality meteorological boundary conditions.
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Figure 1. Map of the modeling domain with the UMD landcover classification as the background. The locations

A, B, C, and D denote the areas used for time series comparisons to examine the impact from VOD DA.
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Figure 2. Correlation of VOD retrievals from LPRM X-band (a), LPRM C-band (b), and SMAP L-band (c)

against the MODIS-based LAI retrievals. The LPRM and SMAP comparisons employ data during 2002-2018

and 2015-2018 time periods, respectively.
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Figure 3. RMSE (W/m2) or R (-) differences of evapotranspiration from X-band VOD (left column) and C-

band VOD (right column) assimilation relative to the OL integration, using two reference datasets (FLUXNET

MTE used in the top row and ALEXI in the bottom row) . The time periods in the comparisons are 2000-2008

and 2000-2018, for FLUXNET MTE and ALEXI, respectively. In each plot, the warm and cool colors represent

the improvement and degradation due to VOD DA, respectively.
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Figure 4. Changes in RMSE of GPP (expressed as RMSE(OL) - RMSE (DA)) in units of gm−2s−1 using the

FLUXCOM data as the reference (top row) and R of modeled GPP with solar induced fluorescence data from

GOME-2 (bottom row), expressed as R (DA) - R (OL). The warm colors represent improvements from DA and

cool colors represent degradations resulting from DA.
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Figure 5. Domain-averaged percentage improvements in ET (top row) and GPP (bottom row) stratified by

vegetation type. The left column represents the impact of DA from X-band VOD whereas the right column

represents the impact of C-band VOD DA. The percentage improvements in ET using FLUXNET and ALEXI

reference datasets are expressed for RMSE and R metrics, respectively. Similarly, the percentage improvements

in GPP using FLUXCOM and GOME-2 SIF are for RMSE and R metrics, respectively.
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Figure 6. Changes in the skill of simulated evapotranspiration and GPP as a result of assimilating L-band VOD

estimates from SMAP. The top panel represents the changes in R of evapotranspiration (expressed as R(DA) -

R (OL)), using ALEXI data as the reference. The bottom panel shows the changes in R of modeled GPP using

solar induced fluorescence data from GOME-2 as the reference, expressed as R (DA) - R (OL). The warm colors

represent improvements from DA and cool colors represent degradations resulting from DA.
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Figure 7. Time series of VOD (top panel), LAI (middle panel), and changes in evapotranspiration relative to the

OL (bottom panel), for years 2017 and 2018, averaged over a cropland (location A in Figure 1) and woodlands

(location B in Figure 1) area. The left and the right columns represent locations A and B, respectively.
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Figure 8. Differences in anomaly R values for surface soil moisture (top row) and root zone soil moisture

(bottom row) from the assimilation of soil moisture (left column) and VOD (right column), relative to the OL

integration. The warm and cool colors indicate improvements and degradations from DA. The gray shading

indicates locations where the anomaly R differences are not statistically significant.
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Figure 9. Differences in R values for ET (top row) and GPP (bottom row) from the assimilation of SMAP soil

moisture and VOD relative to the OL integration, using ALEXI ET and GOME-2 SIF datasets. The warm and

cool colors indicate improvements and degradations from DA.
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Figure 10. Improvements in streamflow NSE shown as NIC using the USGS daily streamflow observations as

the reference for SMAP soil moisture DA (left column) and SMAP VOD DA (right column).
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Figure 11. Time series of changes (relative to the OL) in ET, surface soil moisture, transpiration and bare soil

evaporation for years 2017 and 2018, at locations C (western U.S.) and D (eastern U.S.). The left and the right

columns represent locations C and D, respectively.
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Figure 12. Impact of jointly assimilating SMAP surface soil moisture and VOD retrievals on surface soil mois-

ture (a), root zone soil moisture (b), ET (c), GPP (d), and streamflow (e). Panels a and b show differences in

anomaly R values using ISMN data as the reference; Panel c shows the differences in R values for ET using

ALEXI as the reference dataset; Panel d shows the difference in R values for GPP with GOME-2 SIF retrievals

as the reference; Panel e shows the NIC in streamflow using USGS daily streamflow observations as the refer-

ence. In each panel, the differences in the metric of evaluation are computed relative to the OL.
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Table 1. Comparison of the percentage improvements in domain averaged skill metrics (relative to the model

OL) for DA configurations that assimilates MODIS LAI (from Kumar et al. (2019b)), and those that employ

X- and C-band VOD retrievals, for different variables. SFSM - surface soil moisture, RZSM-root zone soil

moisture, ET - evapotranspiration, GPP - gross primary productivity, TWS - terrestrial water storage, SF -

streamflow

Variable Reference data Metric DA DA-VOD DA-VOD

(units) (LAI) (X-band) (C-band)

SFSM ISMN Anomaly R 0.6 0.7 0.6

RZSM ISMN Anomaly R 2.3 2.6 1.5

ET

FLUXNET MTE RMSE 6.5 6.8 4.6

ALEXI RMSE/R 3.3/1.9 4.0/2.7 3.1/2.0

GPP
FLUXCOM RMSE 21.8 22.3 17.3

GOME-2 SIF R (-) 17.0 24.5 17.0

TWS GRACE Anomaly R 6.0 6.6 6.8

SF USGS RMSE 1.3 1.8 1.4
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