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Reply to Referee #1:  

Dear Reviewer: Thank you for your comments. Our responses to the comments are listed below: 

(1) How the soil water storage is determined? It varies at seasonal scale. How does it will affect 

your analysis? It is worth to highlight following article that developed a three parameter 

streamflow elasticity model as a function of precipitation, potential evaporation, and change in 

groundwater storage applicable at both seasonal and annual scales. 

https://hess.copernicus.org/articles/20/2545/2016/ 

Thank you for the comment.  Soil water storage capacity in this study is referred to as the 

maximum storage capacity from the land surface to the bedrock; therefore, it is considered as a 

static variable.  The effective storage capacity or the remaining storage capacity could vary 

temporally due to the dynamics of groundwater storage as shown in Konapala and Mishra (2016).  

The definition of the soil water storage capacity has been clarified on Lines 60-61 in the revised 

manuscript: 

 

Lines 60-61: “Soil water storage capacity is the maximum storage capacity from land surface 

to bedrock, which exerts a powerful control on mean annual runoff (Konapala and Mishra, 2016).” 

 

“Konapala, G., and Mishra, A. K.: Three-parameter-based streamflow elasticity model: 

Application to MOPEX basins in the USA at annual and seasonal scales., Hydrol. Earth Syst. Sci., 

20, 2545-2556, https://doi.org/10.5194/hess-20-2545-2016.” 

 

(2) What do mean by Climate variability in your study? does it mean distribution of climate 

variables, for example, distribution of rainy days within the season. This type of analysis are 

important and they have a direct influence on the soil water storage. This can be discussed as a 

scope of the future work. The magnitude and seasonality of the climate variables affects water 

availability (storage). This may be included as a future scope of the work. Please see this article: 

https://www.nature.com/articles/s41467-020-16757-w 

 

Thank you for the comment.  Following Yao et al. (2020), the climate variability in this study 

is defined as the temporal variations of precipitation (P) and potential evapotranspiration (Ep), 

including their intra-monthly, intra-annual, and inter-annual variations.  For example, the 

deviations of daily P or Ep from its monthly mean values are defined as the intra-monthly 

variations.  The definition of climate variability has been included in the revised manuscript on 

Lines 113-118.  In addition, we totally agree with you that the distribution of rainy days, the 

magnitude and the seasonality of climate variables have direct impacts on soil water storage, and 

https://hess.copernicus.org/articles/20/2545/2016/
https://www.nature.com/articles/s41467-020-16757-w
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we have included them as a scope of our future work on Lines 392-395 in the revised manuscript: 

 

Lines 113-118: “Climate variability is defined as the temporal variations of precipitation (𝑃) 

and potential evapotranspiration (𝐸𝑝), including their intra-monthly, intra-annual, and inter-annual 

variations.  For example, the deviations of daily P or Ep from its monthly mean values are defined 

as the intra-monthly variations (Yao et al., 2020). As discussed in the Introduction section, the 

mean annual runoff model takes daily precipitation and potential evaporation as inputs, therefore, 

climate variability is explicitly included in the model.” 

“Yao, L., Libera, D. A., Kheimi, M., Sankarasubramanian, A., and Wang, D (2020): The roles of 

climate forcing and its variability on streamflow at daily, monthly, annual, and long‐term scales. 

Water Resour. Res., 55, e2020WR027111. https://doi.org/10.1029/2020WR027111.” 

 

Lines 392-395: “Future research will investigate alternative methods for better estimating the 

spatial variability of soil water storage capacity over watersheds, and quantify the impacts of 

vegetation and climate variability (e.g., distribution of rainy days, the magnitude and the 

seasonality of climate variables).” 

 

(3) Are you using SCS method to find the infiltration loss? Does this loss is connected to 

shallow water storage? 

 

Yes.  Infiltration loss is computed by Equation (2) which leads to the proportionality 

relationship of SCS method.  The value of infiltration loss is dependent on the shallow water 

storage condition, which affects the remaining storage capacity.  The “normal antecedent moisture” 

in the SCS curve number method is treated as the storage at the long-term steady-state condition.  

Therefore, the maximum storage capacity is the sum (Equation (7)) of storage capacity computed 

by the SCS curve number (Equation (6)) and long-term average storage.  

 

(4) Baseflow plays an important role in the runoff analysis. Are you including this factor in 

your analysis. Can addition of the seasonal baseflow characteristics will improve the results? 

 

We agree that baseflow plays an important role in total runoff which includes baseflow and 

surface runoff.  However, this research is focused on total runoff; therefore, baseflow is not 

explored separately in this study.  On the other hand, the seasonal characteristics of baseflow are 

results of climate seasonality, which is implicitly included in the daily climate input.  This has been 

clarified on Lines 153-155 in the revised manuscript: 

 

Lines 153-155: “Note that the mean annual runoff includes surface runoff and baseflow, and 

both are impacted by climate variability (e.g., intra-annual variability) (Berghuijs et al., 2014; Fan 

et al., 2007).” 

https://doi.org/10.1029/2020WR027111
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“Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., and Robock, A: Incorporating water table 

dynamics in climate modeling: 1. Water table observations and equilibrium water table 

simulations, J. Geophys. Res., 112, D10125, doi:10.1029/2006JD008111, 2007. 

Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H.: Patterns of similarity of 

seasonal water balances: A window into streamflow variability over a range of time scales, 

Water Resour. Res., 50(7), 5638-5661, https://doi.org/10.1002/2014WR015692, 2014.” 

(5) How the curve numbers are derived? Did you derive the composite curve numbers, i.e., 

one value for a watershed? 

 

Yes, each watershed has one curve number, which is the average curve number over the grid 

cells within the entire watershed.  For each grid cell, the curve number is obtained based on land 

use and land cover and hydrologic soil group as introduced in Section 2.2.1.  The composite curve 

number for each watershed has been clarified in the revised manuscript: 

 

Lines 175-176: “where CN is the composite curve number based on land use and land cover 

(LULC) and hydrologic soil group (HSG) for each watershed.” 

 

(6) How the bedrock topography are determined? 

 

The bedrock topography data of the study catchments are not available from observations in 

this study; therefore, we used a hypothetical bedrock topography obtained through Height Above 

the Nearest Drainage (HAND) method which assumes that the bedrock of each hillslope is 

horizontal and the bedrock elevation equals the elevation of the drainage point.  This has been 

clarified on Lines 354-355 in the revised manuscript: 

 

Lines 354-355: “This is due to the assumption of the HAND method that the bedrock between 

a specific point and its nearest drainage point is horizontal and intercepts with the channel bed.” 

 

(7) I assume the shape parameter is kept constant for a given watershed, and it is calculated 

based by creating a time series based on the spatial (gridded) soil water capacity values. How the 

shape parameters are calculated? For example, Maximum Likelihood methods?? Do you think the 

parameter uncertainty (range) will affect the mean flow? 

 

Yes, the shape parameter is kept constant for a given watershed.  While, it is calculated by 

creating the spatial soil water capacity values under the long-term averaged antecedent soil 

moisture condition.  A nonlinear programming solver using derivative-free method, i.e., Matlab 

function “fminsearch”, was used to calculate the optimal shape parameter by minimizing the root 

mean square error (RMSE).  The method has been clarified on Lines 227-230 in the revised 

manuscript.  For the parameter uncertainty, its impact on the mean annual runoff can be seen by 

comparing Figures 5a and 5c.  The value of the average soil water storage capacity of each 

https://doi.org/10.1002/2014WR015692
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catchment is same between these two figures, and the different simulation performance is only 

caused by the shape parameter.  Clearly, the shape parameter could largely affect the mean annual 

runoff.  In the revise manuscript, the sensitivity of mean annual runoff to the shape parameter has 

been conducted, and is shown in the new figure, i.e., Figure 2, and the clarification has been added 

on Lines 230-238 in the revised manuscript: 

 

Lines 227-230: “The shape parameter 𝑎 is then estimated by fitting the point-scale storage 

capacity data obtained from Equation (11).  A nonlinear programming solver using derivative-free 

method (i.e., Matlab function “fminsearch”) was used to calculate the optimal shape parameter by 

minimizing the root mean square error (RMSE).” 

 

Lines 230-238: “To demonstrate the sensitivity of mean annual runoff to the value of shape 

parameter, Figure 2 presents mean annual runoff versus shape parameter based on the mean annual 

water balance (Yao et al., 2020).  It can be found that mean annual runoff decreases significantly 

as shape parameter increases, especially when shape parameter approaches its upper limit (i.e., 2).  

The negative relationship between mean annual runoff and shape parameter can be attributed to 

the fact that the larger shape parameter indicates that less watershed area has small values of point-

scale storage capacity (Wang, 2018) and more precipitation could be retained underground for 

evaporation.”  

 

 

Figure 2: The sensitivity of mean annual runoff (𝑄) to the value of shape parameter (𝑎). 

 

(8) Line 98-100: Can be revised to make it simple. 

 

Thanks. This sentence has been revised on Lines 104-107 in the revised manuscript:  

 

“The mean soil water storage capacity is estimated from curve number and climate because 
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soil water storage capacity consists of the antecedent soil water storage and the potential maximum 

soil moisture retention which can be calculated through SCS curve number method.”  
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Reply to Referee #2: 

This manuscript tried to parameterize the two parameters of the mean annual balance equation 

by relating their values with the controlling factors, in order to develop a model to estimate mean 

annual runoff in ungauged basins. It is an interesting topic and suitable for HESS. However, I 

have several comments as follow.  

Thank you very much for your comments and suggestions.  Our replies are listed as follow: 

 

(1) It isn’t clear which equation is the water balance model that was developed for estimating 

mean annual runoff.  

Thank you for pointing out the problem.  The mean annual runoff is computed by the difference 

of mean annual precipitation and mean annual evaporation which is computed by aggregating the 

daily evaporation calculated by Equation (3).  This has been clarified and the equation for mean 

annual runoff has been presented explicitly on Lines 147-153 in the revised manuscript: 

 

Lines 147-153: “Mean annual evaporation (�̅�) is computed by aggregating the daily evaporation, 

and mean annual runoff (�̅�) is computed as the difference of mean annual precipitation and 

evaporation: 

�̅� =
∑ ∑ 𝐸𝑑

𝐷𝑦
𝑑=1

𝑌
𝑦=1

𝑌
                                                          (4) 

 �̅� = 𝑃 − �̅�                                                                (5) 

where, 𝑌 is the number of years, and 𝐷𝑦 is the number of days in yth year; 𝑦 and 𝑑 represent the 

yth year and 𝑑𝑡ℎ day, respectively.” 

 

(2) As shown in Figure 5(b), there is a large difference and low correlation between the 

estimated shape parameter and the calibrated one. At the same time, Figure 5(a) shows that the 

model has a fair estimation of mean annual runoff with the estimated shape parameter. I guess 

that the model has a low sensitivity to the shape parameter. I suggest a sensitivity analysis on the 

parameter. Also, it is necessary to evaluate the improvement due to the parameterization from soil 

characteristics as given in Section 2.2.2, since it is a relatively complicated process. In addition, I 

suggest that some statistical indicators should be given in Figure 5. 3.  

Thank you for your suggestion.  The narrow ranges of the axes may give us the impression that 

the difference between the estimated shape parameter and the calibrated one are large, while 

actually the mean difference is 0.06 which is small considered that the range of the shape parameter 

is from 0 to 2.  The sensitivity analysis of the mean annual runoff to the shape parameter has been 

conducted and shown in the new figure (i.e., Figure 2), and the clarification has been added on 

Lines 230-238 in the revised manuscript.  The coefficients of determination (R2) have been 

calculated for Figure 6 (Figure 5 in the original version) in the revised manuscript.  For the 

parameterization in Section 2.2.2, it is a new method proposed in this study to quantify the spatial 

heterogeneity of the soil water storage capacity, which is then discussed in Section 3 on how to 

improve the estimation by considering more details of the bedrock information, therefore, the focus 
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of this study is not the improvement of the shape parameter parameterization from the soil 

characteristics.  

Lines 230-238: “To demonstrate the sensitivity of mean annual runoff to the value of shape 

parameter, Figure 2 presents mean annual runoff versus shape parameter based on the mean annual 

water balance (Yao et al., 2020).  It can be found that mean annual runoff decreases significantly 

as shape parameter increases, especially when shape parameter approaches its upper limit (i.e., 2).  

The negative relationship between mean annual runoff and shape parameter can be attributed to 

the fact that the larger shape parameter indicates that less watershed area has small values of point-

scale storage capacity (Wang, 2018) and more precipitation could be retained underground for 

evaporation.”  
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 Figure 6: (a) Observed versus simulated mean annual runoff using shape parameter based on soil 

data; (b) Soil data-based versus calibrated shape parameter; and (c) Observed versus simulated 

mean annual runoff using shape parameter based on calibration. 

 

(3) In Lines 142-148, the authors pointed out the effect of climate variability on water balance, 

but it isn’t clear how to deal with the effect of climate variability in the developed model. In 

addition, previous studies reported that many factors, such as vegetation, catchment slope and etc., 

have an impact on water balance. I am not sure whether such factors have more lager impact on 

water balance than the spatial variability of storage capacity has. There is a possibility that their 

impacts can be attributed to the impact of the distribution of soil water storage capacity. More 

analysis and discussions are required. 

We are sorry for the confusion. Different from traditional mean annual water balance models 

which take the mean annual precipitation (P) and potential evapotranspiration (Ep) as climate 

inputs, our model is forced by the observed daily P and Ep; therefore, the effects of the climate 

variability, including the intra-monthly, intra-annual, and inter-annual climate variability are 

explicitly included.  In the revised manuscript, we have clarified how to deal with the effect of 

climate variability when we introduce the structure of the developed model in Section 2.1 (Lines 

113-118).  For the other factors such as vegetation and catchment slope, we agree that their impacts 

can attribute to the distribution of soil water storage capacity as a result of catchment coevolution.  

The land surface topography (i.e., DEM) is one of the controlling factors for determining the soil 

thickness in this study; therefore, the topographic characteristics including the catchment slope has 

been considered through DEM data.  To further explore the impact of catchment topographic 

features, we have added a discussion on determining the shape parameter of the soil storage 

capacity through the spatial variability of the topographic wetness index in Lines 340-347 and 359-

364 in the revised manuscript.  For the impact of vegetation on the soil water storage capacity 

distribution, it has been included as a future scope of our work on Lines 392-395 in the revised 

manuscript: 
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Lines 113-118: “Climate variability is defined as the temporal variations of precipitation (𝑃) and 

potential evapotranspiration (𝐸𝑝 ), including their intra-monthly, intra-annual, and inter-annual 

variations.  For example, the deviations of daily P or Ep from its monthly mean values are defined 

as the intra-monthly variations (Yao et al., 2020). As discussed in the Introduction section, the 

mean annual runoff model takes daily precipitation and potential evaporation as inputs, therefore, 

climate variability is explicitly included in the model.” 

Lines 340-347: “The control of land surface topography on the hydrologic process has also been 

widely quantified through topographic wetness index (TWI) of TOPMODEL (Beven and Kirkby, 

1979).  The spatial variability of soil storage capacity based on the TOPMODEL assumption has 

been demonstrated as a beneficial representation of the conceptual model (Sivapalan et al., 1997).  

Therefore, the heterogeneity of TWI in a watershed was proposed to be another surrogate of the 

heterogeneity of the soil storage capacity in this study, and the shape parameter estimated by fitting 

TWI against Equation (12) through minimizing the root mean square error (RMSE) for the 

Maquoketa River in Iowa was compared with those obtained from other methods.” 

Lines 359-364: “The dashed dot red line in Figure 7 displays the CDF of the normalized soil 

storage capacity based on TWI, and the corresponding value of 𝑎 is 1.967.  The TWI-based 𝑎 

value also presents a larger spatial variability than that derived from soil data solely, confirming 

the importance of topography in determining the heterogeneity of soil water storage capacity.  The 

deviation of the TWI-based 𝑎 value from its calibrated counterpart could be due to the fact that the 

bedrock topography is not considered in TWI.” 

  

Figure 7: The effects of soil, land surface topography, bedrock topography, and topographic 

wetness index (TWI) on the shape parameter of the spatial distribution of soil water storage 

capacity. 
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Lines 392-395: “Future research will investigate alternative methods for better estimating the 

spatial variability of soil water storage capacity over watersheds, and quantify the impacts of 

vegetation and climate variability (e.g., distribution of rainy days, the magnitude and the 

seasonality of climate variables).” 
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Reply to Referee #3: 

Wang and Gao et al conducted a study to develop a nonparametric mean annual water balance 

model for prediction in ungauged basins. They found that climate and topography play essential 

roles determining the storage capacity and its shape. I found this study is quite interesting and fits 

the scope of HESS. Relevant studies should be encouraged to understand and diagnose the impacts 

of different features on runoff generation in different time scales and their connections. Here I 

have several comments for the authors to consider for further improving the quality: 

We thank the reviewer for this positive feedback.  Our responses to your comments are listed 

below. 

 

(1) Why did the authors only use 35 catchments in this study? There are over 400 catchments in 

MOPEX data. Please clarify the reasons to exclude most catchments. 

The 35 watersheds are selected considering the data availability including soil (hydrologic soil 

group), land cover and land use, DEM as well as the minimum snow effect and human activities.  

The data processing demand is also a consideration for selecting the limited number of watersheds.  

We think that the number of watersheds is sufficient for diagnosing the data requirement for 

estimating long-term runoff in ungagged basins, for example, the importance of bedrock data.  The 

reasons have been clarified in the revised manuscript on Lines 240-244: 

“The number of 35 was determined due to the consideration of the data availability including soil 

(hydrologic soil group), land cover and land use, DEM as well as the minimum snow effect and 

human activities (Wang and Hejazi, 2011), and to keep the efforts of gSSURGO data processing 

to a reasonable level while still to have a sufficient number of sample of catchments.” 

 

(2) Line 73-74. I cannot follow this sentence. Please rephrase it. 

Thank you for pointing out the problem.  This sentence has been revised on Line 74-80 in the 

revised manuscript: 

“It has also been suggested that the spatial variability of soil water storage capacity could suppress 

the actual evaporation because the maximum evaporation in areas with soil water storage capacity 

less than 𝐸𝑝 will be smaller than 𝐸𝑝;  therefore, the average evaporation over the entire catchment 

is smaller than 𝐸𝑝 even though the average storage is greater than 𝐸𝑝, resulting in more runoff 

generation compared to the situation when the soil water storage capacity is spatially uniform (Yao 

et al., 2020).” 

 

(3) Line 243. The Sb in Chattahoochee River watershed reaches to 1870mm. The value is to large, 

which let me doubt the physical meaning of the Sb parameter. 
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Sorry for the typo on the number of Sb in Chattahoochee River, and it should be 1559 mm.  The 

value has been corrected on Lines 275-277 in the revised manuscript.  The physical meaning of Sb 

is the mean value of the soil water storage capacity over a catchment which is defined as the 

maximum storage from land surface to bedrock in this study rather than the storage capacity from 

shallow soils.  Considering the maximum of soil water storage capacity could be 2000 mm from 

literature (Kollat et al., 2012), 1559 mm is considered to be reasonable in this study.  The definition 

of the Sb has been clarified in the revised manuscript on Lines 187-189. 

Lines 275-277: “As shown in Table 1, the estimated 𝑆𝑏 varies from 177 mm (Chikaskia River 

watershed) to 1559 mm (Chattahoochee River watershed) over the study watersheds.” 

Lines 187-189: “The physical meaning of Sb is the mean value of the soil water storage capacity 

over a watershed which is defined as the maximum storage from land surface to bedrock in this 

study rather than the storage capacity from shallow soils.”   

Kollat, J., Reed, P. M., and Wagener, T.: When are multiobjective calibration trade‐offs in 

hydrologic models meaningful?, Water Resour. Res., 48(3) 

https://doi.org/10.1029/2011WR011534. 

 

https://doi.org/10.1029/2011WR011534
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Abstract 6 

Prediction of mean annual runoff is of great interest but still poses a challenge in ungauged basins.  7 

The present work diagnoses the prediction in mean annual runoff affected by the uncertainty in 8 

estimated distribution of soil water storage capacity.  Based on a distribution function, a water 9 

balance model for estimating mean annual runoff is developed, in which the effects of climate 10 

variability and the distribution of soil water storage capacity are explicitly represented.  As such, 11 

the two parameters in the model have explicit physical meanings, and relationships between the 12 

parameters and controlling factors on mean annual runoff are established.  The estimated 13 

parameters from the existing data of watershed characteristics are applied to 35 watersheds.  The 14 

results showed that the model could capture 88.2% of the actual mean annual runoff on average 15 

across the study watersheds, indicating that the proposed new water balance model is promising 16 

for estimating mean annual runoff in ungauged watersheds.  The underestimation of mean annual 17 

runoff is mainly caused by the underestimation of the spatial heterogeneity of soil water storage 18 

capacity due to neglecting the effect of land surface and bedrock topography.  A hHigher spatial 19 

variability of soil storage capacity estimated through the Height Above the Nearest Drainage 20 

(HAND) and Topographic Wetness Index (TWI) indicated that topography plays a crucial role in 21 

determining the actual soil water storage capacity.  The performance of mean annual runoff 22 

prediction in ungauged basins can be improved by employing better estimation of soil water 23 

mailto:dingbao.wang@ucf.edu
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storage capacity including the effects of soil, topography and bedrock.  24 

It leads to better diagnose of the data requirement for predicting mean annual runoff in ungauged 25 

basins based on a newly developed process-based model finally. 26 

Keywords: mean annual runoff; ungauged; storage capacity; curve number; soil; topography; 27 

bedrock 28 

 29 

1. Introduction 30 

Hydrologists have a long-standing interest in mean annual water balance modeling and 31 

prediction.  The factors controlling mean annual runoff have been studied in literature.  Mean 32 

climate has been identified as the first order control on mean annual runoff and evaporation and it 33 

has been quantified by climate aridity index, which is defined as the ratio between the mean annual 34 

potential evapotranspiration (𝐸𝑝) and precipitation (P) (Turc, 1954; Pike, 1964).  Other controlling 35 

factors include the temporal variability of climate (Farmer et al., 2003; Troch et al., 2002; Fu and 36 

Wang, 2019), vegetation (Zhang et al., 2001; Donohue et al., 2007; Gentine et al., 2012; Li et al., 37 

2013), soil (Atkinson et al., 2002; Yokoo et al., 2008; Li et al., 2014), and topography (Woods, 38 

2003; Abatzoglou and Ficklin, 2017).  Mean annual runoff or evaporation has been modeled as a 39 

function of climate aridity index and the equation is usually called as Budyko equation (Budyko, 40 

1958).  The effects of other factors are represented by including a parameter to Budyko equations 41 

(Fu, 1981; Yang et al., 2008; Wang and Tang, 2014).  Among these factors, climate including its 42 

mean and temporal variability, and soil water storage capacity including its mean and spatial 43 

variability are dominant catchment characteristics controlling mean annual runoff, especially for 44 

those catchments dominated by saturation excess 45 

runoff generation (Milly, 1994).   46 

Formatted: Font: Italic
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Intra- and inter-annual climate variability introduces non-steady state conditions to finer 47 

timescale water balances and the non-steady state effect could propagate to the mean annual runoff.  48 

The effects of seasonal variations of precipitation and potential evaporation on long-term runoff 49 

have been studied in several studies.  Milly (1994) showed that seasonality tends to increase mean 50 

annual runoff through a stochastic soil moisture model.  The seasonality effects have been 51 

demonstrated through a top-down model by Hickel and Zhang (2006) and a classification study by 52 

Berghuijs et al. (2014).  Mean annual water balance also receives impacts from climate variability 53 

at the inter-annual and daily timescales.  Li (2014) showed that the inter-annual variability of 54 

precipitation and potential evaporation could increase the mean annual runoff up to 10% based on 55 

a stochastic soil moisture model.  Shao et al. (2012) found that daily precipitation with a larger 56 

variation potentially increases mean annual runoff especially in the catchments where infiltration 57 

excess runoff is prevalent.  Yao et al. (2020) quantified the relative contribution of daily, monthly 58 

and inter-annual climate variabilities to mean annual runoff and showed that the contribution 59 

decreases, by average, from monthly to inter-annual scale, and then daily scale. 60 

Soil water storage capacity is the maximum storage capacity from the land surface to the 61 

bedrock, which exerts a powerful control on mean annual runoff 62 

(Konapala and Mishra, 2016).  A smaller soil water storage capacity creates favorable conditions 63 

for runoff generation because the precipitation in excess of the available storage capacity would 64 

be lost as runoff directly, while catchments with a lager soil water storage capacity could hold 65 

more precipitation for evaporation (Sankarasubramanian and Vogel, 2002; Porporato et al., 2004; 66 

Chen et al., 2013).  Soil water storage capacity is closely related to vegetation since the root 67 

structure of vegetation could affect soil water storage capacity significantly.  Research has 68 

been conducted to reveal the role of soil water storage capacity through the linkage of vegetation 69 
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and model parameter (Yang et al., 2008; Chen and Wang, 2015).  Gerrits (2009) developed 70 

equations for transpiration and interception by considering the root zone and interception storage 71 

capacity as two of the most important catchment characteristics affecting evapotranspiration.  In 72 

addition to the magnitude of the average soil water storage capacity, the spatial variability of soil 73 

water storage capacity within a catchment also influences precipitation partitioning at the event 74 

scale, and further influences the cumulative runoff at the mean annual scale (Moore, 1985; 75 

Jothityangkoon et al., 2001; Gao et al., 2016).  It has also been suggested that the spatial variability 76 

of soil water storage capacity could suppress the actual evaporation because the maximum 77 

evaporation in areas with soil water storage capacity less than 𝐸𝑝 will smaller than 𝐸𝑝;  therefore, 78 

the average evaporation over the entire catchment is smaller than 𝐸𝑝  even though the average 79 

storage is greater than 𝐸𝑝, resulting in more runoff generation compared to the situation when the 80 

soil water storage capacity is spatially uniform (Yao et al., 2020)81 

.   82 

.   83 

Therefore, climate variability and soil water storage capacity need to be explicitly 84 

incorporated into the model for predicting mean annual runoff.  The effect of climate variability 85 

could be taken into account by driving the model with daily precipitation and potential evaporation 86 

which are usually available.  The spatial distribution of soil water storage capacity could be 87 

modelled by a distribution function, and it is usually modelled by the generalized Pareto 88 

distribution (Moore, 1985; Zhao, 1992).  The distribution function includes two parameters, i.e., 89 

the shape parameter and the maximum storage capacity over the watershed.  In ungauged basins, 90 

soil water storage capacity and its spatial variability need to be estimated directly from available 91 

data.  Gao et al. (2014) adopted the mass curve technique, which has been used for designing the 92 
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storage capacity of reservoir, to estimate the average water storage capacity of the root zone using 93 

precipitation and potential evaporation data.  The shape parameter of the distribution function has 94 

been estimated from soil data (Huang et al., 2003).  However, the estimated parameters from these 95 

methods bring much uncertainty in runoff estimation, and the two parameters of the generalized 96 

Pareto distribution are usually estimated by model calibration using observed streamflow data 97 

(Wood et al., 1992; Alipour and Kibler, 2018, 2019).   98 

The objective of this paper is to develop a nonparametric mean annual water 99 

balance model for predicting mean annual runoff in ungauged basins, which has not yet been fully 100 

understood (Blöschl et al., 2013). The mean annual water 101 

balance model is forced by daily precipitation and potential evaporation; therefore, the climate 102 

variability at different timescales is represented explicitly in the climate input.  The runoff 103 

generation is quantified by a distribution function for describing the spatial distribution of soil 104 

water storage capacity (Wang, 2018).  The mean and the shape parameter of the distribution 105 

function need to be estimated from the available data in ungauged basins.  Therefore, the model 106 

serves as a diagnosis tool for evaluating the data requirement for estimating soil water storage 107 

capacity.  The mean soil water storage capacity is estimated from curve number and climate 108 

because the soil water storage capacity consists of the antecedent soil water storage and the 109 

potential maximum soil moisture retention which can be calculated through SCS curve number 110 

method.111 

  The estimation of the shape 112 

parameter is diagnosed in terms of the data requirement including soil, land surface topography, 113 

and bedrock topography.  Section 2 introduces the new mean annual water balance model and the 114 
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study watersheds.  Results and discussion are presented in Section 3, followed by Section 4 for 115 

conclusions. 116 

2. Methodology 117 

2.1 Mean annual runoff model 118 

Climate variability is defined as the temporal variations of the precipitation (𝑃 ) and 119 

potential evapotranspiration (𝐸𝑝 ), including their intra-monthly, intra-annual, and inter-annual 120 

variations.  For example, the deviations of daily P or 𝐸𝑝 from its monthly mean values are defined 121 

as the intra-monthly variations (Yao et al., 2020).  As discussed in the introduction section, the 122 

mean annual runoff model takes daily precipitation and potential evaporation as inputs, therefore, 123 

climate variability is explicitly included in the model.124 

  The developed 125 

model calculates daily soil wetting (infiltration) and evaporation by tracking the soil water 126 

storage.  Mean annual runoff is estimated by aggregating the daily values.  The daily soil wetting 127 

is calculated using the concept of saturation excess runoff generation by modeling the spatial 128 

variability of soil moisture and soil water storage capacity.  To facilitate the parameter estimation 129 

of storage capacity distribution in ungauged basins, the following distribution function is used for 130 

modeling the spatial distribution of storage capacity (Wang, 2018):   131 

𝐹(𝐶) = 1 −
1

𝑎
+

𝐶+(1−𝑎)𝑆𝑏

𝑎√(𝐶+𝑆𝑏)2−2𝑎𝑆𝑏𝐶
                 (1) 132 

where 𝐹(𝐶)  is the cumulative distribution function (CDF), representing the fraction of the 133 

watershed area for which the soil water storage capacity is equal to or less than 𝐶; 𝑎 is the shape 134 

parameter of the distribution and varies between 0 and 2; and 𝑆𝑏 is the average soil water storage 135 

capacity over the watershed (i.e., the mean of the distribution).  As shown in Wang (2018), this 136 
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distribution function leads to the SCS curve number (SCS-CN) method when the initial storage is 137 

set to zero.  Therefore, there is a linkage between 𝑆𝑏 and the “potential maximum retention after 138 

runoff begins” in the SCS-CN method, denoted as S𝐶𝑁.   139 

Daily soil wetting and runoff generation is computed as a function of daily precipitation 140 

(𝑃), initial storage (𝑆0), 𝑎, and 𝑆𝑏.  As shown in Wang (2018), the average soil wetting (𝑊) is 141 

computed by:  142 

𝑊 =
𝑃+𝑆𝑏√(𝑚+1)2−2𝑎𝑚−√[𝑃+(𝑚+1)𝑆𝑏]2−2𝑎𝑚𝑆𝑏

2−2𝑎𝑆𝑏𝑃

𝑎
   (2) 143 

where 𝑚 =
𝑆0(2𝑆𝑏−𝑎𝑆0)

2𝑆𝑏(𝑆𝑏−𝑆0)
.  Setting 𝑆0 = 0 and dividing 𝑃 on both sides of Equation (2), a Budyko-144 

type equation, representing 
𝑊

𝑃
 as a function of 

𝑆𝑏

𝑃
, is obtained (Wang and Tang, 2014), which has 145 

been used to model long-term soil wetting (Tang and Wang, 2017).  Therefore, Equation 146 

(2) can be interpreted as a non-steady state Budyko equation which accounts for the effect of water 147 

storage.  Daily evaporation (𝐸𝑑) is computed as (Yao et al., 2020): 148 

𝐸𝑑 =
𝑊+𝑆0

𝑆𝑏

𝐸𝑝+𝑆𝑏−√(𝐸𝑝+𝑆𝑏)
2

−2𝑎𝑆𝑏𝐸𝑝

𝑎
           (3) 149 

The first component on the right-hand side of Equation (3), 
𝑊+𝑆0

𝑆𝑏
, is the percentage of 150 

storage, and the second component is the evaporation for the condition when the entire watershed 151 

is saturated, i.e., the spatial distribution of soil water storage is same as that of storage capacity 152 

(Yao et al., 2020).  Dividing 𝑊 + 𝑆0  on both-hand sides, Equation (3) represents 
𝐸𝑑

𝑊+𝑆0
 as 153 

a function of 
𝐸𝑝

𝑆𝑏
, and the function is same as the Budyko-type equation derived by Wang and Tang 154 

(2014).  Mean annual evaporation (�̅�) is computed by aggregating the daily evaporation, and mean 155 

annual runoff (�̅�) is computed as the difference of mean annual precipitation and evaporation: 156 
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�̅� =
∑ ∑ 𝐸𝑑

𝐷𝑦
𝑑=1

𝑌
𝑦=1

𝑌
                                                        (4)     157 

 �̅� = 𝑃 − �̅�                                                                (5) 158 

where, 𝑌 is the number of years, and 𝐷𝑦 is the number of days in yth year; 𝑦 and 𝑑 represent the 159 

yth year and 𝑑𝑡ℎ day, respectively.  Note that the mean annual runoff includes surface runoff and 160 

baseflow, and both are impacted by climate variability (e.g., intra-annual variability) (Berghuijs et 161 

al., 2014; Fan et al., 2007). 162 

This mean annual water balance model applies two non-steady Budyko-type equations at the daily 163 

2.2 Parameter estimation 164 

2.2.1 Average soil water storage capacity  165 

Under a given soil moisture condition, soil water storage capacity is the sum of actual water 166 

storage and the remaining (or effective) storage capacity.  The effective storage capacity 167 

corresponding to the normal antecedent moisture condition defined in the SCS-CN method, 𝑆𝐶𝑁 168 

(mm), is computed as a function of CN (SCS, 1972; Bartlett et al., 2016): 169 

𝑆𝐶𝑁 = 25.4(1000 𝐶𝑁⁄ − 10)                                                       (6) 170 

where CN is the composite curve number based on land use and land cover (LULC) and 171 

hydrologic soil group (HSG) for each watershed.  The LULC data can be obtained from 172 

the National Land Cover Database (Homer et al., 2015), and the HSG data can be extracted from 173 

the Gridded Soil Survey Geographic (gSSURGO) database with a spatial resolution of 10 m 174 

(USDA, 2014).  In HSG, soils are assigned to one of the four groups (A, B, C, and D) and three 175 

dual classes (A/D, B/D, and C/D) according to the rate of infiltration when the soils are not 176 

protected by vegetation and receive precipitation from long-duration storms.  For the cells 177 

characterized by dual classes, the CN value is calculated as the average of the two CN values 178 

corresponding to the two soil groups.   179 
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The average soil water storage capacity (𝑆𝑏) is the sum of the actual storage under the 180 

normal condition (𝑆̅) and its corresponding effective storage capacity: 181 

𝑆𝑏 = 𝑆̅ + 𝑆𝐶𝑁      (7) 182 

The physical meaning of Sb is the mean value of the soil water storage capacity over a watershed 183 

which is defined as the maximum storage from land surface to bedrock in this study rather than 184 

the storage capacity from shallow soils.  Since the “normal antecedent moisture” can be interpreted 185 

as the steady-state soil moisture condition, 𝑆̅ is the long-term average storage over the watershed.  186 

The values of S ̅  for 59 MOPEX (MOdel Parameter Estimation Experiment) watersheds are 187 

estimated based on the long-term water balance model in Yao et al. (2020); and these watersheds 188 

do not include any watersheds studied in this paper.  The long-term water balance model used in 189 

their study has a same model structure but the two parameters, i.e., the mean value of the soil water 190 

storage capacity and its shape parameter in the distribution function, were obtained by model 191 

calibration.  The ratio between S ̅ and Sb is defined as the long-term storage ratio (
S̅ 

Sb 
).  It is found 192 

that the values of 
S̅ 

Sb 
 for all the watersheds were larger than 0.5.  As shown in Figure 1, 

S̅ 

Sb 
 has a 193 

linear relationship with the climate aridity index: 194 

                                                               
S̅ 

Sb 
= − 0.46Φ + 1.2                                                                                195 

(8) 196 

where  Φ  is the climate aridity index.  Substituting Equations (6) and (7) into 197 

Equation (8), one can estimate the average soil water storage capacity as a function of curve 198 

number and climate aridity index:  199 

𝑆𝑏 =
𝑆𝐶𝑁

0.46Φ−0.2
      (9) 200 

2.2.2 Shape parameter 201 
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The spatial variability of storage capacity is determined by the spatial distribution of point-202 

scale pore space across the watershed.  The volume of soil pores at point scale can be determined 203 

by soil thickness and porosity in different soil layers.  The porosity (𝜃𝑠) for each layer is calculated 204 

from the soil bulk density: 205 

𝜃𝑠(𝑗) = 1 −
𝜌𝑏(𝑗)

𝜌
                                                        (10) 206 

where j denotes the jth soil layer; 𝜌𝑏(𝑗) is the bulk density of the jth soil layer; 𝜌 is the particle 207 

density (2.65 g/cm3).  After obtaining the porosity, the point-scale storage capacity can be 208 

calculated as the following equation (Huang et al., 2003): 209 

𝐶 = ∑ 𝑧𝑗 ∙ 𝜃𝑠(𝑗)𝑛
1                                                            (11) 210 

where C is the point-scale soil storage capacity; n is the number of soil layers; 𝑧𝑗 and 𝜃𝑠(𝑗) are the 211 

thickness and porosity of the jth soil layer, respectively.  In the gSSURGO database, the soil 212 

thickness and bulk density for each layer are available for shallow soil from the land surface to ~ 213 

2 m soil depth. 214 

The total soil thickness at each point is the elevation difference from land surface to the 215 

fresh bedrock.  However, the bedrock topography is difficult to obtain especially at the 216 

watershed scale.  Alternatively, it is assumed that the spatial distribution of the actual 217 

soil water storage capacity is same as the spatial distribution of water storage capacity computed 218 

from the gSSURGO database.  In order to compare the shape parameter evaluated from the soil 219 

data with its counterparts evaluated from other methods, the point-scale storage capacity is 220 

normalized with the average storage capacity over the watershed, and Equation (1) is rewritten as: 221 

𝐹(𝑥) = 1 −
1

𝑎
+

𝑥+(1−𝑎)

𝑎√(𝑥+1)2−2𝑎𝑥
                                           (12) 222 
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where 𝑥 is the normalized storage capacity (
𝐶

𝑆𝑏
) at point scale; 𝑎 is the shape parameter describing 223 

the spatial variability of soil water storage capacity.  The shape parameter 𝑎 is then estimated 224 

by fitting the point-scale storage capacity data obtained from Equation (11).  225 

A nonlinear programming solver using 226 

derivative-free method (i.e., Matlab function “fminsearch”) was used to calculate the optimal 227 

shape parameter by minimizing the root mean square error (RMSE).  To demonstrate the 228 

sensitivity of the mean annual runoff to the value of shape parameter, Figure 2 presents mean 229 

annual runoff versus shape parameter based on the mean annual water balance (Yao et al., 2020).  230 

It can be found that mean annual runoff decreases significantly as the shape parameter increases, 231 

especially when shape parameter approaches its upper limit (e.g., 2).  The negative relationship 232 

between the mean annual runoff and the shape parameter can be attributed to the fact that the larger 233 

shape parameter indicates that less watershed area has small values of point-scale storage capacity 234 

(Wang, 2018) and more precipitation could be retained underground for evaporation. 235 

2.3. Study watersheds 236 

The estimations of mean annual runoff in 35 watersheds are diagnosed in this paper.  The 237 

number of 35 was determined due to the consideration of the data availability including soil 238 

(hydrologic soil group), land cover and land use, DEM as well as the minimum snow effect and 239 

human activities (Wang and Hejazi, 2011), and to keep the efforts of gSSURGO data processing 240 

to a reasonable level while still to have a sufficient number of sample of watersheds.  The drainage 241 

area of the watersheds varies from 2044 to 9889 km2.  Table 1 shows the USGS gauge number and 242 

climate aridity index of these watersheds.  The 243 

saturation excess is the dominated runoff generation in these watersheds.  Daily 244 

precipitation and streamflow data during 1948 – 2003 are extracted from the MOPEX dataset 245 



24 
 

(Duan et al., 2006), and the daily potential evaporation during this period is calculated based on 246 

the Hargreaves method (Hargreaves and Samani, 1985) by using the daily maximum, minimum, 247 

and mean temperature.  The average soil water storage capacity and the shape parameter for these 248 

watersheds are estimated from the available data of climate, LULC, soil, and topography, and the 249 

predictions of mean annual runoff are diagnosed. 250 

3. Results and discussion 251 

3.1. Estimated average soil water storage capacity   252 

The potential maximum retention (𝑆𝐶𝑁) is calculated based on the average CN in each 253 

watershed (Table 1).  The average CN is computed based on LULC and hydrologic soil group.  254 

For examples, Figure 3a shows the LULC map for the Fox River watershed in Wisconsin and 255 

Figure 3d shows the LULC map for the Spoon River watershed in Illinois.  The dominant land 256 

uses are agriculture (49%) and forest (33%) in the Fox River watershed, and agriculture (77%) and 257 

forest (15%) in the Spoon River watershed.  The hydrologic soil groups are shown in Figure 3b 258 

(Fox River watershed) and Figure 3e (Spoon River watershed).  Given the same LULC, the 259 

hydrologic soil group D is more favorable for runoff generation compared with group A.  The 260 

dominant hydrologic soil groups are group A (31%) and group B (19%) in the Fox River watershed, 261 

and group C/D (49%) and group B/D (20%) in the Spoon River watershed.  The calculated CN for 262 

each grid cell is shown in Figure 3c (Fox River watershed) and Figure 3f (Spoon River watershed).  263 

The average CN is 61.0 for the Fox River watershed and 78.1 for the Spoon River watershed.  264 

Since the Spoon River watershed has a higher percentage of agricultural land and lower soil 265 

permeability, its average CN is higher than that for the Fox River watershed.  Correspondingly, 266 

the calculated 𝑆𝐶𝑁  in the Fox River watershed (162 mm) is higher than that in Spoon River 267 
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watershed (71 mm).  The values of 𝑆𝐶𝑁 over the study watersheds vary from 56 mm (Auglaize 268 

River watershed) to 182 mm (Chattahoochee River watershed) as shown in Table 1. 269 

The average soil water storage capacity is estimated based on the computed 𝑆𝐶𝑁  and 270 

climate aridity index shown in Equation (8).  For examples, the climate aridity index in the Fox 271 

River watershed is 1.12 which is the same as that in the Spoon River watershed.  The estimated 𝑆𝑏 272 

is 721 mm in the Fox River watershed and 314 mm for the Spoon River watershed.  As shown in 273 

Table 1, the estimated 𝑆𝑏  varies from 177 mm (Chikaskia River watershed) to 1559 mm 274 

(Chattahoochee River watershed) over the study watersheds.  Figure 4a shows the spatial 275 

distribution of the estimated 𝑆𝑏.  Watersheds with higher 𝑆𝑏 are mostly distributed in the eastern 276 

US, where the aridity index is relatively lower than that in the other watersheds. 277 

3.2. Estimated shape parameter 278 

The shape parameter (𝑎) for the distribution of soil water storage capacity is estimated 279 

based on the soil data in the gSSURGO database.  For examples, the black circles in Figure 5 280 

show the normalized storage capacity for the Fox River watershed (Figure 5a) and the Spoon 281 

River watershed (Figure 5b) based on the soil data in the gSSURGO database.  As shown in 282 

Figure 5, the normalize CDF for both watersheds shows an S-shape.  The estimated shape 283 

parameter is 1.996 for the Fox River watershed (RMSE = 0.58) and 1.990 for the Spoon River 284 

watershed (RMSE = 1.27) by fitting to the soil data.  Higher value of shape parameter indicates 285 

less spatial variability; therefore, the spatial variability in the Spoon River watershed is higher than 286 

that in the Fox River watershed.  The mean value of RMSE for the 35 study watersheds is 0.06.  287 

Figure 4b shows the estimated shape parameters for the study watersheds, which vary from 288 

1.830 to 1.998.   289 

3.3. Diagnosing mean annual runoff prediction 290 
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The estimated values of 𝑆𝑏 and 𝑎 based on climate, LULC, and soil data are applied to the 291 

mean annual water balance model.  The comparison of simulated and observed mean annual runoff 292 

for the study watersheds is shown in Figure 6a.  The RMSE for estimated mean annual runoff 293 

is 80 mm/yr.  The water balance model captures 88.2% of the mean annual runoff across the 35 294 

study watersheds; therefore, the methods for estimating 𝑆𝑏 and 𝑎 based on the available data are 295 

promising for predicting annual runoff in ungauged basins.  296 

The water balance model with the estimated values of 𝑆𝑏 and 𝑎 underestimates the mean 297 

annual runoff in some watersheds, and the relative underestimation error is 11.8% on average 298 

among all the study watersheds.  The underestimation of mean annual runoff could be due to the 299 

biased estimation of the shape parameter.  As described in Section 3, the spatial variability of soil 300 

water storage capacity is assumed to be equal with the spatial variability of the pore space in the 301 

shallow soil.  The pore space at the point scale is calculated through the porosity and soil thickness.  302 

The thickness of the shallow soil in the gSSURGO database is quite uniformly distributed across 303 

the watershed, i.e., around 2 m; whereas, the actual soil thickness including the weathered bedrock 304 

is the elevation difference between the land surface and fresh bedrock, and can be highly 305 

heterogeneous due to the variable land surface and bedrock topography over the 306 

watershed.   307 

To diagnose the effect of land surface and bedrock topography on mean annual water 308 

balance, the shape parameter is calibrated using the observed streamflow.  The streamflow data 309 

during 1948-2003 are divided into three periods: 1) the warm-up period (1948-1953); 2) the 310 

calibration period (1954-1973); and 3) the validation period (1974-2003).  During the calibration, 311 

the estimated 𝑆𝑏 based on CN is used, and 𝑎 is the only free parameter to be calibrated.  The 312 

calibration is conducted by minimizing the absolute error of the observed and simulated mean 313 
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annual runoff through a global optimization method, i.e., Shuffled Complex Evolution Method 314 

(Duan et al., 1992).  As shown in Figure 6b, most of the calibrated a  are smaller than the 315 

estimated 𝑎 based on soil data only.  The performance of predicted mean annual runoff (during the 316 

validation period) is improved with the calibrated shape parameter (Figure 6c).  The average of 317 

absolute error for the mean annual runoff is 7.1%.  318 

The overestimation of shape parameter based on the soil porosity data underestimates the 319 

area percentage of low soil water storage capacity compared with the 320 

calibrated one as shown in Figure 5a for the Fox River watershed and Figure 5b for the 321 

Spoon River watershed.  The slope at the normalized soil water storage capacity around 1 for the 322 

estimated shape parameter is higher than that for the calibrated one.  Therefore, the calibrated 323 

shape parameter indicates a larger spatial variability.  The underestimation of catchment area with 324 

low soil water storage capacity could be resulted from neglecting the 325 

effect of land surface and bedrock topography which cannot be referred from the soil database 326 

(gSSURGO) where the point-scale soil thickness is around 2 m.    327 

To explore the impact of land surface topography on the spatial distribution of soil water 328 

storage capacity, the soil data (i.e., porosity) is combined with the Height Above the Nearest 329 

Drainage (HAND) method proposed by Gao et al. (2019).  HAND is the vertical elevation 330 

difference from a point to its nearest drainage point.  The distribution of HAND was used for 331 

estimating the shape parameter of the spatial distribution of storage capacity.  Therefore, the 332 

HAND method uses land surface topography data only for estimating the shape parameter.  In our 333 

analysis, the porosity of the soil beyond the bottom layer in the soil database is assigned with the 334 

same value as the bottom layer.  For example, if the HAND for a grid cell is 10.0 m and the porosity 335 

and depth of the bottom soil layer in the gSSURGO database is 0.2 and 2.0 m, respectively, the 336 



28 
 

porosity for the soil from 2.0 m to 10.0 m depth is assigned with 0.2.  Finally, the total volume of 337 

pores is calculated for each grid cell based on the soil porosity obtained from the gSSURGO 338 

database and the HAND value based on land surface topography.   339 

The control of land surface topography on the hydrologic process has also been widely 340 

quantified through topographic wetness index (TWI) of TOPMODEL (Beven and Kirkby, 1979).  341 

The spatial variability of soil storage capacity based on the TOPMODEL assumption has been 342 

demonstrated as a beneficial representation of the conceptual model (Sivapalan et al., 1997).  343 

Therefore, the heterogeneity of TWI in a catchment was proposed to be a surrogate of the 344 

heterogeneity of the soil storage capacity in this study, and the shape parameter estimated by fitting 345 

TWI against Equation (12) through minimizing the root mean square error (RMSE) for the 346 

Maquoketa River in Iowa was compared with those obtained from other methods. 347 

The dashed blue line in Figure 7 shows the porosity-HAND based CDF of normalized 348 

soil water storage capacity for the Maquoketa River in Iowa (gauge #05418500).  The stream 349 

initiation threshold used for calculating HAND is 40 km2 which is 1% of the maximum flow 350 

accumulation (Maidment, 2002).  The threshold affects the value of HAND but this is beyond the 351 

scope of this paper.  The best fit value of 𝑎 for the porosity-HAND based CDF is 1.779, which 352 

overestimates the spatial variability of storage capacity compared with the calibrated shape 353 

parameter (𝑎=1.905).  This is due to the assumption of the HAND method that the bedrock between 354 

a specific point and its nearest drainage point is horizontal and intercepts with the channel bed.  355 

However, the bedrock topography may have various slopes in a watershed (Troch et al., 2002).  356 

Therefore, the true value of 𝑎 (indicated by the calibrated one) potentially falls between the 𝑎 357 

obtained from soil data and the 𝑎  based on soil and HAND.  The bedrock topography from 358 

observation or models is needed to accurately estimate the shape parameter.  The dashed dot red 359 
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line in Figure 7 displays the CDF of the normalized soil storage capacity based on TWI, and the 360 

corresponding value of 𝑎 is 1.967.  The TWI based 𝑎 value also present a larger spatial variability 361 

than that derived from soil data solely, confirming the importance of topography in determining 362 

the heterogeneity of soil water storage capacity.  The deviation of the TWI-based 𝑎 value from its 363 

calibrated counterpart could be due to the fact that the bedrock topography is not considered in 364 

TWI.   365 

4. Conclusion 366 

A mean annual water balance model based on the concept of saturation excess runoff 367 

generation is used for diagnosing the potential for nonparametric modeling of mean annual runoff 368 

in ungauged basins.  The model takes the effect of climate variability into account explicitly since 369 

it is driven by daily precipitation and potential evapotranspiration at the daily time step.  The 370 

distribution function, which leads to the SCS curve number method, is used for describing the 371 

spatial distribution of soil water storage capacity.  The mean (i.e., average soil water storage 372 

capacity) and the shape parameter (i.e., the spatial variability of soil storage capacity over the 373 

watershed) of the distribution function can be estimated from the available data.  Based on the 374 

linkage of the distribution function and the SCS curve number method, a new method based on 375 

the existing observed data of watershed characteristics is proposed for estimating the average soil 376 

water storage capacity.  The average soil water storage capacity (𝑆𝑏), as one of the parameters in 377 

the model, was estimated as a function of climate aridity index and curve number which is 378 

calculated based on land cover and soil data. 379 

The developed mean annual water balance was applied to diagnose the estimation of shape 380 

parameter (𝑎) in this study.  The shape parameter, describing the spatial variation of soil water 381 

storage capacity, was first estimated based on the porosity and soil thickness data in the soil 382 
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database (gSSURGO).  The estimated values of 𝑎 were tested in 35 watersheds.  The results 383 

showed that the model with the estimated values of 𝑆𝑏  and 𝑎 underestimated the mean annual 384 

runoff by 11.8% on average over all the study watersheds.  The underestimation of runoff is mainly 385 

caused by the underestimation of the spatial heterogeneity of soil thickness over the watershed.  386 

The Height Above the Nearest Drainage (HAND) was then calculated as the total soil thickness 387 

for estimating the total volume of the pore space.  The result showed that topography is of great 388 

importance for determining the spatial variability of soil water storage capacity.  The estimated 389 

shape parameter from porosity-HAND overestimated the spatial variability of the storage capacity 390 

compared with the calibrated 𝑎, which may result from the assumed bedrock in the HAND method.  391 

The Topographic Wetness Index (TWI) based shape parameter further indicated the importance 392 

the topography including the land surface topography and bedrock topography.  Future research 393 

will investigate alternative methods for better estimating the spatial variability of soil water storage 394 

capacity over watersheds, and quantify the impacts of vegetation and climate variability (e.g., 395 

distribution of rainy days, the magnitude and the seasonality of climate variables). 396 

   397 

   398 
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Daily precipitation, streamflow, and temperature data are available from 1948 to 2003 through the 406 

MOPEX website at https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/.  407 
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Table 1: The USGS gage stations, climate aridity index, the estimated potential maximum 579 

retention of curve number method (𝑆𝐶𝑁), and the average soil water storage capacity (𝑆𝑏) for the 580 

study watersheds. 581 

Index Station Name State 

USGS 

Gauge 

Number 

Climate 

Aridity 

Index 

𝑺𝑪𝑵 

(mm) 

𝑺𝒃  

(mm) 

1 
Susquehanna 

River 
NY 01503000 0.69 100 862 

2 Chemung River NY 01531000 0.84 95 518 

3 Juniata River PA 01567000 0.85 134 714 

4 
Rappahannock 

River 
VA 01668000 0.85 152 792 

5 Yadkin River NC 02116500 0.71 153 1221 

6 
Chattahoochee 

River 
GA 02339500 0.69 182 1559 

7 Escambia River FL 02375500 0.73 143 1075 

8 Allegheny River NY 03011020 0.68 153 1369 

9 New River VA 03168000 0.69 177 1494 

10 Great Miami River OH 03274000 0.89 63 301 

11 Eel River IN 03328500 0.92 68 304 

12 
East Fork White 

River 
IN 03364000 0.83 68 378 

13 
Little Wabash 

River 
IL 03381500 0.96 68 279 

14 Fox River WI 04073500 1.12 162 520 

15 Auglaize River OH 04191500 0.98 56 225 

16 Maquoketa River IA 05418500 1.19 72 209 

17 
Wapsipinicon 

River 
IA 05422000 1.16 69 210 

18 Rock River WI 05430500 1.11 98 316 

19 Pecatonica River IL 05435500 1.11 66 214 

20 Kishwaukee River IL 05440000 1.03 70 255 

21 Green River IL 05447500 1.10 75 247 

22 Iowa River IA 05454500 1.18 65 191 

23 Cedar River IA 05458500 1.17 65 193 

24 Kankakee River IL 05520500 0.93 101 448 

25 Fox River IL 05552500 1.04 88 321 

26 Spoon River IL 05570000 1.12 71 227 

27 Kaskaskia River IL 05592500 0.99 67 263 

28 Blue River KS 06884400 1.70 74 127 

29 Thompson River MO 06899500 1.16 65 195 

30 Meramec River MO 07019000 0.95 109 460 

31 Chikaskia River OK 07152000 1.82 77 121 

32 Neosho River KS 07183000 1.42 63 140 

33 Deep Fork River  OK 07243500 1.40 87 197 

34 Neches River TX 08033500 1.14 174 540 

35 
Elm Fork Trinity 

River 
TX 08055500 1.63 87 159 

 582 
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 584 

Figure 1: The degree of saturation (
�̅�

𝑆𝑏
 ) under long-term average climate versus climate aridity 585 

index (Φ).586 

Figure 2: The sensitivity of the mean annual runoff (𝑄) to the value of the shape parameter (𝑎). 587 

588 
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 589 

Figure 3: The spatial distribution of land use and land cover for Fox River watershed in 590 

Wisconsin (a) and Spoon River watershed in Illinois (d), the hydrologic soil groups for Fox 591 

River watershed (b) and Spoon River watershed (e), and the curve numbers for Fox River 592 

watershed (c) and Spoon River watershed (f). 593 

  594 



42 
 

 595 
Figure 4: The estimated average soil water storage capacity (𝑆𝑏) as a function of 𝑆𝐶𝑁 and climate 596 

aridity index (a) and shape parameter from soil data (b). 597 
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  599 

Figure 5: The estimated shape parameter for the spatial distribution of soil water storage capacity 600 

based on soil data and the calibrated shape parameter based on mean annual water balance in the 601 

Fox River watershed (a) and the Spoon River watershed (b). 602 
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  604 

 605 

       606 

   Figure 6: (a) Observed versus simulated mean annual runoff using shape parameter based on 607 

soil data; (b) Soil data-based versus calibrated shape parameter; and (c) Observed versus 608 

simulated mean annual runoff using shape parameter based on calibration. 609 
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  611 

Figure 7: The effects of soil, land surface topography, bedrock topography, and topographic 612 

wetness index (TWI) on the shape parameter of the spatial distribution of soil water storage 613 

capacity. 614 
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