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Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control 

over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen 

depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of 

summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment 15 

characteristics/nutrient loads, meteorology), as well as internal feedback mechanisms (e.g., organic matter recycling, 

phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal time scales will 

determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic-ecological 

model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water 

quality dynamics of the eutrophic Lake Mendota (USA) over a 37-year period. The calibration and validation of the lake model 20 

consisted of a global sensitivity evaluation as well as the application of an evolutionary optimization algorithm to improve the 

fit between observed and simulated data. We calculated stability indices (Schmidt Stability, Birgean Work, stored internal 

heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and 

mixing. To qualify which external and internal factors were most important in driving the inter-annual variation in summer 

anoxia, we applied a random-forest classifier and multiple linear regression to modeled ecosystem variables (e.g., stratification 25 

onset and offset, ice duration, gross primary production.) Lake Mendota exhibited prolonged hypolimnetic anoxia each 

summer, lasting between 50-60 days. The summer heat budget, the timing of thermal stratification, and the gross primary 

production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal 

extent of summer anoxia periods in Lake Mendota. Inter-annual variability in anoxia was largely driven by physical factors: 

earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial 30 

extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 

model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton, Bythothrephes 
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longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of 

summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 

1 Introduction 35 

The availability of dissolved oxygen in lakes governs ecological habitats and niches, the rates of redox reactions, and the 

processing of organic matter throughout the water column (Cole and Weihe, 2016). When a lake is thermally stratified, 

metabolism in the surface layer (epilimnion) can act as a net source or sink of oxygen, depending on the balance of gross 

primary production and ecosystem respiration, and deviations of dissolved oxygen from saturation values are modulated by 

atmospheric exchange (Odum, 1956). Additionally, entraining inflows can also act as an important oxygen sink or source 40 

depending on the lake morphometry, the inlet discharge, and the carrying capacity for dissolved oxygen (Burns, 1995). Below 

the thermocline, dissolved oxygen is depleted in the bottom layer (hypolimnion) by organic matter mineralization in the water 

column and the sediment oxygen demand (Livingstone and Imboden, 1996). These oxygen depletion processes can be 

quantified as either a volumetric sink (e.g., due to organic matter mineralization in the water column) or as an areal sink (e.g. 

oxygen demand in the sediments). The depletion rates of oxygen depend on the organic matter pool (Müller et al., 2012, 2019), 45 

the trophic status of the lake (Rhodes et al., 2017; Rippey and McSorley, 2009), the area to volume relationship over depth 

(Livingstone and Imboden, 1996), and the chemical demand of the water column and sediments (Yin et al., 2011).  

While the biogeochemistry of lake oxygen is well studied, there is much to be learned about decadal-scale controls 

over ecosystem patterns in oxygen and the interactions of external drivers with internal processes that control those patterns. 

Oxygen depletion in the hypolimnion that results in hypoxia (dissolved oxygen < 2 mg L-1; Diaz and Rosenberg, 2008) and 50 

anoxia (dissolved oxygen < 1 mg L-1;  Nürnberg, 1995b) is a product of interacting external drivers (e.g., climate, land use 

practices in the catchment) that control mass fluxes (Jenny et al., 2016b), morphometric characteristics, and productivity that 

influences vertical transport and water column stability (Meding and Jackson, 2003). Unprecedented changes to the climate 

and catchment land use are likely to have nonlinear consequences on aquatic water bodies and will potentially intensify 

hypolimnetic anoxia (Jenny et al., 2014, 2016a; Sánchez-España et al., 2017). 55 

The influence of physical controls on lake anoxia is of particular interest because it provides clues to how lakes might 

respond to long-term changes in exogenous drivers. The timing of anoxia has been found to be strongly related to the onset 

and offset of stratification, as well as sediment oxygen demand in small eutrophic lakes (Biddanda et al., 2018; Foley et al., 

2012; Nürnberg, 2004). A reduction of winter/spring mixing and increase in stratification can be major drivers of deep-water 

oxygen depletion (North et al., 2014). For Lake Mendota (USA), Snortheim et al. (2017) concluded that changes in air 60 

temperature were the main driver of the spatio-temporal extent of summer hypolimnetic anoxia, but was unable to disentangle 

the direct effect of air temperature (i.e., warmer water temperatures) vs. its indirect effect (i.e., stronger thermal stratification) 

on oxygen dynamics. The question thus remains open: Under what circumstances and at what time scales does thermal 

stratification strength act as the dominant driver of hypolimnetic anoxia versus biogeochemical processes?  
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Studying decadal-scale lake anoxia requires an ecosystem-scale metric of lake anoxia and an analytical framework 65 

for tying that metric to physical and biological processes. Several metrics of oxygen availability have been developed by 

previous studies, such as mean areal hypolimnetic oxygen depletion (AHOD, in mg O2 m-2 d-1, Cornett and Rigler, 1979; 

Hutchinson, 1938), volumetric rate of oxygen consumption (VOD, in mg O2 m-3 d-1, Cornett, 1989), areal hypolimnetic 

mineralization (AHM, in g O2 m-2 d-1, Matzinger et al., 2010), and the Anoxic Factor (AF, in days, Nürnberg, 1995a, 1995b, 

2004). Compared to the Anoxic Factor, most metrics calculate an oxygen depletion rate, whereas the Anoxic Factor provides 70 

an integrated metric that includes the spatial as well as temporal dimensions of anoxia per season. As the Anoxic Factor sums 

up the product of anoxia duration with the corresponding area, it is therefore a useful metric to evaluate long-term dynamics 

of hypolimnetic anoxia, and to compare the intensity of anoxia between years and different study sites. The Anoxic Factor and 

its derivative the Hypoxic Factor (the difference being the threshold of dissolved oxygen; (Nürnberg, 2004) have been used in 

several studies, and observations range from 0 to 83 days per summer for different lake ecosystems (Nürnberg, 1995b).  75 

Coupled hydrodynamic-water quality models are an established approach to studying lake physical and biological 

responses to external drivers (Hipsey et al. 2019). An advantage of a lake ecosystem model calibrated to observed long-term 

data is that it can reproduce finer temporal and spatial resolution than observational data permits for most ecosystems (Stanley 

et al., 2019) allowing for the investigation of complex ecosystem dynamics (Ward et al., 2020). By applying an ecosystem 

model driven by sub-daily meteorological and daily hydrological inflow data, physical processes relevant to hypolimnetic 80 

oxygen depletion (such as the onset and seasonal evolution of thermal stratification and gas transfer velocities) can be resolved 

at an hourly resolution, and can subsequently be incorporated into stochastic models to gain an understanding about the 

relationships between drivers and their respective impacts on hypolimnetic anoxia (Snortheim et al., 2017). Results from 

deterministic lakes models can be analysed using statistical models to derive general empirical relationships of cause and effect 

in the model space. Results can also be compared with alternative, deductive approaches, which tend to be simpler models 85 

meant to reproduce gross ecosystem properties. An example relevant to lake anoxia is the simple deductive hypolimnetic 

oxygen depletion model by Livingstone and Imboden (1996), which established that minor year-to-year meteorological 

variations during spring can cause an expansion of the thickness of the summer anoxia layer.  

This study aims to determine the extent to which physical, chemical, and biological (internal and external) factors 

control the inter-annual variability of the summer Anoxic Factor over 37 years in the eutrophic Lake Mendota. We first use a 90 

lake hydrodynamic-water quality model to generate fine scale ecosystem states and fluxes based on observational data. Second, 

we use a deductive lake anoxia model and data-driven empirical models to evaluate observed and simulated data and to 

determine broad-scale control over lake anoxia. We answer three questions with our modeling framework: (1) Overall, do 

internal biogeochemical processes or external loadings control year-to-year variability of the Anoxic Factor? (2) What are 

essential in-lake physical and biological controls over the long-term variability in anoxia? (3) As the timing of thermal 95 

stratification governs hypolimnetic oxygen depletion, what is the year-to-year variability of Lake Mendota’s head budget? 

Answers to these questions will further our understanding of lake ecosystem responses to climate and landscape changes to 

support water quality management. 
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2 Materials and Methods 

2.1 Study Site 100 

Lake Mendota is a 39.61 km2, 25 m deep, eutrophic lake in southern Wisconsin, USA (Figure 1Figure 1). The lake has a mean 

water residence time of 4.3 years (McDonald and Lathrop, 2017). Lake Mendota’s mixing regime is characterized by a summer 

stratification period from late April through October and an inverse winter stratification period under ice (Brock, 1985). Lake 

Mendota’s air temperature ranges from -39 to 40 °C with a mean annual value of 8 °C, and an annual precipitation ranging 

from 540 to 990 mm with an average of 780 mm (Lathrop, 1992). The 604 km2 watershed is dominated by agricultural land 105 

(67%) and developed urban land (22%) (Duffy et al., 2018). Since 1995, physical, chemical, and biological characteristics 

have been sampled biweekly to monthly by the North Temperate Lakes Long Term Ecological Research Program (Magnuson 

et al., 2006). We note that Lake Mendota is a “hard water” lake with pH > 7 and exhibits consistently high dissolved inorganic 

carbon concentrations, with speciation dominated by bicarbonate and carbonate (Hart et al., 2020).  

2.2 Driver Data Acquisition 110 

Meteorological forcing data were obtained from the second phase of the North American Land Data Assimilation 

System (NLDAS-2, Xia et al., 2012). The data from the grid cell were centered at -89.4375, 43.0625. The NLDAS-2 grid cells 

are 1/8th-degree spacing and data are at an hourly resolution from January 1, 1979 to present (Mitchell, 2004). Meteorological 

parameters used in this study included wind speed, air temperature, specific humidity, surface pressure, surface downward 

short- and longwave radiation, and total precipitation, which were used primarily as boundary data for GLM-AED2. Relative 115 

humidity was calculated post hoc as a function of specific humidity, air temperature, and surface pressure.  

To quantify the water budget in Lake Mendota, we simulated the water inflow from the catchment (through stream 

flow, overland flow, and groundwater flow) to the lake, and water outflow from the lake to the catchments using a physically 

based distributed hydrologic model, PIHM-Lake (Penn State Integrated Hydrologic Model, Qu and Duffy, 2007). PIHM-Lake 

integrates hydrologic processes in a lake-catchment coupled system simulating the surface and subsurface hydrologic 120 

interactions within the catchment and between the catchment and the lake. Hydrologic interactions within the catchment are 

modeled in three dimensions, while the lake is represented in PIHM-Lake as a simplified one-dimensional bucket model 

assuming a uniform lake surface area and depth. PIHM-Lake tracks the change in water storage from the watershed’s 

vegetation canopy, ground surface, unsaturated soil zone, saturated soil zone, and lake by using the semi-discrete finite volume 

method and a triangular irregular network (TIN). The PIHM-Lake simulation covers a 37-year period (from 1979 to 2015), 125 

and its parameters were calibrated and validated with in-situ measured stream inflow and lake outflow discharges from the US 

Geological Survey. The application of the PIHM-Lake model for quantifying the lake inflows helped closing the water balance 

of Lake Mendota as groundwater inflow and surface overland flow were not measured, and the model simulations provided 

these inflows. 
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Surface nutrient loadings from the Yahara River and Pheasant Branch inflows into Lake Mendota were estimated by 130 

regression models using discharge and nutrient concentration data from USGS gages (Appling et al., 2015; data is available at 

Ladwig et al. (2020) via the Environmental Data Initiative). Combined with the simulated discharge time series from PIHM-

Lake, these regressions were used to compute daily loading data. We included the following nutrients in the inflow boundary 

conditions soluble reactive phosphate, adsorbed soluble reactive phosphate, dissolved organic phosphorus, particulate organic 

phosphorus, dissolved organic nitrogen, ammonia, nitrate, refractory dissolved organic carbon, dissolved inorganic carbon, 135 

and reactive silica. For a complete description of the inflow loading regressions, see Weng et al. (2020). To provide information 

regarding adsorbed soluble reactive phosphate, we doubled measured total phosphorus (TP) concentrations and applied 

specific ratios to individual phosphorus forms (Farrell et al., 2020; Snortheim et al., 2017; Weng et al., 2020). This put our 

estimates of TP near the upper range of previous load estimates. Bennett et al., (1999) estimated the long-term average annual 

TP load to be about 34 t, whereas our average annual TP load (with adsorbed phosphate) was about 50.6 t and ranged between 140 

5.3 to 146.1 t (1979-2015). Our average annual TP load (without adsorbed phosphate) was about 25.3 t and ranged between 

2.7 to 73.1 t (1979-2015), which is similar to previous annual TP load estimates between of 15 to 67 t (Kara et al., 2012) and 

10 to 80 t (Lathrop and Carpenter, 2014). By doubling our TP by adding adsorbed phosphate, we accommodate a potential TP 

load underestimation due to the importance of extreme storm events on particulate loads (Carpenter et al., 2018). As direct 

measurements of inlet loadings of refractory organic matter, dissolved inorganic carbon (DIC) and silica were not available, 145 

we used constant average values for the inflow loadings similar to the long-term mean values of the water column. 

Monitored NTL-LTER data from 1995 to 2015 were used for model calibration and validation. Data included water 

temperature and dissolved oxygen concentrations (Magnuson et al., 2020b) with a vertical spatial resolution of 1 m from the 

surface to 24 m. Data were measured biweekly during summer, monthly during fall and once per winter. The dissolved oxygen 

data set was complemented with historical measured dissolved oxygen data from 1992 to 1994 (Soranno, 1995). NTL-LTER 150 

data also included pH, dissolved inorganic carbon, dissolved organic carbon, nitrate, ammonia, soluble reactive phosphate and 

silica sampled at the depths 0, 3, 8, 10, 12, 14, 16, 18, 20 and 22 m (Magnuson et al., 2020a). Surface integrated samples of 

epilimnetic chlorophyll-a and Secchi depth were used to evaluate GLM-AED2’s predictions of phytoplankton biomass and 

light extinction (Magnuson et al., 2020c, 2020d).  

2.3 Modeling Framework 155 

Our modeling framework to investigate drivers of hypolimnetic anoxia consisted of three components (Figure 2):  

(1) Deductive model: A deductive model formulated by Livingstone and Imboden (1996) was run on the monitored 

field data to characterize the empirical relationships between observed dissolved oxygen data and oxygen depletion processes 

and to quantify the contributions of water column and sediments to hypolimnetic oxygen demand (Figure 2). The deductive 

model furthered our ecosystem-scale understanding of the partitioning between volumetric and areal oxygen depletion sinks 160 

in Lake Mendota. Therefore, this approach was used independently of the other modeling approaches as a “check” on the 

sediment oxygen demand rates of Lake Mendota used in GLM-AED2.  
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(2a) GLM-AED2: To gain a more mechanistic understanding of how processes driving oxygen depletion lead to 

ecosystem-scale oxygen dynamics, we used the vertical one-dimensional hydrodynamic water quality model, GLM-AED2 

(Hipsey et al., 2019). GLM-AED2 uses meteorological, hydrological, and nutrient load data as inputs and predicts lake 165 

physical, chemical, and biological dynamics, including those of dissolved oxygen. The advantage of using GLM-AED2 is that 

it quantifies and tracks processes relevant to oxygen cycling using well-accepted physical and biogeochemical interactions 

that otherwise are difficult to infer from observational data alone (see section ‘2.3.2 GLM-AED2’; Figure 2). Although GLM-

AED2 is a deterministic model, hypolimnetic anoxia is an emergent ecosystem property that derives from a complex suite of 

interactions within the model (Snortheim et al., 2017). Therefore, we used GLM-AED2 to simulate and track states and fluxes 170 

of modelled variables. 

(2b) Regression model: To derive generalized relationships between the interannual variation in hypolimnetic anoxia 

and the driving data, as well as the output from GLM-AED2, we used statistical models on our combined dataset of monitored 

and modeled data. Because the number of potential candidate predictors is high, we used a machine learning approach to 

determine the most significant predictors of seasonal hypolimnetic anoxia at the inter-annual scale (Figure 2). These predictors 175 

were then used in a multiple linear regression to rank their influence on hypolimnetic anoxia.  

2.3.1 Deductive Model 

Using temporal and spatial linearly interpolated observed dissolved oxygen data, we applied the simple deductive oxygen 

depletion model according to Livingstone and Imboden (1996) in which the oxygen depletion rate J(z) at depth z is 

conceptualized as 180 

𝐽(𝑧) = 𝐽!(𝑧) + 𝐽"(𝑧)𝛼(𝑧), (1) 

Where the intercept JV is the volume sink (mass per volume per time) representing organic matter mineralization processes, 

e.g. microbial respiration in the water column, the gradient JA is the area sink (mass per area per time) representing sediment 

oxygen demand, and 𝛼 is a function for the ratio of sediment area to water volume over the depth z (Bossard and Gächter, 

1981; Livingstone and Imboden, 1996):	185 

𝛼(𝑧) = −
1

𝐴(𝑧)
𝑑𝐴(𝑧)
𝑑𝑧 . (2) 

We used observed dissolved oxygen data from 1992 to 2015 (measured biweekly after ice offset) to calculate the specific 

oxygen depletion J(z) over depth for each year individually from the concentration, [DO]spring, at the date  of spring mixing 

offset, tspring,  to the date, t2mgL, when oxygen concentrations, [DO]2mgL, were below 2 mg L-1 (criterium for hypoxia): 

𝐽(𝑧) =
[𝐷𝑂]#$%&'( − [𝐷𝑂])*(+

𝑡#$%&'( − 𝑡)*(+
. (3) 190 

. Only dissolved oxygen data below a depth of 15 m were used. The derivatives of area to depth were approximated by using 

forward and backward differencing. The terms JV and JA were assumed to be constant for every year (assuming the hypolimnion 

to be homothermic) and were determined by using weighted linear regression. 
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2.3.2 GLM-AED2 

For simulating Lake Mendota, we used the coupled 1D vertical hydrodynamic-ecological model GLM-AED2 (GLM: 195 

v.3.1.0a1, AED2: 1.3.4, developed by University of Western Australia, Hipsey et al. 2019). The hydrodynamic model GLM 

incorporates a flexible Lagrangian grid with each layer’s thickness dynamically changing in response to the respective water 

density (Hipsey et al., 2019). Surface mixing processes are computed via an energy balance approach that compares the 

available (turbulent) kinetic energy to the internal potential energy of the water column (Hipsey et al., 2019).  

The water quality module, AED2, was configured to simulate the dynamics of dissolved oxygen, silica, inorganic 200 

carbon, organic matter (refractory, particulate and dissolved C, N and P), inorganic matter (refractory, particulate and dissolved 

C, N and P) as well as PO4, NO3, and NH4, and two functional phytoplankton groups (representing diatoms and cyanobacteria, 

Supplement Table A1). The model was run on an hourly time step and output data were saved at a daily timestep on noon. The 

thickness of each model layer (set to a maximum of 75 layers) could vary between 0.15 and 1.5 m with a minimum layer 

volume of 0.1 m3. The source code of the model’s version, configuration files, input and output data are stored and accessible 205 

at Ladwig et al. (2020) via the Environmental Data Initiative. 

A global sensitivity analysis (Morris Method after Morris 1991) was conducted to identify the most influential 

parameters for the predictions of water temperature, dissolved oxygen, dissolved inorganic carbon, silica, nitrate and 

phosphate, respectively. Using the Morris Method with 10 iterative runs, the distributions of the absolute elementary 

effects (the model change quantified by a fit function, here the root-mean squared error (RMSE) between observed and 210 

simulated data) of each parameter were calculated. According to Morris (1991) and Saltelli et al. (2004), the mean of the 

absolute elementary effects represents the overall sensitivity of the model outcome to each parameter, and the standard 

deviations are a metric of the interactions between different parameters. All parameters with a normalized mean elementary 

effect over 0.1 were declared sensitive and were used for the calibration.  

According to our calculated absolute elementary effects, we included the following parameters in the calibration, 215 

listed according to their respective state parameter (Supplement Figure A1). For calibrating the six state variables, these 

parameters were: 1) water temperature: bulk aerodynamic coefficient for sensible heat transfer (ch), long-wave radiation factor 

(lw_factor), mean sediment temperature (sed_temp_mean), shortwave radiation factor (sw_factor); 2) Dissolved oxygen: 

Sediment flux (Fsed_oxy), mineralization rate of dissolved organic matter (Rdom), temperature multiplier for sediment flux 

(theta_sed_oxy); 3) Dissolved inorganic carbon: Sediment flux (Fsed_dic), half-saturation constant for oxygen dependence on 220 

sediment flux (Ksed_dic), temperature multiplier for sediment flux (theta_sed_dic); 4) Silica: Sediment flux (Fsed_rsi), half-

saturation constant for oxygen dependence on sediment flux (Ksed_rsi), temperature multiplier for sediment flux 

(theta_sed_rsi); 5) Nitrate: Sediment flux (Fsed_nit), half-saturation constant for oxygen dependence on denitrification 

(Kdenit), half-saturation constant for oxygen dependence on sediment flux (Ksed_nit), maximum reaction rate of 

denitrification at 20 °C (Rdenit); and 6) Phosphate: Sediment flux (Fsed_frp), half-saturation constant for oxygen dependence 225 

on sediment flux (Ksed_frp), temperature multiplier for sediment flux (theta_sed_frp). 
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We applied a combination of an automatic calibration technique and manual calibration for the calibration period 

from 2005 to 2015. First, the derivative-free, evolutionary optimization algorithm (CMA-ES, Hansen (2016)) was used to 

minimize the RMSE between observed and simulated data (data were split into a calibration, 2005-2015, and a validation 

period, 1995-2004). We used a time period prior to the calibration period for validation to stress-test the model by applying it 230 

a time period with potential different ecological characteristics. The model parameters were calibrated iteratively (and fixed 

for the next calibration step) in the following order: water temperature, dissolved oxygen, dissolved inorganic carbon, silica, 

nitrate and, last, phosphate. We did not calibrate for phytoplankton functional group biomass because it was out of scope for 

this analysis, but the model qualitatively recreated observed seasonal succession. Initial model parameter values were taken 

from default parameter values and ranges, as well as literature values (Hipsey et al., 2017; Snortheim et al., 2017). Calibration 235 

of water temperature and dissolved oxygen concentrations were run for 300 iterations, the other variables for 200 iterations. 

The fit criteria were root-mean square error (RMSE), Nash-Sutcliffe Coefficient of Efficiency (NSE) and Kling-Gupta 

Efficiency (KGE) (Gupta et al., 2009) for the calibration period, the validation period and the total time period. The advantage 

of combining an automatic approach and a manual post-calibration for an overparameterized model such as GLM was that 

CMA-ES first limited the possible parameter space of each parameter, then in a second calibration step, parameters could be 240 

manually changed to improve overall dynamics and behavior without relying on a fixed objective function. The manual 

calibration was done to ensure that the model was not overoptimized with unrealistic parameter combinations of the biological 

parameters. This calibration approach was done in accordance with other aquatic ecosystem modeling studies (Fenocchi et al., 

2019; Mi et al., 2020), that did not apply computational optimization to water quality models. 

2.3.3 Post-Processing of GLM-AED2 Output 245 

We quantified two heat budget metrics from simulated water temperature data, the Schmidt Stability (Idso, 1973; Read et al., 

2011; Schmidt, 1928) and the Birgean Work (Birge, 1916; Idso, 1973). Schmidt Stability (St) is a stability index that expresses 

the amount of energy needed to mix the entire water column to uniform temperatures without affecting the amount of internal 

energy, whereas Birgean Work (B) is a stability index that quantifies the amount of external energy that is theoretically needed 

to build up the current stratification from a hypothetical completely mixed state. The sum of both terms, the total work G, gives 250 

an estimate of the energy needed to keep a lake isothermal during stratified conditions: 

𝐺 = 𝑆𝑡 + 𝐵, (3) 

𝐺 =
𝑔
𝐴#
: 𝐴,(1 − 𝜌,)(𝑧! − 𝑧)𝑑𝑧
,!

-
+
𝑔
𝐴#
: 𝐴,(1 − 𝜌,)𝑧𝑑𝑧
,!

-
, (4) 

where g is gravity, As is the surface area (m2), zm is the maximum depth (m), Az is the respective area at the depth z, 𝜌, is the 

respective density at the depth z (kg m-3), zv is the depth of the center of volume (𝑧! =
.
/ ∫ 𝐴,𝑧𝑑𝑧

,!
- ), and V is the volume (m3). 255 

The stagnancy of deep water can be quantified by calculating a heat budget ratio (HBR): 

𝐻𝐵𝑅 =
𝐺
𝐵 ,

(5) 
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which compares the amount of energy needed to maintain isothermal conditions to the amount of available external energy 

(Kjensmo, 1994). Here, an increased stagnancy of deep waters results in a reduced exchange of fluxes between the surface 

mixed and the bottom layer. Therefore, HBR values > 1 indicate the isolation of the bottom water layers from surface fluxes 260 

in a lake. 

Internal energy - as the stored thermal energy in the water column - was quantified using the R package rLakeAnalyzer 

(Winslow et al., 2019) as: 

𝐸&'01%'23 =
1
𝐴#
: 𝑇, ∗ 𝑐4 ∗ 𝑚,𝑑𝑧
,!

-
, (6) 

where Tz is the water temperature at depth z (°C), cw is the specific heat of water (J kg-1 K-1), and mz is the mass of water at 265 

depth z (kg). 

The thermocline depth was defined as a planar separation between the surface mixed and the bottom stagnant layer. 

The specific depth of this planar thermocline was quantified as the depth of the maximum density difference over the vertical 

axis where the minimum water temperature was above 4 °C and the density difference between surface and bottom layer was 

above 0.1 kg m-3, signaling stratified conditions.  270 

The temporal and spatial extent of anoxia during the summer season was quantified using the Anoxic Factor:   

𝐴𝐹 =H
𝑡&𝐴&
𝐴#

'

&5.

, (7) 

which sums the product of the anoxia duration t (days) with the corresponding area A (m2) to the total surface area AS when 

the in-water dissolved oxygen concentrations were below a threshold of 1 mg L-1 (Nürnberg, 1995b). As the Anoxic and 

Hypoxic Factor use the same equation with different thresholds relating essentially all anoxia information also to hypoxia, we 275 

focused on only quantifying the Anoxic Factor in this study. Observed Anoxic Factors were calculated by temporally and 

spatially interpolating bi-weekly monitored field data, using an ensemble of approaches (linear, constant and spline 

interpolation between neighboring data points). We quantified the seasonal Anoxic Factor only for the summer season, 

respectively for the modeled and observed data. We then compared the modeled Anoxic Factor (quantified by using modeled 

daily dissolved oxygen data profiles) against a set of observed Anoxic Factors (here, the bi-weekly data were temporally and 280 

spatially interpolated to get daily estimates over a finer vertical resolution) that were obtained by the application of three 

interpolation techniques.Anoxic Factor was calculated using the simulated dissolved oxygen concentrations as well as the 

approximately bi-weekly monitored field data, in which case data were temporally and spatially interpolated using an ensemble 

of approaches (linear, constant and spline interpolation between neighboring data points). We quantified the seasonal Anoxic 

Factor only for the summer season.. 285 

2.3.4 Regression Model 

We evaluated 21 candidate predictors on their relative importance in predicting the simulated summer Anoxic Factor of the 

respective year n (see Table 1Table 1 for an overview and further explanation). All candidate predictors were either modeled 
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output or boundary data for the model. This enabled the regression analysis to identify internal connections in the numerical 

model itself (similar analyses of modeled output and driver data were done in Snortheim et al., 2017; Ward et al., 2020; Weng 290 

et al., 2020). For the calculation of certain candidate predictors, the water column was separated into an upper layer (from 

surface to a depth of 10 m) and a lower layer (from 10 m to maximum depth). Although this is a rough approximation, this 

depth roughly represents the thermocline depth and further separates the water column into a zone without light limitation and 

one with light limitation.  

 To represent external forcing processes, we included the seasonal total phosphorus inflow and seasonal total nitrogen 295 

inflow loadings for the pre-summer period (winter, spring, summer) of each respective year. Further, we included the Birgean 

Work for spring and summer of each year as the Birgean Work represents the amount of external energy (mostly by wind shear 

stress) that is needed to build up the current thermal structure. In addition to Birgean Work, we also included Schmidt Stability, 

the HBR ratio, the onset, end and duration of spring mixing, the onset, end and duration of summer stratification, the mean 

hypolimnetic water temperature at the onset of stratification, as well as the end and duration of the ice period prior to summer 300 

to investigate the effects of physical control on hypolimnetic anoxia.  

 In-lake biogeochemical processes were represented by the dissolved oxygen concentration differences between spring 

mixing onset and offset in the hypolimnion (Livingstone and Imboden (1996) suggested that in eutrophic lakes dissolved 

oxygen reductions during the mixing phase can have profound effects on the summer anoxia), organic carbon (both dissolved 

and particulate, respectively) concentration differences between spring mixing and stratification in the hypolimnion, as well 305 

as cumulative gross primary production in the epilimnion and hypolimnion. Organic matter gradients were investigated 

because dissolved organic carbon can be used as a proxy for allochthonous organic matter contributions to bacterial 

mineralization rates (Hanson et al., 2003). Gross primary production (GPP) was included as an example organic matter source 

that can fuel bacterial mineralization (Yuan and Jones, 2019). Here, GPP represents the sum of all functional phytoplankton 

group’s photosynthesis rates parameterized as the total carbon uptake: 310 

𝑓6$0271
89:" = 𝑅(%;40<89: (1 −

𝑘$%89:)	𝜙01*$89: (𝑇)	𝜙#0%1##89: (𝑋)	𝑚𝑖𝑛{𝜙3&(<089: (𝐼)	𝜙=89:(𝑁𝑂>, 𝑁𝐻?𝑃𝐻𝑌=)	𝜙889:(𝑃𝑂?, 𝑃𝐻𝑌8)	𝜙@&89:(𝑅𝑠𝑖)}[𝑃𝐻𝑌]  (7) 

where the carbon uptake 𝑓6$0271
89:"  of an individual group PHY depends on the growth rate 𝑅(%;40<89: , the photorespiratory loss 

(1 − 𝑘$%89:), temperature scaling 𝜙01*$89: (𝑇), metabolic stress 𝜙#0%1##89: (𝑋), and a minimum function taking into account 

limitations by light 𝜙3&(<089: (𝐼), nitrogen 𝜙=89:(𝑁𝑂>, 𝑁𝐻?𝑃𝐻𝑌=), phosphorus 𝜙889:(𝑃𝑂?, 𝑃𝐻𝑌8) and silica 𝜙@&89:(𝑅𝑠𝑖)} 315 

(Hipsey et al., 2017; adapted from Hipsey and Hamilton, 2008). As the GPP is the main model output variable for 

phytoplankton dynamics, it scales directly with biomass and Chl-a concentrations. 

To determine the relative importance of these candidate predictors that may influence the duration and extent of 

anoxia, we applied the Boruta R package (Kursa and Rudnicki, 2010) to identify the relevant predictors by using a wrapper 

built around a random forest classifier. The Boruta feature selection duplicates predictor values, which are then randomly 320 

shuffled to create so-called shadow attributes. If the variable predictor values (here the averaged accuracy loss normalized by 
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the standard deviation, obtained from multiple random forest classifier runs) of the original values are significantly greater 

than the shadow predictor values, these variables are deemed relevant (Kursa and Rudnicki, 2010). Only model output and 

model driver data from the period 1980-2009 were used in the regression analysis. The first year, 1979, was dropped from the 

investigations due to a lack of prior winter information. The years 2010-2015 were dropped due to an apparent ecosystem shift 325 

(see Section ‘3.4 Oxygen Dynamics’). Meteorological quarterly divisions (DJF, MAM, JJA, SON) of the year were used to 

define seasons. After selecting important predictors driving the inter-annual variability in Anoxic Factor using the random 

forest method, we applied the remaining 7 selected predictors in a multiple linear regression model to quantify their respective 

importance on predicting the Anoxic Factor. Stepwise model-selection iteratively removed predictors to improve the regression 

model’s AIC. This multiple linear regression model to predict Anoxic Factor included seven variables: HBR ratio during 330 

spring, HBR ratio during summer, Birgean Work in spring, epilimnetic GPP, Schmidt Stability in summer, Birgean Work in 

summer, and onset date of stratification. We reduced the complexity of the final multiple linear regression model to only three 

predictors of Anoxic Factor: onset date of stratification, Schmidt Stability in summer, and epilimnetic GPP in winter/spring.. 

Schmidt Stability was included instead of Birgean Work as the resulting AIC of both models were similar, but the concept of 

Schmidt Stability is more commonly used in the limnological research community (Supplement Table A3). The final multiple 335 

linear regression model was configured as (scaled predictors, adjusted R2 = 0.84, p < 0.001 Supplement Table A4). 

𝑦 = 0.24𝐸𝑝𝑖. 𝐺𝑃𝑃 + 0.54𝑆𝑢𝑚𝑚𝑒𝑟. 𝑆𝑡 − 0.46𝑂𝑛𝑠𝑒𝑡. 𝑆𝑡𝑟𝑎𝑡 − 5.44 ∗ 10A.B + 𝜖,    (8) 

where 𝜖	𝛮(0,38)).   

Relative importance of model fit was calculated as the R2 contribution averaged over ordering among regressors (relaimpo 

package, Grömping 2006). 340 

3 Results 

3.1 Oxygen Depletion Rates 

The derived annual oxygen depletion rates by the deductive model confirmed Lake Mendota’s hypolimnetic anoxia as 

primarily driven by mineralization of organic matter. Observed oxygen depletion rates, J(z), and against area-volume ratios, 

𝛼(𝑧), were positively correlated for all years except 1993, 1997 and 2007 (Figure 3). For years with a positive relationship, 345 

the average intercept representing the volumetric sink JV as was 0.16 g m-3 d-1 and the average gradient representing the areal 

sink JA with was 0.04 g m-2 d-1 (adjusted R2 = 0.13, p < 0.001). Lake Mendota’s hypolimnetic oxygen depletion was mainly 

driven by water column respiration mineralization processes over sediment oxygen demand. The annual volumetric depletions 

rate followed a normal distribution with an increase in the volumetric sink in recent years. The areal depletion rate distribution 

was positively skewed. An inspection of the residuals from the model fits indicates that the linear regression model may not 350 

be appropriate for some years, especially for values of the sediment to area volume ratio 𝛼(𝑧) near 0.5 m2 m-3.  

Averaging this total oxygen depletion rate (volume and area sinks) over the hypolimnion gave a potential total oxygen 

depletion of ~1 g m-2 d-1 (~ 32 mmol [O2] m-2 d-1). To conceptualize this a depletion rate in our deterministic GLM-AED2 
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model, we used a maximum sediment oxygen demand (SOD) of 100 mmol [O2] m-2 d-1. This rate represented the total sum of 

volumetric and areal oxygen sinks indirectly as internal fluxes of organic carbon from the sediment back into the water column 355 

would drive additional oxygen depletion. This high value of SOD was scaled by the water temperature using an Arrhenius 

multiplier, effectively reducing it to a value between 1 to 1.5 g m-2 d-1 (32  to 47 mmol [O2] m-2 d-1) of maximum oxygen 

depletion by the sediment sink in the hypolimnion during summer stratification. A recent modeling study investigating the 

formation of metalimnetic oxygen minima in a drinking water reservoir by Mi et al. (2020) confirmed that such high maximum 

SOD values are typical for many lakes.  360 

3.2 GLM-AED2 Calibration and Validation 

The thermal characteristics of Lake Mendota were replicated well, especially water temperatures in the surface layers (Table 

2, Figure 4Figure 4, Supplement Figure A2), with an RMSE of 1.30 °C, an NSE and an KGE of 0.97, which is within the range 

of previous modeling studies (Bruce et al., 2018; Read et al., 2014). The simulated dissolved oxygen concentrations in the 

whole water column achieved an RMSE of 3.22 mg L-1, an NSE of 0.56, and an KGE of 0.77. Here, the average fits were 365 

better in the surface layer (RMSE of 2.77 mg L-1) compared to the bottom layer (RMSE of 3.31 mg L-1), whereas the temporal 

dynamics (as expressed in NSE and KGE) were slightly better in the bottom layer (an NSE of 0.64, KGE of 0.81) compared 

to the surface layer (NSE of -0.36, KGE of 0.47).  

 In contrast, the water quality model reproduced concentrations of the biogeochemical variables better at depth than 

at the surface, as evidenced by higher NSE values (Table 2, Supplement Figure A3 – A8). The density distributions of residuals 370 

(observed minus simulated data) are in agreement (Figure 5) for water temperature, dissolved oxygen concentrations, nitrate, 

phosphate and ammonium (we did not use ammonium data during calibration, but included it in the visual inspection to check 

general nitrogen dynamics replicated by the GLM-AED2 model), whereas the model overestimated dissolved inorganic carbon 

concentrations and chlorophyll-a concentrations, and underestimated silica concentrations. As described above, the inflow 

concentrations of DIC and silica were assumed to be constant over the simulation period, likely causing the discrepancies 375 

between model results and observed data.  

3.3 Heat Budget Dynamics 

Lake Mendota’s annual stratification dynamics were characterized by a short spring mixing period followed by a very stable 

summer stratification period, which further promotes hypolimnetic oxygen depletion. A low Schmidt Stability value in spring 

close to zero was representative of the overturn period (period I, Figure 6Figure 6). During this time, the Birgean Work, as 380 

well as stored internal energy, increased rapidly, and the water column remained well oxygenated. The spring overturn period 

(period I) was characterized by low HBR values (ratio of St+B to B) with an average of 0.85 (MMA in Figure 7A). Low HBR 

denoted very unstable regimes due to an abundance of external energy compared to the required energy to keep the lake mixed. 

The start of the spring overturn period coincided with ice melt and open-water conditions, although in some years, the thermal 

structure of the lake was well mixed prior to ice off and spring overturn. May was the earliest month when the average HBR 385 
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was above 1 (Figure 7B), which indicated that the water layers below the thermocline became isolated from the surface layers. 

Following period I, Schmidt Stability increased in conjunction with the spatial extent of anoxia in the lake water column 

(Figure 6Figure 6). The heat budgets, as well as the anoxic area, peaked during this second phase (period II) and declined, 

although the peak of anoxic area lagged behind the heat budget peaks. As the Schmidt Stability decreased to near zero in fall, 

mixing is initiated causing the water column to become oxygenated.  390 

The stratification phase (period 2) had an average HBR value of 1.45, which indicated that an additional energy input 

of 45% would be needed to keep Lake Mendota isothermal during stratified summer conditions (Figure 7A). Lake Mendota’s 

mean summer HBR value was similar to Lake Steinsfjord, Norway (max. depth 22 m, Kjensmo, (1994)) and was larger than 

the HBR values of the unstable lake systems Lake Marion, USA (max. depth 4.5 m) and Lake Wingra, USA (max. depth 6.1 

m) (Kjensmo, 1994). The oxygenation of the water column lagged behind the stratification period, and even when the Schmidt 395 

Stability values at the end of the 2nd period were close to zero, a certain amount of the lake’s area can remain anoxic. 

Heat storage in Lake Mendota began after ice off and increased rapidly between the end of the mixing period and the 

onset of stratification (Figure 8A). The amount of internal energy stored at the beginning of stratification correlated with the 

maximum available amount of internal energy that will be stored during the stratified period, despite year-to-year fluctuations 

in internal energy. Over the course of each year, the amount of stored internal energy was positively correlated with Schmidt 400 

Stability (Figure 8B). Birgean Work was also positively correlated with both Schmidt Stability and Internal Energy. The 

relationship between Schmidt Stability and the spatial anoxia extent exhibited a clockwise hysteresis (Figure 8C). Beginning 

in June, Schmidt Stability increased as stratified conditions established in the water column. Schmidt Stability peaked on 

average in August at ~720 J m-2 (Figure 6Figure 6), followed by a peak in the Birgean Work at ~1250 J m-2. Simultaneously, 

the depth of anoxia in the water column (anoxia height) followed the progression of Schmidt Stability, peaking in September. 405 

In Lake Mendota, the anoxia height was limited by the thermocline depth, as the low vertical turbulent diffusivity of the 

thermocline acted as a barrier for an encroachment of anoxic conditions into the surface mixed layer. Anoxia height decreased 

after September as Schmidt Stability decreased. Thermocline depth and anoxia height declined in parallel until Schmidt 

Stability reached zero. In Lake Mendota, as in most lakes, the surface layer was the region of significant heat storage (Figure 

8D). Once stratified, heat storage in deeper water layers was limited, whereas heat in the upper 5 m of the lake increased 410 

throughout the summer, and accounted for up to 40% of the total internal energy stored during summer.  

3.4 Oxygen Dynamics 

Dissolved oxygen dynamics, including the spatial extent of oxygen depletion in the water column, and the timing of summer 

anoxia periods, were replicated by the GLM-AED model (Figure 9Figure 9A-B, Table 2); although the model overestimated 

spring and summer time surface oxygen concentrations due to a higher net ecosystem production. The depth-averaged fit 415 

criteria of dissolved oxygen concentrations were similar but slightly higher to a recent study from Farrell et al. (2020) in which 

the RMSE were 1.88 mg/L and 2.49 mg/L in the epilimnion and hypolimnion, respectively, of a GLM-AED model calibrated 

for Lake Mendota. Our model captured annual anoxia events in the hypolimnion (Figure 10Figure 10A), and the range of the 
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simulated Anoxic Factor was similar to the derived Anoxic Factor from observed data (Figure 10Figure 10B). The model 

failed to replicate extreme events (e.g., the very low Anoxic Factor in 2002) and did not capture a recent positive trend of 420 

Anoxic Factor since 2010. The simulated Anoxic Factor over the total time period averaged 56.7 ± 5.2 days with an RMSE of 

7 days, an NSE of -0.22, and an KGE of 0.26 (correlation coefficient r = 0.28). The model’s underestimation of the recent 

positive trend of Anoxic Factors starting in 2010 was investigated by quantifying the fits during two periods: 1992-2009 

(Figure 10C) and 2010-2005 (Figure 10D). In the pre-2010 period (1992-2009), the model achieved an RMSE of 6.79 days, 

an NSE of -0.25, an KGE of 0.44 and r of 0.45 for Anoxic Factor predictions. In the post-2010 period (2010-2015), the model 425 

achieved an RMSE of 8.04 days, an NSE of -31.99, an KGE of 0.21 and r of 0.62. A subsequent Wilcoxon signed-rank test 

highlighted, that the observed average and modelled Anoxic Factors from the pre-2010 period showed no significant 

differences between the two distributions, suggesting they belong to the same population (p-value = 0.13, Supplement Figure 

A9 A), whereas the distributions of observed mean Anoxic Factors and modeled ones after 2010 were significantly different 

(p-value = 0.032, Supplement Figure A9 B), highlighting a potential decadal shift in oxygen depletion patterns.. On the 430 

contrary, the modeled Anoxic Factor distributions of the pre- and post-2010 period were not significantly different (p-value = 

0.49, Supplement Figure A9 C), whereas the distributions of the observed Anoxic Factors were significantly different (p-value 

= 0.0049, Supplement Figure A9 D). 

3.5 Regression Model 

We included in total three predictors in our final multiple linear regression which were deemed important by the Boruta 435 

algorithm and stepwise linear model investigations using AIC for the period 1980-2009: Schmidt Stability during summer (rel. 

importance of 43 %), the onset date of stratification (rel. importance of 42 %), and winter to spring gross primary production 

in the epilimnion (rel. importance of 15 %) (Supplement Table A4). 

The linear model showed a good agreement between simulated and predicted Anoxic Factor (Figure 11Figure 11 A, 

Supplement Table A4). The Anoxic Factor was positively correlated to the summer Schmidt Stability (r = 0.72, Figure 440 

11Figure 11 B) and the gross primary production in the epilimnion (r = 0.48). It was negatively correlated to the onset of 

stratification (r = -0.78, Figure 11Figure 11 B). 

4 Discussion 

4.1 Controls of Inter-annual variability on Hypolimnetic Anoxia  

Inter-annual variability in the Anoxic Factor for Lake Mendota is influenced primarily by physical processes that regulate 445 

thermal and stratification dynamics, and less so by processes that influence organic matter. The Schmidt Stability during 

summer (rel. importance of 43 %) as well as the timing of stratification (rel. importance of 42 %) all influence Anoxic Factor, 

and are all driven mainly by atmospheric drivers and heat convection throughout the water column. The most important 

predictor of Anoxic Factor directly related to biological processes is gross primary production in the epilimnion (rel. 
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importance of 15 %), Supplement Table A4) prior to summer. For eutrophic lakes, this suggests two critical points. First, 450 

climate has direct control over lake phenology. Climate drives the timing of stratification onset and stratification strength, and 

that controls the year-to-year variability in Anoxic Factor. Second, biology matters, but its interannual dynamics are not that 

influential, at least for this eutrophic lake with a residence time greater than one year. We also acknowledge that a step change 

in the Anoxic Factor occurred in 2010 and was unexplained by our model. Although the cause remains unknown, the timing 

was coincident with large increases in the invasive zooplankton, Bythotrephes (Walsh et al., 2017). 455 

4.2 Physical Control over Anoxic Factor 

Our work demonstrates that oxygen dynamics in Lake Mendota are strongly governed by the stratification strength and timing 

in the water column. Snortheim et al. (2017) came to a similar conclusion in an analysis of Lake Mendota during a shorter 

time period (2007-2010), arguing that changes in the atmospheric boundary conditions - air temperature, wind speed and 

relative humidity - are driving changes in the hypolimnetic anoxia development of Lake Mendota. Here, we link these 460 

atmospheric drivers to changes in the water column’s stratification (as quantified by Schmidt Stability and Birgean Work). 

Over our 37-year simulation, anoxia onset occurred in the days following stratification onset. During stratification, the 

establishment of a strong density gradient between the upper and the lower layers in the water column reduces vertical turbulent 

diffusivities and limits the downward flux of dissolved oxygen. Without any additional oxygen source (e.g., atmospheric fluxes 

or primary production), dissolved oxygen concentrations below the thermocline are rapidly consumed by bacterial 465 

mineralization of organic matter in the water column and sediment.  

In Lake Mendota, the temporal and spatial extent of anoxia is limited by the length of the summer stratification period 

(e.g. onset and offset of stratification, heat storage in water column prior to stratification, see Figure 6Figure 6), the 

stratification strength and thermocline depth (e.g. Schmidt Stability, wind shear stress, see Figure 8), respectively. The number 

of days between the onset of spring mixing, which begins immediately following ice off, and summer stratification, determines 470 

the maximum amount of internal energy stored in summer. An early spring overturn and a slightly later stratification start 

would lead to increased anoxia height in the water column, though not necessarily a higher Anoxic Factor as the duration of 

anoxia could be shorter. The mixing period is essentially a turning point in the year for the gradient of the internal heat 

accumulation, which increases rapidly following mixing. Still, as most energy is stored in a thin surface layer, short-duration 

extreme wind events or cold weather periods can deplete that additional stored heat before summer stratified conditions are 475 

reached. The storage of heat simultaneously increases Birgean Work, and later Schmidt Stability, increasing the resistance of 

the water column to mixing and limiting vertical fluxes from the epilimnion to the hypolimnion and vice versa. In summer, a 

higher amount of stored internal energy is also related to a higher Schmidt Stability, further increasing the spatial extent of 

anoxia. Ultimately, the spatial extent of anoxia is limited by the thermocline depth, as in all simulated years the anoxia height 

reaches a maximum during late summer when the thermocline depth was already deepening.  480 
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4.3 Biological Control over Anoxic Factor 

Gross primary production (GPP) in the epilimnion prior to summer stratification is a secondary, but still important, predictor 

of anoxia. GPP fuels the sinking of particulate organic carbon (POC) into deeper layers before the establishment of a 

thermocline. In the hypolimnion, POC is readily decomposed into DOC and mineralized by bacteria in the numerical model, 

and reflects the dissolved oxygen volume sink. Unexpectedly, factors controlling year-to-year variation in GPP, such as 485 

external loadings of nutrients (specifically nitrogen and phosphorus), are not evident in the anoxia patterns in Lake Mendota. 

This is likely due to the historically high autochthony of the eutrophic lake (Hart, 2017), with phytoplankton blooms 

documented back to the early 1900s (Lathrop, 2007), thereby minimizing the need for external nutrient loads to stimulate 

phytoplankton production. While biological contributions to volumetric and sediment oxygen demands are well-described for 

a broad range of lakes (Gelda and Auer, 1996; Matzinger et al., 2010; Müller et al., 2012; Rippey and McSorley, 2009; Yuan 490 

and Jones, 2019), for eutrophic lakes, the control over available organic substrate for hypolimnetic oxygen demand may depend 

more on internal processing (autochthony) than external subsidies (allochthony).  

 Although the model replicated well the long-term DOC dynamics (Supplement Figure A8), it also overestimated 

surface layer dissolved oxygen concentrations compared to the observed data. This overestimation must have a concomitant 

increase in organic matter as a consequence of photosynthesis, and in this case in POC. Considering our proxy for the dynamics 495 

of phytoplankton biomass is reasonably well predicted (Fig. 5), this suggests our over-estimate of primary production results 

in increase in POC that is exported from the epilimnion to the hypolimnion. Unfortunately, we do not have observed POC to 

calibrate this part of the model, but we feel it is likely that our model has overestimated the contribution of primary production 

to hypolimnetic organic matter and subsequent oxygen depletion. 

The regression models showed that variables related to load dynamics were not significant predictors of Anoxic Factor 500 

over nearly four decades. The total phosphorus and nitrogen loads, the change in dissolved oxygen during spring overturn, the 

temporal change in organic carbon pools, and ice duration were not found important based on the random-forest classifier. 

Phosphorus cycling in Lake Mendota is complex, so it may not be surprising that load dynamics in any one year are, to a 

certain extent, uncoupled from the hypolimnetic oxygen demand (Hanson et al., 2020). The relatively long water residence 

time of Lake Mendota (approx. 4 years, McDonald and Lathrop, 2017), along with the high internal phosphorus loading rate, 505 

means that external phosphorus loads represent only about 1/3 of the available phosphorus in the epilimnion (Soranno et al., 

1997). Furthermore, high primary production rates that exceed the total lake mineralization, along with external loads of 

organic carbon, lead to a high storage of organic matter in the sediments that can likely carry over from one year to the next 

(Hart, 2017). In a more nutrient-poor system, the nutrient and carbon availability would likely be more important predictors. 

The model replicated the maximum anoxia event in 1998 but struggled to replicate the minimum in 2002. The 510 

discrepancies of 5-10 days between the simulated and observed range of the Anoxic Factor beginning in 2010 are related to 

an increased spatial as well as temporal extent of summer anoxia (Supplement Figure A10), which was not captured by the 

model. A similar increase in observed Anoxic Factors starting in 2010 was also visualized in the study by Snortheim et al. 
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(2017), but possible causes were not discussed.  This The increased spatial as well as temporal extent of summer anoxia was 

highlighted by the statistical analysis of the pre-2010 (1992-2009) and post-2010 (2010-2015) Anoxic Factors. Prior to 2010, 515 

there were no significant differences between observed and modeled distributions (p=0.13); whereas, after 2010, the observed 

distribution was significantly higher than the modeled distribution (p=0.032) (Supplement Figure A9). Similarly, the pre-2010 

observed Anoxic Factors were significantly different than the post-2010 observed Anoxic Factors (p=0.0049). For simplicity 

and due to limitations in Lake Mendota monitoring data post-2010, we focused the regression analysis of the Anoxic Factor 

in this study only on the pre-2010 period. The detection of this decadal shift in summer anoxia post-2010 highlights a hidden 520 

biological process that was not considered in the process-based model and .  

The change in Anoxic Factor post-2010 may be due to an ecosystem shift in Lake Mendota that began in 2009, when 

the invasive spiny water flea (Bythothrephes longimanus) was detected in surprisingly high densities in the lake (Walsh et al., 

2016b, 2018). Spiny water flea effectively became the dominant Daphnia grazer, causing historically low Daphnia biomass 

in 2010, 2014 and 2015 (Walsh et al., 2016a) and reducing water clarity. The spiny water flea may have increased organic 525 

matter supply to the hypolimnion by grazing down certain phytoplanktonzooplankton, and indirectly affecting phytoplankton. 

Mendota’s Daphnia population historically consisted of Daphnia pulicaria and the smaller-bodied Daphnia galeata mendotae, 

who compete differently with spiny water flea. D. mendotae biomass increased in spring after the spiny water flea invasion 

(Walsh et al., 2017), grazing on phytoplankton and probably accelerating organic matter mineralization before stratification 

onset. This could be one potential cause that contributed to the increase in hypolimnetic oxygen depletion after 2010. Our 530 

GLM-AED2 model could not replicate this food web change, and subsequent shift in anoxia dynamics, due to limitations of 

the numerical model, i.e., GLM-AED2 had constant ecological parameters over the entire modeling period and did not have 

zooplankton dynamics instantiated. We envision future monitoring and modeling studies that focus entirely on ecosystem 

differences and shifts between the pre-2010 and post-2010 periods of Lake Mendota.We envision future monitoring and 

modeling studies of Lake Mendota that focus entirely on ecosystem shifts associated with the invasion of spiny water flea in 535 

2009 and the exponential growth of zebra mussels from 2015-2018 (Spear, 2020). 

The simple deductive model established that the volumetric oxygen sink (i.e. water column oxygen demand) is 

consistently higher (on average about four times higher) than the sediment oxygen sink. The volumetric sink in lakes has been 

found to be strongly dependent on the trophic state of the lake, whereas the sediment sink is not (Rippey and McSorley, 2009). 

Eutrophic lakes tend to have high volumetric sinks that reach maxima of about 0.23 g m-3 d-1 (Rippey and McSorley, 2009) 540 

similar to the average volumetric sink of 0.16 g m-3 d-1 quantified by the deductive model for Lake Mendota. This finding is 

confirmed by the works of Conway (1972), who found that the high hypolimnetic oxygen demand of Lake Mendota was driven 

by algae decomposition, originating from the surface layer. Although eutrophic lakes tend to have a high sediment oxygen 

demand, the specific values can range from 0.3 g m-2 d-1 (Romero et al., 2004; Steinsberger et al., 2019) to extreme values of 

80 g m-2 d-1 (Cross and Summerfelt, 1987), most studies measured or applied a value between 1 to 4 g m-2 d-1 (Mi et al., 2020; 545 

Veenstra and Nolen, 1991). The sediment oxygen demand calculated by our deductive model of 0.04 g m-2 d-1 was closer to 

the average value of approx. 0.08 g m-2 d-1 measured by Rippey and McSorley (2009) on 32 lakes. We note that the simple 
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deductive model itself can only differentiate between two sources of depletion and neglects any physical transport drivers of 

oxygen, e.g., diffusion. Therefore, the results of the deductive model only add direct information to the actual depletion process 

of dissolved oxygen, but not of the dominant drivers.  550 

4.4 Improving the Modeling Framework  

The coupled GLM-AED2 model was able to generally replicate the thermal dynamics and biogeochemistry of Lake Mendota. 

In contrast to the calibration of Lake Mendota by Bruce et al. (2018) using an earlier version of GLM (v. 2.2.0), our model 

reproduced the water temperatures in the surface layer better than the bottom layer dynamics (RMSE for epilimnion and 

hypolimnion water temperatures, respectively, from Bruce et al., 2018: 1.94 °C and 1.42 °C). This is probably due to the close 555 

proximity of the atmospheric forcing boundary condition to the surface layers, whereas the energy balance approach used by 

GLM potentially underestimates vertical mixing, and hence overpredicts bottom layer water temperatures. In contrast, the 

model achieved better fits of the biogeochemical variables in the bottom layer. Better fits in the hypolimnion were likely 

achieved through directed calibration of sediment fluxes during the calibration-validation approach. The implementation and 

testing of alternative vertical mixing schemes for the Lake Mendota model (e.g. vertical mixing using a k-	𝜀 turbulence model) 560 

could potentially improve vertical transport and water temperature dynamics in deep layers. Further, using transient sediment 

boundary conditions with dynamic parameters over time could improve the model fit with the observed data, and could 

replicate potential ecosystem shifts. As the spatial extent of hypolimnetic anoxia is fundamentally three-dimensional (Biddanda 

et al., 2018), fully resolving anoxia in space and time likely requires a 3D model (Bocaniov and Scavia, 2016). Still, such a 

model has higher computational needs for long-term calibration-validation analysis, and current monitoring is inadequate to 565 

validate the results as most measurements are only made at the deepest point of the lake. Therefore, additional monitoring sites 

would need to be established. Improved spatial monitoring would be useful in validating our 1D approach and setting up higher 

dimensional numerical models. 

Our GLM-AED2 model overestimated spring phytoplankton biomass, which resulted in an overestimation of surface 

dissolved oxygen concentrations. This primary overproduction is a potential source of uncertainty for the anoxia timing below 570 

the thermocline as the model’s anoxia dynamics lag behind the observed ones. The time difference between the simulated and 

observed dissolved oxygen decline below the thermocline during stratification could be explained by an underestimation of 

sinking simulated organic material into the hypolimnion. Discrepancies between simulated and observed Anoxic Factors, 

therefore, could be rooted in our simplifications of the phytoplankton dynamics and its model parameter calibration, and the 

related organic matter fluxes, and highlight the importance of improving the representation of phytoplankton and zooplankton 575 

dynamics in numerical models. Simulating a magnitude of individual species rather than functional phytoplankton groups has 

been shown to improve numerical water quality and ecosystem predictions (Hellweger, 2017), though it is unclear if it could 

improve spring bloom predictions in Lake Mendota. This depends also on a more extensive monitoring program that measures 

and specifies specific phytoplankton species over the vertical gradient on a regular basis. Further, better numerical 

representations of phytoplankton life cycles (Hense, 2010; Shimoda and Arhonditsis, 2016), and/or allometric scaling 580 
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(Shimoda et al., 2016) could significantly improve numerical phytoplankton predictions. It is noteworthy that biweekly 

monitored data of Lake Mendota required interpolation of the observed data in order to calculate the observed Anoxic Factors. 

This adds uncertainty to the observed Anoxic Factor, as monitoring likely missed important daily (or even sub-biweekly) 

fluctuations in dissolved oxygen.  

It should be noted that as a statistical approach, the deductive regression model does not account for important 585 

mechanisms that may explain nonlinearities in the hypothetical linear relationships between oxygen depletion rate and the 

sediment to volume rate. Thus, the deductive regression model may be biased for Lake Mendota. As the model still advanced 

our broader system understanding by quantifying the range of the sediment oxygen demand, it was still helpful to investigate 

observed dissolved oxygen concentration data.  

4.5 Implications for landscape and climate change 590 

The strong relationship between anoxia and water column stability suggests that a changing climate might increase Anoxic 

Factor. Future climate in the region is expected to warm (Veloz et al., 2012), which may amplify and prolong water column 

stratification through increasing air temperatures (O’Reilly et al., 2015; Winslow et al., 2017). Shorter ice duration or even the 

total loss of ice (Sharma et al., 2019) could promote earlier heat storage in Lake Mendota, which could potentially increase 

summer Schmidt Stability, as demonstrated by Farrell et al. (2020). Earlier heat accumulation would cause a stability increase 595 

and an earlier onset of stratification, thereby extending the duration of anoxia. Further, a warmer epilimnion can cause the 

thermocline to become more shallow during the course of summer, which would cause the anoxia height to be spatially limited 

by a layer that is closer to the surface, hence more lake area would be anoxic. Earlier onset of anoxia Increased oxygen depletion 

rates may also cause the anoxia height to be spatially limited by an earlier, and therefore lower, thermocline depth. Therefore, 

warming air temperatures will likely increase the Anoxic Factor of Lake Mendota through prolonged temporal and increased 600 

spatial extent of anoxia. It is worth noting that our initial regression quantified the correlation between Anoxic Factor and the 

water temperature in the hypolimnion at stratification onset as weakly negative. Higher water temperatures in a mixed water 

column prior to stratification onset are related to less stable stratified summer conditions. This feedback, potentially enhanced 

by shorter ice periods and warmer spring overturn periods, could shorten the extent of summer anoxia (similar findings were 

reported in Flaim et al., 2020).  605 

Although our model evaluation supported the claim that external phosphorus loads are not important predictors of 

inter-annual variability in anoxia, future changes in the landscape (Motew et al., 2019), e.g. reduced agricultural application 

of phosphorus, less direct run-off pathways from the catchment to the lake, or more urbanization, may change these 

relationships. Lakes with nutrient concentrations lower than Lake Mendota would almost certainly experience higher primary 

production with elevated nutrient loads, and higher primary production would likely fuel higher hypolimnetic respiration 610 

(Rippey and McSorley, 2009). Thus, the link between catchment processes and lake anoxia, which was not detectable in this 

study, would likely be important in lakes with meso- or oligotrophic states (Ward et al., 2020). For Lake Mendota, the only 
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reasonable management approach to reducing anoxia is to lower external nutrient loads, especially given that anoxia duration 

in Lake Mendota is related to thermal stratification, which is predicted to increase with future warmer air temperatures. 

5 Conclusions 615 

We presented a novel modeling framework combining three complementary approaches (deductive model, numerical GLM-

AED2 model, and regression model) to conceptually identify the important drivers of year-to-year variability in the spatial and 

temporal summer hypolimnetic anoxia extent of eutrophic Lake Mendota over a period spanning nearly four decades. Physical 

metrics – summer Schmidt Stability and onset date of stratification – were the most important predictors driving the summer 

Anoxic Factor. Although the gross primary production prior to summer stratification was still influential in affecting year-to-620 

year variability of hypolimnetic anoxia, biological control over the Anoxic Factor was limited in our study period. As climate 

change is positively correlated to lake stratification characteristics (earlier, longer and more intense summer stratification), we 

expect an increase in the Anoxic Factor of Lake Mendota in coming decades. The only local management option to mitigate 

future hypolimnetic anoxia in Lake Mendota is a reduction of external nutrient loads, which aims at shifting the lake towards 

oligotrophic conditions. Further, our modelling framework detected a decadal shift in the Anoxic Factor starting in 2010, which 625 

was not replicated by our process-based model and therefore probably not driven by physical or chemical drivers, but related 

to an ecosystem shift caused by the invasive Bythothrephes longimanus. The modeling framework developed here can be 

extended by an advanced sediment diagenesis model and an uncertainty analysis, e.g. Bayesian analysis, to develop greater 

insight into effective strategies to mitigate environmental degradation. Consequently, as managers and decision makers work 

to prevent a decline in lake water quality as a result of climate change, decision support tools that support an understanding of 630 

lake dynamics over the long term are essential.  
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Figures 

 
Figure 1 Location and overview map of Lake Mendota, Wisconsin, which is located in the Yahara River catchment in southern 
Wisconsin, USA. USGS gage stations for the PIHM-Lake model and the location of the Lake Mendota monitoring buoy are placed 
in the map. Land cover was obtained sourced from the open-access US National Land Cover database.  895 
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Figure 2 Schematic overview of the modeling workflow: application of a (1) deductive model to further our system understanding 
about oxygen sink terms; replication of Lake Mendota using (2) GLM-AED2 to investigate hydrodynamic and ecosystem 
mechanisms; and application of (3) regression models to quantify the importance of ecosystem predictors on the Anoxic Factor. 900 
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Figure 3 Regression plots of the morphometric function 𝛂(z) against oxygen depletion rates for the years 1992 to 2018, which were 
calculated from temporally linearly interpolated observed data. The respective equations represent weighted linear regressions. 
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Figure 4 Comparison of Lake Mendota water temperature from observations (upper panel, white dots mark sampling events) and 905 
GLM-AED2 simulations (lower panel). 
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Figure 5 Density distributions of residuals (observed - modeled) for water temperature, dissolved oxygen, dissolved inorganic carbon 
(DIC), silica, nitrate, phosphate, ammonium and phytoplankton. The density distributions include residuals over all data points 
(over each time-step over each depth), calculated from observations minus model predictions. 910 
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Figure 6 Daily average values of Schmidt Stability, Birgean Work, internal energy and anoxic area (below 1 mg L-1) plus/minus the 
respective standard deviations (dashed lines) (internal energy is given in 10e6 J m-2). [Anoxic area units were adjusted for display.] 
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 915 

Figure 7 Dynamics of average HBR = (St+B)/B over time. A: Box-plots of HBR over the meteorological seasons, which represent 
seasonal quarters of the year, beginning in December. The summer HBR values for Lake Marion, Lake Steinsfjord, and Lake 
Wingra were taken from Kjensmo (1994). B: Scatterplot of average HBR values for each month 
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Figure 8 Stored heat dynamics and relationships to stratification strength, thermocline depth and anoxia height (hypsographic 920 
height of anoxia area in the lake above sediment). A: Time series of internal energy at the respective dates of ice off, mixing onset, 
mixing offset, stratification onset, and stratification offset. B: Scatter plot of internal energy against Schmidt Stability whereas the 
color represents the magnitude of Birgean Work. C: Scatter plot of anoxia height against Schmidt Stability. The black line represents 
the average dynamic over the course of a year with the respective months as labels. The color corresponds to the thermocline depth 
in meters above the sediment. D: Time series of daily averaged internal energies stored over different depths and Schmidt Stability). 925 
The main heat storage happens in a shallow surface layer effectively after ice off and the simultaneous onset of a mixing period. 
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Figure 9 Time-series comparison between observed (red dots) and modeled dissolved oxygen concentrations (blue lines). The fit 
criteria root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency 
(KGE). A: averaged dissolved oxygen concentrations in the epilimnion (0-4 m). B: averaged dissolved oxygen concentrations in the 930 
hypolimnion (deeper than 16 m).  
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Figure 10 Comparison of observations to GLM-AED modeled dissolved oxygen concentrations and ecosystem response. A: Contour 935 
plot of observed (upper figure, white dots mark sample events) and simulated dissolved oxygen concentrations. B: Comparison of 
simulated Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-whisker plots) over 
the period 1979 to 2018. C: Comparison of simulated Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived 
from observed data (box-whisker plots) over the period 1992 to 2009. D: Comparison of simulated Anoxic Factor (red dots) against 
interpolated range of Anoxic Factor derived from observed data (box-whisker plots) over the period 2010 to 2015.  940 
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Figure 11 Predicted against simulated summer Anoxic Factor. A: Linear model with a prediction which was done using a multiple 
linear regression model of the form: �̂� = 𝟎. 𝟐𝟒𝑬𝒑𝒊. 𝑮𝑷𝑷 + 𝟎. 𝟓𝟒𝑺𝒖𝒎𝒎𝒆𝒓. 𝑺𝒕 − 𝟎. 𝟒𝟔𝑶𝒏𝒔𝒆𝒕. 𝑺𝒕𝒓𝒂𝒕 − 𝟓. 𝟒𝟒 ∗ 𝟏𝟎!𝟏𝟕 + �̂�, where 
�̂�	𝜨B𝟎, 𝟑𝟖𝟐E. The red lines represent confidence intervals. B: Correlogram of the input data using Pearson correlation coefficients. 945 

Tables 

Table 1 Overview of investigated predictors in a linear regression model on estimating the Anoxic Factor 
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Candidate predictor Temporal period Method Unit 

Schmidt Stability Summer of year n See section ‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

J per m2 

Schmidt Stability Spring of year n See section ‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

J per m2 

Birgean Work Summer of year n See section ‘‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

J per m2 

Birgean Work Spring of year n See section ‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

J per m2 

Ratio HBR  Summer of year n See section ‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

- 

Ratio HBR Spring of year n See section ‘2.3.3 Post-Processing 

of GLM-AED2 output’ 

- 

Onset, end and duration of spring 

mixing 

Spring/summer of year n Determined by Schmidt Stability 

values (close to or at zero, indicating 

mixed conditions) 

Day of the year, 

or days 

Onset, end and duration of 

summer stratification 

Spring/summer/fall of year 

n 

Stratification was defined when 

density difference between surface 

and bottom layer was above 0.1 kg 

m-3 and surface temperature was 

above 4 °C 

Day of the year, 

or days 

End and duration of ice period Winter/spring of year n-1 

and n 

Extracted from simulation output Day of the year, 

or days 

Dissolved oxygen difference 

between mixing end and mixing 

onset in the lower layer 

Spring/summer of year n Extracted from simulation output mmol O2 per m2 d 

Dissolved organic carbon gradient 

between stratification onset and 

mixing onset in the lower layer 

Spring/summer of year n Extracted from simulation output mmol C per m2 d 

Particulate organic carbon 

gradient between stratification 

onset and mixing onset in the 

lower layer 

Spring/summer of year n Extracted from simulation output mmol C per m2 d 

Mean water temperature in the 

lower layer at the onset of 

stratification 

Summer of year n Extracted from simulation output °C 
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Total phosphorus inflow loading Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g P per day per 

m2 

Total nitrogen inflow loading Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g N per day per 

m2 

Cumulative gross primary 

production in the upper layer 

Winter/spring of year n-1 

and n 

Extracted from simulation output mmol per m2 per 

day 

Cumulative gross primary 

production in the lower layer 

Winter/spring of year n-1 

and n 

Extracted from simulation output mmol per m2 per 

day 

 
Table 2 Model performance for water temperature, dissolved oxygen, dissolved inorganic carbon, silica, nitrate, ammonium, and 
phosphate. During calibration and validation, only the total fits over all depths and time-steps were calculated. Surface layers refers 950 
to a depth of 0 m below water table, and bottom layer to a depth of 20 m below water table. Fits for surface and bottom layer during 
calibration and validation are not shown as the fit over the whole water column and over time were used. 

Variable Calibration  

(2005 – 2015) 

Validation  

(1995 – 2004) 

Total period 

 (1995 – 2015) 

 RMSE  NSE KGE RMSE  NSE KGE RMSE  NSE KGE 

Water temperature [°C] 2.26 0.87 0.92 1.78 0.92  0.96 1.96 0.91 0.94 

surface layer  1.30 0.97 0.97 

bottom layer 2.43 0.20 0.71 

Dissolved oxygen [mg L-1] 3.33 0.54 0.76 3.29 0.53 0.76 3.22 0.56 0.77 

surface layer  2.77 -0.36 0.46 

bottom layer 3.31 0.64 0.81 

Dissolved inorganic carbon [mg L-1] 25.87 -7.03 0.18 15.41 -8.65 0.20 25.92 -10.13 0.20 

surface layer       19.71 -10.79 0.22 

bottom layer       29.19 -12.84 0.15 

Silica [mg L-1] 2.83 -1.32 -4.55 1.42 -0.55 -1.77 2.33 -0.83 -3.10 

surface layer       1.61 -1.32 -6.53 

bottom layer       2.78 -0.97 -0.90 

Nitrate [mg L-1] 0.36 -0.01 0.56 0.45 -1.44 0.26 0.40 -0.40 0.44 

surface layer       0.35 -0.18 0.49 

bottom layer       0.30 0.29 0.34 

Ammonium [mg L-1] 0.60 -3.03 0.17 0.48 -3.28 0.15 0.56 -3.05 0.17 

surface layer       0.25 -1.76 0.08 

bottom layer       0.64 0.41 0.70 

Phosphate [mg L-1] 0.10 0.56 0.51 0.09 0.59 0.62 0.09 0.56 0.51s 

surface layer       0.03 0.40 0.43 

bottom layer       0.17 0.40 0.36 

 


