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Referee #1 
Referee general comment: 
Thank you very much for the opportunity to review this manuscript describing the internal (physical and biological) and 

external factors leading to inter-annual variability in the extent anoxia in Lake Mendota. This study uses a combination of 

three very different types of models to evaluate these various factors. I found this paper very interesting, very well written, and 5 

may be very useful to the scientific community. I applaud the authors in using this multi-model approach. However, I think 

two of the three models have serious flaws that need to be addressed prior to publication. 

My main concern is that one of the main takeaways from this paper (internal productivity has very limited effect on interannual 

differences in anoxia) may not be true. It may be true that physical mixing drives the overall extent of anoxia (baseline), but I 

think it is too early to say interannual variability in productivity has little affect. I think two of the models need to be reevaluated 10 

prior to making those conclusions: 

 

Referee comment: 
GLM-AED2. GLM-AED2 simulated the annual progression of anoxia very well, and simulated the importance of stratification 

driving not only the average changes in DO depletion but also much of the interannual variability in DO associated with 15 

stratification. But the model did not capture the interannual variability in surface productivity that may drive the other 

interannual variability in DO. It clearly could not reproduce the interannual variability in AF. This model had an R2 of only 

0.08 and a negative NSE. Part of the problem may be that the model is trying to simulate two very different lakes (one without 

spiny water fleas and one with them) - all with one set of coefficients (that may not even represent the lake in the first place). 

Without simulating the big biological change, I am not sure you can get there with this model. 20 

Referee suggestion: Use GLM-AED2 to only simulate one of the periods, either prior to or after the change in biology. If 
this does not improve the overall ability to predict AF, then the phytoplankton parameters may have to be adjusted. Without 
being able to predict most of the variability in AF, I really don’t see its use in this paper. 
Author response: 
We are very thankful for this comment by the reviewer, which gives us the chance to discuss the GLM-AED2 performance 25 
and hopefully improve the overall manuscript. We make two over-arching points here. The first is that a visible shift in AF 
occurred in 2010 (Fig. 10b), and this may be explained by changes in the foodweb that affect primary production and organic 
matter cycling. We have no conclusive evidence of the cause, but the shift is coincident with the invasion of the predacious 
zooplankton, Bythotrephes. We discuss this and have added it to the abstract. The second is that our model reproduces well 
the ecosystem dynamics prior to 2010, and as the reviewer suggests, the lake is likely in different states, separated by the 30 
shift that occurs in 2010. Further, we also acknowledge that the GPP is actually an important driver of the variability in 
summer anoxia (rel. importance 15 %). The main text was revised accordingly in the abstract and in the discussion: 

L27-32: The summer heat budget, the timing of thermal stratification, and the gross primary production in the 
epilimnion were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake 
Mendota. Inter-annual variability in anoxia was largely driven by physical factors: earlier onset of thermal 35 
stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of 
summer anoxia. A step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. 
Although the cause remains unknown, possible factors include invasion by the predacious zooplankton, 
Bythothrephes longimanus. 
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L441-443: We also acknowledge that a step change in the Anoxic Factor occurred in 2010 and was unexplained by 40 
our model. Although the cause remains unknown, the timing was coincident with large increases in the invasive 
zooplankton, Bythotrephes (Walsh et al., 2017). 

 
To the point about the model not capturing variability in surface productivity, we added a new figure to the Supplement: 
Figure A8 which shows the time-series comparison between observed and modeled DOC concentrations. Here, you can see 45 
that the model replicated the overall dynamics of DOC concentrations in three different depths over time, which highlights 
its ability to replicate net aquatic production in the surface layer and its contribution to dissolved organic matter. Fig. 9a of 
the main text showed that the model overestimates surface dissolved oxygen concentration. This overestimation must have a 
concomitant increase in organic matter as a consequence of photosynthesis, and in this case is particulate organic matter 
(POM). Considering our proxy for phytoplankton biomass is well predicted (Fig. 5), this suggests our over-estimate of 50 
primary production results in increase in POM that is exported from the epilimnion to the hypolimnion. Unfortunately, we do 
not have observed POM to calibrate this part of the model, but we feel it is likely that our model has overestimated the 
contribution of primary production to hypolimnetic organic matter and subsequent oxygen depletion. This underlies our 
conclusion that primary production may be less important to inter-annual variability than physical factors. We added these 
sentences to the main text to state this: 55 

L481-487: Although the model replicated well the long-term DOC dynamics (Supplement Figure A8), it also 
overestimated surface layer dissolved oxygen concentrations compared to the observed data. This overestimation 
must have a concomitant increase in organic matter as a consequence of photosynthesis, and in this case in POC. 
Considering our proxy for the dynamics of phytoplankton biomass is reasonably well predicted (Fig. 5), this 
suggests our over-estimate of primary production results in increase in POC that is exported from the epilimnion to 60 
the hypolimnion. Unfortunately, we do not have observed POC to calibrate this part of the model, but we feel it is 
likely that our model has overestimated the contribution of primary production to hypolimnetic organic matter and 
subsequent oxygen depletion. 

 

 65 
Figure A8 Time-series comparison between observed (red dots) and modeled dissolved organic carbon concentrations (blue lines). 
The fit criteria root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of 
efficiency (KGE). 
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Regarding the capture of interannual anoxia dynamics: Yes, it seems there was a shift in the ecosystem happening beginning 
in 2010 with higher annual Anoxic Factors. We changed Figure 10 to also show the comparison between simulated Anoxic 70 
Factor and the observed data for the periods pre-2010 and post-2010. We also recalculated goodness of fit separately for the 
two time periods. For the total time period (Fig 10b, 1992-2015 when observed data was available) the model achieved an 
RMSE of 7.12 d, NSE of -0.22, KGE of 0.26 and r of 0.28 showing that on average it was a week off in replicating the 
Anoxic Factor, but the KGE and r values proved that the general dynamics and interannual variability could be replicated. 
When comparing with the pre-2010 period (Fig 10c), the model achieved an RMSE of 6.79 d, an NSE of -0.25, an KGE of 75 
0.44 and r of 0.45, which highlights the model’s ability to replicate anoxia dynamics in this period (please note that the 
model was calibrated for the period 2005-2015 which proves, at least in our opinion, the success of the calibration if there 
indeed was an ecosystem shift). When comparing with the post-2010 period (Fig 10d), the model achieved an RMSE of 8.04 
d, an NSE of -31.99, an KGE of 0.21 and r of 0.62. Here, the model is biased as the observed Anoxic Factor is higher in all 
years except 2013. Still, the interannual variability expressed by the correlation coefficient r was captured very well by the 80 
model. The p-value for the pre-2010 period of the correlation coefficient was p=0.0591. For the post-2010 period, the p-
value = 0.19, reducing our confidence in the model for this shorter time period. The visual inspection of these plots (10c and 
10d) highlights that they represent different ecosystem states, as there is step-change in the Anoxic Factor starting in 2010.  
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Figure 1 Comparison of observed to modeled dissolved oxygen concentrations and ecosystem response. A Contour plot of observed 85 
(upper figure, white dots mark sample events) and simulated dissolved oxygen concentrations. B Comparison of simulated Anoxic 
Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-whisker plots) over the period 1979 
to 2018. C Comparison of simulated Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived from observed 
data (box-whisker plots) over the period 1992 to 2009. B Comparison of simulated Anoxic Factor (red dots) against interpolated 
range of Anoxic Factor derived from observed data (box-whisker plots) over the period 2010 to 2015.  90 

Therefore, we focused our regression analysis on the pre-2010 period. First, we inspected if the distributions of the observed 
and modeled Anoxic Factors were similar by investigating the null hypothesis that they are identical populations as 
determined by the Wilcoxon test (see attached figure below). This test achieved a non-significant p-value of 0.13, indicating 
strong overlap in populations, and therefore are comparable. We added this figure as Figure A9 to the Supplement A of the 
manuscript. Also, a similar comparison of the Anoxic Factors for the post-2010 period revealed that observed and modeled 95 
distributions were significantly different with a p-value of 0.032. This effectively highlights that we can talk about “two 
different lakes here”. We added these sentences to the main text in the results and in the discussion: 

L412-421: The simulated Anoxic Factor over the total time period averaged 56.7 ± 5.2 days with an RMSE of 7 
days, an NSE of -0.22, and an KGE of 0.26 (correlation coefficient r = 0.28). The model’s underestimation of the 
recent positive trend of Anoxic Factors starting in 2010 was investigated by quantifying the fits during two periods: 100 
1992-2009 (Figure 10C) and 2010-2005 (Figure 10D). In the pre-2010 period (1992-2009), the model achieved an 
RMSE of 6.79 days, an NSE of -0.25, an KGE of 0.44 and r of 0.45 for Anoxic Factor predictions. In the post-2010 
period (2010-2015), the model achieved an RMSE of 8.04 days, an NSE of -31.99, an KGE of 0.21 and r of 0.62. A 
subsequent Wilcoxon signed-rank test highlighted, that the observed average and modelled Anoxic Factors from the 
pre-2010 period showed no significant differences between the two distributions, suggesting they belong to the 105 
same population (p-value = 0.13, Supplement Figure A9), whereas the distributions of observed mean Anoxic 
Factors and modeled ones after 2010 were significantly different (p-value = 0.032, Supplement Figure A9). 
 

 
Figure A9 Box-whisker plots of observed to modeled Anoxic Factor for (a) the period 1992-2009 and (b) for the period 2010-2015. 110 

We discussed novel insights into these two distinct periods by expanding this paragraph 
L498-518: The model replicated the maximum anoxia event in 1998 but struggled to replicate the minimum in 
2002. The discrepancies of 5-10 days between the simulated and observed range of the Anoxic Factor beginning in 
2010 are related to an increased spatial as well as temporal extent of summer anoxia (Supplement Figure A10), 
which was not captured by the model. This was highlighted by the statistical analysis of the pre-2010 (1992-2009) 115 
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and post-2010 (2010-2015) Anoxic Factors. Prior to 2010, there were no significant differences between observed 
and modeled distributions (p=0.13); whereas, after 2010, the observed distribution was significantly higher than the 
modeled distribution (p=0.032) (Supplement Figure A9). For simplicity and due to limitations in Lake Mendota 
monitoring data post-2010, we focused the regression analysis of the Anoxic Factor in this study only on the pre-
2010 period.  120 
The change in Anoxic Factor post-2010 may be due to an ecosystem shift in Lake Mendota that began in 2009, 
when the invasive spiny water flea (Bythothrephes longimanus) was detected in surprisingly high densities in the 
lake (Walsh et al., 2016b, 2018). Spiny water flea effectively became the dominant Daphnia grazer, causing 
historically low Daphnia biomass in 2010, 2014 and 2015 (Walsh et al., 2016a) and reducing water clarity. The 
spiny water flea may have increased organic matter supply to the hypolimnion by grazing down certain 125 
phytoplankton. Mendota’s Daphnia population historically consisted of Daphnia pulicaria and the smaller-bodied 
Daphnia galeata mendotae, who compete differently with spiny water flea. D. mendotae biomass increased in 
spring after the spiny water flea invasion (Walsh et al., 2017), grazing on phytoplankton and probably accelerating 
organic matter mineralization before stratification onset. This could be one potential cause that contributed to the 
increase in hypolimnetic oxygen depletion after 2010. Our GLM-AED2 model could not replicate this food web 130 
change, and subsequent shift in anoxia dynamics, due to limitations of the numerical model, i.e., GLM-AED2 had 
constant ecological parameters over the entire modeling period and did not have zooplankton dynamics instantiated. 
We envision future monitoring and modeling studies that focus entirely on ecosystem differences and shifts 
between the pre-2010 and post-2010 periods of Lake Mendota. 

Further, by analyzing the autocorrelation function (ACF) of the observed mean Anoxic Factors and the modeled ones (see 135 
figure below), we concluded that there is no autocorrelation between annual Anoxic Factors. It may be the case that the 
interannual variation in the Anoxic Factor (investigated by ACF) is effectively random, which does not mean that the Anoxic 
Factor is necessarily random, but that the variation in external drivers may be random. Still, our model’s simulated Anoxic 
Factors are from the same distribution as the observed mean values highlighting the model’s ability to capture the overall 
distribution of anoxia. Further, the fit metrics (highlighted in revised Figure 10) show that the model can capture inter-annual 140 
variability significantly prior to 2010, even if the average value is off by about a week.  

 
We therefore followed the reviewer’s suggestion to only include the pre-2010 period for the regression analysis, which is 
discussed in the next comment and response block: 
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L314-317: Only model output and model driver data from the period 1980-2009 were used in the regression 145 
analysis. The first year, 1979, was dropped from the investigations due to a lack of prior winter information. The 
years 2010-2015 were dropped due to an apparent ecosystem shift (see Section ‘3.4 Oxygen Dynamics’). 

 
Referee comment: 
Regression model. I think there are four flaws in the approach used here: 1. Not including loading and in-lake variables that 150 

would potentially describe interannual variability in productivity. 2) Including modeling results in a regression analysis. Given 

that the model does not simulate AF, it appears that using modeling results in the regression may just add noise to the regression 

or reinforce parameters that are in the model. 3) Using one correlation and one regression to simulate two very different types 

of lakes, and 4) Using way too many variables in a single multiple regression equation. Even though it appears based on 

stepwise regression all of the variables are significant, I think it is way over parameterized. Several studies have shown that 155 

with regressions using very few observations, many variables can look significant – with each variable coming in to describe 

one or a few unique observations. A good rule of thumb is to keep only 1 variable in a multiple regression for each 8-10 

observations. So for this regression with 37 (and actually only 28 monitored years) observations, there should only be maybe 

3 independent variables. 

Referee suggestion: 1) include variables like actual loading rather than concentrations, include variables that describe inlake 160 

productivity (total phosphorus, chlorophyll, Secchi). I am not sure what GPP actually represents. If GPP does describe the 

changes in chlorophyll, it should be stated. I also do not think it is a good idea to include things describing DO (like maximum 

height of anoxia) when you are trying to predict AF (this can get to circular reasoning) 2) Only use the 28 actual observations 

in the correlations and regressions. 3) Look at the correlations for each part of the record (different biological conditions) 

separately. 4) Stick to correlations and not use regressions. Or if you do look at regressions start simple and add variables only 165 

significant when you consider the change in AIC. 

Author response: 
Thank you for your very thoughtful explanation of the regression analysis’ flaws and your very helpful suggestions how to 
overcome these.  
1) We changed the inflow variables, total phosphorus inflow concentration and total nitrogen inflow concentration (both in 170 

g per m2), to total phosphorus inflow loading and total nitrogen inflow loading (both now in g per d per m2 of lake 
area). These loading variables were included in the model to assess the importance of external hydrological drivers for 
the extent of anoxia. To capture in-lake productivity variables, our regression included the cumulative gross primary 
production in the surface and bottom lake that represent the total sum of photosynthesis, hence expressed as carbon 
uptake, of each functional phytoplankton group, and scales directly with in-lake Chl-a concentrations. Further, our 175 
regression also includes the temporal change of dissolved as well as particulate organic carbon in the bottom layer from 
stratification onset to fall mixing onset. To make it clearer what GPP represents, we added this sentence to the main text: 

L300-308: Here, GPP represents the sum of all functional phytoplankton group’s photosynthesis rates parameterized 

as the total carbon uptake: 

𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −180 

𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌] 

 (7) 
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where the carbon uptake 𝑓!"#$%&
'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the photorespiratory 

loss (1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a minimum function taking into 

account limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), phosphorus 𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 185 

𝜙62'()(𝑅𝑠𝑖)} (Hipsey et al., 2017; adapted from Hipsey and Hamilton, 2008). As the GPP is the main model output 

variable for phytoplankton dynamics, it scales directly with biomass and Chl-a concentrations. 

Following the reviewer’s suggestion, we removed the maximum height of anoxia in the regression analysis. The 
variable was removed from all paragraphs (2.3.4 Regression Model, Table 1) 

2) For the regression we only used modeled results and no actual observed data. This was done to identify internal 190 
connections in the numerical model and its mathematical equations. Similar analyses of modeled output and model 
driver data were done in Farrell et al., 2020; Snortheim et al., 2017; Ward et al., 2020. We added these sentences to the 
Methods section: 

L279-282: All candidate predictors were either modeled output or boundary data for the model. This enabled the 
regression analysis to identify internal connections in the numerical model itself (similar analyses of modeled 195 
output and driver data were done in Snortheim et al., 2017; Ward et al., 2020; Weng et al., 2020). 

3) Following our reasoning in the first comment and response section, and the suggestions by the reviewer we revised our 
regression analysis by only using model data from 1980-2009. This excludes the first year as warm-up period and the 
post-2010 period due to different ecosystem conditions (probably spiny water flea invasion). We added additional 
discussions regarding the ecosystem shift (see response to first comment). 200 

4) Following the suggestion of the reviewer, we re-did the regression analysis with 21 candidate predictors using model 
output and model drivers from 1980-2009 (we removed the anoxia height from the sediment) using the Boruta algorithm 
(random forest classifier). This analysis identified 10 variables as important. Subsequently, we did a step-wise analysis 
of the AIC of each model. This resulted in the identification of seven predictors: HBR ratio during spring, HBR ratio 
during summer, Birgean Work in spring, epilimnetic GPP, Schmidt Stability in summer, Birgean Work in summer, and 205 
onset date of stratification. The AICs of each model with any of these variables removed did not result in significant 
changes (this table was added to the manuscript as Table A3): 
 
Table A3 Step-wise model-selection by removing predictors of the multiple linear regression model using seven predictors. 

Predictor AIC 

HBR ratio during spring (Spring.HBR) -61.820 

HBR ratio during summer (Summer.HBR) -60.529 

Birgean Work during spring (Spring.Birgean) -60.189 

Gross primary production in the epilimnion (Epi.GPP) -58.952 

Schmidt Stability during summer (Summer.St) -51.829 

Birgean Work during summer (Summer.B) -50.848 

Onset of stratification (Onset.Strat) -42.900 

 210 
We reduced the final model to only three predictors (as the reviewer suggested) including onset date of stratification, 
Schmidt Stability in summer (as the AIC was similar to Birgean but the concept of Schmidt Stability is more generally 
known) and epilimnetic GPP. The text in “2.3.4 Regression Model” was accordingly changed to: 
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L321-330: This multiple linear regression model to predict Anoxic Factor included seven variables: HBR ratio during 

spring, HBR ratio during summer, Birgean Work in spring, epilimnetic GPP, Schmidt Stability in summer, Birgean 215 

Work in summer, and onset date of stratification. We reduced the complexity of the final multiple linear regression 

model to only three predictors of Anoxic Factor: onset date of stratification, Schmidt Stability in summer, and 

epilimnetic GPP. Schmidt Stability was included instead of Birgean Work as the resulting AIC of both models were 

similar, but the concept of Schmidt Stability is more commonly used in the limnological research community 

(Supplement Table A3). The final multiple linear regression model was configured as (scaled predictors, adjusted R2 220 

= 0.84, p < 0.001 Supplement Table A4). 

𝑦 = 0.24𝐸𝑝𝑖. 𝐺𝑃𝑃 + 0.54𝑆𝑢𝑚𝑚𝑒𝑟. 𝑆𝑡 − 0.46𝑂𝑛𝑠𝑒𝑡. 𝑆𝑡𝑟𝑎𝑡 − 5.44 ∗ 10789 + 𝜖,  (8) where 

𝜖	𝛮(0,38:). 

The results text in “3.5 Regression Model” was changed to: 

L423-430: We included in total 3 predictors in our final multiple linear regression which were deemed important by 225 

the Boruta algorithm and stepwise linear model investigations using AIC for the period 1980-2009: Schmidt Stability 

during summer, the onset date of stratification, and gross primary production in the epilimnion (Supplement Table 

A4). 

The linear model showed a good agreement between simulated and predicted Anoxic Factor (Figure 11 A, Supplement 

Table A4). The Anoxic Factor was positively correlated to the summer Schmidt Stability (r = 0.72, Figure 11 B) and 230 

the gross primary production in the epilimnion (r = 0.48). It was negatively correlated to the onset of stratification (r 

= -0.78, Figure 11 B). 

 

We changed Supplement Table A3 (formerly A2) and Figure 11 accordingly: 
Table A3 Most parsimonious multiple linear regression model (adjusted R2 = 0.84, p < 0.001) explaining the summer Anoxic Factor. 235 

 Estimate Std. Error t value Pr(>|t|) Rel. importance [%] 

Intercept -1.04e-15 5.70e-2 0.00 1.00  

Schmidt Stability during summer 

(Summer.St) 

5.386e-1 7.920e-2 6.800 3.23e-7 43 

Onset of stratification (Onset.Strat) -4.581-1 9.006e-2 -5.086 2.68e-5 42 

Gross primary production in the epilimnion 

(Epi.GPP) 

2.436e-1 8.327e-2 2.926 0.00704 15 
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Figure 2 Predicted against simulated summer Anoxic Factor. A Linear model with a prediction which was done using a multiple 
linear regression model of the form: 𝒚̂ = 𝟎. 𝟐𝟒𝑬𝒑𝒊. 𝑮𝑷𝑷 + 𝟎. 𝟓𝟒𝑺𝒖𝒎𝒎𝒆𝒓. 𝑺𝒕 − 𝟎. 𝟒𝟔𝑶𝒏𝒔𝒆𝒕. 𝑺𝒕𝒓𝒂𝒕 − 𝟓. 𝟒𝟒 ∗ 𝟏𝟎!𝟏𝟕 + 𝝐̂, where 
𝝐̂	𝜨A𝟎, 𝟑𝟖𝟐D. The red lines represent confidence intervals. B Correlogram of the input data using Pearson correlation coefficients 240 

We changed the following sentences in the main text to reflect these changes: 

L434-438: The Schmidt Stability during summer (rel. importance of 43 %) as well as the timing of stratification (rel. 

importance of 42 %) all influence Anoxic Factor, and are all driven mainly by atmospheric drivers and heat convection 



 

11 
 

throughout the water column. The most important predictor of Anoxic Factor directly related to biological processes 

is gross primary production in the epilimnion (rel. importance of 15 %), Supplement Table A4). 245 

L596-599: Physical metrics – summer Schmidt Stability and onset date of stratification – were the most important 

predictors driving the summer Anoxic Factor. Although the gross primary production was still influential in affecting 

year-to-year variability of hypolimnetic anoxia, biological control over the Anoxic Factor was limited in our study 

period. 

 250 

 

Referee comment: 

My other main concern is that the deductive model seems to say that it is the inlake productivity that is driving the interannual 

variability in AF, and the other models seem to be saying it is driven by physics and sediment oxygen demand. Maybe with 

further analysis the models will come to more similar conclusions. If I am wrong with this interpretation, it should be explained 255 

better. 

Author response: 
The deductive model itself can only determine between two sources of depletion, either a volumetric one or an area sink. It 
cannot distinguish between biological or physical drivers of these depletion causes. Although the deductive model states that 
the volumetric sink is higher than the area sink, this is only of importance for the in-lake biological drivers (as the area sink 260 
depends on in-situ biogeochemical conditions). In the manuscript we state that the anoxia variability over a summer season 
is mainly driven by changes in the physical drivers, whereas we acknowledge that oxygen depletion itself (as shown in the 
regression model) is a function of biological and chemical activity. The deductive model itself does not consider any 
physical drivers, even diffusion is neglected. We added these lines to the main text to clarify our message: 

L529-532: We note that the simple deductive model itself can only differentiate between two sources of depletion 265 
and neglects any physical transport drivers of oxygen, e.g., diffusion. Therefore, the results of the deductive model 
only add direct information to the actual depletion process of dissolved oxygen, but not of the dominant drivers. 

 

Referee comment: 

1. Line-125. Very little information is given on the actual loading. Can these estimates be compared with others? 270 

Author response: 
Thank you. We compared our loadings with literature values, especially regarding phosphorus. Previous estimates range 
from about 15-67 t of total phosphorus (TP) per year (Kara 2011). Our estimates are at the higher end of this range. There is 
a concern that previous estimates did not fully account for loads of adsorbed phosphorus (hence, phosphate bound on 
sediment), because of the importance of extreme storm events on particulate loads (Carpenter 2017). To accommodate for a 275 
potential underestimation of TP loads, we added to the inflow boundary condition the adsorbed phosphate variables, which 
was set roughly equal in magnitude to non-adsorbed phosphorus. This puts our estimates of total P load near the upper range 
of previous estimates. Bennett (1999) estimated the long-term average annual TP input with 34 t P. Our Yahara inflow had 
an average annual TP load of about 25.3 t/y and ranged between 2.69 to 73.09 t/y over the period 1979-2015. Due to the use 
of a hydrological model, our inflows accounted for a closed water balance and included near-lake groundwater/spring 280 
inflows. Our average annual load of 25.3 t/y is slightly higher than the loadings by of Lathrop (2009). We added these lines 
to the main text: 

L136-144: To provide information regarding adsorbed soluble reactive phosphate, we doubled measured total 
phosphorus (TP) concentrations and applied specific ratios to individual phosphorus forms (Farrell et al., 2020; 
Snortheim et al., 2017; Weng et al., 2020). This put our estimates of TP near the upper range of previous load 285 
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estimates. Bennett et al., (1999) estimated the long-term average annual TP load to be about 34 t, whereas our 
average annual TP load (with adsorbed phosphate) was about 50.6 t and ranged between 5.3 to 146.1 t (1979-2015). 
Our average annual TP load (without adsorbed phosphate) was about 25.3 t and ranged between 2.7 to 73.1 t (1979-
2015), which is similar to previous estimates between 15 to 67 t (Kara et al., 2012). By doubling our TP by adding 
adsorbed phosphate, we accommodate a potential TP load underestimation due to the importance of extreme storm 290 
events on particulate loads (Carpenter et al., 2018).  

Further, we checked our derived annual TP loadings using the Vollenweider model by assuming winter TP concentrations, 
TPlake, of 140 ug/L, a residence time, RT, of 4 years, P retention, 𝜎, of 0.7, and a mean depth, zmean, of 12.8 m: 

𝑇𝑃1$%& =
𝐿

𝑧/&$; V
1
𝑅𝑇 + 𝜎W

 

𝐿 = 0.14	𝑔/𝑚3	(12.8	𝑚	(0.25	𝑦78 	+ 	0.7	𝑦78)) = 1.70	𝑔/𝑚2/𝑦 295 
By multiplying L with the lake area of Lake Mendota (approx. 39.61 km2), the Vollenweider model quantifies the annual 
load for steady-state conditions with 67 t/y, which is slightly above our average annual TP load (with adsorbed phosphate) of 
50.6 t/y. 
 

Referee comment: 300 

2. Line 128 – It says here to look at Weng et al. 2020 for a description of the loading regression, but when I look at that paper, 

I don’t see any more than they used a regression, with no statistics either for the monitored sites or the watershed modeling. 

Author response: 
Thank you for pointing this out. Yes, there are no previous publications describing the regression fit analysis. We described 
in the previous response that our TP loads were near the upper range of previous estimates due to our addition of adsorbed 305 
phosphate (due to extreme storm events and land erosion). For the regression analysis between discharges and nutrient 
concentrations, we used the state-of-the-art loadflex R-package (https://github.com/USGS-R/loadflex, Appling et al., 2015). 
As monitored TP estimates are rare, a comprehensive statistical analysis is challenging. The attached figure visualizes the fit 
for 8 years (2008-2015), which was satisfactory for most years. USGS monitoring began Oct 2008, so a comparison cannot 
be made for the entire year. Overall, our model tended to overestimate nutrient loads into the lake. 310 
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Referee comment: 315 

3. Line 136 – You mention other data earlier years, who collected that? 

Author response: 
The additional data points were measured by Patricia Soranno for her thesis. We added that information in the sentence: 

L149: The dissolved oxygen data set was complemented with historical measured dissolved oxygen data from 1992 
to 1994. 320 

And we acknowledged her in the Acknowledgement section “We are thankful for supplementary dissolved oxygen field data 
from 1992-1994 by Patricia Soranno.” Her data does not officially belong to the NTL-LTER monitoring data set of Lake 
Mendota, but it gave us valuable early spring-summer information regarding oxygen dynamics. 
 

Referee comment: 325 

4. Line 159 – See comments above about mixing real observations with modeled data. 5. Line 190 – There are lots and lots of 

parameters in AED, how did you narrow it down to the ones to start with, you need to start somewhere? 

Author response: 
We used the Morris Sensitivity Method to identify crucial parameters for the calibration. For this analysis we included the 
main model parameters regarding sediment flux and in-water biogeochemical reactions, mainly, of the main nutrient 330 
modules: oxygen, carbon, silica, nitrogen and phosphate. For the initial values, we chose starting values either from the 
AED2 webpage (https://aed.see.uwa.edu.au/research/models/aed/modules.html, default values, or values inside the typical 
range) or from previous modeling work on Lake Mendota (see Snortheim et al. 2017). We added this sentence to the main 
text for clarification: 

L231: Initial model parameter values were taken from default parameter values and ranges, as well as literature 335 
values (Hipsey et al., 2017; Snortheim et al., 2017). 

 

Referee comment: 
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6. Line 215-Can you expect to capture interannual variability in productivity without having the phytoplankton simulate things 

specific to Lake Mendota? 340 

Author response: 
This is a good point, thank you for raising this. Although we did not calibrate the functional phytoplankton groups 
specifically to Lake Mendota, we still checked simulated Chl-a and Secchi depth values, as well as timings of phytoplankton 
bloom peaks. In general, the model did replicate the seasonal succession well. We’ve attached the following figure that 
compares the observed to modeled Secchi depths for the reviewer to inspect. The summer Secchi depths from the model are 345 
similar to the observed ones, highlighting that the ecosystem dynamics during anoxia are similar. The gray boxes highlight 
the time period from day of the year 150 to day of the year 180 (June to end of August): for the majority of years the model 
can replicate the Secchi depth dynamics of the June period., whereas generally it underestimates the initial summer Secchi 
depth.  
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  350 
 

Referee comment: 

7. Line 260 – My bet is that anoxia does occur under the ice, but you can’t get that from one measurement during the winter. 

Author response: 
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Yes, measurements and the monitoring have shown that there is anoxia under the ice in Lake Mendota, but it varies a lot. We 355 
agree that we cannot determine the full anoxia extent under ice with only one or two measurements per season. We changed 
sentence the sentence accordingly to: 

L276: We quantified the seasonal Anoxic Factor only for the summer season. 
 

Referee comment: 360 

8. Line 267 – Loads would be better than concentrations. Concentrations generally do not vary much from year to year. If you 

did really use loads, you should state that. But you should describe this better. 

Author response: 
We changed the inflow variables, total phosphorus inflow concentration and total nitrogen inflow concentration (both in g 
per m2), to total phosphorus inflow loading and total nitrogen inflow loading (both now in g per d per m2). These loading 365 
variables were included in the model to assess the importance of external hydrological drivers for the extent of anoxia. We 
changed the information in Table 1 accordingly:  

Total phosphorus inflow loading Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g P per day per m2 

Total nitrogen inflow loading Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g N per day per m2 

 
 

Referee comment: 370 

9. Line 273 – See comments above. 

Author response: 
Please see our response above. 
 

Referee comment: 375 

10. Line 278- Since Gross primary productivity (GPP) is your only in-lake productivity term, you should describe this in more 

detail. If this is directly related to chlorophyll, maybe this addresses some of my concerns. 

Author response: 
Thank for raising this point. GPP (gross primary productivity) in the lake is the cumulative photosynthesis, represented by 

cumulative carbon uptake per time step, of all functional phytoplankton groups. Therefore, it scales directly with the simulated 380 

Chl-a output. We clarified this in the main text: 

 

L300-308: Here, GPP represents the sum of all functional phytoplankton group’s photosynthesis rates parameterized 

as the total carbon uptake: 

𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −385 

𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌] 

 (7) 
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where the carbon uptake 𝑓!"#$%&
'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the photorespiratory 

loss (1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a minimum function taking into 

account limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), phosphorus 𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 390 

𝜙62'()(𝑅𝑠𝑖)} (Hipsey et al., 2017; adapted from Hipsey and Hamilton, 2008). As the GPP is the main model output 

variable for phytoplankton dynamics, it scales directly with biomass and Chl-a concentrations. 

 
 

Referee comment: 395 

11. Line 281 – Consider dropping this whole paragraph. 

Author response: 
Although we understand the reasoning behind dropping this paragraph as the same results could probably be achieved by 
either starting with a simple linear regression model and extending it, or by step-wise analysis of AIC,  we decided to keep 
the Boruta algorithm and analysis in the manuscript. This method allows us to analyze 21 potential predictors in a 400 
comprehensive framework before reducing the final number of important predictors by step-wise analysis. 
 

Referee comment: 

12. Line 306 – The major conclusion of the deductive model says that water column respiration controls oxygen depletion, yet 

everything else seems to point to physics. Am I missing something here?? Is water column respiration the cause and physics 405 

drives the variability in this? More explanation is needed. 

Author response: 
Please see our response above regarding the limitations of the deductive models and its incapability to acknowledge physical 
drivers. 
 410 

Referee comment: 

13. Line 322 – Please give the stats for DO. This is really what matters in this paper, especially in the part that varies from 

year to year. 

Author response: 
We agree, thank you. We added these sentences to the main text: 415 

L356-360: The simulated dissolved oxygen concentrations in the whole water column achieved an RMSE of 3.22 
mg L-1, an NSE of 0.56, and an KGE of 0.77. Here, the average fits were better in the surface layer (RMSE of 2.77 
mg L-1) compared to the bottom layers (RMSE of 3.31 mg L-1), whereas the temporal dynamics (as expressed in 
NSE and KGE) were slightly better in the bottom layer (an NSE of 0.64, KGE of 0.81) compared to the surface 
layer (NSE of -0.36, KGE of 0.47). 420 

Further, the discussion of the oxygen fit has its own subparagraph in “3.4 Oxygen Dynamics” where we state that: 
L405-409: Dissolved oxygen dynamics, including the spatial extent of oxygen depletion in the water column, and 
the timing of summer anoxia periods, were replicated by the GLM-AED model (Figure 9A-B); although the model 
overestimated spring and summer time surface oxygen concentrations due to a higher net ecosystem production. 
The depth-averaged fit criteria of dissolved oxygen concentrations were similar to a recent study from Farrell et al. 425 
(2020) in which the RMSE were 1.88 mg/L and 2.49 mg/L in the epilimnion and hypolimnion, respectively, of a 
GLM-AED model calibrated for Lake Mendota. 
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Referee comment: 

14. Line 333 – Reorder this paragraph to put the peaks later when you talk about summer. 430 

Author response: 
We agree. We moved the sentence to a later paragraph and combined it with the description of the annual course of Schmidt 
Stability: 

L395: Schmidt Stability peaked on average in August at approx. 720 J m-2 (Figure 6), followed by a peak in the 
Birgean Work at approx. 1250 J m-2. 435 

 

Referee comment: 

15. Line 345 – This paragraph could probably be deleted. 

Author response: 
As the main take-away message of our manuscript is related to physical drivers, we decided to keep this short paragraph 440 
describing the deep-water stagnancy in the manuscript. By comparing the additional energy demands of Lake Mendota with 
other similar sized lakes, the reader gets valuable information regarding the lake’s energy budget, and potential conclusions 
to the anoxia drivers of similar lake systems. 
 

Referee comment: 445 

16. Line 370 – It says the model captured annual anoxia events. Yes it described the annual development, but right now it does 

not seem to have any interannual capabilities?? 

Author response: 
We quantified the correlation coefficient for the Anoxic Factor with r = 0.28 (total period), r = 0.45 (pre-2010) and r = 0.62 
(post-2010), see also Figure 10. Especially for the pre-2010 period the p-value of the correlation coefficient was p=0.0591, 450 
which was slightly above the significance level. Overall, this highlights the model’s overall ability to predict interannual 
changes and dynamics.  
 

Referee comment: 

17. Line 374 – See above. 455 

Author response: 
See response above. 
 

Referee comment: 

18. Discussion – Need to tie all three model results together better. Right now two say physics and one says productivity. 460 

Author response: 
We disagree that two models point to physical drivers and one to biological ones. The deductive model distinguished the 
main oxygen consumption as either being a volumetric or an area sink term. This information was used to set up the 
sediment oxygen demand in the GLM-AED2 model. The results of the calibrated GLM-AED2 model were then used in a 
regression analysis to identify internal connections of the numerical model and its mathematical equations. This confirmed 465 
that in the process-based GLM-AED2 model three variables were important predictors of anoxia and its interannual 
variability. The deductive model itself does not consider any physical drivers (see responses above please).  
 

Referee comment: 

19. Line 394 – Although I completely agree with you, I am not sure where this comes from given the model results. 470 
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Author response: 
The statement regarding that […] Biology matters but its interannual dynamics are not that influential […]” originates from 
the regression analysis. This analysis highlighted GPP as one of the most influential terms in projecting the variability of 
anoxia in Lake Mendota, but not as influential as physical variables (GPP only explained 15 % of the interannual variance of 
the Anoxic Factor).  475 
 

Referee comment: 

20. Line 420 – Again I agree with you, but other than one variable in seven in the regression, I don’t know where this comes 

from. Need to describe this variables importance. 

Author response: 480 
As GPP is an ecosystem-scale metric that represents phytoplankton carbon uptake, net aquatic primary production as well as 
ecosystem respiration it surely highlights the biological control over Anoxic Factor, even if the regression deemed physical 
variables as more important. 
 

Referee comment: 485 

21. Line 425 – Maybe the lack of relations is due to using loading concentrations rather than actual loads. This is what I think 

the methods say. 

Author response: 
We changed the inflow parameters of total phosphorus and total nitrogen from concentrations to loadings and still the effect 
of anoxia is low. This is probably due to Lake Mendota’s long water residence time of approx. 4 years. 490 
 

Referee comment: 

22. Line 433 – Is it loads or concentrations. If it is concentrations, that wouldn’t surprise me at all. It is not the annual variations 

in concentrations that drive things, it is the difference in loads. 

Author response: 495 
See point above.  

 

Referee comment: 

23. Line 440 - This could be an important point, maybe there is so much oxygen consumption in the bottom, that it dwarfs any 

water column consumption. But this disagrees with findings of the other models. 500 

Author response: 
We discussed the sediment oxygen demand in the main text: 

L519-529: The simple deductive model established that the volumetric oxygen sink (i.e. water column oxygen 
demand) is consistently higher (on average about four times higher) than the sediment oxygen sink. The volumetric 
sink in lakes has been found to be strongly dependent on the trophic state of the lake, whereas the sediment sink is 505 
not (Rippey and McSorley, 2009). Eutrophic lakes tend to have high volume sinks that reach maxima of about 0.23 
g m-3 d-1 (Rippey and McSorley, 2009) similar to the average volume sink of 0.16 g m-3 d-1 quantified by the 
deductive model for Lake Mendota. This finding is confirmed by the works of Conway (1972) who found that the 
high hypolimnetic oxygen demand of Lake Mendota was driven by algae decomposition, originating from the 
surface layer. Although eutrophic lakes tend to have a high sediment oxygen demand, the specific values can range 510 
from 0.3 g m-2 d-1 (Romero et al., 2004; Steinsberger et al., 2019) to extreme values of 80 g m-2 d-1 (Cross and 
Summerfelt, 1987), most studies measured or applied a value between 1 to 4 g m-2 d-1 (Mi et al., 2020; Veenstra 
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and Nolen, 1991). The sediment oxygen demand calculated by our deductive model of 0.04 g m-2 d-1 was closer to 
the average value of approx. 0.08 g m-2 d-1 measured by Rippey and McSorley (2009) on 32 lakes. 

In our numerical model the sediment oxygen demand (SOD) is replicating the volumetric and area sink as explained in the 515 
“Methods” section. Also, the model SOD is represented over the whole vertical axis (sediment area per volume for each grid 
cell) instead of a stagnant bottom layer only near lake’s bottom. The results of the deductive model did not confirm a very 
high SOD compared to other eutrophic lakes, see extreme values in Cross and Summerfelt (1987) of up to 80 g per m2 per d. 
 

Referee comment: 520 

24. Line 445. The apparent changes caused by the Spiny water flea may be totally confounding any correlations, regressions, 

and your GLM-AED2 modeling. You may have to stick to one of the periods to really describe the effects of physics vs 

internal. Or have two different models. 

Author response: 
See our initial response please. We described the Anoxic Factors for the pre-2010 and post-2010 periods in more details and 525 
focused our regression analysis only on the pre-2010 period. 
 

Referee comment: 

25. Line 472. Rather than implementing a different type of dynamic model, maybe better capturing change in productivity and 

clarity, will help in describing the physics. 530 

Author response: 
We agree that a better replication of changes in ecosystem-scale metrics like productivity or even water clarity would 
improve the simulations a lot. Still, water quality models are generally way overparameterized and have problems regarding 
equifinality. The occurrence of tiny water flea has proven that ecosystem changes will have strong effects on other 
ecoysystem characteristics like anoxia. Therefore, even the best calibrated fixed water quality model will have problems 535 
replicating a dynamic ecosystem. Further, our monitoring campaigns do not capture important water quality variables on a 
high temporal scale, e.g. daily, which generates further uncertainty. Therefore, in our opinion an improvement of the 
hydrodynamic calculations for example by using a state-of-the-art turbulence closure scheme is the most applicable approach 
to improve the simulations in the near future.  
 540 

Referee comment: 

26. Line 481 – you didn’t calibrate the biological parameters, so this should be rewrit-ten. 

Author response: 
We calibrated physical as well as chemical parameters in GLM-AED2 but did not modify the biological parameters of the 
functional phytoplankton blooms. As these functional variables represent multiple phytoplankton species, a direct calibration 545 
would potentially result in an over-calibration of the model for specific time periods, which we tried to avoid. We changed 
the sentence accordingly to: 

L551: Our GLM-AED2 model overestimated spring phytoplankton biomass, which resulted in an overestimation of 
surface dissolved oxygen concentrations. 

 550 

Referee comment: 

27. Line 497 – Rather than thinking the deductive model is biased, maybe it is the only approach capturing the effects of the 

biology. 

Author response: 
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Please see statement above regarding the limitations of the deductive model, and the lines that were revised to better formulate 555 

this in the main text. 
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Referee #2 

Referee general comment: 560 
This manuscript describes a one-dimensional model (i.e. GLM-AED2) study for Lake Mendota which analyzed its long-term 
changes of anoxia and the driving factors. As a major result, the model showed good performance in reproducing oxygen 
dynamics, especially the low oxygen concentration in the hypolimnion,in the lake and based on the statistical analysis, it 
suggested that the physical structure (e.g. Schmidt Stability, onset of stratification, water temperature in the hypolimnion) 
had a big influence on the spatial and temporal development of anoxia.  565 
This is an interesting and important study, which could be considered for publication after a minor revision. Although there 
are quite a few studies analyzing hypolimnetic anoxia for inland waters, most of them draw their conclusion based on the 
short-term measurements and there is still a need to comprehensively illustrate this phenomenon and mechanisms behind its 
formation based on long-term database. Based on this prospective, this research fills in a research gap. In my opinion, this 
paper is well organized and its content, especially the discussion part will improve our understanding about anoxia and its 570 
future development under climate warming. Detailed comments are shown below. 
 
Referee comment: 
2.1 Study Site: It is better to show a topographic map of this lake, as well as the location for the water quality measurements. 
Author response:  575 
Thank you for this suggestion. We have added a new figure to the manuscript that shows the location and landuse overview 
of Lake Mendota, as well as the location of the measurement stations. 
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Figure 3 Location and overview map of Lake Mendota, Wisconsin, which is located in the Yahara River catchment in southern 
Wisconsin, USA. USGS gage stations for the PIHM-Lake model and the location of the Lake Mendota monitoring buoy are 580 
placed in the map. Land cover was obtained from the US National Land Cover database.  

Referee comment: 
L 115: 1.How you calibrated the hydrological model?  
Author response: 
The hydrological PIHM-Lake model was calibrated to measured stream inflows to the lake and outflow discharges from the 585 
lake to the catchments. The model was calibrated by using the observations from 2009 to 2011 and validated by using the 
measurements from 2012 to 2014, within which all stream flow observations are available. To state this clearer in the main 
text, we slightly modified this sentence in the manuscript: 

L125: The PIHM-Lake simulation covers a 37-year period (from 1979 to 2015), and its parameters were calibrated 
and validated with in-situ measured stream inflow and lake outflow discharges from the US Geological Survey. 590 

We also attached the following figure to this reply here, which shows the fit between observed discharges of three Lake 
Mendota inflows (Pheasant branch, Six Mile, Yahara) and the outflow from Lake Mendota to the simulated discharges by 
PIHM-Lake (calibrated).  
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 595 
Referee comment: 
2.From I know for the historical simulation, the inflow discharge is always drawn from the real measurements, instead of 
hydrological models. Do you have the measured inflow discharge for Lake Mendota? 
Author response: 
Yes, we have used measured inflow discharges for Lake Mendota at 4 inflows gages, see Fig. 1, but these monitoring 600 
stations only present an incomplete water balance as all groundwater inflow and surface overland flow to Lake Mendota are 
not observed, which could also contribute to the water balance of Lake Mendota. Therefore, we additionally used a 
calibrated hydrological PIHM-Lake model (using monitored flow data and lake surface water level fluctuations) to create 
two general inflows terms that close the overall lake water balance. To clarify this, we have added a sentence to the main 
text: 605 
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L127: The application of the PIHM-Lake model for quantifying the lake inflows helped closing the water balance of 
Lake Mendota as groundwater inflow and surface overland flow were not measured, and the model simulations 
provided these inflows. 

 
Referee comment: 610 
L 125: How many types of nutrients were included here as the inflow boundary conditions? It is better clarify it here. 
Author response: 
Thank you for pointing this out. We included a sentence in the main text: 

L133-136: We included the following nutrients in the inflow boundary conditions soluble reactive phosphate, 
adsorbed soluble reactive phosphate, dissolved organic phosphorus, particulate organic phosphorus, dissolved 615 
organic nitrogen, ammonia, nitrate, refractory dissolved organic carbon, dissolved inorganic carbon, and reactive 
silica. 

 
Referee comment: 
L133: I am not sure whether it is appropriate to define the inflow loading as the mean values from the water column. It 620 
means that there is no seasonal changes of DIC and silica, which is unrealistic. Could you explain why you set the inflow 
DIC and silica in this way? 
Author response: 
After a long internal discussion, we set DIC and silica to an average value as these variables are not part of the routine 
measurement program. As the average in-lake value is quite high, we did not expect any sensitivity of these values on the 625 
model results. Further, in-lake measurements have shown that the average concentration in the lake does not fluctuate much.  
 
Referee comment: 
2.3 Modelling Framework: Just a recommendation, it may be better to combine 2.3 to 2.7 into one part, since all of such 
content be longs to the model description. 630 
Author response: 
In accordance with the reviewer’s suggestion, we changed the levels of sectioning of these paragraphs, e.g. “Deductive 
Model”, “GLM-AED2”, “Post-Processing of GLM-AED2 Output” and “Regression Model” are now all sub-paragraphs of 
“2.3 Modeling Framework”.  
 635 
Referee comment: 
L 198: For water temperature simulation, I supposed the most important parameters should be wind factor and light 
extinction coefficient. How you defined these two in the model? 
Author response: 
For identification of calibration parameters, we used the Morris Sensitivity method, which declared the short-wave solar 640 
radiation factor, the long-wave radiation factor, the bulk aerodynamic sensible heat transfer coefficient, and the sediment 
temperatures as the most sensitive model parameters. Therefore, we did not calibrate the wind factor and left it a 1.0, e.g., we 
used the measured wind data from a close airport. The light extinction coefficient was set to a low water background value of 
0.1, because the value was dynamically changing in the water quality model AED2, which backfed any changes in light 
extinction due to abundance of dissolved substances to the hydrodynamic model. We checked the dynamic modeled light 645 
extinction values with measured Secchi depth data, and the seasonal dynamics were replicated by the model. 
 
Referee comment: 
L 293: How you calculated GPP? It is better to clarify it here. 
Author response: 650 
GPP (in mmol C per m3 per d) was internally calculated by the AED2 model as the daily total carbon uptake of all 
functional phytoplankton groups. We clarified this in the main text: 

 
L300-308: Here, GPP represents the sum of all functional phytoplankton group’s photosynthesis rates 
parameterized as the total carbon uptake: 655 
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𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −
𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌] 
 (7) 
where the carbon uptake 𝑓!"#$%&

'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the 
photorespiratory loss (1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a minimum 660 
function taking into account limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), phosphorus 
𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 𝜙62'()(𝑅𝑠𝑖)} (Hipsey et al., 2017; adapted from Hipsey and Hamilton, 2008). As the 
GPP is the main model output variable for phytoplankton dynamics, it scales directly with biomass and Chl-a 
concentrations. 

 665 
Referee comment: 
L 333: There existed some negative values for Birgean Work in Figure 5, what is the reason for that? 
Author response: 
As the Birgean Work is  

B = \ A<(1 − ρ<)zdz
<"

=
 670 

a negative value can occur when a dominant part of the water column has water densities that are above 1,000 kg per m3. 
Hypothetically speaking, a negative Birgean value would mean that no energy is needed (or negative energy would be 
needed) to achieve the current stratification from a completely mixed state, which means that the current state is probably 
also completely mixed. We decided against discussing this in the manuscript as we focused on oxygen dynamics over time.  
 675 
Referee comment: 
L 371: In Figure 9B, why was the simulated AF represented by dots, instead of box plots as the measured one? 
Author response: 
The simulated AF is represented by dots as we calculated it from the GLM-AED2 output and were therefore able to quantify 
it using daily data. On the other hand, the observed data were only available every two weeks, therefore we used different 680 
interpolation techniques to get daily data. These uncertainties were captured in a box-plot.  
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Lake thermal structure drives inter-annual variability in summer 
anoxia dynamics in a eutrophic lake over 37 years 
Robert Ladwig1, Paul C. Hanson1, Hilary A. Dugan1, Cayelan C. Carey2, Yu Zhang3, Lele Shu4, 685 
Christopher J. Duffy5, Kelly M. Cobourn6  
1Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA 
2Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA 
3Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA 
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6Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA 

Correspondence to: Robert Ladwig (rladwig2@wisc.edu) 

Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control 

over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen 695 

depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of 

summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment 

characteristics/nutrient loads, meteorology), as well as internal feedback mechanisms (e.g., organic matter recycling, 

phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal time scales will 

determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic-ecological 700 

model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water 

quality dynamics of the eutrophic Lake Mendota (USA) over a 37-year period. The calibration and validation of the lake model 

consisted of a global sensitivity evaluation as well as the application of an evolutionary optimization algorithm to improve the 

fit between observed and simulated data. By quantifyingWe calculated stability indices (Schmidt Stability, Birgean Work, 

stored internal heat), we identified spring mixing and summer stratification periods, and quantified the energy required for 705 

stratification and mixing. To qualify which external and internal factors were most important in driving the inter-annual 

variation in summer anoxia, we applied a random-forest classifier and multiple linear regression to modeled ecosystem 

variables (e.g., stratification onset and offset, ice duration, gross primary production.) Lake Mendota exhibited prolonged 

hypolimnetic anoxia each summer, lasting between 50-60 days. The summer heat budget, as well as the timing of thermal 

stratification, and the gross primary production in the epilimnion were the most important predictors of the spatial and temporal 710 

extent of summer anoxia periods in Lake Mendota. AnInter-annual variability in anoxia was largely driven by physical factors: 

earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial 

extent of summer anoxia. A step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. 

Although the cause remains unknown, possible factors include invasion by the predacious zooplankton, Bythothrephes 

longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of 715 

summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 
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1 Introduction 

The availability of dissolved oxygen in lakes governs ecological habitats and niches, the rates of redox reactions, and the 

processing of organic matter throughout the water column (Cole and Weihe, 2016). When a lake is thermally stratified, 

metabolism in the surface layer (epilimnion) can act as a net source or sink of oxygen, depending on the balance of gross 720 

primary production and ecosystem respiration, and deviations of dissolved oxygen from saturation values are modulated by 

atmospheric exchange (Odum, 1956). Additionally, entraining inflows can also act as an important oxygen sink or source 

depending on the lake morphometry, the inlet discharge, and the carrying capacity for dissolved oxygen (Burns, 1995). Below 

the thermocline, dissolved oxygen is depleted in the bottom layer (hypolimnion) by organic matter mineralization in the water 

column and the sediment oxygen demand (Livingstone and Imboden, 1996). These oxygen depletion processes can be 725 

quantified as either a volumetric sink (e.g., due to organic matter mineralization in the water column) or as an areal sink (e.g. 

oxygen demand in the sediments). The depletion rates of oxygen depend on the organic matter pool (Müller et al., 2012, 2019), 

the trophic status of the lake (Rhodes et al., 2017; Rippey and McSorley, 2009), the area to volume relationship over depth 

(Livingstone and Imboden, 1996), and the chemical demand of the water column and sediments (Yin et al., 2011).  

While the biogeochemistry of lake oxygen is well studied, there is much to be learned about decadal-scale controls 730 

over ecosystem patterns in oxygen and the interactions of external drivers with internal processes that control those patterns. 

Oxygen depletion in the hypolimnion that results in hypoxia (dissolved oxygen < 2 mg L-1; Diaz and Rosenberg, 2008) and 

anoxia (dissolved oxygen < 1 mg L-1;  Nürnberg, 1995b) is a product of interacting external drivers (e.g., climate, land use 

practices in the catchment) that control mass fluxes (Jenny et al., 2016b), morphometric characteristics, and productivity that 

influences vertical transport and water column stability (Meding and Jackson, 2003). Unprecedented changes to the climate 735 

and catchment land use are likely to have nonlinear consequences on aquatic water bodies and will potentially intensify 

hypolimnetic anoxia (Jenny et al., 2014, 2016a; Sánchez-España et al., 2017). 

The influence of physical controls on lake anoxia is of particular interest because it provides clues to how lakes might 

respond to long-term changes in exogenous drivers. The timing of anoxia has been found to be strongly related to the onset 

and offset of stratification, as well as sediment oxygen demand in small eutrophic lakes (Biddanda et al., 2018; Foley et al., 740 

2012; Nürnberg, 2004). A reduction of winter/spring mixing and increase in stratification can be major drivers of deep-water 

oxygen depletion (North et al., 2014). For Lake Mendota (USA), Snortheim et al. (2017) concluded that changes in air 

temperature waswere the main driver of the spatio-temporal extent of summer hypolimnetic anoxia., but was unable to 

disentangle the direct effect of air temperature (i.e., warmer water temperatures) vs. its indirect effect (i.e., stronger thermal 

stratification) on oxygen dynamics. The question thus remains open, even for single ecosystems: Under what circumstances 745 

and at what time scales does thermal stratification strength act as the dominant driver of hypolimnetic anoxia versus 

biogeochemical processes?  

Studying decadal -scale lake anoxia would benefit fromrequires an ecosystem-scale metric of lake anoxia and an 

analytical framework for tying that metric to physical and biological processes. Several metrics of oxygen availability have 
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been developed by previous studies, such as mean areal hypolimnetic oxygen depletion (AHOD, in mg O2 m-2 d-1, Cornett and 750 

Rigler, 1979; Hutchinson, 1938), volumetric rate of oxygen consumption (VOD, in mg O2 m-3 d-1, Cornett, 1989), areal 

hypolimnetic mineralization (AHM, in g O2 m-2 d-1, Matzinger et al., 2010), and the Anoxic Factor (AF, in days, Nürnberg, 

1995a, 1995b, 2004). Compared to the Anoxic Factor, most metrics calculate an oxygen depletion rate, whereas the Anoxic 

Factor provides an integrated metric that includes the spatial as well as temporal dimensions of anoxia per season. As the 

Anoxic Factor sums up the product of anoxia duration with the corresponding area, it is therefore a useful metric to evaluate 755 

long-term dynamics of hypolimnetic anoxia, and to compare the intensity of anoxia between years and different study sites. 

The Anoxic Factor and its derivative the Hypoxic Factor (the difference being the threshold of dissolved oxygen; (Nürnberg, 

2004) have been used in several studies, and observations range from 0 to 83 days per summer for different lake ecosystems 

(Nürnberg, 1995b).  

HydrodynamicCoupled hydrodynamic-water quality models are an established approach to studying lake physical 760 

and biological responses to external drivers (Hipsey et al. 2019). An advantage of a lake ecosystem model calibrated to 

observed long-term data is that it can reproduce finer temporal and spatial resolution than observational data permits for most 

ecosystems (Stanley et al., 2019) allowing for the investigation of complex ecosystem dynamics (Ward et al., 2020). By 

applying an ecosystem model driven by sub-daily meteorological and daily hydrological inflow data, physical processes 

relevant to hypolimnetic oxygen depletion (such as the onset and seasonal evolution of thermal stratification and gas transfer 765 

velocities) can be resolved at an hourly resolution, and can subsequently be incorporated into stochastic models to gain an 

understanding about the relationships between drivers and their respective impacts on hypolimnetic anoxia (Snortheim et al., 

2017). Results from deterministic lakes models can be analysed using statistical models to derive general empirical 

relationships. Results can also be compared with alternative, deductive approaches, which tend to be simpler models meant to 

reproduce gross ecosystem properties. An example relevant to lake anoxia is the simple deductive hypolimnetic oxygen 770 

depletion model by Livingstone and Imboden (1996), which established that already minor year-to-year meteorological 

variations during spring can cause an expansion of the thickness of the summer anoxia layer.  

This study aims to determine the extent to which physical, chemical, and biological (internal and external) factors 

control the inter-annual variability of the summer Anoxic Factor over 37- years in the eutrophic Lake Mendota. We first use a 

lake hydrodynamic-water quality model to generate fine scale ecosystem states and fluxes based on observational data from 775 

the North Temperate Lakes Long Term Ecological Research program. Further. Second, we use a deductive lake anoxia model 

and data-driven empirical models to evaluate observed and simulated data and to determine broad-scale control over lake 

anoxia. We answer three questions with our modeling framework: (1) Overall, do internal biogeochemical processes or external 

loadings control year-to-year variability of the Anoxic Factor? (2) What are essential in-lake physical and biological controls 

over the long-term variability in anoxia? (3) As the timing of thermal stratification governs hypolimnetic oxygen depletion, 780 

what is the year-to-year variability of Lake Mendota’s head budget? Answers to these questions will further our understanding 

of lake ecosystem responses to climate orand landscape changes andto support futurewater quality management decisions. 
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2 Materials and Methods 

2.1 Study Site 

Lake Mendota is a 39.61 km2, 25 m deep, eutrophic lake in southern Wisconsin (USA)., USA (Figure 4). The lake has a mean 785 

water residence time of 4.3 years (McDonald and Lathrop, 2017). Lake Mendota’s mixing regime is characterized by a summer 

stratification period from late April through October and an inverse winter stratification period under ice (Brock, 1985). Lake 

Mendota’s air temperature ranges from -39 to 40 °C with a mean annual value of 8 °C, and an annual precipitation ranging 

from 540 to 990 mm with an average of 780 mm (Lathrop, 1992). The 604 km2 watershed is dominated by agricultural land 

(67%) and developed urban land (22%) (Duffy et al., 2018). Since 1995, physical, chemical, and biological characteristics 790 

have been sampled biweekly to monthly by the North Temperate Lakes Long Term Ecological Research Program (Magnuson 

et al., 2006).  We note that Lake Mendota is a “hard water” lake with pH > 7 and exhibits consistently high dissolved inorganic 

carbon concentrations, with speciation dominated by bicarbonate and carbonate. (Hart et al., 2020).  

2.2 Driver Data Acquisition 

Meteorological forcing data were obtained from the second phase of the North American Land Data Assimilation 795 

System (NLDAS-2, Xia et al., 2012). The data from the grid cell were centered at -89.4375, 43.0625. The NLDAS-2 grid cells 

are 1/8th-degree spacing and data are at an hourly resolution from January 1, 1979 to present (Mitchell, 2004). Meteorological 

parameters used in this study included wind speed, air temperature, specific humidity, surface pressure, surface downward 

short- and longwave radiation, and total precipitation, which were used primarily as boundary data for GLM-AED2. Relative 

humidity was calculated post hoc as a function of specific humidity, air temperature, and surface pressure.  800 

To quantify the water budget in Lake Mendota, we simulated the water inflow from the catchment (through stream 

flow, overland flow, and groundwater flow) to the lake, and water outflow from the lake to the catchments using a physically 

based distributed hydrologic model, PIHM-Lake (Penn State Integrated Hydrologic Model, Qu and Duffy, 2007). PIHM-Lake 

integrates hydrologic processes in a lake-catchment coupled system simulating the surface and subsurface hydrologic 

interactioninteractions within the catchment and between the catchment and the lake. Hydrologic interactions within the 805 

catchment are modeled in three dimensions, while the lake is represented in PIHM-Lake as a simplified one-dimensional 

bucket model assuming a uniform lake surface area and depth. PIHM-Lake tracks the change in water storage from the 

watershed’s vegetation canopy, ground surface, unsaturated soil zone, saturated soil zone, and lake by using the semi-discrete 

finite volume method and a triangular irregular network (TIN). The PIHM-Lake simulation covers a 37-year period (from 

1979 to 2015), and wasits parameters were calibrated and validated usingwith in-situ measured stream flow, groundwater table 810 

level, lake surface water level,inflow and lake outflow discharges from the US Geological Survey. The application of the 

PIHM-Lake model for quantifying the lake inflows helped closing the water balance of Lake Mendota as groundwater inflow 

and surface overland flow were not measured, and the model simulations provided these inflows. 
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Surface nutrient loadings from the Yahara River and Pheasant Branch inflows into Lake Mendota were estimated by 

regression models using discharge and nutrient concentration data from USGS gages. (Appling et al., 2015; data is available 815 

at Ladwig et al. (2020) via the Environmental Data Initiative). Combined with the simulated discharge time series from PIHM-

Lake, these regressions were usingused to compute daily loading data. We included the following nutrients in the inflow 

boundary conditions soluble reactive phosphate, adsorbed soluble reactive phosphate, dissolved organic phosphorus, 

particulate organic phosphorus, dissolved organic nitrogen, ammonia, nitrate, refractory dissolved organic carbon, dissolved 

inorganic carbon, and reactive silica. For a complete description of the inflow loading regressionregressions, see Weng et al. 820 

(2020). To provide information regarding adsorbed soluble reactive phosphate, we doubled measured total phosphorus (TP) 

concentrations and applied specific ratios to individual phosphorus forms (Farrell et al., 2020; Snortheim et al., 2017; Weng 

et al., 2020). This put our estimates of TP near the upper range of previous load estimates. Bennett et al., (1999) estimated the 

long-term average annual TP load to be about 34 t, whereas our average annual TP load (with adsorbed phosphate) was about 

50.6 t and ranged between 5.3 to 146.1 t (1979-2015). Our average annual TP load (without adsorbed phosphate) was about 825 

25.3 t and ranged between 2.7 to 73.1 t (1979-2015), which is similar to previous estimates between 15 to 67 t (Kara et al., 

2012). By doubling our TP by adding adsorbed phosphate, we accommodate a potential TP load underestimation due to the 

importance of extreme storm events on particulate loads (Carpenter et al., 2018). As direct measurements of inlet loadings of 

refractory organic matter, dissolved inorganic carbon (DIC) and silica were not available, we assumedused constant average 

values for the inflow loadings similar to the long-term mean values of the water column. 830 

Monitored NTL-LTER data from 1995 to 2015 were used for model verification.calibration and validation. Data 

included water temperature and dissolved oxygen concentrations (Magnuson et al., 2020b) with a vertical spatial resolution of 

1 m from the surface to 24 m. Data were measured biweekly during summer, monthly during fall and once per winter. The 

dissolved oxygen data set was complemented with historical measured dissolved oxygen data from 1992 to 1994. NTL-LTER 

data also included pH, dissolved inorganic carbon, dissolved organic carbon, nitrate, ammonia, soluble reactive phosphate and 835 

silica sampled at the depths 0, 3, 8, 10, 12, 14, 16, 18, 20 and 22 m (Magnuson et al., 2020a). Surface integrated  samples of 

epilimnetic chlorophyll-a and Secchi depth were used to evaluate GLM-AED2’s predictions of phytoplankton biomass and 

light extinction (Magnuson et al., 2020c, 2020d).  

2.3 Modeling Framework 

Our modeling framework to investigate drivers of hypolimnetic anoxia consisted of three components (Figure 5):  840 

(1) Deductive model: A deductive model formulated by Livingstone and Imboden (1996) was run on the monitored 

field data to characterize the empirical relationships between observed dissolved oxygen data and oxygen depletion processes 

and to quantify the contributions of water column and sediments to hypolimnetic oxygen demand (Figure 5). The deductive 

model furthered our ecosystem-scale understanding of the partitioning between volumetric and areal oxygen depletion sinks 

in Lake Mendota. Therefore, this approach was used independently of the other modeling approaches as a “check” on the 845 

sediment oxygen demand rates of Lake Mendota used in GLM-AED2.  
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(2a) GLM-AED2: To gain a more mechanistic understanding of how processes driving oxygen depletion lead to 

ecosystem-scale oxygen dynamics, we used the vertical one-dimensional hydrodynamic water quality model, GLM-AED2 

(Hipsey et al., 2019b). GLM-AED2 uses meteorological, hydrological, and nutrient load data as inputs and predicts lake 

physical, chemical, and biological dynamics, including those of dissolved oxygen. The advantage of using GLM-AED2 is that 850 

it quantifies and tracks processes relevant to oxygen cycling using well-accepted physical and biogeochemical interactions 

that otherwise are difficult to infer from observational data alone ((see section ‘2.3.2 GLM-AED2’; Figure 5). Although GLM-

AED2 is a deterministic model, hypolimnetic anoxia is an emergent ecosystem property that derives from a complex suite of 

interactions within the model (Snortheim et al., 2017). Therefore, we used GLM-AED2 to simulate and track states and fluxes 

of modelled variables. 855 

(2b) Regression model: To derive generalized relationships between the interannual variation in hypolimnetic anoxia 

and the driving data, as well as the output from GLM-AED2, we used statistical models on our combined dataset of monitored 

and modeled data. Because the number of potential candidate predictors is high, we used a machine learning approach to 

determine the most significant predictors of seasonal hypolimnetic anoxia at the inter-annual scale (Figure 5). These predictors 

were then used in a multiple linear regression to rank their influence on hypolimnetic anoxia.  860 

2.43.1 Deductive Model 

Using temporal and spatial linearly interpolated observed dissolved oxygen data, we applied the simple deductive oxygen 

depletion model according to Livingstone and Imboden (1996) in which the oxygen depletion rate J(z) at depth z is 

𝐽(𝑧) = 𝐽>(𝑧) + 𝐽?(𝑧)𝛼(𝑧), (1) 

where JV is the volume sink (mass per volume per time) representing organic matter mineralization processes, e.g. microbial 865 

respiration in the water column, JA is the area sink (mass per area per time) representing sediment oxygen demand, and 𝛼 is a 

function for the ratio of sediment area to water volume (Bossard and Gächter, 1981; Livingstone and Imboden, 1996):	

𝛼(𝑧) = −
1

𝐴(𝑧)
𝑑𝐴(𝑧)
𝑑𝑧 . (2) 

We used observed dissolved oxygen data from 1992 to 2015 (measured biweekly after ice offset) to calculate the specific 

oxygen depletion over depth for each year individually from the date of spring mixing offset to the date when oxygen 870 

concentrations were below 2 mg L-1 (criterium for hypoxia). Only dissolved oxygen data below a depth of 15 m were used. 

The derivatives of area to depth were approximated by using forward and backward differencing. The terms JV and JA were 

assumed to be constant for every year (assuming the hypolimnion to be homothermic) and were determined by using weighted 

linear regression. 

2.53.2 GLM-AED2 875 

For simulating Lake Mendota, we used the coupled 1D vertical hydrodynamic-ecological model GLM-AED2 (GLM: 

v.3.1.0a1, AED2: 1.3.4, developed by University of Western Australia, Hipsey et al. 2019). The hydrodynamic model GLM 
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incorporates a flexible Lagrangian grid with each layer’s thickness dynamically changing in response to the respective water 

density (Hipsey et al., 2019b). Surface mixing processes are computed via an energy balance approach that compares the 

available (turbulent) kinetic energy to the internal potential energy of the water column (Hipsey et al., 2019b).  880 

The water quality module, AED2, was configured to simulate the dynamics of dissolved oxygen, silica, inorganic 

carbon, organic matter (refractory, particulate and dissolved C, N and P), inorganic matter (refractory, particulate and dissolved 

C, N and P) as well as PO4, NO3, and NH4, and two functional phytoplankton groups (representing diatoms and cyanobacteria, 

AppendixSupplement 1). The model was run on an hourly time step and output data were saved at a daily timestep on noon. 

The thickness of each model layer (set to a maximum of 75 layers) could vary between 0.15 and 1.5 m with a minimum layer 885 

volume of 0.1 m3. The source code of the model’s version, configuration files, input and output data are stored and accessible 

at Ladwig et al. (2020) via the Environmental Data Initiative. 

A global sensitivity analysis (Morris Method after Morris 1991) was conducted to identify the most influential 

parameters for the predictions of water temperature, dissolved oxygen, dissolved inorganic carbon, silica, nitrate and 

phosphate, respectively. Using the Morris Method with 10 iterative runs, the distributions of the absolute elementary 890 

effects (the model change quantified by a fit function, here the root-mean squared error (RMSE) between observed and 

simulated data) of each parameter were calculated. According to Morris (1991) and Saltelli et al. (2004), the mean of the 

absolute elementary effects represents the overall sensitivity of the model outcome to each parameter, and the standard 

deviations are a metric of the interactions between different parameters. All parameters with a normalized mean elementary 

effect over 0.1 were declared sensitive and were used for the calibration.  895 

According to our calculated absolute elementary effects, we included the following 10 parameters in the calibration, 

listed according to their respective state parameter (AppendixSupplement Figure A1). WaterFor calibrating the six state 

variables, these parameters were: 1) water temperature: bulk aerodynamic coefficient for sensible heat transfer (ch), long-wave 

radiation factor (lw_factor), mean sediment temperature (sed_temp_mean), shortwave radiation factor (sw_factor).); 2) 

Dissolved oxygen: Sediment flux (Fsed_oxy), mineralization rate of dissolved organic matter (Rdom), temperature multiplier 900 

for sediment flux (theta_sed_oxy).); 3) Dissolved inorganic carbon: Sediment flux (Fsed_dic), half-saturation constant for 

oxygen dependence on sediment flux (Ksed_dic), temperature multiplier for sediment flux (theta_sed_dic).); 4) Silica: 

Sediment flux (Fsed_rsi), half-saturation constant for oxygen dependence on sediment flux (Ksed_rsi), temperature multiplier 

for sediment flux (theta_sed_rsi).); 5) Nitrate: Sediment flux (Fsed_nit), half-saturation constant for oxygen dependence on 

denitrification (Kdenit), half-saturation constant for oxygen dependence on sediment flux (Ksed_nit), maximum reaction rate 905 

of denitrification at 20 °C (Rdenit).); and 6) Phosphate: Sediment flux (Fsed_frp), half-saturation constant for oxygen 

dependence on sediment flux (Ksed_frp), temperature multiplier for sediment flux (theta_sed_frp). 

We applied a combination of an automatic calibration technique and manual calibration for the calibration period 

from 2005 to 2015. First, the derivative-free, evolutionary optimization algorithm (CMA-ES, Hansen (2016)) was used to 

minimize the RMSE between observed and simulated data (data were split into a calibration, 2005-2015, and a validation 910 

period, 1995-2004). We used a time period prior to the calibration period for validation to stress-test the model by applying it 
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a time period with potential different ecological characteristics. The model parameters were calibrated iteratively (and fixed 

for the next calibration step) in the following order: water temperature, dissolved oxygen, dissolved inorganic carbon, silica, 

nitrate and, last, phosphate. We did not calibrate for phytoplankton functional group biomass because it was out of scope for 

this analysis, but the model qualitatively recreated observed seasonal succession. Initial model parameter values were taken 915 

from default parameter values and ranges, as well as literature values (Hipsey et al., 2017; Snortheim et al., 2017). Calibration 

of water temperature and dissolved oxygen concentrations were run for 300 iterations, the other variables for 200 iterations. 

The fit criteria were root-mean square error (RMSE), Nash-Sutcliffe Coefficient of Efficiency (NSE) and Kling-Gupta 

Efficiency (KGE) (Gupta et al., 2009) for the calibration period, the validation period and the total time period. The advantage 

of combining an automatic approach and a manual post-calibration for an overparameterized model such as GLM was that 920 

CMA-ES first limited the possible parameter space of each parameter, then in a second calibration step, parameters could be 

manually changed to improve overall dynamics and behavior without relying on a fixed objective function. The manual 

calibration was done to ensure that the model was not overoptimized with unrealistic parameter combinations of the biological 

parameters. This calibration approach was done in accordance with other aquatic ecosystem modeling studies (Fenocchi et al., 

2019; Mi et al., 2020), that did not apply computational optimization to water quality models. 925 

2.63.3 Post-Processing of GLM-AED2 Output 

We quantified two heat budget metrics from simulated water temperature data, the Schmidt Stability (Idso, 1973; Read et al., 

2011; Schmidt, 1928) and the Birgean Work (Birge, 1916; Idso, 1973). Schmidt Stability (St) is a stability index that expresses 

the amount of energy needed to mix the entire water column to uniform temperatures without affecting the amount of internal 

energy, whereas Birgean Work (B) is a stability index that quantifies the amount of external energy that is theoretically needed 930 

to build up the current stratification from a hypothetical completely mixed state. The sum of both terms, the total work G, gives 

an estimate of the energy needed to keep a lake isothermal during stratified conditions: 

𝐺 = 𝑆𝑡 + 𝐵, (3) 

𝐺 =
𝑔
𝐴0
\ 𝐴@(1 − 𝜌@)(𝑧> − 𝑧)𝑑𝑧
@#

=
+
𝑔
𝐴0
\ 𝐴@(1 − 𝜌@)𝑧𝑑𝑧
@#

=
, (4) 

where g is gravity, As is the surface area (m2), zm is the maximum depth (m), Az is the respective area at the depth z, 𝜌@ is the 935 

respective density at the depth z (kg m-3), zv is the depth of the center of volume (𝑧> =
8
A ∫ 𝐴@𝑧𝑑𝑧

@#
= ), and V is the volume (m3). 

The stagnancy of deep water can be quantified by calculating a heat budget ratio (HBR): 

𝐻𝐵𝑅 =
𝐺
𝐵 ,

(5) 

which compares the amount of energy needed to maintain isothermal conditions to the amount of available external energy 

(Kjensmo, 1994). Here, an increased stagnancy of deep waters results in a reduced exchange of fluxes between the surface 940 

mixed and the bottom layer. Therefore, HBR values > 1 indicate the isolation of the bottom water layers from surface fluxes 

in a lake. 
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Internal energy - as the stored thermal energy in the water column - was quantified using the R package rLakeAnalyzer 

(Winslow et al., 2019) as: 

𝐸2;#&+;$1 =
1
𝐴0
\ 𝑇@ ∗ 𝑐- ∗ 𝑚@𝑑𝑧
@#

=
, (6) 945 

where Tz is the water temperature at depth z (°C), cw is the specific heat of water (J kg-1 K-1), and mz is the mass of water at 

depth z (kg). 

The thermocline depth was defined as a planar separation between the surface mixed and the bottom stagnant layer. 

The specific depth of this planar thermocline was quantified as the depth of the maximum density difference over the vertical 

axis where the minimum water temperature was above 4 °C and the density difference between surface and bottom layer was 950 

above 0.1 kg m-3, signaling stratified conditions.  

The temporal and spatial extent of anoxia during the summer season was quantified using the Anoxic Factor:   

𝐴𝐹 =j
𝑡2𝐴2
𝐴0

;

2B8

, (7) 

which sums the product of the anoxia duration t (days) with the corresponding area A (m2) to the total surface area AS when 

the in-water dissolved oxygen concentrations were below a threshold of 1 mg L-1 (Nürnberg, 1995b). As the Anoxic and 955 

Hypoxic Factor use the same equation with different thresholds relating essentially all anoxia information also to hypoxia, we 

focused on only quantifying the Anoxic Factor in this study. Anoxic Factor was calculated using the simulated dissolved 

oxygen concentrations as well as the approximately bi-weekly monitored field data, in which case data were temporally and 

spatially interpolated using an ensemble of approaches (linear, constant and spline interpolation between neighboring data 

points). We quantified the seasonal Anoxic Factor only duringfor the summer as Lake Mendota is not experiencing winter 960 

hypolimnetic anoxia under iceseason. 

2.73.4 Regression Model 

We evaluated 2221 candidate predictors on their relative importance in predicting the simulated summer Anoxic Factor of the 

respective year n (see Table 1 for an overview and further explanation). All candidate predictors were either modeled output 

or boundary data for the model. This enabled the regression analysis to identify internal connections in the numerical model 965 

itself (similar analyses of modeled output and driver data were done in Snortheim et al., 2017; Ward et al., 2020; Weng et al., 

2020). For the calculation of certain candidate predictors, the water column was separated into an upper layer (from surface to 

a depth of 10 m) and a lower layer (from 10 m to maximum depth). Although this is a rough approximation, this depth roughly 

represents the thermocline depth and further separates the water column into a zone without light limitation and one with light 

limitation.  970 

 To represent external controlforcing processes, we included the seasonal total phosphorus inflow and seasonal total 

nitrogen inflow concentrationsloadings for the pre-summer period (winter, spring, summer) of each respective year. Further, 

we included the Birgean Work for spring and summer of each year as the Birgean Work represents the amount of external 
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energy (mostly by wind shear stress) that is needed to build up the current thermal structure. In addition to Birgean Work, we 

also included Schmidt Stability, the HBR ratio, the onset, end and duration of spring mixing, the onset, end and duration of 975 

summer stratification, the mean hypolimnetic water temperature at the onset of stratification, as well as the end and duration 

of the ice period prior to summer to investigate the effects of physical control on hypolimentichypolimnetic anoxia.  

 In-lake biogeochemical processes were represented by the maximum height of anoxia during summer, the dissolved 

oxygen concentration differences between spring mixing onset and offset in the hypolimnion (Livingstone and Imboden (1996) 

suggested that in eutrophic lakes dissolved oxygen reductions during the mixing phase can have profound effects on the 980 

summer anoxia), organic carbon (both dissolved and particulate, respectively) concentration differences between spring mixing 

and stratification in the hypolimnion, as well as cumulative gross primary production in the epilimnion and hypolimnion. 

Organic matter gradients were investigated because dissolved organic carbon can be used as a proxy for allochthonous organic 

matter contributions to bacterial mineralization rates (Hanson et al., 2003). Gross primary production (GPP) was included as 

an example organic matter source that can fuel bacterial mineralization (Yuan and Jones, 2019). Here, GPP represents the sum 985 

of all functional phytoplankton group’s photosynthesis rates parameterized as the total carbon uptake: 

𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −

𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌]  (7) 

where the carbon uptake 𝑓!"#$%&
'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the photorespiratory loss 

(1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a minimum function taking into account 990 

limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), phosphorus 𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 𝜙62'()(𝑅𝑠𝑖)} 

(Hipsey et al., 2017; adapted from Hipsey and Hamilton, 2008). As the GPP is the main model output variable for 

phytoplankton dynamics, it scales directly with biomass and Chl-a concentrations. 

To determine the relative importance of these candidate predictors that may influence the duration and extent of 

anoxia, we applied the Boruta R package (Kursa and Rudnicki, 2010) to identify the relevant predictors by using a wrapper 995 

built around a random forest classifier. The Boruta feature selection duplicates predictor values, which are then randomly 

shuffled to create so-called shadow attributes. If the variable predictor values (here the averaged accuracy loss normalized by 

the standard deviation, obtained from multiple random forest classifier runs) of the original values are significantly greater 

than the shadow predictor values, these variables are deemed relevant (Kursa and Rudnicki, 2010). Only model output and 

model driver data from the period 1980-2009 were used in the regression analysis. The first year, 1979, was dropped from the 1000 

investigations due to a lack of prior winter information. The years 2010-2015 were dropped due to an apparent ecosystem shift 

(see Section ‘3.4 Oxygen Dynamics’). Meteorological quarterly divisions (DJF, MAM, JJA, SON) of the year were used to 

define seasons. After selecting important predictors driving the inter-annual variability in Anoxic Factor using the random 

forest method, we applied the remaining 107 selected predictors in a multiple linear regression model to quantify their 

respective importance on predicting the Anoxic Factor. Further, stepwiseStepwise model-selection iteratively removed 1005 

predictors to improve the regression model’s AIC. Our finalThis multiple linear regression model to predict Anoxic Factor 
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included seven variables: HBR ratio during summer, maximum height of anoxia above sediment, Hypolimnetic water 

temperature at stratification onset, hypolimneticspring, HBR ratio during summer, Birgean Work in spring, epilimnetic GPP, 

Schmidt Stability in summer, Birgean Work in summer, and onset date of stratification. We reduced the complexity of the 

final multiple linear regression model to only three predictors of Anoxic Factor: onset date of stratification, Schmidt Stability 1010 

in summer, and epilimnetic GPP. Schmidt Stability was included instead of Birgean Work as the resulting AIC of both models 

were similar, but the concept of Schmidt Stability is more commonly used in the limnological research community 

(Supplement Table A3). The final multiple linear regression model was configured as (scaled predictors, adjusted R2 = 0.8884, 

p < 0.001 Supplement Table A4). 

𝑦 = −= 0.47𝑆𝑢𝑚𝑚𝑒𝑟.𝐻𝐵𝑅 − 0.15𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 0.29𝑊𝑡𝑒𝑚𝑝. 𝑆𝑡𝑟𝑎𝑡 + 0.23𝐸𝑝𝑖24𝐸𝑝𝑖. 𝐺𝑃𝑃 +1015 

0.53𝑆𝑢𝑚𝑚𝑒𝑟54𝑆𝑢𝑚𝑚𝑒𝑟. 𝑆𝑡 − 0.64𝑆𝑢𝑚𝑚𝑒𝑟. 𝐵 − 0.66𝑂𝑛𝑠𝑒𝑡46𝑂𝑛𝑠𝑒𝑡. 𝑆𝑡𝑟𝑎𝑡 − 1.04 ∗ 1078C5.44 ∗ 10789 + 𝜖, 

      (8) 

where 𝜖	𝛮(0,34:)(0,38:).   

Relative importance of model fit was calculated as the R2 contribution averaged over ordering among regressors (relaimpo 

package, Grömping 2006). 1020 

3 Results 

3.1 Oxygen Depletion Rates 

The derived annual oxygen depletion rates by the deductive model confirmed Lake Mendota’s hypolimnetic anoxia as 

primarily driven by mineralization of organic matter. Observed oxygen depletion rates and area-volume ratios were positively 

correlated for all years except 1993, 1997 and 2007 (Figure 6). For years with a positive relationship, the average 1025 

volumevolumetric sink JV as 0.16 g m-3 d-1 and the average areaareal sink JA with 0.04 g m-2 d-1 (adjusted R2 = 0.13, p < 0.001). 

Lake Mendota’s hypolimnetic oxygen depletion iswas mainly driven by water column respiration processes over sediment 

oxygen demand. The annual volumetric depletions rate followed a normal distribution with an increase in the volumetric sink 

in recent years. The areal depletion rate distribution was positively skewed. An inspection of the residuals from the model fits 

indicates that the linear regression model may not be appropriate for some years, especially for values of the sediment to area 1030 

volume ratio 𝛼(𝑧) near 0.5 m2 m-3.  

Averaging this total oxygen depletion rate (volume and area sinksinks) over the hypolimnion, gave a potential total 

oxygen depletion of approx. ~1 g m-32 d-1. (~ 32 mmol [O2] m-2 d-1). To conceptualize suchthis a depletion rate in our 

deterministic GLM-AED2 model, we used a maximum sediment oxygen demand (SOD) of 100 mmol [O2] m-2 d-1, which. 

This rate represented the total sum of volumetric and areal oxygen sinks indirectly as we aimed to represent internal fluxes of 1035 

organic carbon from the sediment back into the water column that would additionally drive additional oxygen depletion. This 

high value of SOD was scaled by the water temperature using an Arrhenius multiplier, effectively reducing it to a value between 

1 to 1.5 g m-3 d-12 d-1 (32  to 47 mmol [O2] m-2 d-1) of maximum oxygen depletion by the sediment sink in the hypolimnion 
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during summer stratification. A recent modeling study investigating the formation of metalimnetic oxygen minima in a 

drinking water reservoir by Mi et al. (2020) confirmed that such high maximum SOD values are typical for many lakes.  1040 

3.2 GLM-AED2 Calibration and Validation 

The thermal characteristics of Lake Mendota were replicated well, especially water temperatures in the surface layers  (Table 

2, Figure 7, AppendixSupplement Figure A2), with an RMSE of 1.330 °C, and an NSE and aan KGE of 0.97, which is within 

the range of previous modeling studies (Bruce et al., 2018; Read et al., 2014). The simulated dissolved oxygen concentrations 

in the whole water column achieved an RMSE of 3.22 mg L-1, an NSE of 0.56, and an KGE of 0.77. Here, the average fits 1045 

were better in the surface layer (RMSE of 2.77 mg L-1) compared to the bottom layer (RMSE of 3.31 mg L-1), whereas the 

temporal dynamics (as expressed in NSE and KGE) were slightly better in the bottom layer (an NSE of 0.64, KGE of 0.81) 

compared to the surface layer (NSE of -0.36, KGE of 0.47).  

 In contrast, the water quality model reproduced concentrations of the biogeochemical variables better at depth than 

at the surface, as evidenced by higher NSE values (Table 2, AppendixSupplement Figure A3 – A7A8). The density 1050 

distributions of residuals (observed minus simulated data) are in agreement (Figure 8) for water temperature, dissolved oxygen 

concentrations, nitrate, phosphate and ammonia,ammonium (we did not use ammonium data during calibration, but included 

it in the visual inspection to check general nitrogen dynamics replicated by the GLM-AED2 model), whereas the model 

overestimated dissolved inorganic carbon concentrations and chlorophyll-a concentrations, and underestimated silica 

concentrations. It should be noted thatAs described above, the inletinflow concentrations of DIC and silica were assumed to 1055 

be constant over the simulation period, probablylikely causing the discrepancies between model results and observed data. An 

overview of the used and calibrated parameter values is given in Appendix Table A2. 

3.3 Heat Budget Dynamics 

Lake Mendota’s annual stratification dynamics were characterized by a short spring mixing period followed by a very stable 

summer stratification period, which further promotes hypolimnetic oxygen depletion. On average, Schmidt Stability peaked 1060 

in July at approx. 720 J m-2 (Figure 5), followed by a peak in the Birgean Work at approx. 1250 J m-2. A low Schmidt Stability 

value in spring close to zero was representative of the overturn period (period I, Figure 9). During this time, the Birgean Work, 

as well as stored internal energy, increased rapidly, and the water column remained well oxygenated. The spring overturn 

period (period I) was characterized by low HBR values (ratio of St+B to B) with an average of 0.85 (MMA in Figure 10A). 

Low HBR denoted very unstable regimes due to an abundance of external energy compared to the required energy to keep the 1065 

lake mixed. The start of the spring overturn period coincided with ice melt and open-water conditions, although in some years, 

the thermal structure of the lake was well mixed prior to ice off and spring overturn. May was the earliest month wherewhen 

the average HBR was above 1 (Figure 10B), which indicated that the water layers below the thermocline became isolated from 

the surface layers. Following period I, Schmidt Stability increased in conjunction with the spatial extent of anoxia in the lake 

water column (Figure 9). The heat budgets, as well as the anoxic area, peaked during this second phase (period II) and declined, 1070 
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although the peak of anoxic area lagged behind the heat budget peaks. As the Schmidt Stability decreased to near zero in fall, 

mixing is initiated causing the water column to become oxygenated.  

The stratification phase (period 2) had an average HBR value of 1.45, which indicated that an additional energy input 

of 45% would be needed to keep Lake Mendota isothermal during stratified summer conditions (Figure 10A). Lake Mendota’s 

mean summer HBR value was similar to Lake Steinsfjord, Norway (max. depth 22 m, Kjensmo, (1994)) and was larger than 1075 

the HBR values of the unstable lake systems Lake Marion, USA (max. depth 4.5 m) and Lake Wingra, USA (max. depth 6.1 

m) (Kjensmo, 1994). The oxygenation of the water column lagged behind the stratification period, and even when the Schmidt 

Stability values at the end of the 2nd period were close to zero, a certain amount of the lake’s area can remain anoxic. 

Heat storage in Lake Mendota began after ice off and increased rapidly between the end of the mixing period and the 

onset of stratification (Figure 11A). The amount of internal energy stored at the beginning of stratification correlated with the 1080 

maximum available amount of internal energy that will be stored during the stratified period., despite year-to-year fluctuations 

in internal energy. Over the course of each year, the amount of stored internal energy was positively correlated with Schmidt 

Stability (Figure 11B). Nonetheless, the stored internal energy fluctuated year-to-year.B). Birgean Work was also positively 

correlated with both Schmidt Stability and Internal Energy. The relationship between Schmidt Stability and the spatial anoxia 

extent exhibited a clockwise hysteresis (Figure 11C). Beginning in June, Schmidt Stability increased as stratified conditions 1085 

established in the water column. Schmidt Stability peaked on average in August. at ~720 J m-2 (Figure 9), followed by a peak 

in the Birgean Work at ~1250 J m-2. Simultaneously the , the depth of anoxia in the water column (anoxia height) followed the 

progression of Schmidt Stability, but peakedpeaking in September. In Lake Mendota, the anoxia height was limited by the 

thermocline depth, as the low vertical turbulent diffusivity of the thermocline acted as a barrier for an encroachment of anoxic 

conditions into the surface mixed layer. Anoxia height decreased after September with decreasingas Schmidt Stability 1090 

valuesdecreased. Thermocline depth and anoxia height declined in parallel until Schmidt Stability reached zero. In Lake 

Mendota, as in most lakes, the surface layer was the region of significant heat storage (Figure 11D). Once stratified, heat 

storage in deeper water layers was limited, whereas heat in the upper 5 m of the lake increased throughout the summer, and 

accounted for up to 40% of the total internal energy stored during summer.  

3.4 Oxygen Dynamics 1095 

Dissolved oxygen dynamics, including the spatial extent of oxygen depletion in the water column, and the timing of summer 

anoxia periods, were replicated by the GLM-AED model (Figure 12A-B); although the model overestimated spring and 

summer time surface oxygen concentrations due to a higher net ecosystem production. The depth-averaged fit criteria of 

dissolved oxygen concentrations were similar to a recent study from Farrell et al. (2020) in which the RMSE were 1.88 mg/L 

and 2.49 mg/L in the epilimnion and hypolimnion were about 1.88 mg/L and 2.49 mg/L, respectively. The, of a GLM-AED 1100 

model calibrated for Lake Mendota. Our model captured annual anoxia events in the hypolimnion (Figure 13A), and the range 

of the simulated Anoxic Factor was similar to the derived Anoxic Factor from observed data (Figure 13B). The model failed 

to replicate extreme events (for instancee.g., the very low Anoxic Factor in 2002) and did not capture a recent positive trend 
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of Anoxic Factor since 2010. The simulated Anoxic Factor averaged 56.7 ± 5.2 days with an RMSE of 7 days (correlation 

coefficient r = 0.28). The simulated Anoxic Factor over the total time period averaged 56.7 ± 5.2 days with an RMSE of 7 1105 

days, an NSE of -0.22, and an KGE of 0.26 (correlation coefficient r = 0.28). The model’s underestimation of the recent 

positive trend of Anoxic Factors starting in 2010 was investigated by quantifying the fits during two periods: 1992-2009 

(Figure 10C) and 2010-2005 (Figure 10D). In the pre-2010 period (1992-2009), the model achieved an RMSE of 6.79 days, 

an NSE of -0.25, an KGE of 0.44 and r of 0.45 for Anoxic Factor predictions. In the post-2010 period (2010-2015), the model 

achieved an RMSE of 8.04 days, an NSE of -31.99, an KGE of 0.21 and r of 0.62. A subsequent Wilcoxon signed-rank test 1110 

highlighted, that the observed average and modelled Anoxic Factors from the pre-2010 period showed no significant 

differences between the two distributions, suggesting they belong to the same population (p-value = 0.13, Supplement Figure 

A9), whereas the distributions of observed mean Anoxic Factors and modeled ones after 2010 were significantly different (p-

value = 0.032, Supplement Figure A9). 

3.5 Regression Model 1115 

We included in total 7three predictors in our final multiple linear regression which were deemed important by the Boruta 

algorithm and a stepwise linear model investigationinvestigations using AIC for the period 1980-2009: Schmidt Stability and 

Birgean Work during summer, the intensity (rel. importance of anoxia (maximum depth from the surface of anoxia in the water 

column),43 %), the onset date of stratification,  (rel. importance of 42 %), and gross primary production in the epilimnion, the 

water temperature at stratification onset in the hypolimnion, as well as the HBR ratio in summer (Appendix (rel. importance 1120 

of 15 %) (Supplement Table A34). 

The linear model showed a good agreement between simulated and predicted Anoxic Factor (Figure 14 A, 

AppendixSupplement Table A3).4). The Anoxic Factor was positively correlated to the summer Schmidt Stability, the summer 

HBR ratio (r = 0.72, Figure 14 B) and the gross primary production in the epilimnion. (r = 0.48). It was negatively correlated 

to the summer Birgean Work, the water temperature at onset of stratification onset, the maximum height of anoxia and the 1125 

onset of stratification (Figure 10(r = -0.78, Figure 14 B). 

4 Discussion 

4.1 Controls of Inter-annual variability on Hypolimnetic Anoxia  

Inter-annual variability in the Anoxic Factor for Lake Mendota is influenced primarily by physical processes that regulate 

thermal and stratification dynamics, and less so by processes that influence organic matter. The Schmidt Stability during 1130 

summer (rel. importance of 43 %) as well as the timing of stratification, summer Schmidt Stability, and the summer ratio HBR 

(rel. importance of 42 %) all influence anoxic factorAnoxic Factor, and are all driven mainly by atmospheric drivers and heat 

convection throughout the water column. The only significantmost important predictor of anoxic factor Anoxic Factor directly 

related to biological processes is gross primary production in the epilimnion. Together, these variables explain 65% (rel. 
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importance of the total relative variability in Anoxic Factor (Appendix Table A315 %), Supplement Table A4). For eutrophic 1135 

lakes, this suggests two critical points. First, climate has direct control over lake phenology. Climate drives the timing of 

stratification onset and stratification strength, and that controls the year-to-year variability in Anoxic Factor. Second, biology 

matters, but its interannual dynamics are not that influential, at least for this eutrophic lake with a residence time greater than 

one year. We also acknowledge that a step change in the Anoxic Factor occurred in 2010 and was unexplained by our model. 

Although the cause remains unknown, the timing was coincident with large increases in the invasive zooplankton, Bythotrephes 1140 

(Walsh et al., 2017). 

4.2 Physical Control over Anoxic Factor 

OxygenOur work demonstrates that oxygen dynamics in Lake Mendota are strongly governed by the stratification strength in 

the water column. Snortheim et al. (2017) came to a similar conclusion, analyzing in an analysis of Lake Mendota during a 

shorter time period (2007-2010), arguing that changes in the atmospheric boundary conditions - air temperature, wind speed 1145 

and relative humidity - are driving changes in the hypolimnetic anoxia development of Lake Mendota. Here, we link these 

atmospheric drivers to changes in the water column’s stratification (as quantified by Schmidt Stability and Birgean Work). 

Over our 37-year simulation, anoxia onset occurred in the days following stratification onset. During stratification, the 

establishment of a strong density gradient between the upper and the lower layers in the water column reduces vertical turbulent 

diffusivities and limits the downward flux of dissolved oxygen. Without any additional oxygen source (e.g., atmospheric fluxes 1150 

or primary production), dissolved oxygen concentrations below the thermocline are rapidly consumed by bacterial 

mineralization of organic matter in the water column and sediment.  

In Lake Mendota, the temporal and spatial extent of anoxia is limited by the length of the summer stratification period 

(e.g. onset and offset of stratification, heat storage in water column prior to stratification, see Figure 9), the stratification 

strength and thermocline depth (e.g. Schmidt Stability, wind shear stress, see Figure 11), respectively. The number of days 1155 

between the onset of spring mixing, which begins immediately following ice off, and summer stratification, determines the 

maximum amount of internal energy stored in summer. An early spring overturn and a slightly later stratification start would 

lead to increased anoxia height in the water column, though not necessarily a higher Anoxic Factor as the duration of anoxia 

could be shorter. The mixing period is essentially a turning point in the year for the gradient of the internal heat accumulation, 

which increases rapidly following mixing. Still, as most energy is stored in a thin surface layer, short-duration extreme wind 1160 

events or cold weather periods can deplete that additional stored heat before summer stratified conditions are reached. The 

storage of heat simultaneously increases Birgean Work, and later Schmidt Stability, increasing the resistance of the water 

column to mixing and limiting vertical fluxes from the epilimnion to the hypolimnion and vice versa. In summer, a higher 

amount of stored internal energy is also related to a higher Schmidt Stability, further increasing the spatial extent of anoxia. 

Ultimately, the spatial extent of anoxia is limited by the thermocline depth, as in all simulated years the anoxia height reaches 1165 

a maximum during late summer when the thermocline depth was already deepening.  
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4.3 Biological Control over Anoxic Factor 

Gross primary production (GPP) in the epilimnion prior to summer stratification is a secondary, but still important, predictor 

of anoxia. GPP fuels the sinking of particulate organic carbon (POC) into deeper layers before the establishment of a 

thermocline. In the hypolimnion, POC is readily decomposed into DOC and mineralized by bacteria in the numerical model, 1170 

and reflects the dissolved oxygen volume sink. Unexpectedly, factors controlling year-to-year variation in GPP, such as 

external loadings of nutrients (specifically nitrogen and phosphorus), are not evident in the anoxia patterns in Lake Mendota. 

This is likely due to the historically high autochthony of the eutrophic lake, (Hart, 2017), with phytoplankton blooms 

documentdocumented back to the early 1900s (Lathrop, 2007), and importance of autochthony over allochthony (Hart, 2017), 

thereby minimizing the need for external nutrient loads to stimulate phytoplankton production. While biological contributions 1175 

to volumetric and sediment oxygen demands are well-described for a broad range of lakes (Gelda and Auer, 1996; Matzinger 

et al., 2010; Müller et al., 2012; Rippey and McSorley, 2009; Yuan and Jones, 2019), for eutrophic lakes, the control over 

available organic substrate for hypolimnetic oxygen demand may depend more on internal processing (autochthony) than 

external subsidies (allochthony).  

 Although the model replicated well the long-term DOC dynamics (Supplement Figure A8), it also overestimated 1180 

surface layer dissolved oxygen concentrations compared to the observed data. This overestimation must have a concomitant 

increase in organic matter as a consequence of photosynthesis, and in this case in POC. Considering our proxy for the dynamics 

of phytoplankton biomass is reasonably well predicted (Fig. 5), this suggests our over-estimate of primary production results 

in increase in POC that is exported from the epilimnion to the hypolimnion. Unfortunately, we do not have observed POC to 

calibrate this part of the model, but we feel it is likely that our model has overestimated the contribution of primary production 1185 

to hypolimnetic organic matter and subsequent oxygen depletion. 

The regression models showed that variables related to load dynamics were not significant predictors of Anoxic Factor 

over nearly four decades. The total phosphorus and nitrogen loads, the change in dissolved oxygen during spring overturn, the 

temporal change in organic carbon pools, and ice duration were not found important based on the random-forest classifier. 

Phosphorus cycling in Lake Mendota is complex, so it may not be surprising that load dynamics in any one year are, to a 1190 

certain extent, uncoupled from the hypolimnetic oxygen demand (Hanson et al., 2020). The relatively long water residence 

time of Lake Mendota (approx. 4 years, McDonald and Lathrop, 2017), along with the high internal phosphorus loading rate, 

means that external phosphorus loads represent only about 1/3 of the available phosphorus in the epilimnion (Soranno et al., 

1997). Furthermore, high primary production rates that exceed the total lake mineralization, along with external loads of 

organic carbon, lead to a high storage of organic matter in the sediments that can likely carry over from one year to the next 1195 

(Hart, 2017). In a more nutrient-poor system, the nutrient and carbon availability would likely be more important predictors. 

The model replicated the extreme maximum anoxia event in 1998 but struggled to replicate the minimum in 2002. 

The discrepancies of 5-10 days between the simulated and observed range of the Anoxic Factor beginning in 2010 are related 

to an increased spatial as well as temporal extent of summer anoxia (Appendix Figure A8), which was not captured by the 
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model. Supplement Figure A10), which was not captured by the model. This was highlighted by the statistical analysis of the 1200 

pre-2010 (1992-2009) and post-2010 (2010-2015) Anoxic Factors. Prior to 2010, there were no significant differences between 

observed and modeled distributions (p=0.13); whereas, after 2010, the observed distribution was significantly higher than the 

modeled distribution (p=0.032) (Supplement Figure A9). For simplicity and due to limitations in Lake Mendota monitoring 

data post-2010, we focused the regression analysis of the Anoxic Factor in this study only on the pre-2010 period.  

The change in Anoxic Factor post-2010 may be due to an ecosystem shift in Lake Mendota that began in 2009, when 1205 

the invasive spiny water flea (Bythothrephes longimanus) was detected in surprisingly high densities in the lake (Walsh et al., 

2016b, 2018). Spiny water flea effectively became the dominant daphniaDaphnia grazer, causing historically low 

daphniaDaphnia biomass in 2010, 2014 and 2015 (Walsh et al., 2016a) and reducing water clarity. The impact of spiny water 

flea on specific phytoplankton groups may have increased organic matter supply to the hypolimnion by grazing down certain 

phytoplankton. Mendota’s Daphnia population historically consisted of Daphnia pulicaria and the smaller-bodied Daphnia 1210 

galeata mendotae, who compete differently with spiny water flea. D. mendotae biomass increased in spring after the spiny 

water flea invasion (Walsh et al., 2017), grazing on phytoplankton and probably accelerating organic matter mineralization 

before stratification onset. This could be one potential cause that contributed to the increase in hypolimnetic oxygen depletion 

after 2010. Our GLM-AED2 model could not replicate this food web change, and subsequent shift in anoxia dynamics, due to 

limitations of the numerical model, i.e., GLM-AED2 had constant ecological parameters over the entire modeling period and 1215 

did not have zooplankton dynamics instantiated.  We envision future monitoring and modeling studies that focus entirely on 

ecosystem differences and shifts between the pre-2010 and post-2010 periods of Lake Mendota. 

The simple deductive model established that the volumetric oxygen sink (i.e. water column oxygen demand) is 

consistently higher (on average about four times higher) than the sediment oxygen sink. The volumetric sink in lakes has been 

found to be strongly dependent on the trophic state of the lake, whereas the sediment sink is not (Rippey and McSorley, 2009). 1220 

Eutrophic lakes tend to have high volumevolumetric sinks that reach maxima of about 0.23 g m-3 d-1 (Rippey and McSorley, 

2009) similar to the average volumevolumetric sink of 0.16 g m-3 d-1 quantified by the deductive model for Lake Mendota. 

This finding is confirmed by the works of Conway (1972)), who found that the high hypolimnetic oxygen demand of Lake 

Mendota was driven by algae decomposition, originating from the surface layer. Although eutrophic lakes tend to have a high 

sediment oxygen demand, the specific values can range from 0.3 g m-2 d-1 (Romero et al., 2004; Steinsberger et al., 2019) to 1225 

extreme values of 80 g m-2 d-1 (Cross and Summerfelt, 1987), most studies measured or applied a value between 1 to 4 g m-2 

d-1 (Mi et al., 2020; Veenstra and Nolen, 1991). The sediment oxygen demand calculated by our deductive model of 0.04 g m-

2 d-1 was closer to the average value of approx. 0.08 g m-2 d-1 measured by Rippey and McSorley (2009) on 32 lakes. We note 

that the simple deductive model itself can only differentiate between two sources of depletion and neglects any physical 

transport drivers of oxygen, e.g., diffusion. Therefore, the results of the deductive model only add direct information to the 1230 

actual depletion process of dissolved oxygen, but not of the dominant drivers.  
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4.4 Improving the Modeling Framework  

The coupled GLM-AED2 model was able to generally replicate the thermal dynamics and biogeochemistry of Lake Mendota. 

In contrast to the calibration of Lake Mendota by Bruce et al. (2018) using an earlier version of GLM (v. 2.2.0), our model 

reproduced the water temperatures in the surface layer better than the bottom layer dynamics (RMSE for epilimnion and 1235 

hypolimnion water temperatures, respectively, from Bruce et al., 2018: 1.94 °C and 1.42 °C). This is probably due to the close 

proximity of the atmospheric forcing boundary condition to the surface layers, whereas the energy balance approach used by 

GLM potentially underestimates vertical mixing, and hence overpredicts bottom layer water temperatures. In contrast, the 

model achieved better fits of the biogeochemical variables in the bottom layer. Better fits in the hypolimnion were likely 

achieved through directed calibration of sediment fluxes during the calibration-validation approach. The implementation and 1240 

testing of alternative vertical mixing schemes for the Lake Mendota model (e.g. vertical mixing using a k-	𝜀 turbulence model) 

could potentially improve vertical transport and water temperature dynamics in deep layers. Further, using transient sediment 

boundary conditions with dynamic parameters over time could improve the model fit with the observed data, and could 

replicate potential ecosystem shifts. As the spatial extent of hypolimnetic anoxia is fundamentally three-dimensional (Biddanda 

et al., 2018), fully resolving anoxia in space and time likely requires a 3D model (Bocaniov and Scavia, 2016). Still, such a 1245 

model has higher computational needs for long-term calibration-validation analysis, and current monitoring is inadequate to 

validate the results as most measurements are only made at the deepest point of the lake. Therefore, additional monitoring sites 

would need to be established. Improved spatial monitoring would be useful in validating our 1D approach and setting up higher 

dimensional numerical models. 

Our calibrated GLM-AED2 model overestimated spring phytoplankton biomass, which resulted in an overestimation 1250 

of surface dissolved oxygen concentrations. This primary overproduction is a potential source of uncertainty for the anoxia 

timing below the thermocline as the model’s anoxia dynamics lag behind the observed ones. The time difference between the 

simulated and observed dissolved oxygen decline below the thermocline during stratification could be explained by an 

underestimation of sinking simulated organic material into the hypolimnion. Discrepancies between simulated and observed 

Anoxic Factors, therefore, could be rooted in our simplifications of the phytoplankton dynamics and the related organic matter 1255 

fluxes, and highlight the importance of improving the representation of phytoplankton and zooplankton dynamics in numerical 

models. Simulating a magnitude of individual species rather than functional phytoplankton groups has been shown to improve 

numerical water quality and ecosystem predictions (Hellweger, 2017), though it is unclear if it could improve spring bloom 

predictions in Lake Mendota. Further, better numerical representations of phytoplankton life cycles (Hense, 2010; Shimoda 

and Arhonditsis, 2016), and/or allometric scaling (Shimoda et al., 2016) could significantly improve numerical phytoplankton 1260 

predictions. It is noteworthy that biweekly monitored data of Lake Mendota required interpolation of the observed data in 

order to calculate the observed Anoxic Factors. This adds uncertainty to the observed Anoxic Factor, as monitoring likely 

missed important daily (or even sub-biweekly) fluctuations in dissolved oxygen.  
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It should be noted that as a statistical approach, the deductive regression model does not account for important 

mechanisms that may explain nonlinearities in the hypothetical linear relationships between oxygen depletion rate and the 1265 

sediment to volume rate. Thus, the deductive regression model may be biased for Lake Mendota. As the model still advanced 

our broader system understanding by quantifying the range of the sediment oxygen demand, it was still helpful to investigate 

observed dissolved oxygen concentration data.  

4.5 Implications for landscape and climate change 

The strong relationship between anoxia and water column stability suggests that a changing climate might increase Anoxic 1270 

Factor. Future climate in the region is expected to warm (Veloz et al., 2012), which may amplify and prolong water column 

stratification through increasing air temperatures (O’Reilly et al., 2015; Winslow et al., 2017). Shorter ice duration or even the 

total loss of ice (Sharma et al., 2019) could promote earlier heat storage in Lake Mendota, which could potentially increase 

summer Schmidt Stability, as demonstrated by (Farrell et al., . (2020)).). Earlier heat accumulation would cause a stability 

increase and an earlier onset of stratification, thereby extending the duration of anoxia. Earlier onset of anoxia may cause the 1275 

anoxia height to be spatially limited by an earlier, and therefore lower, thermocline depth. Therefore, warming air temperatures 

will likely increase the Anoxic Factor of Lake Mendota through prolonged temporal and increased spatial extent of anoxia. It 

is worth noting that our initial regression quantified the correlation between Anoxic Factor and the water temperature in the 

hypolimnion at stratification onset wasas weakly negative. Higher water temperatures in a mixed water column prior to 

stratification onset are related to less stable stratified summer conditions. This feedback, potentially enhanced by shorter ice 1280 

periods and warmer spring overturn periods, could shorten the extent of summer anoxia. (similar findings were reported in 

Flaim et al., 2020).  

Although our model evaluation supported the claim that external phosphorus loads are not important predictors of 

inter-annual variability in anoxia, future changes in the landscape (Motew et al., 2019), e.g. reduced agricultural application 

of phosphorus, less direct run-off pathways from the catchment to the lake, or more urbanization, may change these 1285 

relationships. Lakes with nutrient concentrations lower than Lake Mendota would almost certainly experience higher primary 

production with elevated nutrient loads, and higher primary production would likely fuel higher hypolimnetic respiration 

(Rippey and McSorley, 2009). Thus, the link between catchment processes and lake anoxia, which was not detectable in this 

study, would likely be important in lakes with meso- or oligotrophic states (FarrellWard et al., 2020). For Lake Mendota, the 

only reasonable management approach to reducing anoxia is to lower external nutrient loads, especially given that anoxia 1290 

duration in Lake Mendota is related to thermal stratification, which is predicted to increase with future warmer air temperatures. 

5 Conclusions 

We presented a novel modeling framework combining three complementary approaches (deductive model, numerical GLM-

AED2 model, and regression model) to conceptually identify the important drivers of year-to-year variability in the spatial and 
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temporal summer hypolimnetic anoxia extent of eutrophic Lake Mendota over a period spanning nearly four decades. Physical 1295 

metrics – onset date of stratification, summer Schmidt Stability, and the ratioonset date of St+B to Bstratification – were the 

most important predictors driving the summer Anoxic Factor. Although the gross primary production was still influential in 

affecting year-to-year variability of hypolimnetic anoxia, biological control over the Anoxic Factor was limited in our study 

period. As climate change is positively correlated to lake stratification characteristics (earlier, longer and more intense summer 

stratification), we expect an increase in the Anoxic Factor of Lake Mendota in coming decades. The only local management 1300 

option to mitigate future hypolimnetic anoxia in Lake Mendota is a reduction of external nutrient loads, which aims at shifting 

the lake towards oligotrophic conditions. As managers and decision makers undertake forward planning to guard against a 

decline in lake water quality as a result of climate change, decision support tools that support an understanding of lake dynamics 

over the long term are essential. The modeling framework developed here can be extended by an advanced sediment diagenesis 

model and an uncertainty analysis, e.g. Bayesian analysis, to develop greater insight into effective strategies to mitigate 1305 

environmental degradation. Consequently, as managers and decision makers work to prevent a decline in lake water quality as 

a result of climate change, decision support tools that support an understanding of lake dynamics over the long term are 

essential.  
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Figure 4 Location and overview map of Lake Mendota, Wisconsin, which is located in the Yahara River catchment in southern 
Wisconsin, USA. USGS gage stations for the PIHM-Lake model and the location of the Lake Mendota monitoring buoy are placed 
in the map. Land cover was obtained from the US National Land Cover database.  1570 
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Figure 5 Schematic overview of the modeling workflow: application of a (1) deductive model to further our system understanding 
about oxygen sink terms; replication of Lake Mendota using (2) GLM-AED2 to investigate hydrodynamic and ecosystem 
mechanisms; and application of (3) regression models to quantify the importance of ecosystem predictors on the Anoxic Factor. 1575 
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Figure 6 Regression plots of the morphometric function 𝛂(z) against oxygen depletion rates for the years 1992 to 2018, which were 
calculated from temporally linearly interpolated observed data. The respective equations represent weighted linear regressions. 
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Figure 7 Water Comparison of Lake Mendota water temperature from observationobservations (upper figurepanel, white dots 1580 
mark samplesampling events) and GLM-AED2 simulationsimulations (lower panel). 
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Figure 8 Density distributions of residuals (observed - modeled) for water temperature, dissolved oxygen, dissolved inorganic carbon 
(DIC), silica, nitrate, phosphate, ammoniaammonium and phytoplankton. The density distributions include residuals over all data 1585 
points (over each time-step over each depth), calculated from observations minus model predictions. 



 

61 
 

 
Figure 9 Daily average values of Schmidt Stability, Birgean Work, internal energy and anoxic area (below 1 mg L-1) plus/minus the 
respective standard deviations (dashed lines) (internal energy is given in 10e6 J m-2). [Anoxic area units were adjusted for display 
purposes.] 1590 
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Figure 10 Dynamics of average HBR = (St+B)/B over time. A box: Box-plots of HBR over the meteorological seasons, which represent 
seasonal quarters of the year, beginning in December. The summer HBR values for Lake Marion, Lake Steinsfjord, and Lake 
Wingra were taken from Kjensmo (1994). B Scatter plotB: Scatterplot of average HBR values for each month 1595 
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Figure 11 Stored heat dynamics and relationships to stratification strength, thermocline depth and anoxia height. (hypsographic 
height of anoxia area in the lake above sediment). A: Time series of internal energy at the respective dates of ice off, mixing onset, 
mixing offset, stratification onset, and stratification offset. B: Scatter plot of internal energy against Schmidt Stability whereas the 1600 
color represents the magnitude of Birgean Work. C: Scatter plot of anoxia height against Schmidt Stability. The black line represents 
the average dynamic over the course of a year with the respective months as labels. The color corresponds to the thermocline depth 
in meters above the sediment. D: Time series of daily averaged internal energies stored over different depths and Schmidt Stability). 
The main heat storage happens in a shallow surface layer effectively after ice off and the simultaneous onset of a mixing period. 
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 1605 
Figure 12 Time-series comparison between observed (red dots) and modeled dissolved oxygen concentrations (blue lines). The fit 
criteria root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency 
(KGE). A: averaged dissolved oxygen concentrations in the epilimnion (0-4 m). B: averaged dissolved oxygen concentrations in the 
hypolimnion (deeper than 16 m).  

 1610 
 



 

66 
 

 



 

67 
 

 

Figure 13 Comparison of observedobservations to GLM-AED modeled dissolved oxygen concentrations and ecosystem response. A: 
Contour plot of observed (upper figure, white dots mark sample events) and simulated dissolved oxygen concentrations. BB: 1615 
Comparison of simulated Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-
whisker plots) over the period 1979 to 2018. C: Comparison of simulated Anoxic Factor (red dots) against interpolated range of 
Anoxic Factor derived from observed data (box-whisker plots) over the period 1992 to 2009. D: Comparison of simulated Anoxic 
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Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-whisker plots) over the period 2010 
to 2015.  1620 
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Figure 14 Predicted against simulated summer Anoxic Factor. A: Linear model with a prediction which was done using a multiple 
linear regression model of the form: 𝒚̂ = −= 𝟎. 𝟒𝟕𝑺𝒖𝒎𝒎𝒆𝒓.𝑯𝑩𝑹− 𝟎. 𝟏𝟓𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 + 𝟎. 𝟐𝟗𝑾𝒕𝒆𝒎𝒑. 𝑺𝒕𝒓𝒂𝒕 +1625 
𝟎. 𝟐𝟑𝑬𝒑𝒊𝟐𝟒𝑬𝒑𝒊. 𝑮𝑷𝑷 + 𝟎. 𝟓𝟑𝑺𝒖𝒎𝒎𝒆𝒓𝟓𝟒𝑺𝒖𝒎𝒎𝒆𝒓. 𝑺𝒕 − 𝟎. 𝟔𝟒𝑺𝒖𝒎𝒎𝒆𝒓.𝑩 − 𝟎. 𝟔𝟔𝑶𝒏𝒔𝒆𝒕𝟒𝟔𝑶𝒏𝒔𝒆𝒕. 𝑺𝒕𝒓𝒂𝒕 − 𝟏. 𝟎𝟒 ∗ 𝟏𝟎!𝟏𝟓𝟓. 𝟒𝟒 ∗
𝟏𝟎!𝟏𝟕 + 𝝐̂, where 𝝐̂	𝜨A𝟎, 𝟑𝟒𝟐D.A𝟎, 𝟑𝟖𝟐D. The red lines represent confidence intervals. B: Correlogram of the input data using Pearson 
correlation coefficients. 
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Tables 

Table 1 Overview of investigated predictors in a linear regression model on estimating the Anoxic Factor 1630 

Candidate predictor Temporal period Method Unit 

Schmidt Stability Summer of year n See section ‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

J per m2 

Schmidt Stability Spring of year n See section ‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

J per m2 

Birgean Work Summer of year n See section ‘‘‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

J per m2 

Birgean Work Spring of year n See section ‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

J per m2 

Ratio HBR  Summer of year n See section ‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

- 

Ratio HBR Spring of year n See section ‘2.3.3 Post-

processingProcessing of 

modelGLM-AED2 output’ 

- 

Onset, end and duration of spring 

mixing 

Spring/summer of year n Determined by Schmidt Stability 

values (close to or at zero, indicating 

mixed conditions) 

Day of the year, 

or days 

Onset, end and duration of 

summer stratification 

Spring/summer/fall of year 

n 

Stratification was defined when 

density difference between surface 

and bottom layer was above 0.1 kg 

m-3 and surface temperature was 

above 4 °C 

Day of the year, 

or days 

Maximum height above sediment 

of anoxia 

Summer of year n Extracted from simulation output m above sediment 

End and duration of ice period Winter/spring of year n-1 

and n 

Extracted from simulation output Day of the year, 

or days 

Dissolved oxygen difference 

between mixing end and mixing 

onset in the lower layer 

Spring/summer of year n Extracted from simulation output mmol O2 per m2 d 
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Dissolved organic carbon gradient 

between stratification onset and 

mixing onset in the lower layer 

Spring/summer of year n Extracted from simulation output mmol C per m2 d 

Particulate organic carbon 

gradient between stratification 

onset and mixing onset in the 

lower layer 

Spring/summer of year n Extracted from simulation output mmol C per m2 d 

Mean water temperature in the 

lower layer at the onset of 

stratification 

Summer of year n Extracted from simulation output °C 

Total phosphorus inflow 

concentrationloading 

Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g P per day per 

m2 

Total nitrogen inflow 

concentrationloading 

Winter/spring/summer of 

year n-1 and n 

Extracted from driver data  g N per day per 

m2 

Cumulative gross primary 

production in the upper layer 

Winter/spring of year n-1 

and n 

Extracted from simulation output mmol per m2 per 

day 

Cumulative gross primary 

production in the lower layer 

Winter/spring of year n-1 

and n 

Extracted from simulation output mmol per m2 per 

day 

 

 
Table 2 Model performance for water temperature, dissolved oxygen, dissolved inorganic carbon, silica, nitrate, 
ammoniaammonium, and phosphate. During calibration and validation, only the total fits over all depths and time-steps were 
calculated. Surface layers refers to a depth of 0 m below water table, and bottom layer to a depth of 20 m below water table. Fits for 1635 
surface and bottom layer during calibration and validation are not shown as the fit over the whole water column and over time were 
used. 

Variable Calibration  

(2005 – 2015) 

Validation  

(1995 – 2004) 

Total period 

 (1995 – 2015) 

 RMSE  NSE KGE RMSE  NSE KGE RMSE  NSE KGE 

Water temperature [°C] 2.26 0.87 0.92 1.78 0.92  0.96 1.96 0.91 0.94 

surface layer  1.30 0.97 0.97 

bottom layer 2.43 0.20 0.71 

Dissolved oxygen [mg L-1] 3.33 0.54 0.76 3.29 0.53 0.76 3.22 0.56 0.77 

surface layer  2.77 -0.36 0.46 

bottom layer 3.31 0.64 0.81 

Dissolved inorganic carbon [mg L-1] 25.87 -7.03 0.18 15.41 -8.65 0.20 25.92 -10.13 0.20 

surface layer       19.71 -10.79 0.22 

bottom layer       29.19 -12.84 0.15 

Silica [mg L-1] 2.83 -1.32 -4.55 1.42 -0.55 -1.77 2.33 -0.83 -3.10 
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surface layer       1.61 -1.32 -6.53 

bottom layer       2.78 -0.97 -0.90 

Nitrate [mg L-1] 0.36 -0.01 0.56 0.45 -1.44 0.26 0.40 -0.40 0.44 

surface layer       0.35 -0.18 0.49 

bottom layer       0.30 0.29 0.34 

AmmoniaAmmonium [mg L-1] 0.60 -3.03 0.17 0.48 -3.28 0.15 0.56 -3.05 0.17 

surface layer       0.25 -1.76 0.08 

bottom layer       0.64 0.41 0.70 

Phosphate [mg L-1] 0.10 0.56 0.51 0.09 0.59 0.62 0.09 0.56 0.51s 

surface layer       0.03 0.40 0.43 

bottom layer       0.17 0.40 0.36 

 

Appendix A 

Correspondence to: Robert Ladwig (rladwig2@wisc.edu) 1640 

 
Figure A1 Mean and standard deviations of absolute elementary effects quantified by the Morris Method for water temperature, 
dissolved oxygen, dissolved inorganic carbon, silica, nitrate and phosphate. Colored bars are sensitive parameters that were used in 
the calibration. 
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 1645 
Figure A2 Time-series comparison between observed (red dots) and water temperatures (blue lines). The fit criteria root-mean 
square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficien 

 
Figure A3 Time-series comparison between observed (red dots) and modeled dissolved inorganic carbon concentrations (blue lines). 
The fit criteria root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of 1650 
efficiency (KGE). 
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Figure A4 Time-series comparison between observed (red dots) and modeled silica concentrations (blue lines). The fit criteria root-
mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency (KGE). 

 1655 

Figure A5 Time-series comparison between observed (red dots) and modeled nitrate concentrations (blue lines). The fit criteria root-
mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency (KGE). 
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Figure A6Time-series comparison between observed (red dots) and modeled ammonia concentrations (blue lines). The fit criteria 
root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency (KGE). 1660 

 
Figure A7 Time-series comparison between observed (red dots) and modeled phosphate concentrations (blue lines). The fit criteria 
root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta coefficient of efficiency (KGE). 
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Figure A8 Observed anoxia onset, offset (a) and height (b) dynamics. The colored lines refer to the interpolation method. 1665 

Table A1 Model parameters for functional phytoplankton groups  

Parameter Description Cyanobacteria Diatoms 

P_initial Initial concentration of phytoplankton (mmol 

C/m3) 

10 8.4 

P0 Minimum concentration of phytoplankton 

(mmol C/m3) 

0.03 0.03 

W_p sedimentation rate (m/d) 0 -0.05 

Xcc carbon to chlorophyll ratio (mg C/mg chla) 50 50 

R_growth Phyto max growth rate @20C (/day) 0.8 2.8 

fT_Method Temperature limitation function of growth CAEDYM style 

 

CAEDYM style 
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Theta_growth Arrhenius temperature scaling for growth 

function (-) 

1.06 1.06 

T_std Standard temperature (deg C) 20 15 

T_opt Optimum temperature (deg C) 28 20 

T_max Maximum temperature (deg C 35 32 

lightModel Type of light response function no photoinhibition no photoinhibition 

I_K Half saturation constant for light limitation of 

growth (microE/m^2/s)  

25 10 

KePHY Specific attenuation coefficient ((mmol C 

m^3^-1)^1 m^-1) 

0.005 0.001 

F_pr Fraction of primary production lost to 

exudation (-) 

0.005 0.002 

R_resp Phytoplankton respiration/metabolic loss rate 

@ 20 (deg C) 

0.08 0.12 

Theta_resp Arrhenius temperature scaling factor for 

respiration (-) 

1.05 1.07 

K_fres Fraction of metabolic loss that is true 

respiration (-) 

0.6 0.6 

K_fdom Fraction of metabolic loss that is DOM (-) 0.05 0.05 

simDINUptake Simulate DIN uptake True True 

simINDynamics Simulate internal N  Fixed C:N Dynamic C:N 

N_0 Nitrogen concentration below which uptake is 

0 (mmol N/m^3) 

0 0 

K_N Half-saturation concentration of nitrogen 

(mmol N/m^3) 

1 3.5 

X_ncon Constant internal nitrogen concentration 

(mmol N/ mmol C)  

0.035 0.035 

X_nmin minimum internal nitrogen concentration 

(mmol N/ mmol C) 

0.06 0.077 

X_nmax maximum internal nitrogen concentration 

(mmol N/ mmol C)  

0.206 0.129 

R_nuptake maximum nitrogen uptake rate (mmol 

N/m^3/d)  

0.068 0.13 

R_nfix nitrogen fixation rate (mmol N/mmol C/day) 0.13 0 

simDIPUptake Simulate DIP uptake  True True 

simIPDynamics Simulate internal phosphorus dynamics  Dynamic C:P Dynamic C:P 
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P_0 Phosphorus concentration below which 

uptake is 0 (mmol P/m^3) 

0 0 

K_P Half-saturation concentration of phosphorus 

(mmol P/m^3) 

0.5 0.7 

X_pmin Minimum internal phosphorus concentration 

(mmol P/mmol C) 

0.0019 0.0081 

X_pmax Maximum internal phosphorus concentration 

(mmol P/mmol C)  

0.0089 0.033 

R_puptake Maximum phosphorus uptake rate (mmol 

P/m^3/d)  

0.0039 0.007 

simSIUptake Simulate Si uptake  False True 

Si_0 Silica concentration below which uptake is 0 

(mmol Si/m^3 

- 0 

K_Si Half-saturation concentration of silica (mmol 

Si /m3) 

- 2.5 

X_sicon Constant internal silica concentration (mmol 

Si/mmol C) 

- 0.04 

 

 
Table A2 Calibrated model parameters 

Parameter Description Unit Default value 

(Hipsey et al., 

2019a, 2019b) 

Model value 

𝑓&' Solar radiation scaling factor - 1.0 0.84 

𝑓(' Long-wave radiation scaling factor - 1.0 0.99 

𝐶) 

 

Bulk aerodynamic coefficient for sensible heat transfer - 0.0013 0.0014 

𝑇*+,,./01 

 

Annual mean temperature of the upper sediment zone °C - 5.07 

𝑇*+2,./01 

 

Annual mean temperature of the lower sediment zone °C - 13.47 

𝐹.03
435 

 

Max. sediment flux for dissolved oxygen  
𝑚𝑚𝑜𝑙
𝑚2𝑑2  

 

-100.0 -100.0 

𝐾&/6
435 

 

Half-saturation concentration controlling oxygen 

sediment flux 

𝑚𝑚𝑜𝑙
𝑚7  50.0 15.0 
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𝜃&/6
435 

 

Temperature multiplier for oxygen sediment flux - 1.0 1.08 

𝑅.81/90(64.  

 

Maximum rate of aerobic mineralisation of labile 

dissolved organic matter at 20 °C 

 

𝑑!, 

 

0.5 0.5 

𝐹.0368:  

 

Max. sediment flux for dissolved inorganic carbon 

(DIC) 

𝑚𝑚𝑜𝑙
𝑚2𝑑2  

 

4.0 250.0 

𝐾&/668: 

 

Half-saturation concentration controlling DIC sediment 

flux 

 

𝑚𝑚𝑜𝑙
𝑚7  

 

30.0 7.0 

𝜃&/668:  

 

Arrhenius temperature multiplier for DIC sediment flux - 1.0 1.08 

𝐹.039&8  

 

Max. sediment flux for reactive silica 𝑚𝑚𝑜𝑙
𝑚2𝑑2  

 

- 16.42 

𝐾&/69&8  

 

Half-saturation concentration controlling silica 

sediment flux 

 

𝑚𝑚𝑜𝑙
𝑚7  

 

50.0 1.90 

𝜃&/69&8  

 

Arrhenius temperature multiplier for silica sediment 

flux 

- 1.0 1.08 

𝑅18;98< 

 

 

Maximum rate of nitrification at 20 °C 

 

𝑑!, 

 

0.1 0.03 

𝑅6/18; 

 

 

Maximum rate of denitrification at 20 °C 

 

𝑑!, 

 

0.3 2.0 

𝐾6/18; 

 

Half-saturation concentration for denitrification 

 

𝑚𝑚𝑜𝑙
𝑚7  

 

2.0 3.0 

𝐹.0318;  

 

Max. sediment flux for nitrate  -5.0 -9.55 

𝐾&/618;  

 

Half-saturation concentration controlling nitrate 

sediment flux 

 

𝑚𝑚𝑜𝑙
𝑚7  

 

100.0 173.13 

𝐹.03
<9=  

 

Max. sediment flux for phosphate 𝑚𝑚𝑜𝑙
𝑚2𝑑2  - 0.49 



 

80 
 

 

𝐾&/6
<9= 

 

Half-saturation concentration controlling phosphate 

sediment flux 

 

𝑚𝑚𝑜𝑙
𝑚7  

 

- 200.0 

𝜃&/6
<9= 

 

Arrhenius temperature multiplier for phosphate 

sediment flux 

- 1.0 1.0 
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Table A3 Most parsimonious multiple linear regression model (adjusted R2 = 0.88, p < 0.001) explaining the Anoxic Factor during 
summer.  

 Estimate Std. Error t value Pr(>|t|) Rel. importance [%] 

Intercept -1.04e-15 5.70e-2 0.00 1.00  

Onset of stratification (Onset.Strat) -6.65e-1 1.49e-1 -4.46 1.2e-4 22 

Schmidt Stability during summer 

(Summer.St) 

5.38e-1 1.79e-1 2.99 5.0e-3 17 

HBR ratio during summer (Summer.HBR) -4.76e-1 2.64e-1 -1.80 0.08 13 

Gross primary production in the epilimnion 

(Epi.GPP) 

2.34e-1 9.35e-2 2.50 0.01 13 

Maximum depth of anoxia during summer 

below surface (Intensity) 

-1.53e-1 7.90e-2 -1.93 0.06 11 

Birgean Work during summer (Summer.B) -6.44e-1 1.72e01 -3.72 0.8e-4 11 

Water temperature in the hypolimnion at the 

onset of stratification (Wtemp.Strat) 

2.98e-1 1.39e-1 2.13 0.04 10 
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