
Referee general comment: 
Thank you very much for the opportunity to review this manuscript describing the internal (physical and biological) 
and external factors leading to inter-annual variability in the extent anoxia in Lake Mendota. This study uses a 
combination of three very different types of models to evaluate these various factors. I found this paper very 
interesting, very well written, and may be very useful to the scientific community. I applaud the authors in using 
this multi-model approach. However, I think two of the three models have serious flaws that need to be addressed 
prior to publication. 
My main concern is that one of the main takeaways from this paper (internal productivity has very limited effect 
on interannual differences in anoxia) may not be true. It may be true that physical mixing drives the overall extent 
of anoxia (baseline), but I think it is too early to say interannual variability in productivity has little affect. I think 
two of the models need to be reevaluated prior to making those conclusions: 
 
Referee comment: 
GLM-AED2. GLM-AED2 simulated the annual progression of anoxia very well, and simulated the importance of 
stratification driving not only the average changes in DO depletion but also much of the interannual variability in 
DO associated with stratification. But the model did not capture the interannual variability in surface productivity 
that may drive the other interannual variability in DO. It clearly could not reproduce the interannual variability in 
AF. This model had an R2 of only 0.08 and a negative NSE. Part of the problem may be that the model is trying to 
simulate two very different lakes (one without spiny water fleas and one with them) - all with one set of 
coefficients (that may not even represent the lake in the first place). Without simulating the big biological change, I 
am not sure you can get there with this model. 
Referee suggestion: Use GLM-AED2 to only simulate one of the periods, either prior to or after the change in 
biology. If this does not improve the overall ability to predict AF, then the phytoplankton parameters may have to 
be adjusted. Without being able to predict most of the variability in AF, I really don’t see its use in this paper. 
Author response: 
We are very thankful for this comment by the reviewer, which gives us the chance to discuss the GLM-AED2 
performance and hopefully improve the overall manuscript. We make two over-arching points here. The first is 
that a visible shift in AF occurred in 2010 (Fig. 10b), and this may be explained by changes in the foodweb that 
affect primary production and organic matter cycling. We have no conclusive evidence of the cause, but the shift is 
coincident with the invasion of the predacious zooplankton, Bythotrephes. We discuss this and have added it to the 
abstract. The second is that our model reproduces well the ecosystem dynamics prior to 2010, and as the reviewer 
suggests, the lake is likely in different states, separated by the shift that occurs in 2010. Further, we also 
acknowledge that the GPP is actually an important driver of the variability in summer anoxia (rel. importance 15 
%). The main text was revised accordingly in the abstract and in the discussion: 

L27-32: The summer heat budget, the timing of thermal stratification, and the gross primary production in 
the epilimnion were the most important predictors of the spatial and temporal extent of summer anoxia 
periods in Lake Mendota. Inter-annual variability in anoxia was largely driven by physical factors: earlier 
onset of thermal stratification in combination with a higher vertical stability strongly affected the duration 
and spatial extent of summer anoxia. A step change upward in summer anoxia in 2010 was unexplained 
by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the 
predacious zooplankton, Bythothrephes longimanus. 
L441-443: We also acknowledge that a step change in the Anoxic Factor occurred in 2010 and was 
unexplained by our model. Although the cause remains unknown, the timing was coincident with large 
increases in the invasive zooplankton, Bythotrephes (Walsh et al., 2017). 

 
To the point about the model not capturing variability in surface productivity, we added a new figure to the 
Appendix: Figure A8 which shows the time-series comparison between observed and modeled DOC 
concentrations. Here, you can see that the model replicated the overall dynamics of DOC concentrations in three 
different depths over time, which highlights its ability to replicate net aquatic production in the surface layer and 
its contribution to dissolved organic matter. Fig. 9a of the main text showed that the model overestimates surface 
dissolved oxygen concentration. This overestimation must have a concomitant increase in organic matter as a 
consequence of photosynthesis, and in this case is particulate organic matter (POM). Considering our proxy for 
phytoplankton biomass is well predicted (Fig. 5), this suggests our over-estimate of primary production results in 



increase in POM that is exported from the epilimnion to the hypolimnion. Unfortunately, we do not have observed 
POM to calibrate this part of the model, but we feel it is likely that our model has overestimated the contribution 
of primary production to hypolimnetic organic matter and subsequent oxygen depletion. This underlies our 
conclusion that primary production may be less important to inter-annual variability than physical factors. We 
added these sentences to the main text to state this: 

L481-487: Although the model replicated well the long-term DOC dynamics (Appendix Figure A8), it also 
overestimated surface layer dissolved oxygen concentrations compared to the observed data. This 
overestimation must have a concomitant increase in organic matter as a consequence of photosynthesis, 
and in this case in POC. Considering our proxy for the dynamics of phytoplankton biomass is reasonably 
well predicted (Fig. 5), this suggests our over-estimate of primary production results in increase in POC 
that is exported from the epilimnion to the hypolimnion. Unfortunately, we do not have observed POC to 
calibrate this part of the model, but we feel it is likely that our model has overestimated the contribution 
of primary production to hypolimnetic organic matter and subsequent oxygen depletion. 

 

 
Figure A8 Time-series comparison between observed (red dots) and modeled dissolved organic carbon concentrations (blue 
lines). The fit criteria root-mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (NSE) and Kling-Gupta 
coefficient of efficiency (KGE). 

Regarding the capture of interannual anoxia dynamics: Yes, it seems there was a shift in the ecosystem happening 
beginning in 2010 with higher annual Anoxic Factors. We changed Figure 10 to also show the comparison between 
simulated Anoxic Factor and the observed data for the periods pre-2010 and post-2010. We also recalculated 
goodness of fit separately for the two time periods. For the total time period (Fig 10b, 1992-2015 when observed 
data was available) the model achieved an RMSE of 7.12 d, NSE of -0.22, KGE of 0.26 and r of 0.28 showing that on 
average it was a week off in replicating the Anoxic Factor, but the KGE and r values proved that the general 
dynamics and interannual variability could be replicated. When comparing with the pre-2010 period (Fig 10c), the 
model achieved an RMSE of 6.79 d, an NSE of -0.25, an KGE of 0.44 and r of 0.45, which highlights the model’s 
ability to replicate anoxia dynamics in this period (please note that the model was calibrated for the period 2005-
2015 which proves, at least in our opinion, the success of the calibration if there indeed was an ecosystem shift). 
When comparing with the post-2010 period (Fig 10d), the model achieved an RMSE of 8.04 d, an NSE of -31.99, an 
KGE of 0.21 and r of 0.62. Here, the model is biased as the observed Anoxic Factor is higher in all years except 
2013. Still, the interannual variability expressed by the correlation coefficient r was captured very well by the 
model. The p-value for the pre-2010 period of the correlation coefficient was p=0.0591. For the post-2010 period, 
the p-value = 0.19, reducing our confidence in the model for this shorter time period. The visual inspection of 



these plots (10c and 10d) highlights that they represent different ecosystem states, as there is step-change in the 
Anoxic Factor starting in 2010.  

 

Figure 1 Comparison of observed to modeled dissolved oxygen concentrations and ecosystem response. A Contour plot of 
observed (upper figure, white dots mark sample events) and simulated dissolved oxygen concentrations. B Comparison of 



simulated Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-whisker 
plots) over the period 1979 to 2018. C Comparison of simulated Anoxic Factor (red dots) against interpolated range of 
Anoxic Factor derived from observed data (box-whisker plots) over the period 1992 to 2009. B Comparison of simulated 
Anoxic Factor (red dots) against interpolated range of Anoxic Factor derived from observed data (box-whisker plots) over 
the period 2010 to 2015.  

Therefore, we focused our regression analysis on the pre-2010 period. First, we inspected if the distributions of the 
observed and modeled Anoxic Factors were similar by investigating the null hypothesis that they are identical 
populations as determined by the Wilcoxon test (see attached figure below). This test achieved a non-significant p-
value of 0.13, indicating strong overlap in populations, and therefore are comparable. We added this figure as 
Figure A9 to the Appendix A of the manuscript. Also, a similar comparison of the Anoxic Factors for the post-2010 
period revealed that observed and modeled distributions were significantly different with a p-value of 0.032. This 
effectively highlights that we can talk about “two different lakes here”. We added these sentences to the main text 
in the results and in the discussion: 

L412-421: The simulated Anoxic Factor over the total time period averaged 56.7 ± 5.2 days with an RMSE 
of 7 days, an NSE of -0.22, and an KGE of 0.26 (correlation coefficient r = 0.28). The model’s 
underestimation of the recent positive trend of Anoxic Factors starting in 2010 was investigated by 
quantifying the fits during two periods: 1992-2009 (Figure 10C) and 2010-2005 (Figure 10D). In the pre-
2010 period (1992-2009), the model achieved an RMSE of 6.79 days, an NSE of -0.25, an KGE of 0.44 and r 
of 0.45 for Anoxic Factor predictions. In the post-2010 period (2010-2015), the model achieved an RMSE 
of 8.04 days, an NSE of -31.99, an KGE of 0.21 and r of 0.62. A subsequent Wilcoxon signed-rank test 
highlighted, that the observed average and modelled Anoxic Factors from the pre-2010 period showed no 
significant differences between the two distributions, suggesting they belong to the same population (p-
value = 0.13, Appendix Figure A9), whereas the distributions of observed mean Anoxic Factors and 
modeled ones after 2010 were significantly different (p-value = 0.032, Appendix Figure A9). 
 

 
Figure A9 Box-whisker plots of observed to modeled Anoxic Factor for (a) the period 1992-2009 and (b) for the period 2010-
2015. 

We discussed novel insights into these two distinct periods by expanding this paragraph 
L498-518: The model replicated the maximum anoxia event in 1998 but struggled to replicate the 
minimum in 2002. The discrepancies of 5-10 days between the simulated and observed range of the 
Anoxic Factor beginning in 2010 are related to an increased spatial as well as temporal extent of summer 
anoxia (Appendix Figure A10), which was not captured by the model. This was highlighted by the 
statistical analysis of the pre-2010 (1992-2009) and post-2010 (2010-2015) Anoxic Factors. Prior to 2010, 
there were no significant differences between observed and modeled distributions (p=0.13); whereas, 



after 2010, the observed distribution was significantly higher than the modeled distribution (p=0.032) 
(Appendix Figure A9). For simplicity and due to limitations in Lake Mendota monitoring data post-2010, 
we focused the regression analysis of the Anoxic Factor in this study only on the pre-2010 period.  
The change in Anoxic Factor post-2010 may be due to an ecosystem shift in Lake Mendota that began in 
2009, when the invasive spiny water flea (Bythothrephes longimanus) was detected in surprisingly high 
densities in the lake (Walsh et al., 2016b, 2018). Spiny water flea effectively became the dominant 
Daphnia grazer, causing historically low Daphnia biomass in 2010, 2014 and 2015 (Walsh et al., 2016a) 
and reducing water clarity. The spiny water flea may have increased organic matter supply to the 
hypolimnion by grazing down certain phytoplankton. Mendota’s Daphnia population historically consisted 
of Daphnia pulicaria and the smaller-bodied Daphnia galeata mendotae, who compete differently with 
spiny water flea. D. mendotae biomass increased in spring after the spiny water flea invasion (Walsh et al., 
2017), grazing on phytoplankton and probably accelerating organic matter mineralization before 
stratification onset. This could be one potential cause that contributed to the increase in hypolimnetic 
oxygen depletion after 2010. Our GLM-AED2 model could not replicate this food web change, and 
subsequent shift in anoxia dynamics, due to limitations of the numerical model, i.e., GLM-AED2 had 
constant ecological parameters over the entire modeling period and did not have zooplankton dynamics 
instantiated. We envision future monitoring and modeling studies that focus entirely on ecosystem 
differences and shifts between the pre-2010 and post-2010 periods of Lake Mendota. 

Further, by analyzing the autocorrelation function (ACF) of the observed mean Anoxic Factors and the modeled 
ones (see figure below), we concluded that there is no autocorrelation between annual Anoxic Factors. It may be 
the case that the interannual variation in the Anoxic Factor (investigated by ACF) is effectively random, which does 
not mean that the Anoxic Factor is necessarily random, but that the variation in external drivers may be random. 
Still, our model’s simulated Anoxic Factors are from the same distribution as the observed mean values 
highlighting the model’s ability to capture the overall distribution of anoxia. Further, the fit metrics (highlighted in 
revised Figure 10) show that the model can capture inter-annual variability significantly prior to 2010, even if the 
average value is off by about a week.  

 
We therefore followed the reviewer’s suggestion to only include the pre-2010 period for the regression analysis, 
which is discussed in the next comment and response block: 

L314-317: Only model output and model driver data from the period 1980-2009 were used in the 
regression analysis. The first year, 1979, was dropped from the investigations due to a lack of prior winter 
information. The years 2010-2015 were dropped due to an apparent ecosystem shift (see Section ‘3.4 
Oxygen Dynamics’). 

 



Referee comment: 
Regression model. I think there are four flaws in the approach used here: 1. Not including loading and in-lake 
variables that would potentially describe interannual variability in productivity. 2) Including modeling results in a 
regression analysis. Given that the model does not simulate AF, it appears that using modeling results in the 
regression may just add noise to the regression or reinforce parameters that are in the model. 3) Using one 
correlation and one regression to simulate two very different types of lakes, and 4) Using way too many variables 
in a single multiple regression equation. Even though it appears based on stepwise regression all of the variables 
are significant, I think it is way over parameterized. Several studies have shown that with regressions using very 
few observations, many variables can look significant – with each variable coming in to describe one or a few 
unique observations. A good rule of thumb is to keep only 1 variable in a multiple regression for each 8-10 
observations. So for this regression with 37 (and actually only 28 monitored years) observations, there should only 
be maybe 3 independent variables. 
Referee suggestion: 1) include variables like actual loading rather than concentrations, include variables that 
describe inlake productivity (total phosphorus, chlorophyll, Secchi). I am not sure what GPP actually represents. If 
GPP does describe the changes in chlorophyll, it should be stated. I also do not think it is a good idea to include 
things describing DO (like maximum height of anoxia) when you are trying to predict AF (this can get to circular 
reasoning) 2) Only use the 28 actual observations in the correlations and regressions. 3) Look at the correlations 
for each part of the record (different biological conditions) separately. 4) Stick to correlations and not use 
regressions. Or if you do look at regressions start simple and add variables only significant when you consider the 
change in AIC. 
Author response: 
Thank you for your very thoughtful explanation of the regression analysis’ flaws and your very helpful suggestions 
how to overcome these.  
1) We changed the inflow variables, total phosphorus inflow concentration and total nitrogen inflow 

concentration (both in g per m2), to total phosphorus inflow loading and total nitrogen inflow loading (both 
now in g per d per m2 of lake area). These loading variables were included in the model to assess the 
importance of external hydrological drivers for the extent of anoxia. To capture in-lake productivity variables, 
our regression included the cumulative gross primary production in the surface and bottom lake that 
represent the total sum of photosynthesis, hence expressed as carbon uptake, of each functional 
phytoplankton group, and scales directly with in-lake Chl-a concentrations. Further, our regression also 
includes the temporal change of dissolved as well as particulate organic carbon in the bottom layer from 
stratification onset to fall mixing onset. To make it clearer what GPP represents, we added this sentence to the 
main text: 

L300-308: Here, GPP represents the sum of all functional phytoplankton group’s photosynthesis rates 
parameterized as the total carbon uptake: 
𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −
𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌] 
 (7) 
where the carbon uptake 𝑓!"#$%&

'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the 
photorespiratory loss (1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a 
minimum function taking into account limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), 
phosphorus 𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 𝜙62'()(𝑅𝑠𝑖)} (Hipsey et al., 2017; adapted from Hipsey and 
Hamilton, 2008). As the GPP is the main model output variable for phytoplankton dynamics, it scales 
directly with biomass and Chl-a concentrations. 

Following the reviewer’s suggestion, we removed the maximum height of anoxia in the regression analysis. 
The variable was removed from all paragraphs (2.3.4 Regression Model, Table 1) 

2) For the regression we only used modeled results and no actual observed data. This was done to identify 
internal connections in the numerical model and its mathematical equations. Similar analyses of modeled 
output and model driver data were done in Farrell et al., 2020; Snortheim et al., 2017; Ward et al., 2020. We 
added these sentences to the Methods section: 

L279-282: All candidate predictors were either modeled output or boundary data for the model. This 
enabled the regression analysis to identify internal connections in the numerical model itself (similar 



analyses of modeled output and driver data were done in Snortheim et al., 2017; Ward et al., 2020; Weng 
et al., 2020). 

3) Following our reasoning in the first comment and response section, and the suggestions by the reviewer we 
revised our regression analysis by only using model data from 1980-2009. This excludes the first year as warm-
up period and the post-2010 period due to different ecosystem conditions (probably spiny water flea 
invasion). We added additional discussions regarding the ecosystem shift (see response to first comment). 

4) Following the suggestion of the reviewer, we re-did the regression analysis with 21 candidate predictors using 
model output and model drivers from 1980-2009 (we removed the anoxia height from the sediment) using the 
Boruta algorithm (random forest classifier). This analysis identified 10 variables as important. Subsequently, 
we did a step-wise analysis of the AIC of each model. This resulted in the identification of seven predictors: 
HBR ratio during spring, HBR ratio during summer, Birgean Work in spring, epilimnetic GPP, Schmidt Stability 
in summer, Birgean Work in summer, and onset date of stratification. The AICs of each model with any of 
these variables removed did not result in significant changes (this table was added to the manuscript as Table 
A3): 
Table A3 Step-wise model-selection by removing predictors of the multiple linear regression model using seven 
predictors. 

Predictor AIC 

HBR ratio during spring (Spring.HBR) -61.820 

HBR ratio during summer (Summer.HBR) -60.529 

Birgean Work during spring (Spring.Birgean) -60.189 

Gross primary production in the epilimnion (Epi.GPP) -58.952 

Schmidt Stability during summer (Summer.St) -51.829 

Birgean Work during summer (Summer.B) -50.848 

Onset of stratification (Onset.Strat) -42.900 

 
We reduced the final model to only three predictors (as the reviewer suggested) including onset date of 
stratification, Schmidt Stability in summer (as the AIC was similar to Birgean but the concept of Schmidt 
Stability is more generally known) and epilimnetic GPP. The text in “2.3.4 Regression Model” was accordingly 
changed to: 

L321-330: This multiple linear regression model to predict Anoxic Factor included seven variables: HBR 
ratio during spring, HBR ratio during summer, Birgean Work in spring, Schmidt Stability in spring,  
epilimnetic GPP, Schmidt Stability in summer, Birgean Work in summer, and onset date of stratification. 
We reduced the complexity of the final multiple linear regression model to only three predictors of Anoxic 
Factor: onset date of stratification, Schmidt Stability in summer, and epilimnetic GPP. Schmidt Stability 
was included instead of Birgean Work as the resulting AIC of both models were similar, but the concept of 
Schmidt Stability is more commonly used in the limnological research community (Appendix Table A3). 
The final multiple linear regression model was configured as (scaled predictors, adjusted R2 = 0.84, p < 
0.001 Appendix Table A4). 
𝑦 = 0.24𝐸𝑝𝑖. 𝐺𝑃𝑃 + 0.54𝑆𝑢𝑚𝑚𝑒𝑟. 𝑆𝑡 − 0.46𝑂𝑛𝑠𝑒𝑡. 𝑆𝑡𝑟𝑎𝑡 − 5.44 ∗ 10789 + 𝜖,  (8) 
where 𝜖	𝛮(0,38:). 

The results text in “3.5 Regression Model” was changed to: 
L423-430: We included in total 3 predictors in our final multiple linear regression which were deemed 
important by the Boruta algorithm and stepwise linear model investigations using AIC for the period 1980-
2009: Schmidt Stability during summer, the onset date of stratification, and gross primary production in 
the epilimnion (Appendix Table A4). 



The linear model showed a good agreement between simulated and predicted Anoxic Factor (Figure 11 A, 
Appendix Table A4). The Anoxic Factor was positively correlated to the summer Schmidt Stability (r = 0.72, 
Figure 11 B) and the gross primary production in the epilimnion (r = 0.48). It was negatively correlated to 
the onset of stratification (r = -0.78, Figure 11 B). 
 

We changed Appendix Table A3 (formerly A2) and Figure 11 accordingly: 
Table A3 Most parsimonious multiple linear regression model (adjusted R2 = 0.84, p < 0.001) explaining the summer Anoxic 
Factor. 

 Estimate Std. Error t value Pr(>|t|) Rel. importance [%] 

Intercept -1.04e-15 5.70e-2 0.00 1.00  

Schmidt Stability during summer 

(Summer.St) 

5.386e-1 7.920e-2 6.800 3.23e-7 43 

Onset of stratification (Onset.Strat) -4.581-1 9.006e-2 -5.086 2.68e-5 42 

Gross primary production in the 

epilimnion (Epi.GPP) 

2.436e-1 8.327e-2 2.926 0.00704 15 

 



 
Figure 2 Predicted against simulated summer Anoxic Factor. A Linear model with a prediction which was done using a 
multiple linear regression model of the form: �̂� = 𝟎. 𝟐𝟒𝑬𝒑𝒊. 𝑮𝑷𝑷 + 𝟎. 𝟓𝟒𝑺𝒖𝒎𝒎𝒆𝒓. 𝑺𝒕 − 𝟎. 𝟒𝟔𝑶𝒏𝒔𝒆𝒕. 𝑺𝒕𝒓𝒂𝒕 − 𝟓. 𝟒𝟒 ∗
𝟏𝟎!𝟏𝟕 + �̂�,where �̂�	𝜨A𝟎, 𝟑𝟖𝟐D. The red lines represent confidence intervals. B Correlogram of the input data using Pearson 
correlation coefficients 

We changed the following sentences in the main text to reflect these changes: 
L434-438: The Schmidt Stability during summer (rel. importance of 43 %) as well as the timing of 
stratification (rel. importance of 42 %) all influence Anoxic Factor, and are all driven mainly by 
atmospheric drivers and heat convection throughout the water column. The most important predictor of 
Anoxic Factor directly related to biological processes is gross primary production in the epilimnion (rel. 
importance of 15 %), Appendix Table A4). 
L596-599: Physical metrics – summer Schmidt Stability and onset date of stratification – were the most 
important predictors driving the summer Anoxic Factor. Although the gross primary production was still 
influential in affecting year-to-year variability of hypolimnetic anoxia, biological control over the Anoxic 
Factor was limited in our study period. 



 
 
Referee comment: 
My other main concern is that the deductive model seems to say that it is the inlake productivity that is driving the 
interannual variability in AF, and the other models seem to be saying it is driven by physics and sediment oxygen 
demand. Maybe with further analysis the models will come to more similar conclusions. If I am wrong with this 
interpretation, it should be explained better. 
Author response: 
The deductive model itself can only determine between two sources of depletion, either a volumetric one or an 
area sink. It cannot distinguish between biological or physical drivers of these depletion causes. Although the 
deductive model states that the volumetric sink is higher than the area sink, this is only of importance for the in-
lake biological drivers (as the area sink depends on in-situ biogeochemical conditions). In the manuscript we state 
that the anoxia variability over a summer season is mainly driven by changes in the physical drivers, whereas we 
acknowledge that oxygen depletion itself (as shown in the regression model) is a function of biological and 
chemical activity. The deductive model itself does not consider any physical drivers, even diffusion is neglected. 
We added these lines to the main text to clarify our message: 

L529-532: We note that the simple deductive model itself can only differentiate between two sources of 
depletion and neglects any physical transport drivers of oxygen, e.g., diffusion. Therefore, the results of 
the deductive model only add direct information to the actual depletion process of dissolved oxygen, but 
not of the dominant drivers. 

 
Referee comment: 
1. Line-125. Very little information is given on the actual loading. Can these estimates be compared with others? 
Author response: 
Thank you. We compared our loadings with literature values, especially regarding phosphorus. Previous estimates 
range from about 15-67 t of total phosphorus (TP) per year (Kara 2011). Our estimates are at the higher end of this 
range. There is a concern that previous estimates did not fully account for loads of adsorbed phosphorus (hence, 
phosphate bound on sediment), because of the importance of extreme storm events on particulate loads 
(Carpenter 2017). To accommodate for a potential underestimation of TP loads, we added to the inflow boundary 
condition the adsorbed phosphate variables, which was set roughly equal in magnitude to non-adsorbed 
phosphorus. This puts our estimates of total P load near the upper range of previous estimates. Bennett (1999) 
estimated the long-term average annual TP input with 34 t P. Our Yahara inflow had an average annual TP load of 
about 25.3 t/y and ranged between 2.69 to 73.09 t/y over the period 1979-2015. Due to the use of a hydrological 
model, our inflows accounted for a closed water balance and included near-lake groundwater/spring inflows. Our 
average annual load of 25.3 t/y is slightly higher than the loadings by of Lathrop (2009). We added these lines to 
the main text: 

L136-144: To provide information regarding adsorbed soluble reactive phosphate, we doubled measured 
total phosphorus (TP) concentrations and applied specific ratios to individual phosphorus forms (Farrell et 
al., 2020; Snortheim et al., 2017; Weng et al., 2020). This put our estimates of TP near the upper range of 
previous load estimates. Bennett et al., (1999) estimated the long-term average annual TP load to be 
about 34 t, whereas our average annual TP load (with adsorbed phosphate) was about 50.6 t and ranged 
between 5.3 to 146.1 t (1979-2015). Our average annual TP load (without adsorbed phosphate) was about 
25.3 t and ranged between 2.7 to 73.1 t (1979-2015), which is similar to previous estimates between 15 to 
67 t (Kara et al., 2012). By doubling our TP by adding adsorbed phosphate, we accommodate a potential 
TP load underestimation due to the importance of extreme storm events on particulate loads (Carpenter 
et al., 2018).  

Further, we checked our derived annual TP loadings using the Vollenweider model by assuming winter TP 
concentrations, TPlake, of 140 ug/L, a residence time, RT, of 4 years, P retention, 𝜎, of 0.7, and a mean depth, zmean, 
of 12.8 m: 

𝑇𝑃1$%& =
𝐿

𝑧/&$; V
1
𝑅𝑇 + 𝜎W

 

𝐿 = 0.14	𝑔/𝑚3	(12.8	𝑚	(0.25	𝑦78 	+ 	0.7	𝑦78)) = 1.70	𝑔/𝑚2/𝑦 



By multiplying L with the lake area of Lake Mendota (approx. 39.61 km2), the Vollenweider model quantifies the 
annual load for steady-state conditions with 67 t/y, which is slightly above our average annual TP load (with 
adsorbed phosphate) of 50.6 t/y. 
 
Referee comment: 
2. Line 128 – It says here to look at Weng et al. 2020 for a description of the loading regression, but when I look at 
that paper, I don’t see any more than they used a regression, with no statistics either for the monitored sites or 
the watershed modeling. 
Author response: 
Thank you for pointing this out. Yes, there are no previous publications describing the regression fit analysis. We 
described in the previous response that our TP loads were near the upper range of previous estimates due to our 
addition of adsorbed phosphate (due to extreme storm events and land erosion). For the regression analysis 
between discharges and nutrient concentrations, we used the state-of-the-art loadflex R-package 
(https://github.com/USGS-R/loadflex, Appling et al., 2015). As monitored TP estimates are rare, a comprehensive 
statistical analysis is challenging. The attached figure visualizes the fit for 8 years (2008-2015), which was 
satisfactory for most years. USGS monitoring began Oct 2008, so a comparison cannot be made for the entire year. 
Overall, our model tended to overestimate nutrient loads into the lake. 
 

 



 
 
Referee comment: 
3. Line 136 – You mention other data earlier years, who collected that? 
Author response: 
The additional data points were measured by Patricia Soranno for her thesis. We added that information in the 
sentence: 

L149: The dissolved oxygen data set was complemented with historical measured dissolved oxygen data 
from 1992 to 1994. 

And we acknowledged her in the Acknowledgement section “We are thankful for supplementary dissolved oxygen 
field data from 1992-1994 by Patricia Soranno.” Her data does not officially belong to the NTL-LTER monitoring 
data set of Lake Mendota, but it gave us valuable early spring-summer information regarding oxygen dynamics. 
 
Referee comment: 
4. Line 159 – See comments above about mixing real observations with modeled data. 5. Line 190 – There are lots 
and lots of parameters in AED, how did you narrow it down to the ones to start with, you need to start 
somewhere? 
Author response: 
We used the Morris Sensitivity Method to identify crucial parameters for the calibration. For this analysis we 
included the main model parameters regarding sediment flux and in-water biogeochemical reactions, mainly, of 
the main nutrient modules: oxygen, carbon, silica, nitrogen and phosphate. For the initial values, we chose starting 
values either from the AED2 webpage (https://aed.see.uwa.edu.au/research/models/aed/modules.html, default 
values, or values inside the typical range) or from previous modeling work on Lake Mendota (see Snortheim et al. 
2017). We added this sentence to the main text for clarification: 

L231: Initial model parameter values were taken from default parameter values and ranges, as well as 
literature values (Hipsey et al., 2017; Snortheim et al., 2017). 

 
Referee comment: 
6. Line 215-Can you expect to capture interannual variability in productivity without having the phytoplankton 
simulate things specific to Lake Mendota? 
Author response: 
This is a good point, thank you for raising this. Although we did not calibrate the functional phytoplankton groups 
specifically to Lake Mendota, we still checked simulated Chl-a and Secchi depth values, as well as timings of 
phytoplankton bloom peaks. In general, the model did replicate the seasonal succession well. We’ve attached the 



following figure that compares the observed to modeled Secchi depths for the reviewer to inspect. The summer 
Secchi depths from the model are similar to the observed ones, highlighting that the ecosystem dynamics during 
anoxia are similar. The gray boxes highlight the time period from day of the year 150 to day of the year 180 (June 
to end of August): for the majority of years the model can replicate the Secchi depth dynamics of the June period., 
whereas generally it underestimates the initial summer Secchi depth.  
 

 
 
Referee comment: 
7. Line 260 – My bet is that anoxia does occur under the ice, but you can’t get that from one measurement during 
the winter. 
Author response: 



Yes, measurements and the monitoring have shown that there is anoxia under the ice in Lake Mendota, but it 
varies a lot. We agree that we cannot determine the full anoxia extent under ice with only one or two 
measurements per season. We changed sentence the sentence accordingly to: 

L276: We quantified the seasonal Anoxic Factor only for the summer season. 
 
Referee comment: 
8. Line 267 – Loads would be better than concentrations. Concentrations generally do not vary much from year to 
year. If you did really use loads, you should state that. But you should describe this better. 
Author response: 
We changed the inflow variables, total phosphorus inflow concentration and total nitrogen inflow concentration 
(both in g per m2), to total phosphorus inflow loading and total nitrogen inflow loading (both now in g per d per 
m2). These loading variables were included in the model to assess the importance of external hydrological drivers 
for the extent of anoxia. We changed the information in Table 1 accordingly:  

Total phosphorus inflow loading Winter/spring/summer of 
year n-1 and n 

Extracted from driver data  g P per day per 
m2 

Total nitrogen inflow loading Winter/spring/summer of 
year n-1 and n 

Extracted from driver data  g N per day per 
m2 

 
 
Referee comment: 
9. Line 273 – See comments above. 
Author response: 
Please see our response above. 
 
Referee comment: 
10. Line 278- Since Gross primary productivity (GPP) is your only in-lake productivity term, you should describe this 
in more detail. If this is directly related to chlorophyll, maybe this addresses some of my concerns. 
Author response: 
Thank for raising this point. GPP (gross primary productivity) in the lake is the cumulative photosynthesis, 
represented by cumulative carbon uptake per time step, of all functional phytoplankton groups. Therefore, it 
scales directly with the simulated Chl-a output. We clarified this in the main text: 

 
L300-308: Here, GPP represents the sum of all functional phytoplankton group’s photosynthesis rates 
parameterized as the total carbon uptake: 
𝑓!"#$%&
'()! = 𝑅*+,-#.'() (1 −
𝑘"+'())	𝜙#&/"'() (𝑇)	𝜙0#+&00'() (𝑋)	𝑚𝑖𝑛{𝜙12*.#'() (𝐼)	𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3)	𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌')	𝜙62'()(𝑅𝑠𝑖)}[𝑃𝐻𝑌] 
 (7) 
where the carbon uptake 𝑓!"#$%&

'()!  of an individual group PHY depends on the growth rate 𝑅*+,-#.'() , the 
photorespiratory loss (1 − 𝑘"+'()), temperature scaling 𝜙#&/"'() (𝑇), metabolic stress 𝜙0#+&00'() (𝑋), and a 
minimum function taking into account limitations by light 𝜙12*.#'() (𝐼), nitrogen 𝜙3'()(𝑁𝑂4, 𝑁𝐻5𝑃𝐻𝑌3), 
phosphorus 𝜙''()(𝑃𝑂5, 𝑃𝐻𝑌') and silica 𝜙62'()(𝑅𝑠𝑖)} (Hipsey et al., 2017; adapted from Hipsey and 
Hamilton, 2008). As the GPP is the main model output variable for phytoplankton dynamics, it scales 
directly with biomass and Chl-a concentrations. 

 
 
Referee comment: 
11. Line 281 – Consider dropping this whole paragraph. 
Author response: 
Although we understand the reasoning behind dropping this paragraph as the same results could probably be 
achieved by either starting with a simple linear regression model and extending it, or by step-wise analysis of AIC,  
we decided to keep the Boruta algorithm and analysis in the manuscript. This method allows us to analyze 21 



potential predictors in a comprehensive framework before reducing the final number of important predictors by 
step-wise analysis. 
 
Referee comment: 
12. Line 306 – The major conclusion of the deductive model says that water column respiration controls oxygen 
depletion, yet everything else seems to point to physics. Am I missing something here?? Is water column 
respiration the cause and physics drives the variability in this? More explanation is needed. 
Author response: 
Please see our response above regarding the limitations of the deductive models and its incapability to 
acknowledge physical drivers. 
 
Referee comment: 
13. Line 322 – Please give the stats for DO. This is really what matters in this paper, especially in the part that 
varies from year to year. 
Author response: 
We agree, thank you. We added these sentences to the main text: 

L356-360: The simulated dissolved oxygen concentrations in the whole water column achieved an RMSE 
of 3.22 mg L-1, an NSE of 0.56, and an KGE of 0.77. Here, the average fits were better in the surface layer 
(RMSE of 2.77 mg L-1) compared to the bottom layers (RMSE of 3.31 mg L-1), whereas the temporal 
dynamics (as expressed in NSE and KGE) were slightly better in the bottom layer (an NSE of 0.64, KGE of 
0.81) compared to the surface layer (NSE of -0.36, KGE of 0.47). 

Further, the discussion of the oxygen fit has its own subparagraph in “3.4 Oxygen Dynamics” where we state that: 
L405-409: Dissolved oxygen dynamics, including the spatial extent of oxygen depletion in the water 
column, and the timing of summer anoxia periods, were replicated by the GLM-AED model (Figure 9A-B); 
although the model overestimated spring and summer time surface oxygen concentrations due to a 
higher net ecosystem production. The depth-averaged fit criteria of dissolved oxygen concentrations were 
similar to a recent study from Farrell et al. (2020) in which the RMSE were 1.88 mg/L and 2.49 mg/L in the 
epilimnion and hypolimnion, respectively, of a GLM-AED model calibrated for Lake Mendota. 

 
Referee comment: 
14. Line 333 – Reorder this paragraph to put the peaks later when you talk about summer. 
Author response: 
We agree. We moved the sentence to a later paragraph and combined it with the description of the annual course 
of Schmidt Stability: 

L395: Schmidt Stability peaked on average in August at approx. 720 J m-2 (Figure 6), followed by a peak in 
the Birgean Work at approx. 1250 J m-2. 

 
Referee comment: 
15. Line 345 – This paragraph could probably be deleted. 
Author response: 
As the main take-away message of our manuscript is related to physical drivers, we decided to keep this short 
paragraph describing the deep-water stagnancy in the manuscript. By comparing the additional energy demands of 
Lake Mendota with other similar sized lakes, the reader gets valuable information regarding the lake’s energy 
budget, and potential conclusions to the anoxia drivers of similar lake systems. 
 
Referee comment: 
16. Line 370 – It says the model captured annual anoxia events. Yes it described the annual development, but right 
now it does not seem to have any interannual capabilities?? 
Author response: 
We quantified the correlation coefficient for the Anoxic Factor with r = 0.28 (total period), r = 0.45 (pre-2010) and r 
= 0.62 (post-2010), see also Figure 10. Especially for the pre-2010 period the p-value of the correlation coefficient 
was p=0.0591, which was slightly above the significance level. Overall, this highlights the model’s overall ability to 
predict interannual changes and dynamics.  



 
Referee comment: 
17. Line 374 – See above. 
Author response: 
See response above. 
 
Referee comment: 
18. Discussion – Need to tie all three model results together better. Right now two say physics and one says 
productivity. 
Author response: 
We disagree that two models point to physical drivers and one to biological ones. The deductive model 
distinguished the main oxygen consumption as either being a volumetric or an area sink term. This information 
was used to set up the sediment oxygen demand in the GLM-AED2 model. The results of the calibrated GLM-AED2 
model were then used in a regression analysis to identify internal connections of the numerical model and its 
mathematical equations. This confirmed that in the process-based GLM-AED2 model three variables were 
important predictors of anoxia and its interannual variability. The deductive model itself does not consider any 
physical drivers (see responses above please).  
 
Referee comment: 
19. Line 394 – Although I completely agree with you, I am not sure where this comes from given the model results. 
Author response: 
The statement regarding that […] Biology matters but its interannual dynamics are not that influential […]” 
originates from the regression analysis. This analysis highlighted GPP as one of the most influential terms in 
projecting the variability of anoxia in Lake Mendota, but not as influential as physical variables (GPP only explained 
15 % of the interannual variance of the Anoxic Factor).  
 
Referee comment: 
20. Line 420 – Again I agree with you, but other than one variable in seven in the regression, I don’t know where 
this comes from. Need to describe this variables importance. 
Author response: 
As GPP is an ecosystem-scale metric that represents phytoplankton carbon uptake, net aquatic primary production 
as well as ecosystem respiration it surely highlights the biological control over Anoxic Factor, even if the regression 
deemed physical variables as more important. 
 
Referee comment: 
21. Line 425 – Maybe the lack of relations is due to using loading concentrations rather than actual loads. This is 
what I think the methods say. 
Author response: 
We changed the inflow parameters of total phosphorus and total nitrogen from concentrations to loadings and still 
the effect of anoxia is low. This is probably due to Lake Mendota’s long water residence time of approx. 4 years. 
 
Referee comment: 
22. Line 433 – Is it loads or concentrations. If it is concentrations, that wouldn’t surprise me at all. It is not the 
annual variations in concentrations that drive things, it is the difference in loads. 
Author response: 
See point above.  
 
Referee comment: 
23. Line 440 - This could be an important point, maybe there is so much oxygen consumption in the bottom, that it 
dwarfs any water column consumption. But this disagrees with findings of the other models. 
Author response: 
We discussed the sediment oxygen demand in the main text: 



L519-529: The simple deductive model established that the volumetric oxygen sink (i.e. water column 
oxygen demand) is consistently higher (on average about four times higher) than the sediment oxygen 
sink. The volumetric sink in lakes has been found to be strongly dependent on the trophic state of the 
lake, whereas the sediment sink is not (Rippey and McSorley, 2009). Eutrophic lakes tend to have high 
volume sinks that reach maxima of about 0.23 g m-3 d-1 (Rippey and McSorley, 2009) similar to the 
average volume sink of 0.16 g m-3 d-1 quantified by the deductive model for Lake Mendota. This finding is 
confirmed by the works of Conway (1972) who found that the high hypolimnetic oxygen demand of Lake 
Mendota was driven by algae decomposition, originating from the surface layer. Although eutrophic lakes 
tend to have a high sediment oxygen demand, the specific values can range from 0.3 g m-2 d-1 (Romero 
et al., 2004; Steinsberger et al., 2019) to extreme values of 80 g m-2 d-1 (Cross and Summerfelt, 1987), 
most studies measured or applied a value between 1 to 4 g m-2 d-1 (Mi et al., 2020; Veenstra and Nolen, 
1991). The sediment oxygen demand calculated by our deductive model of 0.04 g m-2 d-1 was closer to 
the average value of approx. 0.08 g m-2 d-1 measured by Rippey and McSorley (2009) on 32 lakes. 

In our numerical model the sediment oxygen demand (SOD) is replicating the volumetric and area sink as 
explained in the “Methods” section. Also, the model SOD is represented over the whole vertical axis (sediment 
area per volume for each grid cell) instead of a stagnant bottom layer only near lake’s bottom. The results of the 
deductive model did not confirm a very high SOD compared to other eutrophic lakes, see extreme values in Cross 
and Summerfelt (1987) of up to 80 g per m2 per d. 
 
Referee comment: 
24. Line 445. The apparent changes caused by the Spiny water flea may be totally confounding any correlations, 
regressions, and your GLM-AED2 modeling. You may have to stick to one of the periods to really describe the 
effects of physics vs internal. Or have two different models. 
Author response: 
See our initial response please. We described the Anoxic Factors for the pre-2010 and post-2010 periods in more 
details and focused our regression analysis only on the pre-2010 period. 
 
Referee comment: 
25. Line 472. Rather than implementing a different type of dynamic model, maybe better capturing change in 
productivity and clarity, will help in describing the physics. 
Author response: 
We agree that a better replication of changes in ecosystem-scale metrics like productivity or even water clarity 
would improve the simulations a lot. Still, water quality models are generally way overparameterized and have 
problems regarding equifinality. The occurrence of tiny water flea has proven that ecosystem changes will have 
strong effects on other ecoysystem characteristics like anoxia. Therefore, even the best calibrated fixed water 
quality model will have problems replicating a dynamic ecosystem. Further, our monitoring campaigns do not 
capture important water quality variables on a high temporal scale, e.g. daily, which generates further uncertainty. 
Therefore, in our opinion an improvement of the hydrodynamic calculations for example by using a state-of-the-
art turbulence closure scheme is the most applicable approach to improve the simulations in the near future.  
 
Referee comment: 
26. Line 481 – you didn’t calibrate the biological parameters, so this should be rewrit-ten. 
Author response: 
We calibrated physical as well as chemical parameters in GLM-AED2 but did not modify the biological parameters 
of the functional phytoplankton blooms. As these functional variables represent multiple phytoplankton species, a 
direct calibration would potentially result in an over-calibration of the model for specific time periods, which we 
tried to avoid. We changed the sentence accordingly to: 

L551: Our GLM-AED2 model overestimated spring phytoplankton biomass, which resulted in an 
overestimation of surface dissolved oxygen concentrations. 

 
Referee comment: 
27. Line 497 – Rather than thinking the deductive model is biased, maybe it is the only approach capturing the 
effects of the biology. 



Author response: 
Please see statement above regarding the limitations of the deductive model, and the lines that were revised to 
better formulate this in the main text. 


