
The authors thank all three anonymous reviewers for their useful comments, which will help 

improve the manuscript. Each comment is repeated in black text here; our responses are given in 

blue text and changes to the manuscript are given in green. A marked-up version of the new 

manuscript showing all changes is also provided. Line numbers in our responses refer to this marked-

up document. 

Reviewer 1: 

The author demonstrates the need to use PTFs for LSMs and propose to use DA to calibrate PTF 

parameters with COSMOS-UK soil moisture measurements. The calibrated PTF parameters for Cosby 

PTFs were used to run JULES, and a better match with in-situ SM measurements was found. 

Although the structure of the manuscript is clear, there are some unclear points needed clarification.  

1. In the conclusion, the author claimed that “Calibrating PTFs for the soils on which they are to 

be used and at the scales at which they are applied, rather than on small-scale field or lab 

soil samples, will ultimately improve the performance of land surface models.” First of all, I 

agreed with the author that the LaVEnDAR DA framework was used to calibrate the Cosby 

PTF parameters (k1-k12). On the other hand, there is a very strong assumption the author is 

making here, which is that they deemed the soil texture information as from HWSD is the 

one very close to the in-situ conditions. This is not always true as demonstrated by the work 

below: Zhao, H., Zeng, Y., Lv, S. & Su, Z. 2018, Analysis of soil hydraulic and thermal 

properties for land surface modeling over the Tibetan Plateau, Earth system science data. 

10, 2, p. 1031 This actually means that the better match between predicted SM and the 

COSMOSUK SM measurement, as demonstrated in this study, can be achieved with any 

other soil texture information input (e.g., SoilGrids, or FAO-UNESCO). But then, this is very 

dangerous then, as it will lead to a speculation that the in-situ measured soil information is 

not important . . . . . . 

This work is based on the assumption that the soil texture data is correct, and we have made this 

clearer in the manuscript by adding the following text at line 181. 

We assume that the soil texture values from the HWSD are correct; they are not changed during the 

data assimilation process. We used a global soil dataset rather than any locally available soil texture 

observations to ensure that our method has the potential for extension to areas without local 

measurements. Other open source global soil texture products are also available (e.g. SoilGrids 

Hengl et al (2017)). We acknowledge that there may be discrepancies between the HWSD and local 

measurements (e.g. Zhao at al (2018)), but our choice to use the HWSD here follows recent 

successful integration of soil texture data from the HWSD with JULES in studies such as Martinez de 

la Torre (2019), Ritchie et al (2019) and Ehsan Bhuiyan et al (2019) 

 

2. For the subsections 3.2 & 3.3, they are not independent. Furthermore, the subsection titles 

seem need further critical thinking (see specific comments). ‘Effect of Data Assimilation on . . 

. . . .’ does not reflect the contents and seems not justified, especially when the k1-k12 were 

used as the state vector, which is supposed to be updated with DA and therefore the soil 

physics properties via Eq. 2-11. 

 

We have added text to the start of sections 3.2 and 3.3 to make clearer the distinction between 

direct updating of the state vector (k1-k12) and subsequent adjustments to the JULES soil physics 

parameters: 



Line 261: The data assimilation algorithm in this study acts directly on the PTF constants k1- k12 which 

make up the state vector. The resulting changes to the JULES soil physics parameters through 

equations (2) - (11) are presented here in section 3.2. Figures 8 and 9 show changes to the eight JULES 

soil physics parameters used for the topsoil and subsoil layers respectively. (Section 3.3 shows how the 

underlying PTF constants are updated). 

 

Line 277: In this section we present the changes to the 12 PTF constants k1 - k12. These updates are 

the direct result of applying the data assimilation algorithm. 

 

3. How were the COSMOS-UK SM measurements calibrated is not clear. It is understood that 

there were previous publications. However, some specific descriptions on how the CRNP 

measurements were calibrated in the table3 will help readers to understand why this or that 

station works. The relevant part of discussion on this is too thin. 

 

We have added more detail about the calibration process in section 2.2, line 117. 

The CRNS at each site counts fast neutrons within the sensor’s footprint. These counts are corrected 

for local meteorological conditions using in situ measurements and also background neutron 

intensity using data from a neutron monitoring station (Evans et al., 2016). The corrected counts are 

then calibrated for site-specific soil properties determined from destructive soil sampling conducted 

after site installation. Soil samples were collected from each site following Köhli et al. (2015) and 

were returned to UKCEH for laboratory analysis. The results were used to determine reference soil 

moisture, lattice and bound water, bulk density and organic matter for the day of sampling, and are 

subsequently used to derive soil water content from the corrected CRNS counts. 

 

The following comments from reviewer 1 were provided as annotations to a pdf.  

 Line 30: Please be consistent with the unit used. 

We have changed 12 ha to 120,000m2 throughout the manuscript. 

 

 Line 28. Make here a paragraph. 

We have made a new paragraph here. 

 

Line 38. well, one set of pedotransfer functions? What about spatial heterogeneity. 

The pedotransfer functions should be applicable to any area over which soil texture information is 
available.  

 

There is recently a paper on assimilating CRNS signal into a LSM utilizing Particle Filter: 

Mwangi, S., Zeng, Y., Montzka, C., Yu, L., & Su, Z. (2020). Assimilation of cosmic‐ray neutron counts 

for the estimation of soil ice content on the eastern Tibetan Plateau. Journal of geophysical research 

: Atmospheres, 125(3), 1-23. [e2019JD031529]. https://doi.org/10.1029/2019JD031529. 

This citation has been  added at line 49. 



 

Line 48: assimilate 

This has been changed 

 

Line 55: deployed to 

This has been changed to '..introduce the metric we deployed to measure how well....' 

 

Line 57: in 

We have replaced 'to' with 'in' 

 

Line 77:  

We have changed Jules to JULES 

 

Line 116: 'unit' to be consistent. 

We have changed 12 ha to 120,000m2 

 

Line 155: ?? 

We have add text to clarify the meaning of the 75m D86 value at line 155: 

The observed depth changes with soil moisture and with distance from the CRNS instrument; here 

we have used the reported observation depth at 75m from the CRNS. For each day, we calculate a 

depth-adjusted JULES soil moisture estimate, SMdepth,  depending on the 75m observation depth 

value, D86, provided for that day, such that.. 

 

Line 170: how to select? Randomly? 

Yes, these are randomly selected.  

 

Line 172: Are there soil texture information from COSMOS-UK sites? During the whole process, the 

soil texture information does not change, right? Please clarify. 

Limited soil texture information is available at COSMOS-UK sites. We chose to use a globally 

available soil texture product in order to test the ability of the model to work in areas where local 

soil information is not available. 

 

The soil texture information is assumed to be correct and we do not update it during the data 

assimilation process. We have added text to clarify this at line 179; see also our response to 

Reviewer 1’s major comment no. 1. 



 

Line 200: why?  In step4, you mentioned you run for a 2 year time window. Any specific reason for 

this? Please clarify. 

We use only observations from 2017 in the data assimilation algorithm and show that the resulting 

changes to the PTFs allow the JULES soil moisture to better match observations from both 2017 and 

2018. The better match to observed data from 2018, which has not been included in the algorithm, 

strengthens our conclusions that the updated PTFs represent the physical processes better than the 

original. 

 

Figure 2: what period of data you are using for data assimilation should be specified in this 

schematic. 

We have added this information to the caption of figure 2. 

In this study only observations from 2017 (at each site) were used in the assimilation algorithm. 

 

Line 239: At least 10 out of 16 sites (the last one is not visible or they are the same?), the posterior 'r' 

is smaller than the priori 'r', which seems a systematical slight deterioration of correlation 

coefficients. This reviewer suggested the authors to dig deeper on this and clarify. 

The reviewer is correct - there is a slight deterioration of the correlation coefficient at most sites. We 

will clarify this by replacing text at line 239 with: 

 

..although there is a slight deterioration of the correlation coefficient at the majority of the sites. 

Despite this, the reduction in r is very small compared to the overall improvement in the KGE metric 

at all sites, and the prior and posterior r values are all greater than 0.8 at sites with a typical mineral 

soil 

 

Line 244: This is not very clear. This reviewer is wondering if the COSMOS-UK CRNP were all 

calibrated? as such, the water held on the canopy of trees should be removed from the CRNP 

measurement. Otherwise, the COSMOS-UK CRNP measurement, at least at this site, should not be 

used. 

The soil moisture measurements are calibrated at each site; we will add text to clarify this in section 

2.2 (see response to your major comment no. 3). The presence of a large number of coniferous trees 

at Gisburn Forest potentially makes the calibration less reliable and we suggest that this, along with 

high organic content of the soil, contributes to the difficulty of fitting JULES to the observations. We 

will clarify this from line 244 by amending the text to read as follows: 

 

.. which is likely due to the fact that there are a large number of trees at this site. The presence of 

aboveground biomass may make the site-specific calibration less reliable than at other sites (Baatz et 

al. (2014)). The high organic carbon content of the soil at Gisburn Forest likely also contributes to 

this as our chosen PTF is designed to work best with mineral soils. Interception is another processes 

which potentially complicates the calibration at sites with vegetation, although the authors of 

Bogena et al (2013) report that water intercepted by the canopy constitutes a negligible amount of 

the water detected in the CRNS footprint, even in coniferous forests. 



 

Line 260: What the author compared in Figure 8 is actually not the effect of data assimilation on soil 

physics parameters, but part of the data assimilation itself. The 50 perturbed soil physics 

parameters, k1-k12 (strictly speaking, this should be PTF parameters), deemed as the state vector in 

this study, will be definitely updated after data assimilation. The perturbation or update of these k1-

k12 values will definitely lead to changes of soil physics properties, via Equation 2-11.  As such, it 

seems this section title is saying "effect of data assimilation on 'state vectors' ". Such saying will 

mislead readers. Since by its nature and definition, data assimilation already includes 'the update of 

state vectors'.  

We have added text at the start of sections 3.2 and 3.3 to make clearer the distinction between 

direct updating of the PTF constants in the state vector (K1-K12) and the resulting changes to the 

JULES soil physics parameters. See also response to your major comment no. 2. 

 

Line 273: This reviewer would suggest to show the results as well. 

Unfortunately the soil temperature data we have is not measured at depths which correspond 

exactly with the JULES layers. For this reason, though we have compared the two datasets informally 

for consistency, we do not feel they are suitable for publication. 

 

Line 276: See my comments on the subtitle '3.2'. These two are really not independent. 

We have added text to the start of sections 3.2 and 3.3 to make this clearer; see our response to 

major comment no. 2. 

 

Figure 8: the figure title is not mentioned in the main text. 

We refer to figures 8 and 9 throughout section 3.2. We have also added the following text to the 

start of section 3.2 to make clear the difference between the two: 

 

Figures 8 and 9 show changes in the eight JULES soil physics parameters used for the topsoil and 

subsoil layers respectively. 

 

Line 292: Remove  

The word ‘values’ has been removed. 

 

Figure 9: The symbol in the main text is different from the figure title. Please make it consistent. 

We have provided parameter names and corresponding symbols in table 1. We have now also added 

the parameter names to text in the section 3.2 to make the analysis easier to follow. 

 

 



Reviewer 2 

This paper clearly and neatly shows a study on optimizing constants in the underlying Cosby 

pedotransfer functions used by JULES model via assimilating daily-averaged COSMOS-UK soil 

moisture data through LaVEnDAR data assimilation approach. With calibrated values for PTFs 

constants, the paper shows updated soil hydraulic parameters representing on field scale and 

comparison results to those on small (∼cm) scale. With ‘vsat’ updated being large and ‘satcon’ and 

‘sathh’ being small, underestimations of soil moisture shown as prior are corrected and simulated 

soil moisture as posterior shows consistency to in situ measurements. The proposed method in this 

paper is an alternative attractive way to contribute to improving soil water flow and heat transport 

simulations by land surface models. I have four major comments and few mirror comments on the 

manuscript. I would suggest the consideration of accepting this paper after the author addresses 

major comments. 

The authors thank the reviewer for their useful comments 

Major comments  

1. At line 188, “The daily soil moisture measurements we use are averaged from 30 minute soil 

moisture measurements. . .. . .uncertainty in the daily values is approximately 20%. We have 

inflated this here to 50% observation error. . .. . .in fact there will likely be intra-site correlations 

between observation errors due to site-specific instrument calibration.” Here “uncertainty in the 

daily values is approximately 20%”, what does uncertainty mean? Is it the standard deviation of 

soil moisture at a daily scale or 20% is an estimate accounting for the conversion from neutron 

counts to soil moisture? Is inflated 50% observation error as a result of an optimized one, how? 

How can it be proved that inflated error accounts for intra-site correlations between observation 

errors due to site-specific instrument calibration?  

 

We will make this clearer. The quoted 20% error refers just to observed variance in the half hourly 

soil moisture values used to calculate the daily mean. The subsequent inflation of observation error 

was motivated by the fact that not doing so lead to a degradation of the results at all sites. We only 

speculate that observation error inflation is necessary due to intra-site correlations between 

observation errors due to site-specific instrument calibration, but as the reviewer notes, errors in 

the conversion to neutron counts to soil moisture will also be important here. We will change the 

text from line 188 to clarify: 

 

The daily soil moisture measurements we use are averaged from hourly soil moisture 

measurements; analysis of the data shows that the standard deviation of the hourly data around the 

daily mean is approximately 20%. We have inflated this here to 50% observation error; we note that 

similar observation error covariance inflation techniques have been used in e.g. assimilation of 

satellite observations in numerical weather prediction (Fowler (2018), Hilton(2009)). The reason for 

inflating the observation error is essentially because we found that smaller observation error values 

impacted negatively on the posterior soil moisture results. We suggest that inflation of the 

observation error is necessary here to compensate for otherwise neglected sources of error (e.g. the 

error in converting neutron counts to soil moisture) and for the assumption of uncorrelated 

observation error; in fact there will likely be intra-site correlations between observation errors due 

to site-specific instrument calibration.  

 

 



2. In Fig. 3, posterior shows matching to in situ measurements except for the underestimation of 

soil moisture during the soil wetting period (around 2018-04 and 2018-11), why? Is it related to 

PTFs structure itself? Compared to Fig. 3, please in Fig. 4, it is better to give numbers such as the 

correlation coefficient and RMSE.  

Across the 16 sites there are variations in how well the posterior JULES estimates match the data; we 

see a ‘global’ improvement (i.e. across all 16 sites) across the two years but there are some parts of 

the data which fit better than others. We have not examined possible physical causes for each case. 

We will provide prior and posterior RMSE values and correlation coefficients in the captions of 

figures 4 and 6. Correlation coefficients are also given for each site in figure 7. 

 

3. At line 181, it is mentioned that soil texture information for each site was taken from the 

Harmonised World Soil Database (HWSD) (Fischer et al., 2008). As soil texture information is a 

base for obtaining optimized constants for pedotransfer functions, how about the quality of 

HWSD compared to in situ measurements? Fig. 8 and Fig. 9 show almost the same values for 

topsoil and subsoil, soil profile in the site is homogenous or because of used HWSD product? 

How do the optimized constants for pedotransfer functions and associated soil moisture change 

with different soil texture inputs? Additionally, please if available, add (measured) soil 

constituents for each site in Table 3. 

Other reviewers also questioned our use of the HWSD. Unfortunately, we do not have access to local 

sand, silt, clay fractions so we can’t add those to table 3. Additionally, we wanted to make sure our 

method would work when only global dataset information such as from the HWSD was available. 

The similarity of the results in figs 8 and 9 is indeed due to the fact that the HWSD textures were 

very similar but we cannot comment on how well this matches the real situation.  We plan to add 

text from line 181 to clarify our choice to use the HWSD: 

We assume that the soil texture values from the HWSD are correct; they are not changed during the 

data assimilation process. We used a global soil dataset rather than locally available soil texture 

observations to ensure that our method has the potential for extension to areas without local 

measurements. Other open source global soil texture products are also available (e.g. SoilGrids 

Hengl et al (2017)). We acknowledge that there may be discrepancies between the HWSD and local 

measurements (e.g. Zhao at al (2018)), but our choice to use the HWSD here follows recent 

successful integration of soil texture data from the HWSD with JULES in studies such as Martinez de 

la Torre (2019), Ritchie et al (2019) and Ehsan Bhuiyan et al (2019) 

 

4. At line 294, “The new distributions allow the model to access higher soil moisture values, 

potentially correcting for a deficiency in supporting datasets, parameter values or process 

representation in JULES”, please clarify supporting datasets, do you mean the deficiency of soil 

properties dataset? 

We will clarify this statement from line 294 to read: 

The new distributions allow the model to access higher soil moisture values, potentially correcting 

for a deficiency in parameter values, process representation in JULES, or in supporting datasets (such 

as soil texture information or driving meteorological data). 

 

Minor comments  

1. In Table 1, the unit of satcon, Ks shall be kg m-2 s-1. Please check.  



This has been corrected. 

2. In Table 3, for the last cell, please complete the phrase “mineral (soil) with very high organic 

content”. Please explain the difference between Grassland/heath and Grassland.  

Where we have indicated grassland/heath there are a few shrubs present at the site. We 

have clarified this in the table caption. 

3. In Fig. 10, what does the blue line mean?  

The blue line shows the original value of the constant as in table 2, we have added this to 

the caption of fig 10. 

4. Please keep the citation consistent, for example, (Best et al. (2011),Brooks and Corey 

(1964)), (Cosby et al., 1984; Marthews et al., 2014). At line 168, Gupta et al. (2009); Knoben 

et al. (2019)  

Thanks for flagging this - we have made this consistent. 

5. Please replace "in-situ" by "in situ", which follows the convention that Latin phrases should 

not be hyphenated (e.g. "in situ", not "in-situ"). 

We have corrected this throughout the manuscript. 

 

 

Reviewer 3 

General Comments: 

 Authors present an approach which combines soil moisture predictions from the JULES land surface 

model with in-situ field scale observational data measured by cosmic ray neutron sensors of 16 sites. 

Cosby et al. (1984) pedotransfer functions were used to compute soil hydraulic parameters for the 

JULES model. The manuscript shows that JULES model performs better in the prediction of soil 

moisture if the constants of the pedotransfer functions are calibrated based on field-scale soil 

moisture observations. This way soil physics parameters of the JULES are not directly optimized. The 

manuscript presents a new approach to improve performance of JULES model in soil moisture 

prediction. It is a high quality research, has interesting results and is well structured. Only one aspect 

could be explicitly clarified, if soil textural information was derived from a course resolution raster 

dataset in the presented analysis. If that is the case, it would be important to discuss how 

uncertainty of soil textural data influences the performance of the prior JULES run. 

The authors thank the reviewer for their comments.  

Specific Comments 

1. Title, L126, L252 and L262: In most of the text COSMOS-UK observations was mentioned as 

field-scale observations, except in the title, L126, L252 and L262, where large-scale is written. It 

might be better to call it field-scale. Please revise entire text to be consistent in using filed-scale 

and large-scale. L126: In the above text COSMOS-UK observations was mentioned as field-scale 

observations, here “large-scale” is written. It might be better to call it field-scale. Please revise 

it. 

We have revised the use of ‘large scale’ to ‘field scale’ throughout the paper. 

 

2. L84-90: Reference of equations 8-11 is not clear, could you please clarify it or add the 

reference? 



We have clarified the sources of these equations with extra text after equation 11 (line 96): 

Equations (8) and (9) are rearrangements of equation (2) at fixed values of matric suction 

corresponding to the wilting and critical points. Equation (10) is a linear combination of the assumed 

heat capacities of sand, silt and clay, weighted by their relative fractions, and equation (11) is as 

given in Dharssi et al (2009). 

 

3. L80: In the original Cosby et al. (1984) paper (Table 4 on page 686), the multiple linear 

regression of the “Absolute value of the soil matric suction at saturation” uses silt% and sand%, 

but the equation 6 of the manuscript includes clay% and sand%. Please recheck the equation or 

add further reference if a modified version of Cosby et al. (1984) pedotransfer functions are 

used. 

Table 2: The constants needs a further check, compared to Table 4 of Cosby et al. (1984), 

because of the following. It is not clear: - why k2 and k3 are multiplied by 100; - why k4 is 

divided by 100 and in the same time the original values of k5 and k6 are kept; for predicting 

volumetric water content in m3/m3: also k5 and k6 has to be divided by 100 or do you consider 

sand and clay content as g/g (not weight %); - why k7, k8, k9 constants differ from the original 

constants, please note that in the original PTF silt% and sand% are the predictors as mentioned 

above, please clarify in the text why the constants differ from that of Cosby et al. (1984); - why 

k11 and k12 are multiplied by 100, do you consider sand and clay content as g/g (not weight %)? 

If you find after the check that constants of Cosby PTF is are those are built in the JULES model it 

might be helpful to check those also in the model code. Please add the units and fraction limits 

of clay, silt and sand content in line 91.  

The differences in the values of constants between Cosby et al (1984) and here are in part due to 

conversions of units (from e.g. inches per hour to kg m-2 s-1 for Ksat). As the reviewer notes, we have 

used clay and sand as predictors in all equations, using the fact that fsand + fsilt + fclay = 1; this also 

changes the value of some of the constants.  The PTF constant values we have given here match 

those in table 1 of Marthews et al (2014) with a small exception. While Marthews et al (2014a) 

express clay, sand and silt fractions as percentages, we use fractions (i.e. in Marthews et al, fsand + fsilt 

+ fclay = 100). This means that the multipliers given for fsand  and fclay  are 100 times larger in our 

version. We have added a reference to Marthews et al (2014) at line 102: 

The values of the constants given here match those in Marthews et al (2014a) (with soil fraction 

multipliers adjusted for fraction, rather than percentage, of soil by weight). 

To clarify, the PTF is not built into the JULES code; users are required to provide values for the soil 

physics parameters, but can calculate these via any choice of PTF (or other method). 

The units for fsand  etc are fraction by weight, i.e. dimensionless, and we have added this to the text at 

line 96. 

 

4. L104: Please list meteorological data required by JULES to derive soil moisture prediction.  

We have added this information (line 104). 

The required input variables are: air pressure, air temperature, humidity, downward fluxes of 

shortwave and longwave radiation, precipitation and wind speed. 



 

5. L110-112: Please consider that CHIMN, PORTN, HARTW, LULLN are mineral soils too based on 

Table 3, therefore the sentence starting with “The Cosby pedotransfer function . . .” needs to be 

revised.  

We have revised sentence from line 129 to read: 

The Cosby pedotransfer function was designed to work for mineral soils, and the CRNS calibration is 

most reliable at sites with minimal vegetation. We therefore consider that the first seven sites listed 

in table 3 are those at which the JULES model can be expected to provide a good match to 

observations via our chosen PTF; soil types and land cover at the remaining sites mean that JULES 

may not be able to represent the observed soil moisture time series as accurately. 

 

6. Table 3: Instead of the basic soil description it would be more informative to provide soil 

taxonomical information, i.e. name of soil suborders (USDA, Soil taxonomy) or reference soil 

groups with principal qualifiers (WRB, 2014). If soil taxonomical information cannot be added, 

soil texture, organic carbon content and bulk density of topsoil and subsoil could be shown, if 

that is available for the COSMOS-UK sites. 

L120: Are measured soil chemical and physical properties available for the COSMOSUK sites.  

Unfortunately we do not have access to any further soil texture, chemical and physical properties, or 

taxonomical information for the soils at COSMOS-UK sites. 

 

7.  L119-120: sentence starting with “We have used . . .” is repetition of the first part of the 

sentence starting with “In this paper . . .” in line 95-96.  

We feel that it is useful to remind the reader of this at this point in the paper. 

 

8. L147: The reference for LaVEnDAR is given, but it might be helpful for the readers if a very short 

description of the data assimilation technique would be given in the text.  

We have added the following short description of the algorithm at line 147: 

LaVEnDAR optimises k1 to k12 here by minimising a cost function with two terms. The first term is a 

measure of the difference between the observed and modelled soil moisture, and the second term is 

a measure of the difference between prior and posterior values of k1 to k12. 

 

9. L155: Please add the meaning of “75m” or delete it if it is not important.  

We will clarify this by adding the following text at line 155: 

The observed depth changes with soil moisture and with distance from the CRNS instrument; here 

we have used the reported observation depth at 75m from the CRNS. For each day, we calculate a 

depth-adjusted JULES soil moisture estimate, SMdepth,  depending on the 75m observation depth 

value, D86, provided for that day, such that.. 



 

10. L148: Is not measured soil texture available at the COSMOS sites? Uncertainty of texture taken 

from the Harmonised World Soil Database (HWSD) can be high, because its resolution is 30 arc-

second. If texture is derived from a course resolution dataset the lower performance of prior 

JULES run can come from the uncertainty of clay, silt and sand content. It would be interesting 

to analyse the performance of prior JULES run at a site where measured soil texture can be used 

in the Cosby pedotransfer functions. If there is no measured soil texture data, better resolution 

national soil texture maps or 250 m resolution SoilGrids could provide more accurate soil 

textural information than HWSD does. Please consider to rerun analysis based on a more 

accurate soil texture dataset or explain why HWSD was used. It would be good to highlight 

importance of using measured soil texture if that is available.  

Reviewers 1 and 2 made similar comments. We used a global soil texture dataset here because we 

wanted to make sure our method would work when local measurements are not available, and in 

fact we do not have soil texture data for the COSMOS sites, only the broad descriptions given in the 

COSMOS-UK user guide (v2).  We feel that rerunning the experiments using an alternative soil 

texture database would lead to an interesting comparison with the work here, but is out of the 

scope of this paper, which aims to demonstrate a new method for calibrating PTF constants. We 

have added text from line 181 to explain our choice to use the HWSD: 

We assume that the soil texture values from the HWSD are correct; they are not changed during the 

data assimilation process. We used a global soil dataset rather than any locally available soil texture 

observations to ensure that our method has the potential for extension to areas without local 

measurements. Other open source global soil texture products are also available (e.g. SoilGrids 

Hengl et al (2017)). We acknowledge that there may be discrepancies between the HWSD and local 

measurements (e.g. Zhao at al (2018)), but our choice to use the HWSD here follows recent 

successful integration of soil texture data from the HWSD with JULES in studies such as Martinez de 

la Torre (2019), Ritchie et al (2019) and Ehsan Bhuiyan et al (2019)  

 

11. L188: Does it mean that higher observation error was used when results of soil moisture 

predictions was assessed than the error computed based in the measured data? The reasoning 

of it is not clear, could you please describe it? Sorry if I miss something. 

The inflation of observation error is for use in the LaVEnDAR algorithm and is a reasonably common 

technique in data assimilation. We will clarify this with the following text from line 188: 

The daily soil moisture measurements we use are averaged from hourly soil moisture 

measurements; analysis of the data shows that the standard deviation of the hourly data around the 

daily mean is approximately 20%. We have inflated this here to 50% observation error; we note that 

similar observation error covariance inflation techniques have been used in e.g. assimilation of 

satellite observations in numerical weather prediction (Fowler (2018), Hilton(2009)). The reason for 

inflating the observation error is essentially because we found that smaller observation error values 

impacted negatively on the posterior soil moisture results. We suggest that inflation of the 

observation error is necessary here to compensate for otherwise neglected sources of error (e.g. the 

error in converting neutron counts to soil moisture) and for the assumption of uncorrelated 

observation error; in fact there will likely be intra-site correlations between observation errors due 

to site-specific instrument calibration.  

 



12. Figure 2. Maybe the following could be added: - Data assimilation (LaVenDAR), - 16 sets of field-

scale obs,  

We have updated the schematic in figure 2 to include these suggestions 

 

13. L185: Please add which software was used to compute the metrics and prepare plots.  

We will add this information at line 221. 

We used python 3.7.1 to calculate metrics and prepare plots. 

 

14. L233: Please add under Materials and methods section which method was used to analyse if 

difference was significant.  

We used ‘significant’ in a non-mathematical sense here. We will replace ‘significant’ with ‘marked’ in 

line 233. 

 

15. L205-206: It would be informative to roughly add the soil organic content of MOORH site, if 

measured value is available that would be the best. Could you please add reference to the CRNS 

regarding soil organic carbon content and texture that can be reliably measured?  

Unfortunately we do not have any further reliable information about the soil organic content at 

MOORH. 

 

16. L244: It could be mentioned that it is a disadvantage that CRNS measurement considers water 

held on the canopy to be soil moisture. Is there any solution for correcting the COSMOS soil 

moisture values if that happens?  

Soil moisture measurements are calibrated at each COSMOS-UK site, and this aims to correct for 

water stored on vegetation. However, vegetation makes the calibration less reliable for a number of 

reasons. We will add text from line 244 to make this clearer 

.. which is likely due to the fact that there are a large number of trees at this site. This means that 

the presence of aboveground biomass may make the site-specific calibration less reliable than at 

other sites (Baatz et al. (2014)). The high organic carbon content of the soil at Gisburn Forest likely 

also contributes to this as our chosen PTF is designed to work best with mineral soils. Interception is 

another processes which potentially complicates the calibration at sites with vegetation, although 

the authors of Bogena et al (2013) report that water intercepted by the canopy constitutes a 

negligible amount of the water detected in the CRNS footprint, even in coniferous forests.  

 

17. Figure 8. Please add soil depth that you consider topsoil.  

The depths are 0 - 35cm and 35cm – 300cm for topsoil and subsoil layers respectively. We have 

added assumed depth information to the captions of figures 8 and 9. 

 



18. L240: Do you think the profile-scale measurements could be successfully used in the presented 

data assimilation method? 

An alternative approach would have been to use point scale measurements in our experiments. 

However, point sensors only measure the soil moisture in a very small area and are therefore not 

representative of the soil moisture on the scales that JULES is typically used. We see from point 

sensors at COSMOS-UK sites that sensors quite close to each other can measure quite different soil 

moisture values due to their different very localised conditions.  We chose to use field-scale 

measurements here in order to average out the local variations in observed soil moisture and to 

better match the scales over which JULES is typically used. 

 

19. L274: The code is available only for those who are registered for a Met Office account, it might 

be mentioned.  

We have added text to clarify this. 

 

Technical Corrections:  

L91: . . . where fclay, fsilt and fsand are fractions of clay, silt and sand in the soil . . .  

L143: Do you mean: “the value given in table 2”? Please revise it.  

L193: . . . high soil organic carbon content . . .  

L229: . . . 12 PTF . . . 

Thank you for spotting these errors, which we have corrected. 
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Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological

applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have

combined model-based soil moisture predictions with in-situ
:
in
::::
situ observations beyond the point scale. Here we show that

we can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data

assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimise constants5

in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate

a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil

textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface

models, leading to the potential for better flood, drought and climate projections.

Copyright statement. TEXT10

1 Introduction

Soil moisture is an important physical variable, significant in agriculture (Pinnington et al., 2018), flood events (Koster et al.,

2010; Berghuijs et al., 2019), and processes related to weather and climate (Seneviratne et al., 2010). Land surface models such

as the Joint UK Land Environment Simulator (JULES) can be used to make predictions of soil moisture, and generally rely on

empirical pedotransfer functions (PTFs) to relate readily available or easy-to-measure soil characteristics such as soil texture15

to the soil hydraulics parameters required by the model (see e.g.Van Looy et al. (2017) ).
:::::::::::::::::::::::
(e.g., Van Looy et al., 2017)

There are a number of different types of pedotransfer function, as noted in Van Looy et al. (2017) and Hodnett and Tomasella

(2002), with different inputs and outputs depending partly on the requirements of the chosen land surface model. In ‘class’

approaches, soil types are clustered into groups, and hydraulic model parameters are then obtained from a look-up table

(Wösten et al., 1999); this results in discrete soil hydraulics parameter sets. Alternatively, continuous pedotransfer functions20

take soil characteristic information from each sample of interest and apply the function to produce continuous soil hydraulics

1



parameter sets (e.g.Cosby et al. (1984) , Hodnett and Tomasella (2002) , Schaap et al. (2001) ).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Cosby et al., 1984; Hodnett and Tomasella, 2002; Schaap et al., 2001) .To date, pedotransfer functions have been derived

by fitting to results from field or laboratory experiments on point or small-scale soil samples (cm to m), despite the fact that land

surface models are generally applied at larger (field to km) scales. The recent development of novel in-situ
:
in

::::
situ techniques25

for measuring soil moisture over field, rather than point scale presents an opportunity to test whether land surface models, in

conjunction with commonly used pedotransfer functions, are able to reproduce field-scale soil moisture observations.

In this paper, we have compared JULES soil moisture predictions with soil moisture observations from the COSMOS-UK

dataset (Stanley et al., 2019); these observations are measured by cosmic ray neutron sensors (CRNS) over a footprint of up

to 12 ha
:::::::::
120,000m2. We have then used the LaVEnDAR four dimensional ensemble variational data assimilation framework30

(Pinnington et al., 2020) to combine COSMOS-UK soil moisture observations at 16 sites with equivalent JULES soil mois-

ture estimates. We have thereby optimized constants in the Cosby pedotransfer function (Cosby et al., 1984). This results in a

newly calibrated set of pedotransfer functions based on field-scale soil moisture observations across 16 sites with a range of

soil types. This approach allows us to test whether we can improve the performance of the model by optimising the pedotrans-

fer functions for larger scales using field-scale soil moisture observations. Our approach also allows comparison of the soil35

hydraulics parameters generated using large-scale
:::
field

:::::
scale (∼ hundred metre) soil moisture measurements with those gen-

erated by the original pedotransfer functions, which are based on small-scale (∼ cm) measurements. We chose to optimize the

pedotransfer functions rather than directly optimizing soil physics parameters to better ensure physically consistent parameter

sets; this approach also has the advantage that we can assimilate observations from all sites simultaneously to produce one set

of pedotransfer functions applicable at all sites and beyond.40

Larger scale soil moisture measurements are also increasingly available from satellite products and these have been used

to good effect in data assimilation frameworks with land surface models in e. g. Pinnington et al. (2018) , Liu et al. (2011) ,

De Lannoy and Reichle (2016) and Yang et al. (2016) .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Pinnington et al., 2018; Liu et al., 2011; De Lannoy and Reichle, 2016; Yang et al., 2016) .

:
The advantage of the CRNS

measurements used here is that they provide a more direct soil moisture measurement than those from satellites. CRNS soil45

measurements are also representative of depths of approximately 10 to 30cm, compared to the top 5 to 10 cm for satellite

retrievals.

An alternative approach to assimilation of
::::::::
assimilate CRNS soil moisture measurements into land surface models is taken in

Brunetti et al. (2019)and Han et al. (2015) ,
::::::::::::::::::
Han et al. (2015) and

::::::::::::::::::
Mwangi et al. (2020) . These studies both use neutron counts

from CRNS instruments as observations, combined with the method presented in Shuttleworth et al. (2013) to map modelled50

soil moisture estimates into equivalent neutron counts. In this study we instead directly compare modelled and CRNS derived

soil moisture.

The rest of the paper is organised as follows: in section 2 we outline the JULES land surface model and the COSMOS-UK

data used in this study; we also describe the data assimilation experiment we have performed and introduce the metric by

which we have measured
::
we

::::::::
deployed

:::
to

:::::::
measure how well the model fits the observations. In section 3 we present results,55

showing that we can use COSMOS-UK observations from 2017 to improve the fit between the JULES model output and

2



observations over two years at all the sites we included. We discuss our results in the context of changes to
:
in

:
the JULES

soil physics parameters in section 4. In section 5 we conclude that it is possible to optimise pedotransfer functions for field

scale soil moisture measurements, and that this markedly improves the fit of JULES soil moisture estimates to COSMOS-UK

observations.60

2 Methods

2.1 JULES land surface model

JULES uses the Darcy-Richards equation to model soil hydraulic processes (Best et al., 2011), so that the downward water

flux, W , between adjacent soil layers is given by

W =K

(
∂Ψ

∂z
+ 1

)
(1)65

where Ψ is the soil matric suction, K is the soil hydraulic conductivity and z is distance from the soil surface in the vertical

direction.

JULES provides two options for representing the relation between soil water content, θ, matric suction, and hydraulic

conductivity; in this paper we use the Brooks and Corey soil physics option (Best et al. (2011) , Brooks and Corey (1964) ),

::::::::::::::::::::::::::::::::::::
(Best et al., 2011; Brooks and Corey, 1964) , where we assume70

θ

θs
=

(
Ψ

Ψs

)− 1
b

(2)

and

K

Ks
=

(
θ

θs

)2b+3

. (3)

In equations (2) and (3), θs, Ks and Ψs are values of soil moisture, hydraulic conductivity and soil matric suction at sat-

uration; b is a soil-dependent constant with a value usually determined through a pedotransfer function. The soil physics75

parameters used in the implementation of Brooks and Corey soil physics in JULES are briefly described in table 1; more

details are available in Best et al. (2011) or JULES user guide. (2020).

The values of the eight soil physics parameters outlined in table 1 are generally calculated via a set of pedotransfer functions.

Here we use the Cosby pedotransfer functions, which have the following mathematical formulation, (Cosby et al., 1984;

Marthews et al., 2014b)80

b= κ1 +κ2fclay −κ3fsand (4)

θs = κ4 −κ5fclay −κ6fsand (5)
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Parameter name and symbol Description

satcon, Ks Hydraulic conductivity at saturation (kgm−2
::::::::
kgm−2s−1)

sathh, Ψs Absolute value of the soil matric suction at saturation (m)

vsat, θs Volumetric water content at saturation (m3m−3)

vcrit, θcrit Volumetric soil moisture content at -33kPa (critical point) m3m−3

vwilt, θwilt Volumetric soil moisture content at -1500kPa (wilting point) m3m−3

b Exponent in soil hydraulic characteristic

hcap Dry soil heat capacity (J m−3K−1).

hcon Dry soil thermal conductivity (W m−1K−1).

Table 1. Soil physics parameters

Ψs = 0.01× 10κ7−κ8fclay−κ9fsand (6)85

Ks = 10−κ10−κ11fclay+κ12fsand × 25.4

3600
(7)

θcrit = θs

(
Ψs

3.364

)1/b

, (8)

90

θwilt = θs

(
Ψs

152.9

)1/b

(9)

hcap = (1− θs)(2.3762.373
::::

× 106fclay + 2.133× 106fsilt + 2.133× 106fsand) (10)

hcon = 0.025θs × 1.16fclay(1−θs) × 1.57fsand(1−θs) × 1.57fsilt(1−θs) (11)95

where fclay, fsand and fsilt are fractions of clay
:
,
::::
sand and silt in the soil.

:
,
::
by

:::::::
weight.

::::::::
Equations

:
(8)

:::
and

:
(9)

::
are

:::::::::::::
rearrangements

::
of

:::::::
equation

:
(2)

::
at

::::
fixed

::::::
values

::
of

::::::
matric

:::::::
suction

::::::::::::
corresponding

::
to

:::
the

:::::::
wilting

:::
and

:::::::
critical

::::::
points.

::::::::
Equation (10)

::
is

:
a
::::::

linear
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::::::::::
combination

::
of

:::
the

::::::::
assumed

::::
heat

::::::::
capacities

::
of

:::::
sand,

:::
silt

::::
and

::::
clay,

::::::::
weighted

::
by

:::::
their

::::::
relative

::::::::
fractions,

::::
and (11)

:
is
:::
as

:::::
given

::
in

:::::::::::::::::
Dharssi et al. (2009) .

:
The values of the constants κ1 to κ12 usually used in equations (4) to (11) are those given in Cosby et al.

(1984); we present them in table 2. These values are empirically determined from 1448 small soil samples (cm dimensions)100

taken from 23 states in the United States (for further details of the soil samples and sampling methods see Rawls (1976) and

Holtan (1968)).
:::
The

::::::
values

::
of

:::
the

::::::::
constants

:::::
given

::::
here

::::::
match

:::::
those

::
in

::::::::::::::::::::::::
Marthews et al. (2014a) (with

::::
soil

::::::
fraction

::::::::::
multipliers

:::::::
adjusted

::
for

::::::::
fraction,

:::::
rather

::::
than

:::::::::
percentage,

:::
of

:::
soil

:::
by

:::::::
weight).

Constant Value from Cosby et al. (1984)

κ1 3.10

κ2 15.70

κ3 0.3

κ4 0.505

κ5 0.037

κ6 0.142

κ7 2.17

κ8 0.63

κ9 1.58

κ10 0.6

κ11 0.64

κ12 1.26

Table 2. Values of the constants commonly used in the Cosby pedotransfer functions

JULES requires meteorological driving data to produce soil moisture estimates.
:::
The

:::::::
required

:::::
input

:::::::
variables

::::
are:

::
air

::::::::
pressure,

::
air

:::::::::::
temperature,

::::::::
humidity,

:::::::::
downward

:::::
fluxes

::
of

:::::::::
shortwave

:::
and

:::::::::
longwave

::::::::
radiation,

::::::::::
precipitation

::::
and

::::
wind

::::::
speed.

:
In this paper105

we have used half-hourly meteorological observations measured at COSMOS-UK sites as driving data; in this way we can use

JULES to give soil moisture predictions at any COSMOS-UK sites with sufficiently complete meteorological data.

JULES provides estimates of soil moisture at various depths; in the standard configuration used here these correspond to four

layers, with depths [0,10cm], [10cm to 35cm], [35cm to 100cm] and [100cm to 300cm]. The JULES layers are often referred

to by their thicknesses, which are 10cm, 25cm, 65cm and 200cm respectively. Here, we refer to the soil moisture estimates for110

the four layers as SM10,SM25,SM65 and SM200.

2.2 COSMOS-UK soil moisture data

The COSMOS-UK project comprises a network of soil moisture monitoring stations across the United Kingdom, provid-

ing long-term soil moisture measurements at around 50 sites. Data for 2013 to 2017 are available in the EIDC archive

(Stanley et al. (2019) )
:::::::::::::::::
(Stanley et al., 2019) . Soil moisture observations are made using an innovative Cosmic Ray Neutron115
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Sensor (CRNS) instrument at each site; these provide a measurement of soil moisture over an area of up to 12 ha
:::::::::
120,000m2

( 30 acres) (Antoniou et al., 2019; Evans et al., 2016).
:::
The

::::::
CRNS

:::
at

::::
each

::::
site

::::::
counts

:::
fast

::::::::
neutrons

::::::
within

:::
the

::::::::
sensor’s

:::::::
footprint.

::::::
These

::::::
counts

:::
are

::::::::
corrected

:::
for

:::::
local

:::::::::::::
meteorological

:::::::::
conditions

:::::
using

::
in

::::
situ

::::::::::::
measurements

::::
and

::::
also

::::::::::
background

::::::
neutron

::::::::
intensity

:::::
using

:::
data

:::::
from

:
a
:::::::
neutron

::::::::::
monitoring

:::::
station

::::::::::::::::::
(Evans et al., 2016) .

:::
The

::::::::
corrected

::::::
counts

:::
are

::::
then

:::::::::
calibrated

::
for

::::::::::
site-specific

::::
soil

::::::::
properties

::::::::::
determined

:::::
from

:::::::::
destructive

:::
soil

::::::::
sampling

:::::::::
conducted

::::
after

::::
site

:::::::::
installation.

::::
Soil

:::::::
samples

:::::
were120

:::::::
collected

:::::
from

::::
each

:::
site

:::::::::
following

::::::::::::::::::
Köhli et al. (2015) and

:::::
were

:::::::
returned

::
to

::::::::
UKCEH

::
for

:::::::::
laboratory

::::::::
analysis.

:::
The

::::::
results

:::::
were

::::
used

::
to

::::::::
determine

::::::::
reference

:::
soil

::::::::
moisture,

::::::
lattice

:::
and

:::::
bound

::::::
water,

::::
bulk

::::::
density

:::
and

::::::
organic

::::::
matter

:::
for

:::
the

:::
day

::
of

::::::::
sampling,

::::
and

::
are

:::::::::::
subsequently

::::
used

::
to
::::::
derive

:::
soil

:::::
water

::::::
content

:::::
from

:::
the

:::::::
corrected

::::::
CRNS

::::::
counts.

::::
The

:::::::
majority

::
of

::::
sites

::::::::
explored

::
in

:::
this

:::::
study

::
are

:::::::::
grasslands

::::
and

:
it
::
is

::::::::
therefore

:::::::
expected

::::
that

:::::
CRNS

::::
soil

:::::::
moisture

::::::
results

:::
are

:::
not

::::::::::
significantly

:::::::
affected

:::
by

:::::::
seasonal

:::::::
changes

::
in

:::::::
biomass

::::::::::::::::
(Baatz et al., 2014) .

:
125

We have used daily-averaged soil moisture data from 16 COSMOS-UK sites as observations in this paper. The sites were

selected based on completeness of soil moisture and meteorological data over a three year period from 2016-2018 and are

listed in Table 3, with details of land cover and broad soil descriptions taken from Antoniou et al. (2019). Locations of the

sites are shown in figure 1. For more details of each of the sites, see Antoniou et al. (2019). The Cosby pedotransfer function

was designed to work for mineral soilsand we
:
,
:::
and

:::
the

::::::
CRNS

:::::::::
calibration

:
is
:::::
most

::::::
reliable

::
at

::::
sites

::::
with

:::::::
minimal

::::::::::
vegetation.

:::
We130

therefore consider that the first seven sites listed in table 3 are those at which the JULES model can be expected to provide a

good match to observations via our chosen PTF; soil types
:::
and

::::
land

:::::
cover

:
at the remaining sites mean that JULES may not be

able to represent the observed soil moisture time series as accurately.

Both the depth and the footprint over which the CRNS measure soil moisture change with soil moisture (Evans et al. (2016) ;

Köhli et al. (2015) Antoniou et al. (2019) )
:::::::::::::::::::::::::::::::::::::::::::::::::
(Evans et al., 2016; Köhli et al., 2015; Antoniou et al., 2019) , with the footprint and135

depth of the measurement both becoming smaller as soil moisture increases. The COSMOS-UK dataset includes estimates of

the depth over which each daily soil moisture value is valid, known as a D86 value. Measurements of several other envi-

ronmental variables are made at COSMOS-UK sites, using a suite of instrumentation. These include point soil moisture and

temperature measurements at various depths in the soil, and meteorological variables. We have used half-hourly in-situ
:
in

::::
situ

meteorological data from the COSMOS-UK dataset as driving data for the JULES model.140

2.3 Data assimilation

Data assimilation is a group of methods in which information from models and observations is combined in order to give the

best estimate of the state of a physical system and/or model parameter values. In this paper we have used the four-dimensional

ensemble variational data assimilation technique, LaVEnDAR, which is introduced in Pinnington et al. (2020) and is based

on Liu et al. (2008). We use LaVEnDAR here to optimise 12 constants, κ1 to κ12, in the Cosby pedotransfer functions (eqns145

(4) to (11)) based on estimates of soil moisture from JULES and corresponding large-scale
:::
field

:::::
scale

:
observations of soil

moisture from COSMOS-UK. The
::::::::::
LaVEnDAR

::::::::
optimises

::
κ1:::

to
:::
κ12::::

here
:::
by

:::::::::
minimising

::
a
::::
cost

:::::::
function

::::
with

::::
two

:::::
terms.

::::
The

:::
first

::::
term

::
is

:
a
::::::::
measure

::
of

:::
the

::::::::
difference

:::::::
between

:::
the

::::::::
observed

:::
and

::::::::
modelled

::::
soil

::::::::
moisture,

:::
and

:::
the

::::::
second

::::
term

::
is

:
a
::::::::
measure

::
of

::
the

:::::::::
difference

:::::::
between

:::::
prior

:::
and

::::::::
posterior values of κ1 to κ12:.
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Sitename and abbreviation Land cover Soil description

Cardington (CARDT) Grassland Typical mineral soil

Bickley Hall (BICKL) Grassland Typical mineral soil

Crichton (CRICH) Grassland Typical mineral soil

Waddesdon (WADDN) Grassland Typical mineral soil

Hollin Hill (HOLLN) Grassland Typical mineral soil

Easter Bush (EASTB) Grassland Typical mineral soil

Rothamstead (ROTHD) Grassland Typical mineral soil

Chimney Meadows (CHIMN) Grassland Calcereous mineral soil

Sheepdrove (SHEEP) Grassland Mineral soil; fairly high organic carbon content

Porton Down (PORTN) Grassland Highly calcereous mineral soil

Hartwood Home (HARTW) Grassland/woodland Typical mineral soil

Gisburn Forest (GISBN) Coniferous forest Mineral soil; high organic carbon content

Chobham Common (CHOBH) Heath Highly variable soil

Lullington Heath (LULLN) Grassland/heath Highly calcareous mineral soil

Moorhouse (MOORH) Grassland/heath Mineral soil with very high organic content

Sourhope (SOURH) Grassland Mineral
:::
soil with very high organic content

Table 3. COSMOS-UK sites selected for this study.
::::::
‘Heath’

:::::::
indicates

::::
some

::::::
shrubs

::
are

::::::
present

::
at

::
the

::::
site.

:::
The

::::::
values

::
of

:::
κ1 ::

to
:::
κ12:are assumed to be constant in time and space; the same values are used across all sites to generate150

soil JULES moisture estimates via the pedotransfer functions.

2.4 Experimental details

In order to use COSMOS-UK data with JULES outputs in the LaVEnDAR scheme, we require both sets of soil moisture

values to correspond to the same soil depth. We have therefore devised a weighted depth approach, in which we extract from

each JULES prediction an average soil moisture corresponding to the UK-COSMOS D86 observed depth.
:::
The

::::::::
observed

:::::
depth155

::::::
changes

:::::
with

:::
soil

:::::::
moisture

::::
and

::::
with

:::::::
distance

::::
from

:::
the

::::::
CRNS

::::::::::
instrument;

::::
here

::
we

:::::
have

::::
used

:::
the

:::::::
reported

::::::::::
observation

:::::
depth

::
at

::::
75m

::::
from

:::
the

::::::
CRNS.

:
For each day, we calculate a depth-adjusted JULES soil moisture estimate, SMdepth, depending on the

75m D86 value
:::::::::
observation

:::::
depth

:::::
value,

:::::
D86, provided for that day, such that

SMdepth =


SM10, if D86 ≤ 10cm,

10
D86SM10 + (D86−10)

D86 SM25 if 10cm<D86 ≤ 35cm,

10
D86SM10 + 25

D86SM25 + (D86−35)
D86 SM65, if 35cm<D86 ≤ 65cm,

(12)
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Figure 1. Locations of COSMOS-UK sites used in this study

where SM10, SM25 and SM65 are the JULES predicted soil moisture values from the [0,10cm], [10cm to 35cm] and [35cm160

to 100cm] layers respectively, and the D86 value is given in cm. In this way, thickness-weighted contributions to the soil

moisture are taken from every JULES layer which would be wholly or partly contained within the D86 depth. We have not

taken the COSMOS-UK variable footprint into account in this study.

In this paper we have used an ensemble size of 50, as in related experiments in Pinnington et al. (2020) and Liu et al. (2008).

In order to implement the LaVEnDAR scheme we165

1. Generated a 50-member ensemble of each of the 12 PTF constants κ1 to κ12. These were obtained by sampling from

a Gaussian distribution centred on the value given in table 3
:
2, with standard deviation equal to 10% of the mean. This

standard deviation value was chosen fairly arbitrarily; future work could assess the sensitivity of the results to the values

chosen for each PTF constant.

2. Assembled 50 unique sets of 12 constants κ1 to κ12.170

3. Used each unique set of constants in equations (4) to (11) to generate 50 sets of soil physics parameters for each site. Soil

texture information for each site was taken from the Harmonised World Soil Database (HWSD) (Fischer et al., 2008)

8



4. Used the soil parameter sets to run 50 realisations of JULES at each of our selected sites over a 2 year time window to

create a prior ensemble of 50 soil moisture time series per site.

5. Used the LaVEnDAR scheme to generate a new, posterior ensemble of values for each of the 12 PTF constants, taking175

into account COSMOS-UK soil moisture observations from 2017. Here, we assumed uncorrelated observation errors of

50 % of the mean soil moisture value at each site.

6. Used the new posterior ensemble of PTF constants to generate 50 posterior sets of soil physics variables at each site.

7. Ran 50 posterior realisations of JULES at each site to create posterior soil moisture time series.

These steps are also shown in schematic form in figure 2.180

:::
We

::::::
assume

::::
that

:::
the

::::
soil

::::::
texture

::::::
values

:::::
from

:::
the

:::::::
HWSD

:::
are

:::::::
correct;

::::
they

:::
are

::::
not

:::::::
changed

::::::
during

:::
the

::::
data

:::::::::::
assimilation

::::::
process.

::::
We

::::
used

::
a
:::::
global

::::
soil

::::::
dataset

::::::
rather

::::
than

:::
any

::::::
locally

::::::::
available

::::
soil

::::::
texture

:::::::::::
observations

::
to

::::::
ensure

::::
that

:::
our

:::::::
method

:::
has

:::
the

::::::::
potential

:::
for

:::::::::
extension

::
to

:::::
areas

:::::::
without

:::::
local

::::::::::::
measurements.

::::::
Other

:::::
open

::::::
source

::::::
global

:::
soil

:::::::
texture

:::::::
products

::::
are

:::
also

::::::::
available,

::::
e.g.,

:::::::::
SoilGrids

:::::::::::::::::
(Hengl et al., 2017) .

:::
We

:::::::::::
acknowledge

::::
that

::::
there

::::
can

::
be

::::::::::::
discrepancies

:::::::
between

:::
the

::::::
HWSD

::::
and

::::
local

::::::::::::
measurements

::::::::::::::::::::::
(e.g., Zhao et al., 2018) but

::::
our

:::::::
decision

::
to

:::
use

::::
the

::::::
HWSD

::::
here

:::::::
follows

:::::
recent

:::::::::
successful

:::::::::
integration

:::
of185

:::
soil

::::::
texture

::::
data

::::
from

::::
the

::::::
HWSD

::::
with

:::::::
JULES

::
in

::::::
studies

::::
such

::
as

:::::::::::::::::::::::::::::
Martínez-de la Torre et al. (2019) ,

::::::::::::::::::::
Ritchie et al. (2019) and

:::::::::::::::::::::::
Ehsan Bhuiyan et al. (2019) .

:

We have assumed a high observation error value in this experiment. The daily soil moisture measurements we use are aver-

aged from 30 minute
::::::
hourly soil moisture measurements; analysis of these data shows that uncertainty in the daily values

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::
hourly

::::
data

::::::
around

:::
the

:::::
daily

::::
mean

:
is approximately 20%. We have inflated this here to 50% obser-190

vation erroras we ;
:::
we

::::
note

::::
that

::::::
similar

::::::::::
observation

::::
error

:::::::::
covariance

::::::::
inflation

:::::::::
techniques

::::
have

:::::
been

::::
used

::
in

:::
e.g.

:::::::::::
assimilation

::
of

::::::
satellite

:::::::::::
observations

::
in

:::::::::
numerical

::::::
weather

:::::::::
prediction

:::::::::::::::::::::::::::::::::
(Fowler et al., 2018; Hilton et al., 2009) .

::::
The

::::::
reason

:::
for

:::::::
inflating

:::
the

:::::::::
observation

:::::
error

::
is

:::::::::
essentially

:::::::
because

:::
we found that smaller observation error values impacted negatively on the posterior

soil moisture results. Inflation
::
We

:::::::
suggest

:::
that

:::::::
inflation

:
of the observation error here compensates for the

:
is
:::::::::
necessary

::::
here

::
to

:::::::::
compensate

:::
for

:::::::::
otherwise

::::::::
neglected

::::::
sources

:::
of

::::
error

::::
(e.g.

:::
the

:::::
error

::
in

:::::::::
converting

:::::::
neutron

:::::
counts

:::
to

:::
soil

::::::::
moisture)

::::
and

:::
for

:::
the195

assumption of uncorrelated observation error; in fact there will likely be intra-site correlations between observation errors due

to site-specific instrument calibration. We note that similar observation error covariance inflation techniques have been used in

e.g. assimilation of satellite observations in numerical weather prediction (Fowler et al. (2018) , Hilton et al. (2009) ). We have

used

:::
We

::::
have

::::
used

:
COSMOS-UK measurements from 2017 only in our data assimilation experiments, but compared the prior200

and posterior JULES runs from 2017 and 2018 with observations.

2.5 Metrics

In order to assess how well our prior and posterior JULES runs match COSMOS-UK observations we require a metric. Here we

have used the Kling-Gupta efficiency metric, as described in Gupta et al. (2009) ; Knoben et al. (2019)
:::
and

::::::::::::::::::
Knoben et al. (2019) ,

9



Figure 2. Schematic showing data assimilation experimental design; %ssc refers to site specific fractions of sand, silt and clay in the soil
:
.
::
In

:::
this

::::
study

::::
only

:::::::::
observations

::::
from

::::
2017

::
(at

::::
each

::::
site)

::::
were

:::
used

::
in
:::
the

:::::::::
assimilation

::::::::
algorithm.

to compare the goodness of fit between observed and modelled (ensemble mean) soil moisture times series. The Kling Gupta205

efficiency (KGE) is given by

KGE = 1−
√

(1− r)2 + (1−α)2 + (1−β)2, (13)

where

α=
σmodel
σobs

(14)

and210

β =
µmodel
µobs

. (15)

In equations (14) and (15), µmodel and µobs are mean values of the modelled and measured soil moisture time series re-

spectively; σmodel and σobs are the standard deviations in the modelled and observed soil moisture time series. The value of r

is the Pearson correlation coefficient between the model and the observation time series data, and can vary between -1 (anti-

correlation) and 1 (perfect correlation), with score of 0 indicating no correlation. The value of α reflects how well the spread215

in the modelled soil moisture values matches that of the observations, with a value of 1 corresponding to perfect matching.

Equation (15) shows that the value of β represents bias between the model and observations, with a value of 1 indicating zero

10



bias. Since α and β can be larger or smaller than 1, the value of the KGE can range between 1 (perfect model fit to data) to

very large negative values. In Knoben et al. (2019) the authors argue that while in some studies a threshold of KGE ≥0 has

been used to denote ‘good’ model performance, a lower threshold of KGE ≥-0.41 is required for the model to perform better220

than a mean persistence forecast.
::
We

:::::
used

::::::
python

::::
3.7.1

::
to

::::::::
calculate

::::::
metrics

::::
and

::::::
prepare

:::::
plots.

:

3 Results

3.1 Effect of data assimilation on JULES soil moisture predictions

Figure 3. Observed and modelled (ensemble mean) soil moisture time series at Bickley Hall (BICKL). The dotted line separates the period

over which observations used for assimilation (2017) from the period in which no observations have been assimilated (2018).

Figures 3 to 6 show measured and modelled soil moisture time series for 2017 and 2018 at two representative COSMOS-

UK sites. In all cases the modelled soil moisture series is the ensemble mean. These figures show that the JULES runs using225

posterior PTF constants produce soil moisture estimates which are a better match to the observations than the JULES runs

using the prior PTF constants. Figures 3 and 4 show results from Bickley Hall (BICKL), which is a site at which we expect soil

moisture to be well represented by JULES via the Cosby PTF (this site has a typical mineral soil). Figures 5 and 6 represent

results from a site at which the high organic content of the soil
:::
and

:::
the

:::::::
presence

:::
of

::::
trees

:
means that we do not expect our

JULES setup to match the observations so successfully.230

Figure 7a shows the KGE values for prior and posterior JULES runs at all 16 sites included in our study. These metrics

show how closely the prior and posterior JULES runs match the observations over the period of 2017 and 2018 before and

after assimilation of observations from 2017. Figure 7a shows that data assimilation makes fits to observations significantly

better
::::::::
markedly

::::::::
improves

:::
the

::
fit

::
to

:::::::::::
observations at all sites according to the Kling Gupta metric; all the analysis Kling-Gupta

efficiency scores are closer to the ideal value of 1 than the prior values. We note that for all sites, the match between model235

and measurements is better in 2017 and 2018 even though only observations from 2017 were used in the optimization process.
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Figure 4. Observed vs modelled (ensemble mean) soil moisture at Bickley Hall (BICKL) for prior and posterior JULES runs. Diagonal line

shows 1:1 perfect correspondence line.
:::
The

::::::::
correlation

:::::::::
coefficient

::
at

:::
this

:::
site

::::::
changed

:::::
from

:::
0.93

::::::
(prior)

::
to

:::
0.94

:::::::::
(posterior)

:::
and

:::
the

::::
rmse

::::::
reduced

::::
from

:::
0.13

:::::
(prior)

::
to
::::
0.03

::::::::
(posterior).

:

Figure 5. Observed and modelled (ensemble mean) soil moisture time series at Gisburn Forest (GISBN). The dotted line separates the period

over which observations used for assimilation (2017) from the period in which no observations have been assimilated (2018).

This indicates that the new values for the PTF constants allow JULES to simulate large-scale
:::
field

:::::
scale

:::::
scale soil moisture

measurements better than the original (prior) PTF constants. Figure 7b shows that the prior and posterior correlation coeffi-

cients, r, are very similar at most sites, although there are a number of sites at which the r value gets slightly worse following

data assimilation
:
is

:
a
:::::
slight

:::::::::::
deterioration

::
of

:::
the

:::::::::
correlation

:::::::::
coefficient

::
at

:::
the

:::::::
majority

:::
of

:::
the

::::
sites. Despite this, the

::::::::
reduction

::
in240

:
r
::
is

::::
very

:::::
small

::::::::
compared

::
to

:::
the

::::::
overall

:::::::::::
improvement

::
in

:::
the

:::::
KGE

:::::
metric

::
at
:::
all

::::
sites,

::::
and

:::
the prior and posterior r values are all

greater than 0.8 at all sites with a typical mineral soil. The r value stays low at Moorhouse (MOORH), perhaps because the soil
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Figure 6. Observed vs modelled (ensemble mean) soil moisture at Gisburn Forest (GISBN) for prior and posterior JULES runs. Diagonal

line shows 1:1 perfect correspondence line.
::
The

:::::::::
correlation

::::::::
coefficient

:
at
:::
this

:::
site

:::::::
changed

::::
from

:::
0.73

::::::
(prior)

:
to
::::
0.69

::::::::
(posterior)

:::
and

:::
the

::::
rmse

::::::
reduced

::::
from

:::
0.25

:::::
(prior)

::
to
::::
0.15

::::::::
(posterior).

:

at this site is too highly organic for the Cosby parameters to really be applicable, and for the COSMOS-UK measurements to

be reliable. The r value also stays low at Gisburn Forest (GISBN), which is likely due to the fact that there are a large number

of trees at this siteand interception processes are therefore likely to be more important here
:
.
::::
The

:::::::
presence

:::
of

:::::::::::
aboveground245

:::::::
biomass

:::
may

:::::
make

:::
the

::::::::::
site-specific

:::::::::
calibration

::::
less

::::::
reliable than at other sites ; the COSMOS-UK ‘soil moisture’ measurement

may actually include water held on the canopy of trees, which is not included in the JULES modelled soil moisture value here.

::::::::::::::::
(Baatz et al., 2014) .

::::
The

::::
high

::::::
organic

::::::
carbon

:::::::
content

::
of

:::
the

:::
soil

::
at
:::::::
Gisburn

::::::
Forest

:::::
likely

:::
also

::::::::::
contributes

::
to

:::
this

::
as
::::
our

::::::
chosen

:::
PTF

::
is
::::::::
designed

::
to

::::
work

::::
best

::::
with

:::::::
mineral

::::
soils.

::::::::::
Interception

::
is

::::::
another

:::::::::
processes

:::::
which

:::::::::
potentially

::::::::::
complicates

:::
the

:::::::::
calibration

:
at
:::::
sites

::::
with

:::::::::
vegetation,

::::::::
although

:::
the

::::::
authors

::
of

::::::::::::::::::::::
Bogena et al. (2013) report

::::
that

:::::
water

:::::::::
intercepted

:::
by

:::
the

::::::
canopy

:::::::::
constitutes

::
a250

::::::::
negligible

::::::
amount

:::
of

:::
the

:::::
water

:::::::
detected

::
in

:::
the

:::::
CRNS

::::::::
footprint,

:::::
even

::
in

:::::::::
coniferous

::::::
forests.

Figure 7c shows that a significant contribution to improved KGE at all sites comes from improvement in the alpha compo-

nent, which is much closer to the ideal value of 1 for all of the posterior JULES runs than the prior JULES runs. The alpha

component represents how well the spread in the model matches the spread in the observations. We saw in time series plots

such as figures 3 and 5 that the spread in JULES soil moisture was too small at all sites; our results show that the data assim-255

ilation has acted to correct this by updating the value of the PTF constants. Figure 7d shows that the beta parameter is closer

to the ideal value of 1 after data assimilation than before at all sites except for Cardington, i.e. data assimilation is correcting a

bias in the JULES outputs at all but one site. The prior bias at Cardington is in the opposite direction to bias at all of the other

sites.
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Figure 7. Kling Gupta efficiency scores for JULES runs using prior and posterior PTF variable values. Dotted horizontal lines show value of

metric for perfect match between model and observation

3.2 Effect of data assimilation on
::::::
JULES

:
soil physics parameters260

:::
The

::::
data

::::::::::
assimilation

:::::::::
algorithm

::
in

:::
this

:::::
study

::::
acts

::::::
directly

:::
on

:::
the

::::
PTF

::::::::
constants

::
κ1::

-
:::
κ12::::::

which
::::
make

:::
up

:::
the

::::
state

::::::
vector.

::::
The

:::::::
resulting

:::::::
changes

::
to

:::
the

::::::
JULES

::::
soil

::::::
physics

::::::::::
parameters

::::::
through

::::::::
equations

:
(4) -

:
(11)

::
are

::::::::
presented

::::
here

:::
in

::::::
section

:::
3.2.

:
Figures

8 and 9 show
::::::
changes

:::
to

::
the

:::::
eight

::::::
JULES

::::
soil

::::::
physics

:::::::::
parameters

:::::
used

::
for

:::
the

::::::
topsoil

::::
and

::::::
subsoil

:::::
layers

:::::::::::
respectively.

:::::::
(Section

:::
3.3

:::::
shows

::::
how

:::
the

:::::::::
underlying

::::
PTF

::::::::
constants

:::
are

::::::::
updated).

::::::
Figures

:
8
::::
and

:
9
:::::
show that the mean value ofKs ::::::

(satcon)
:
gets smaller (4 to 5 times smaller) at each site after data assimilation,265

and that the posterior distribution of the Ks ::::::
(satcon)

:
parameter is narrower than the prior distribution. The results in figures 8

and 9 also show that the site-to-site variability of the b parameter reduces following data assimilation; the largest mean prior

values of b are reduced, and the distributions with the smallest mean values are shifted to slightly larger values. Figures 8 and

9 show that the mean value θs ::::
(vsat)

:
has increased at all the sites following data assimilation, and the distribution of θs :::::

(vsat)
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Figure 8. Ensemble prior (orange) and posterior (blue) parameter values at each site. These are ‘topsoil’ results, which we have assumed to

correspond to the top two soil layers in JULES
::
(0

:
-
::::
35cm

:::::
depth

::::
from

::
the

::::::
surface).

at each site has become much narrower. The mean values of the θcrit :::::
(vcrit)

:
and θwilt::::::

(vwilt) distributions have stayed broadly270

similar or increased slightly after data assimilation. We also see that at all sites Ψs ::::::
(sathh) becomes very small (∼ 30 times

smaller) after data assimilation.

Figures 8 and 9 show that hcap and hcon change through data assimilation. However, this translates into minimal differences

between the prior and post soil temperatures; both prior and post data assimilation temperature estimates are close to the in-situ

::
in

:::
situ COSMOS-UK measurements (not shown).275

3.3 Effect of data assimilation on pedotransfer function constants

::
In

:::
this

::::::
section

:::
we

::::::
present

:::
the

:::::::
changes

::
to

:::
the

::
12

::::
PTF

::::::::
constants

:::
κ1:

-
::::
κ12.

:::::
These

:::::::
updates

:::
are

::
the

:::::
direct

:::::
result

:::
of

:::::::
applying

:::
the

::::
data

::::::::::
assimilation

::::::::
algorithm.

:

Figure 10 shows prior (orange) and posterior (blue) distributions of the 12 PFT
:::
PTF

:
constants, κ1 to κ12. These plots demon-

strate how the dependence of the soil physics parameters on texture is changed in equations (4) to (11) via data assimilation.280

The values of κ1, κ2 and κ3 control the magnitude of the soil physics parameter b through equation (4). The decreases of κ2 and

κ3 after data assimilation translate to a decreased dependence of b on clay and sand fractions through equation (4). Changes
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Figure 9. Ensemble prior (orange) and posterior (blue) parameter values at each site. These are ‘subsoil’ results, which we have assumed to

correspond to the deeper two soil layers in JULES
::
(35

:
-
:::::
300cm

:::::
depth

::::
from

::
the

:::::::
surface).

to κ4, κ5 and κ6 contribute to changes to θs through equation (5). The large increase in κ4 values allows larger values of θs

to be realised after data assimilation. The parameter Ψs controlled by κ7, κ8 and κ9. The mean value of κ7 is greatly reduced

following data assimilation, and this leads to the much smaller posterior values of Ψs seen in figures 8 and 9. The constants285

κ10, κ11 and κ12 determine the values of Ks through equation (6). The shift in the κ10 distribution to larger values leads to the

reduction in values of Ks seen in figures 8 and 9.

4 Discussion

The results in section 3.1 show that we have been able to successfully update the constants in a Cosby-like pedotransfer function

based on field scale in-situ
:
in

::::
situ soil moisture measurements. The new set of constants obtained in this way generate soil290

physics parameters at each studied COSMOS-UK site such that there is a large improvement in the match between modelled

and observed field-scale soil moisture values at all sites.

Our results suggest that it is primarily a combination of the changes to θs, Ψs and Ks distributions which result in a better

match to the observations after data assimilation. The new distributions allow the model to access higher soil moisture values,
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Figure 10. Prior and post
:::::::
posterior PTF variable

::::::
constant

:
value distributions. Orange shows prior and blue posterior

:
.
:::
The

:::
blue

::::
line

:::::
shows

::
the

::::::
original

:::::
value

::
of

::
the

:::::::
constant

::
as

:
in
::::
table

::
2

potentially correcting for a deficiency in supporting datasets, parameter valuesor
::::::::
parameter

::::::
values,

:
process representation in295

JULES,
:::
or

::
in

:::::::::
supporting

:::::::
datasets

:::::
(such

::
as

::::
soil

::::::
texture

::::::::::
information

::
or

::::::
driving

:::::::::::::
meteorological

:::::
data). We suggest that the data

assimilation is effectively acting to slow the drainage of water in JULES, especially close to saturation, by increasing θs and

decreasing Ks.

The improvements seen here were obtained by assimilating all the soil moisture values across 16 sites simultaneously rather

than on a per site basis. This strengthens our implicit assumption that the same physical processes can be modelled (through300

JULES and the Cosby pedotransfer function) for a range of different UK sites and soil types.

We note that the soil physics parameter values calculated here may not exactly match physically expected values for a

number of reasons. Firstly, we have fitted to COSMOS large-scale
::::
field

::::
scale

:
measurements; differences in parameter values

from the prior values may therefore reflect the different scales on which they were calculated. Additionally, the COSMOS-

UK soil moisture observations likely include contributions from processes which are important to soil moisture but we have305

not taken account of here with JULES, such as ponding of water on the soil surface, interception of water on vegetation,

groundwater processes and local soil compaction. Therefore, we may be effectively parameterising for these processes (and

others not included in JULES) through our new soil physics parameters. In this experiment we have mainly used grass sites,

so interception is not likely to play a large role in daily averaged moisture values (JULES outputs show the amount of water

intercepted to be, at most, of the order 100 times smaller than the amount of water in the top soil layer).310
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5 Conclusions

We have shown that it is possible to use the LaVEnDAR data assimilation framework to improve JULES estimates of soil

moisture based on one year’s worth of large-scale
::::
field

::::
scale

:
COSMOS-UK soil moisture measurements across 16 sites. We

have demonstrated improved fit to observations over a two year period at all 16 sites by adjusting the values of constants in the

underlying pedotransfer function. Averaging across all the sites we see an improvement in the average KGE metric from 0.33315

(range 0.10 to 0.69) before data assimilation to an average of 0.66 after data assimilation (range 0.31 to 0.89).

The method we propose here could be used for any different choice of land surface model and/or pedotransfer function;

our choice of PTF here was motivated by the fact that it is widely used and has a relatively simple mathematical formulation.

Calibrating PTFs for the soils on which they are to be used and at the scales at which they are applied, rather than on small-scale

field or lab soil samples, will ultimately improve the performance of land surface models. This will allow better estimates from320

flood forecasting models, earth system models and numerical weather prediction.
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