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Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological

applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have

combined model-based soil moisture predictions with in-situ observations beyond the point scale. Here we show that we

can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data

assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimise constants5

in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate

a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil

textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface

models, leading to the potential for better flood, drought and climate projections.

Copyright statement. TEXT10

1 Introduction

Soil moisture is an important physical variable, significant in agriculture (Pinnington et al., 2018), flood events (Koster et al.,

2010; Berghuijs et al., 2019), and processes related to weather and climate (Seneviratne et al., 2010). Land surface models such

as the Joint UK Land Environment Simulator (JULES) can be used to make predictions of soil moisture, and generally rely on

empirical pedotransfer functions (PTFs) to relate readily available or easy-to-measure soil characteristics such as soil texture15

to the soil hydraulics parameters required by the model (see e.g.Van Looy et al. (2017)).

There are a number of different types of pedotransfer function, as noted in Van Looy et al. (2017) and Hodnett and Tomasella

(2002), with different inputs and outputs depending partly on the requirements of the chosen land surface model. In ‘class’

approaches, soil types are clustered into groups, and hydraulic model parameters are then obtained from a look-up table

(Wösten et al., 1999); this results in discrete soil hydraulics parameter sets. Alternatively, continuous pedotransfer functions20

take soil characteristic information from each sample of interest and apply the function to produce continuous soil hydraulics
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parameter sets (e.g.Cosby et al. (1984), Hodnett and Tomasella (2002), Schaap et al. (2001)). To date, pedotransfer functions

have been derived by fitting to results from field or laboratory experiments on point or small-scale soil samples (cm to m),

despite the fact that land surface models are generally applied at larger (field to km) scales. The recent development of novel

in-situ techniques for measuring soil moisture over field, rather than point scale presents an opportunity to test whether land25

surface models, in conjunction with commonly used pedotransfer functions, are able to reproduce field-scale soil moisture

observations. In this paper, we have compared JULES soil moisture predictions with soil moisture observations from the

COSMOS-UK dataset (Stanley et al., 2019); these observations are measured by cosmic ray neutron sensors (CRNS) over a

footprint of up to 12 ha. We have then used the LaVEnDAR four dimensional ensemble variational data assimilation framework

(Pinnington et al., 2020) to combine COSMOS-UK soil moisture observations at 16 sites with equivalent JULES soil moisture30

estimates. We have thereby optimized constants in the Cosby pedotransfer function (Cosby et al., 1984). This results in a newly

calibrated set of pedotransfer functions based on field-scale soil moisture observations across 16 sites with a range of soil types.

This approach allows us to test whether we can improve the performance of the model by optimising the pedotransfer functions

for larger scales using field-scale soil moisture observations. Our approach also allows comparison of the soil hydraulics

parameters generated using large-scale (∼ hundred metre) soil moisture measurements with those generated by the original35

pedotransfer functions, which are based on small-scale (∼ cm) measurements. We chose to optimize the pedotransfer functions

rather than directly optimizing soil physics parameters to better ensure physically consistent parameter sets; this approach also

has the advantage that we can assimilate observations from all sites simultaneously to produce one set of pedotransfer functions

applicable at all sites and beyond.

Larger scale soil moisture measurements are also increasingly available from satellite products and these have been used to40

good effect in data assimilation frameworks with land surface models in e.g. Pinnington et al. (2018), Liu et al. (2011), De

Lannoy and Reichle (2016) and Yang et al. (2016). The advantage of the CRNS measurements used here is that they provide

a more direct soil moisture measurement than those from satellites. CRNS soil measurements are also representative of depths

of approximately 10 to 30cm, compared to the top 5 to 10 cm for satellite retrievals.

An alternative approach to assimilation of CRNS soil moisture measurements into land surface models is taken in Brunetti45

et al. (2019) and Han et al. (2015). These studies both use neutron counts from CRNS instruments as observations, combined

with the method presented in Shuttleworth et al. (2013) to map modelled soil moisture estimates into equivalent neutron counts.

In this study we instead directly compare modelled and CRNS derived soil moisture.

The rest of the paper is organised as follows: in section 2 we outline the JULES land surface model and the COSMOS-UK

data used in this study; we also describe the data assimilation experiment we have performed and introduce the metric by50

which we have measured how well the model fits the observations. In section 3 we present results, showing that we can use

COSMOS-UK observations from 2017 to improve the fit between the JULES model output and observations over two years at

all the sites we included. We discuss our results in the context of changes to the JULES soil physics parameters in section 4.

In section 5 we conclude that it is possible to optimise pedotransfer functions for field scale soil moisture measurements, and

that this markedly improves the fit of JULES soil moisture estimates to COSMOS-UK observations.55
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2 Methods

2.1 JULES land surface model

JULES uses the Darcy-Richards equation to model soil hydraulic processes (Best et al., 2011), so that the downward water

flux, W , between adjacent soil layers is given by

W =K

(
∂Ψ

∂z
+ 1

)
(1)60

where Ψ is the soil matric suction, K is the soil hydraulic conductivity and z is distance from the soil surface in the vertical

direction.

JULES provides two options for representing the relation between soil water content, θ, matric suction, and hydraulic

conductivity; in this paper we use the Brooks and Corey soil physics option (Best et al. (2011),Brooks and Corey (1964)),

where we assume65

θ

θs
=

(
Ψ

Ψs

)− 1
b

(2)

and

K

Ks
=

(
θ

θs

)2b+3

. (3)

In equations (2) and (3), θs, Ks and Ψs are values of soil moisture, hydraulic conductivity and soil matric suction at sat-

uration; b is a soil-dependent constant with a value usually determined through a pedotransfer function. The soil physics70

parameters used in the implementation of Brooks and Corey soil physics in JULES are briefly described in table 1; more

details are available in Best et al. (2011) or Jules user guide. (2020).

The values of the eight soil physics parameters outlined in table 1 are generally calculated via a set of pedotransfer functions.

Here we use the Cosby pedotransfer functions, which have the following mathematical formulation, (Cosby et al., 1984;

Marthews et al., 2014)75

b= κ1 +κ2fclay −κ3fsand (4)

θs = κ4 −κ5fclay −κ6fsand (5)

Ψs = 0.01× 10κ7−κ8fclay−κ9fsand (6)80
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Parameter name and symbol Description

satcon, Ks Hydraulic conductivity at saturation (kgm−2)

sathh, Ψs Absolute value of the soil matric suction at saturation (m)

vsat, θs Volumetric water content at saturation (m3m−3)

vcrit, θcrit Volumetric soil moisture content at -33kPa (critical point) m3m−3

vwilt, θwilt Volumetric soil moisture content at -1500kPa (wilting point) m3m−3

b Exponent in soil hydraulic characteristic

hcap Dry soil heat capacity (J m−3K−1).

hcon Dry soil thermal conductivity (W m−1K−1).

Table 1. Soil physics parameters

Ks = 10−κ10−κ11fclay+κ12fsand × 25.4

3600
(7)

θcrit = θs

(
Ψs

3.364

)1/b

, (8)

85

θwilt = θs

(
Ψs

152.9

)1/b

(9)

hcap = (1− θs)(2.376× 106fclay + 2.133× 106fsilt + 2.133× 106fsand) (10)

hcon = 0.025θs × 1.16fclay(1−θs) × 1.57fsand(1−θs) × 1.57fsilt(1−θs) (11)90

where fclay, fsand and fsilt are fractions of clay and silt in the soil. The values of the constants κ1 to κ12 usually used in

equations (4) to (11) are those given in Cosby et al. (1984); we present them in table 2. These values are empirically determined

from 1448 small soil samples (cm dimensions) taken from 23 states in the United States (for further details of the soil samples

and sampling methods see Rawls (1976) and Holtan (1968)).
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Constant Value from Cosby et al. (1984)

κ1 3.10

κ2 15.70

κ3 0.3

κ4 0.505

κ5 0.037

κ6 0.142

κ7 2.17

κ8 0.63

κ9 1.58

κ10 0.6

κ11 0.64

κ12 1.26

Table 2. Values of the constants commonly used in the Cosby pedotransfer functions

JULES requires meteorological driving data to produce soil moisture estimates. In this paper we have used half-hourly95

meteorological observations measured at COSMOS-UK sites as driving data; in this way we can use JULES to give soil

moisture predictions at any COSMOS-UK sites with sufficiently complete meteorological data.

JULES provides estimates of soil moisture at various depths; in the standard configuration used here these correspond to four

layers, with depths [0,10cm], [10cm to 35cm], [35cm to 100cm] and [100cm to 300cm]. The JULES layers are often referred

to by their thicknesses, which are 10cm, 25cm, 65cm and 200cm respectively. Here, we refer to the soil moisture estimates for100

the four layers as SM10,SM25,SM65 and SM200.

2.2 COSMOS-UK soil moisture data

The COSMOS-UK project comprises a network of soil moisture monitoring stations across the United Kingdom, providing

long-term soil moisture measurements at around 50 sites. Data for 2013 to 2017 are available in the EIDC archive (Stanley

et al. (2019)). Soil moisture observations are made using an innovative Cosmic Ray Neutron Sensor (CRNS) instrument at each105

site; these provide a measurement of soil moisture over an area of up to 12 ha ( 30 acres) (Antoniou et al., 2019; Evans et al.,

2016). We have used daily-averaged soil moisture data from 16 COSMOS-UK sites as observations in this paper. The sites

were selected based on completeness of soil moisture and meteorological data over a three year period from 2016-2018 and

are listed in Table 3, with details of land cover and broad soil descriptions taken from Antoniou et al. (2019). Locations of the

sites are shown in figure 1. For more details of each of the sites, see Antoniou et al. (2019). The Cosby pedotransfer function110

was designed to work for mineral soils and we therefore consider that the first seven sites listed in table 3 are those at which
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the JULES model can be expected to provide a good match to observations via our chosen PTF; soil types at the remaining

sites mean that JULES may not be able to represent the observed soil moisture time series as accurately.

Sitename and abbreviation Land cover Soil description

Cardington (CARDT) Grassland Typical mineral soil

Bickley Hall (BICKL) Grassland Typical mineral soil

Crichton (CRICH) Grassland Typical mineral soil

Waddesdon (WADDN) Grassland Typical mineral soil

Hollin Hill (HOLLN) Grassland Typical mineral soil

Easter Bush (EASTB) Grassland Typical mineral soil

Rothamstead (ROTHD) Grassland Typical mineral soil

Chimney Meadows (CHIMN) Grassland Calcereous mineral soil

Sheepdrove (SHEEP) Grassland Mineral soil; fairly high organic carbon content

Porton Down (PORTN) Grassland Highly calcereous mineral soil

Hartwood Home (HARTW) Grassland/woodland Typical mineral soil

Gisburn Forest (GISBN) Coniferous forest Mineral soil; high organic carbon content

Chobham Common (CHOBH) Heath Highly variable soil

Lullington Heath (LULLN) Grassland/heath Highly calcareous mineral soil

Moorhouse (MOORH) Grassland/heath Mineral soil with very high organic content

Sourhope (SOURH) Grassland Mineral with very high organic content

Table 3. COSMOS-UK sites selected for this study

Both the depth and the footprint over which the CRNS measure soil moisture change with soil moisture (Evans et al. (2016);

Köhli et al. (2015) Antoniou et al. (2019)), with the footprint and depth of the measurement both becoming smaller as soil115

moisture increases. The COSMOS-UK dataset includes estimates of the depth over which each daily soil moisture value is

valid, known as a D86 value. Measurements of several other environmental variables are made at COSMOS-UK sites, using

a suite of instrumentation. These include point soil moisture and temperature measurements at various depths in the soil, and

meteorological variables. We have used half-hourly in-situ meteorological data from the COSMOS-UK dataset as driving data

for the JULES model.120

2.3 Data assimilation

Data assimilation is a group of methods in which information from models and observations is combined in order to give the

best estimate of the state of a physical system and/or model parameter values. In this paper we have used the four-dimensional

ensemble variational data assimilation technique, LaVEnDAR, which is introduced in Pinnington et al. (2020) and is based

on Liu et al. (2008). We use LaVEnDAR here to optimise 12 constants, κ1 to κ12, in the Cosby pedotransfer functions (eqns125
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Figure 1. Locations of COSMOS-UK sites used in this study

(4) to (11)) based on estimates of soil moisture from JULES and corresponding large-scale observations of soil moisture from

COSMOS-UK. The values of κ1 to κ12 are assumed to be constant in time and space; the same values are used across all sites

to generate soil JULES moisture estimates via the pedotransfer functions.

2.4 Experimental details

In order to use COSMOS-UK data with JULES outputs in the LaVEnDAR scheme, we require both sets of soil moisture130

values to correspond to the same soil depth. We have therefore devised a weighted depth approach, in which we extract from

each JULES prediction an average soil moisture corresponding to the UK-COSMOS D86 observed depth. For each day, we

calculate a depth-adjusted JULES soil moisture estimate, SMdepth, depending on the 75m D86 value provided for that day,

such that

SMdepth =


SM10, if D86 ≤ 10cm,

10
D86SM10 + (D86−10)

D86 SM25 if 10cm<D86 ≤ 35cm,

10
D86SM10 + 25

D86SM25 + (D86−35)
D86 SM65, if 35cm<D86 ≤ 65cm,

(12)135
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where SM10, SM25 and SM65 are the JULES predicted soil moisture values from the [0,10cm], [10cm to 35cm] and [35cm

to 100cm] layers respectively, and the D86 value is given in cm. In this way, thickness-weighted contributions to the soil

moisture are taken from every JULES layer which would be wholly or partly contained within the D86 depth. We have not

taken the COSMOS-UK variable footprint into account in this study.

In this paper we have used an ensemble size of 50, as in related experiments in Pinnington et al. (2020) and Liu et al. (2008).140

In order to implement the LaVEnDAR scheme we

1. Generated a 50-member ensemble of each of the 12 PTF constants κ1 to κ12. These were obtained by sampling from

a Gaussian distribution centred on the value given in table 3, with standard deviation equal to 10% of the mean. This

standard deviation value was chosen fairly arbitrarily; future work could assess the sensitivity of the results to the values

chosen for each PTF constant.145

2. Assembled 50 unique sets of 12 constants κ1 to κ12.

3. Used each unique set of constants in equations (4) to (11) to generate 50 sets of soil physics parameters for each site. Soil

texture information for each site was taken from the Harmonised World Soil Database (HWSD) (Fischer et al., 2008)

4. Used the soil parameter sets to run 50 realisations of JULES at each of our selected sites over a 2 year time window to

create a prior ensemble of 50 soil moisture time series per site.150

5. Used the LaVEnDAR scheme to generate a new, posterior ensemble of values for each of the 12 PTF constants, taking

into account COSMOS-UK soil moisture observations from 2017. Here, we assumed uncorrelated observation errors of

50 % of the mean soil moisture value at each site.

6. Used the new posterior ensemble of PTF constants to generate 50 posterior sets of soil physics variables at each site.

7. Ran 50 posterior realisations of JULES at each site to create posterior soil moisture time series.155

These steps are also shown in schematic form in figure 2.

We have assumed a high observation error value in this experiment. The daily soil moisture measurements we use are

averaged from 30 minute soil moisture measurements; analysis of these data shows that uncertainty in the daily values is

approximately 20%. We have inflated this here to 50% observation error as we found that smaller observation error values

impacted negatively on the posterior soil moisture results. Inflation of the observation error here compensates for the assump-160

tion of uncorrelated observation error; in fact there will likely be intra-site correlations between observation errors due to

site-specific instrument calibration. We note that similar observation error covariance inflation techniques have been used in

e.g. assimilation of satellite observations in numerical weather prediction (Fowler et al. (2018), Hilton et al. (2009)). We have

used COSMOS-UK measurements from 2017 only in our data assimilation experiments, but compared the prior and posterior

JULES runs from 2017 and 2018 with observations.165
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Figure 2. Schematic showing data assimilation experimental design; %ssc refers to site specific fractions of sand, silt and clay in the soil

2.5 Metrics

In order to assess how well our prior and posterior JULES runs match COSMOS-UK observations we require a metric. Here we

have used the Kling-Gupta efficiency metric, as described in Gupta et al. (2009); Knoben et al. (2019) to compare the goodness

of fit between observed and modelled (ensemble mean) soil moisture times series. The Kling Gupta efficiency (KGE) is given

by170

KGE = 1−
√

(1− r)2 + (1−α)2 + (1−β)2, (13)

where

α=
σmodel
σobs

(14)

and

β =
µmodel
µobs

. (15)175

In equations (14) and (15), µmodel and µobs are mean values of the modelled and measured soil moisture time series re-

spectively; σmodel and σobs are the standard deviations in the modelled and observed soil moisture time series. The value of r

is the Pearson correlation coefficient between the model and the observation time series data, and can vary between -1 (anti-

correlation) and 1 (perfect correlation), with score of 0 indicating no correlation. The value of α reflects how well the spread
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in the modelled soil moisture values matches that of the observations, with a value of 1 corresponding to perfect matching.180

Equation (15) shows that the value of β represents bias between the model and observations, with a value of 1 indicating zero

bias. Since α and β can be larger or smaller than 1, the value of the KGE can range between 1 (perfect model fit to data) to

very large negative values. In Knoben et al. (2019) the authors argue that while in some studies a threshold of KGE ≥0 has

been used to denote ‘good’ model performance, a lower threshold of KGE ≥-0.41 is required for the model to perform better

than a mean persistence forecast.185

3 Results

3.1 Effect of data assimilation on JULES soil moisture predictions

Figure 3. Observed and modelled (ensemble mean) soil moisture time series at Bickley Hall (BICKL). The dotted line separates the period

over which observations used for assimilation (2017) from the period in which no observations have been assimilated (2018).

Figures 3 to 6 show measured and modelled soil moisture time series for 2017 and 2018 at two representative COSMOS-

UK sites. In all cases the modelled soil moisture series is the ensemble mean. These figures show that the JULES runs using

posterior PTF constants produce soil moisture estimates which are a better match to the observations than the JULES runs190

using the prior PTF constants. Figures 3 and 4 show results from Bickley Hall (BICKL), which is a site at which we expect soil

moisture to be well represented by JULES via the Cosby PTF (this site has a typical mineral soil). Figures 5 and 6 represent

results from a site at which the high organic content of the soil means that we do not expect our JULES setup to match the

observations so successfully.

Figure 7a shows the KGE values for prior and posterior JULES runs at all 16 sites included in our study. These metrics show195

how closely the prior and posterior JULES runs match the observations over the period of 2017 and 2018 before and after

assimilation of observations from 2017. Figure 7a shows that data assimilation makes fits to observations significantly better

at all sites according to the Kling Gupta metric; all the analysis Kling-Gupta efficiency scores are closer to the ideal value
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Figure 4. Observed vs modelled (ensemble mean) soil moisture at Bickley Hall (BICKL) for prior and posterior JULES runs. Diagonal line

shows 1:1 perfect correspondence line.

Figure 5. Observed and modelled (ensemble mean) soil moisture time series at Gisburn Forest (GISBN). The dotted line separates the period

over which observations used for assimilation (2017) from the period in which no observations have been assimilated (2018).

of 1 than the prior values. We note that for all sites, the match between model and measurements is better in 2017 and 2018

even though only observations from 2017 were used in the optimization process. This indicates that the new values for the200

PTF constants allow JULES to simulate large-scale soil moisture measurements better than the original (prior) PTF constants.

Figure 7b shows that the prior and posterior correlation coefficients, r, are very similar at most sites, although there are a

number of sites at which the r value gets slightly worse following data assimilation. Despite this, the prior and posterior r

values are all greater than 0.8 at all sites with a typical mineral soil. The r value stays low at Moorhouse (MOORH), perhaps

because the soil at this site is too highly organic for the Cosby parameters to really be applicable, and for the COSMOS-UK205
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Figure 6. Observed vs modelled (ensemble mean) soil moisture at Gisburn Forest (GISBN) for prior and posterior JULES runs. Diagonal

line shows 1:1 perfect correspondence line.

measurements to be reliable. The r value also stays low at Gisburn Forest (GISBN), which is likely due to the fact that there

are a large number of trees at this site and interception processes are therefore likely to be more important here than at other

sites; the COSMOS-UK ‘soil moisture’ measurement may actually include water held on the canopy of trees, which is not

included in the JULES modelled soil moisture value here. Figure 7c shows that a significant contribution to improved KGE at

all sites comes from improvement in the alpha component, which is much closer to the ideal value of 1 for all of the posterior210

JULES runs than the prior JULES runs. The alpha component represents how well the spread in the model matches the spread

in the observations. We saw in time series plots such as figures 3 and 5 that the spread in JULES soil moisture was too small

at all sites; our results show that the data assimilation has acted to correct this by updating the value of the PTF constants.

Figure 7d shows that the beta parameter is closer to the ideal value of 1 after data assimilation than before at all sites except

for Cardington, i.e. data assimilation is correcting a bias in the JULES outputs at all but one site. The prior bias at Cardington215

is in the opposite direction to bias at all of the other sites.

3.2 Effect of data assimilation on soil physics parameters

Figures 8 and 9 show that the mean value of Ks gets smaller (4 to 5 times smaller) at each site after data assimilation, and

that the posterior distribution of the Ks parameter is narrower than the prior distribution. The results in figures 8 and 9 also

show that the site-to-site variability of the b parameter reduces following data assimilation; the largest mean prior values of b220

are reduced, and the distributions with the smallest mean values are shifted to slightly larger values. Figures 8 and 9 show that

the mean value θs has increased at all the sites following data assimilation, and the distribution of θs at each site has become

much narrower. The mean values of the θcrit and θwilt distributions have stayed broadly similar or increased slightly after data

assimilation. We also see that at all sites Ψs becomes very small (∼ 30 times smaller) after data assimilation.
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Figure 7. Kling Gupta efficiency scores for JULES runs using prior and posterior PTF variable values. Dotted horizontal lines show value of

metric for perfect match between model and observation

Figures 8 and 9 show that hcap and hcon change through data assimilation. However, this translates into minimal differences225

between the prior and post soil temperatures; both prior and post data assimilation temperature estimates are close to the in-situ

COSMOS-UK measurements (not shown).

3.3 Effect of data assimilation on pedotransfer function constants

Figure 10 shows prior (orange) and posterior (blue) distributions of the 12 PFT constants, κ1 to κ12. These plots demonstrate

how the dependence of the soil physics parameters on texture is changed in equations (4) to (11) via data assimilation. The230

values of κ1, κ2 and κ3 control the magnitude of the soil physics parameter b through equation (4). The decreases of κ2 and

κ3 after data assimilation translate to a decreased dependence of b on clay and sand fractions through equation (4). Changes

to κ4, κ5 and κ6 contribute to changes to θs through equation (5). The large increase in κ4 values allows larger values of θs
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Figure 8. Ensemble prior (orange) and posterior (blue) parameter values at each site. These are ‘topsoil’ results, which we have assumed to

correspond to the top two soil layers in JULES.

to be realised after data assimilation. The parameter Ψs controlled by κ7, κ8 and κ9. The mean value of κ7 is greatly reduced

following data assimilation, and this leads to the much smaller posterior values of Ψs seen in figures 8 and 9. The constants235

κ10, κ11 and κ12 determine the values of Ks through equation (6). The shift in the κ10 distribution to larger values leads to the

reduction in values of Ks seen in figures 8 and 9.

4 Discussion

The results in section 3.1 show that we have been able to successfully update the constants in a Cosby-like pedotransfer

function based on field scale in-situ soil moisture measurements. The new set of constants obtained in this way generate soil240

physics parameters at each studied COSMOS-UK site such that there is a large improvement in the match between modelled

and observed field-scale soil moisture values at all sites.

Our results suggest that it is primarily a combination of the changes to θs, Ψs and Ks distributions which result in a

better match to the observations after data assimilation. The new distributions allow the model to access higher soil moisture

values, potentially correcting for a deficiency in supporting datasets, parameter values or process representation in JULES. We245

14

Reviewer
Comment on Text
the figure title is not mentioned in the main text.

Reviewer
Cross-Out

elicoo
Sticky Note
We refer to figures 8 and 9 throughout section 3.2. We will add the following text to the start of section 3.2 to make clear the difference between the two:'Figures 8 and 9 show changes in the eight JULES soil physics parameters used for the topsoil and subsoil layers respectively.'

elicoo
Sticky Note
This will be removed.



Figure 9. Ensemble prior (orange) and posterior (blue) parameter values at each site. These are ‘subsoil’ results, which we have assumed to

correspond to the deeper two soil layers in JULES.

suggest that the data assimilation is effectively acting to slow the drainage of water in JULES, especially close to saturation,

by increasing θs and decreasing Ks.

The improvements seen here were obtained by assimilating all the soil moisture values across 16 sites simultaneously rather

than on a per site basis. This strengthens our implicit assumption that the same physical processes can be modelled (through

JULES and the Cosby pedotransfer function) for a range of different UK sites and soil types.250

We note that the soil physics parameter values calculated here may not exactly match physically expected values for a

number of reasons. Firstly, we have fitted to COSMOS large-scale measurements; differences in parameter values from the prior

values may therefore reflect the different scales on which they were calculated. Additionally, the COSMOS-UK soil moisture

observations likely include contributions from processes which are important to soil moisture but we have not taken account of

here with JULES, such as ponding of water on the soil surface, interception of water on vegetation, groundwater processes and255

local soil compaction. Therefore, we may be effectively parameterising for these processes (and others not included in JULES)

through our new soil physics parameters. In this experiment we have mainly used grass sites, so interception is not likely to

play a large role in daily averaged moisture values (JULES outputs show the amount of water intercepted to be, at most, of the

order 100 times smaller than the amount of water in the top soil layer).
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Figure 10. Prior and post PTF variable value distributions. Orange shows prior and blue posterior

5 Conclusions260

We have shown that it is possible to use the LaVEnDAR data assimilation framework to improve JULES estimates of soil

moisture based on one year’s worth of large-scale COSMOS-UK soil moisture measurements across 16 sites. We have demon-

strated improved fit to observations over a two year period at all 16 sites by adjusting the values of constants in the underlying

pedotransfer function. Averaging across all the sites we see an improvement in the average KGE metric from 0.33 (range 0.10

to 0.69) before data assimilation to an average of 0.66 after data assimilation (range 0.31 to 0.89).265

The method we propose here could be used for any different choice of land surface model and/or pedotransfer function;

our choice of PTF here was motivated by the fact that it is widely used and has a relatively simple mathematical formulation.

Calibrating PTFs for the soils on which they are to be used and at the scales at which they are applied, rather than on small-scale

field or lab soil samples, will ultimately improve the performance of land surface models. This will allow better estimates from

flood forecasting models, earth system models and numerical weather prediction.270

Code availability. TEXT

Data availability. TEXT
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