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Abstract 10 

Environmental hot spots and hot moments (HSHMs) represent rare locations and events that exert disproportionate 

influence over the environment. While several mechanistic models have been used to characterize HSHMs behavior 

at specific sites, a critical missing component of research on HSHMs has been the development of clear, conventional 

statistical models. In this paper, we introduced a novel stochastic framework for analyzing HSHMs and the 

uncertainties. This framework can easily incorporate heterogeneous features in the spatiotemporal domain and can 15 

offer inexpensive solutions for testing future scenarios. The proposed approach utilizes indicator random variables 

(RVs) to construct a statistical model for HSHMs. The HSHMs indicator RVs are comprised of spatial and temporal 

components, which can be used to represent the unique characteristics of HSHMs. We identified three categories of 

HSHMs and demonstrated how our statistical framework are adjusted for each category. The three categories are (1) 

HSHMs defined only by spatial (static) components, (2) HSHMs defined by both spatial and temporal (dynamic) 20 

components, and (3) HSHMs defined by multiple dynamic components. The representation of an HSHM through its 

spatial and temporal components allows researchers to relate the HSHM’s uncertainty to the uncertainty of its 

components. We illustrated the proposed statistical framework through several HSHM case studies covering a variety 

of surface, subsurface, and coupled systems.  

1 Introduction 25 

Environmental hot spots and hot moments (HSHMs) were originally defined as rare locations or events that 

support or induce disproportionately high activity levels (e.g., chemical reaction rates) compared to surrounding areas 

or preceding times (McClain et al., 2003). Vidon et al. (2010) further classified HSHMs into either transport-driven 

or biogeochemically-driven HSHMs, based on the mechanisms causing the HSHMs. Bernhardt et al. (2017) derived 

the concept of ecological control points (CPs) related to HSHMs, defining CPs as areas of the landscape that exert a 30 

disproportionate influence on the biogeochemical behavior of an ecosystem under study. These definitions have 

mainly focused on HSHMs related to elevated biogeochemical activities triggered by hydrological or biogeochemical 

processes, or a confluence of both processes. The concept of HSHMs is also used in climate science, where it is related 

to elevated greenhouse gas emissions or specific locations that are subject to extreme natural hazards (e.g., sea-level 

rise, floods, hurricanes, or earthquakes) caused by climate change (Arora et al., 2021; Shrestha and Wang, 2018). 35 

Further, Henri et al. (2015) related HSHMs to locations experiencing elevated environmental risks and developed the 
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incremental lifetime cancer risk (ILCR) model to quantify the effects of hot spots on human health. In the present 

study, we provide a unified treatment of both positive and negative impacts of HSHMs, which allows us to present an 

integrative analytical framework for understanding and modeling HSHMs in various fields.  

Various approaches have been developed to better quantify HSHMs dynamics, including numerical 40 

modeling, empirical modeling and data-based approaches with statistics. For example, Dwivedi et al. (2017) 

developed a 3-D high-resolution numerical model to investigate whether organic-carbon-rich and chemically-reduced 

sediments located within the riparian zone act as denitrification hot spots. Their study demonstrated a significantly 

higher potential (~70%) of the naturally reduced zones (NRZs) to remove nitrate than the non-NRZ locations. Arora 

et al. (2016b) used a 2-D transect model and showed that temperature fluctuations constituted carbon hot moments in 45 

a contaminated floodplain aquifer that resulted in a 170% increase in annual groundwater carbon fluxes. Gu et al. 

(2012) developed a Monte Carlo reactive transport approach and discovered how denitrification HSHMs are triggered 

by river stage fluctuations. Abbott et al. (2016) developed the HotDam framework that combines the HSHM concept 

and Darmköhler number with multiple tracers to advance our understanding of ecohydrology. Statistical concepts 

have also been used to identify HSHMs through simple comparison to average; substantial percentage of total flux; 50 

outlier in distribution of data; statistically significant difference between or among landscape elements and 

contribution to flux/total area or time (Bernhardt et al. (2017) and references therein). Wavelet and entropy-based 

approaches have also been used to identify non-uniform regions and times and consequently HSHMs (Arora et al., 

2013, 2019a). However, most of these quantitative methods are derived based on site-specific data, which severely 

limits the transferability of these approaches. In contrast, a unified HSHM approach offers multiple advantages. First, 55 

a unified strategy based on commonly-used parameters for a given HSHM would allow modelers to create probability 

priors that could be used for prediction of said HSHM at unsampled- or poorly-sampled sites (Li et al., 2018). Second, 

such a standardized approach for modeling HSHMs could be beneficial to developing and implementing monitoring 

standards and regulations for environmentally-sensitive HSHMs. Last, but not the least, a unified approach can be 

used together with mechanistic models to capture uncertainty and heterogeneity for HSHMs in environmentally-60 

relevant applications. 

Successful characterization of HSHMs through deterministic physically-based models or purely statistical 

approaches relies on experts’ knowledge of a site, intensive field characterization, and possibly continuous field 

sampling to provide the data to develop and validate these approaches. Understandably, intensive site characterization 

and long-term sampling can be quite challenging due to the associated costs and efforts. In this regard, having access 65 

to a stochastic approach that could improve predictions through built-in model updating (i.e., Bayesian) capabilities 

could prove to be an advantage.  

Stochastic concepts and models have been widely applied in hydrology and hydrogeology for addressing 

situations subject to uncertainty, including but not limited to modeling flow and contaminant transport, quantifying 

subsurface heterogeneity and the associated uncertainties, developing strategies for site characterization, and 70 

providing informative priors for ungauged watersheds. Bayesian approaches were found particularly useful, especially 

through concepts such as conditioning and updating. In this paper, we aim to bring the experience gained in hydrology 

and hydrogeology into HSHM modeling.  
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An important characteristic of HSHMs is that they occupy a limited portion of the investigated domain and 

may be active for a limited amount of time since they are activated when the control variable exceeds a given threshold. 75 

Physical and geochemical heterogeneities, and the impossibility to fully characterize them, render the deterministic 

identification of HSHMs a vanishing objective. To address this hurdle, we propose to cast the problem into a 

probabilistic framework by seeking the probability of HSHM occurrence at a given position and time. For a given 

time and/or space intervals and for a-priori specified criteria, an HSHM occurrence could be viewed as a binary 

variable where the ensemble mean is the probability of occurrence. Indicator statistics have previously been applied 80 

to model flow and transport phenomena in groundwater (Rubin and Journel, 1991), where indicators were used to 

model the spatial distribution in a sand-shale formation. Wilson and Rubin (2002) and Bellin and Rubin (2004) used 

indicator statistics to characterize aquifer heterogeneity. These studies suggest that representation of a system’s 

structure through indicator formulation holds the potential of taking informed decisions, for example concerning 

remediation actions, under incomplete site characterization.   85 

Based on the mechanisms that trigger HSHMs, we identified three categories of HSHMs: (1) those triggered 

only by spatial (static) contributors, (2) those triggered by both spatial (static) and temporal (dynamic) contributors, 

and (3) those triggered by multiple dynamic contributors. Applications of the proposed indicator formulation to a 

diverse range of HSHM situations are presented to illustrate the generality of our proposed approach. The remainder 

of the paper is structured as follows. Section 2 outlines the proposed statistical framework for predicting HSHMs. In 90 

section 3, various reported cases from previous HSHM studies are presented using the framework of our proposed 

approach, intended to demonstrate its generality. In section 4, we present an HSHM application in groundwater 

hydrology and show how the HSHM uncertainty relates to the spatial variability of the hydraulic conductivity. 

Advantages and limitations of our approach are discussed in section 5.  

2 Methodology and statistical formulation of HSHMs 95 

Herein, we present a probabilistic formulation of hot spots and hot moments, which considers the HSHM 

occurrence as a binary event, expressed through indicator statistics embedded with the HSHM underlying physics. 

Section 2.1 summarizes the indicator formulation of HSHMs. Based on the contributors to HSHMs, we classified 

HSHMs into three different types, and we demonstrate how indicators are constructed for each type of HSHM in 

sections 2.2, 2.3 and 2.4, respectively. Section 2.5 focuses on the linkages between indicators and Bayesian concepts. 100 

Case studies for each class of HSHMs are provided in Section 3. 

2.1 Indicator formulation of HSHMs  

HSHMs represent intervals in space and/or time characterized by hydrobiogeochemical activity rates or 

fluxes that differ significantly from the background conditions, thus exerting disproportionate influences over an 

ecosystem’s dynamics. We define 𝜴∗ as the volume (subdomain) within which the hot spot may be located and 𝑡∗ the 105 

time at which the hot moment occurs. An indicator random variable, 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗), is used to identify whether HSHM 

occurs at (𝜴∗, 𝑡∗) or not. If user-defined critical conditions needed to trigger an HSHM are met at (𝜴∗, 𝑡∗), then 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1, and it is equal to zero otherwise. What makes the indicator a random variable is the uncertainty in 

the spatial and temporal distribution of the quantities triggering the HSHM event in real-life applications. Following 
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the original definition by McClain et al. (2003), in our method,  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can take the value of 0 or 1, depending 110 

on whether suitable thresholds are exceeded or not as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝐶(𝒙, 𝑡∗) > 𝐶𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
, or  

    𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝑅(𝒙, 𝑡∗) > 𝑅𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
,                                         (1) 

where 𝐶(𝒙, 𝑡∗) 𝑎𝑛𝑑 𝑅(𝒙, 𝑡∗) are the concentration and reaction rate at the position 𝒙 and time 𝑡∗, respectively. 

𝐶𝑡ℎ 𝑎𝑛𝑑 𝑅𝑡ℎ represent the concentration and reaction rate thresholds, respectively, which identify whether HSHM is 115 

triggered or not. Defining indicators with concentration or reaction rate depends on the target of HSHM. The threshold 

values can also be based on regulatory limits or defined by the user.  

The critical values of 𝐶𝑡ℎ and/or 𝑅𝑡ℎ are keys to an effective application of the above framework and should 

be determined based on the specific scenario under investigation. For example, in the case of contaminants that are 

associated with significant environmental or health risks (e.g., nuclear waste or a cancerous substance), 𝐶𝑡ℎ = 0 or 120 

𝑅𝑡ℎ = 0 can be used so that the HSHM will be triggered as soon as there is the presence of such contaminants and 

relevant chemical reactions. As an alternative, a limit in the total accumulated mass or fluxes within hot spots may 

also be set, such as suggested by EPA (USEPA, 2001), but in this case the definition (1) of the indicators should be 

modified. For water quality parameters, 𝐶𝑡ℎ = 𝑀𝐶𝐿 or 𝑅𝑡ℎ = 𝑅∗ can be assigned, where 𝑀𝐶𝐿 represents the maximum 

concentration limit for a specific solute whereas 𝑅∗ could represent a critical reaction rate. The critical thresholds can 125 

be determined based on statistics, such as percentiles and extremes as defined by regulations or analytical studies. 

Alternatively, 𝐶𝑡ℎ and 𝑅𝑡ℎ could also be chosen based on the experts’ domain knowledge or from well-documented 

studies at similar environments. Through the flexibility to adopt different choices for activation thresholds, our 

approach could allow users to compare relevant indicator models and assess their applicability by testing how different 

thresholds would influence the probability of the HSHM to occur and assessing said probabilities against risk tolerance 130 

and/or regulations.  

Following the definition of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) as a binary random variable (Eq. 1), we propose to model it with  

a Bernoulli distribution, such as 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >), where < . > is the ensemble 

averaging operator. An important characteristic of the Bernoulli distribution is that all the statistical moments of  

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed as a function of the ensemble mean < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. For example, the variance is 135 

given by 𝑣𝑎𝑟(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > ∙ (1− < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >). Thus, being able to fold the HSHM 

physics into an indicator formulation, a simplified approach is presented through Eq. (1).  

Case-based formulation of the Bernoulli distribution of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) requires the incorporation of the 

mechanisms that govern the development and occurrence of HSHMs into the indicator model. To facilitate this 

undertaking, we propose to decompose 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) into a Type-A (static) indicator random variable, 𝐼𝑠(𝜴∗), and a 140 

Type-B (dynamic) indicator random variable, 𝐼𝑑(𝜴∗, 𝑡∗). Definitions of the Type-A and Type-B indicators are 

provided herein: 

 Type-A (Static) Contributors. This category covers discrete spatial elements (and their associated critical 

states) that could trigger an HSHM once they come into contact with Type-B contributors (see discussion 
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below). Critical states are the range of values needed to trigger an HSHM (either in standalone mode or when 145 

coupled with Type-B contributors).  

 Type-B (Dynamic) Contributors. This category covers dynamic variables (and their associated critical 

states) that could trigger an HSHM once they come into contact with Type-A contributors. This category 

includes, for example, mass transport variables. It also includes changes in local hydrological and 

environmental conditions (e.g., water table fluctuations). The displacement of solutes in the subsurface 150 

(trajectories and travel times) from below- and above-ground processes are prime examples of Type-B 

contributors.  

As an example, naturally reduced sediments (Type-A contributor)  occurring next to the river corridor at the 

Rifle site were identified as carbon export hot spots (Arora et al., 2016a; Wainwright et al., 2015). Studies showed 

that these hot spots were triggered when temperature conditions (Type-B contributor) varied in the subsurface, 155 

resulting in a 170% increase in groundwater carbon export from the floodplain site to the river (Arora et al., 2016b). 

In another example, topographic features, such as the backslope of the lower montane hillslope (Type-A contributor) 

within the East River Watershed (Hubbard et al., 2018), were considered denitrification hot spots, which can have a 

significant impact on the watershed-scale nitrogen loss pathway. These hot spots were often triggered by spring 

snowmelt and storm events (Type-B contributor).  160 

Both indicators of the type-A and type-B contributors assume a value of either 0 or 1. If one of these indicators 

takes a value of 1, it can be viewed as an HSHM contributor. However, for an HSHM to occur, both indicators must 

have a value of 1 at the same location and time. This idea can be expressed as follows: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) = 𝑃(𝐼𝑠(𝜴∗) = 1, 𝐼𝑑(𝜴∗, 𝑡∗) = 1) 

= 𝑃(𝐼𝑠(𝜴∗) = 1) ∙ 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1|𝐼𝑠(𝜴∗) = 1) 165 

= 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1) ∙ 𝑃(𝐼𝑠(𝜴∗) = 1|𝐼𝑑(𝜴∗, 𝑡∗) = 1).                                                (2)      

Based on the mechanisms of HSHMs, we can distinguish between three different HSHM categories as 

discussed below. These categories can be used to guide the application of the above statistical framework in a variety 

of complex HSHM scenarios, and they can also be used to develop analytical or numerical solutions for both type-A 

and type-B contributors.  170 

 
Figure 1. Identified categories of HSHMs. Panel (a) presents HSHMs resulting from Type-A (static) indicator only; 

panel (b) presents HSHMs resulting from coupled action (static + dynamic) and panel (c) presents HSHMs resulting 

from multiple (two) dynamic indicators. 
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2.2 HSHMs induced by type-A (static) indicators 175 

In this section, we consider HSHMs that are defined by static indicators only (Figure 1a). This list can include 

zones of high, persistent concentration and reactivity that are due to the subsurface or the ecosystem’s unique 

hydrological and biogeochemical properties. For example, the accumulation of contaminants in the subsurface (e.g., 

the high nuclide concentration in the subsurface at the Hanford site) could lead to the evolution of persistent, high 

reactivity zones. An aquifer’s reactivity is another example that could distinguish certain regions with high reactivity 180 

compared to surrounding areas (Loschko et al., 2016). Such high reactivity spots (hereafter denoted as 𝜴∗) can be 

characterized by static indicator RVs due to the persistence of high concentration or reactivity. The static indicators 

are defined as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗) = 𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍(𝜴∗) ⊆ 𝑍𝑠

∗

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                          (3) 

where 𝑍𝑠
∗ represents the conditions needed to trigger a hot spot at 𝜴∗, and 𝑍(𝜴∗) represents the corresponding local 185 

conditions at 𝜴∗. Notice that 𝜴∗ is a volume centered at a selected position of the domain where the probability of 

developing HSHM is evaluated.  

2.3 HSHMs induced by type-A (static) and type-B (dynamic) indicators 

HSHMs can also result from dynamic processes encountering specific local conditions at 𝜴∗ (Figure 1b). 

This is the situation described by Eq. (2), where the type-A indicators are determined first, and then used jointly with 190 

the type-B indicators for complete HSHM characterization. For example, Bundt et al. (2001) concluded that locations 

(𝜴∗) interested by preferential flow paths are possible biological hot spots for soil microbial activities. Meanwhile, 

dynamic factors, such as snowmelt or rainfall infiltration control contaminant transport via the preferential flow paths 

and thus, constitute the hot moment component. Additional case studies are presented in Section 3.  

 For HSHMs induced by both type-A and type-B indicators, the static locations are selected first, based on 195 

their HSHM-related properties. After this, we can focus on characterizing the HSHM dynamics as they relate to the 

relevant locations. A selected location, 𝜴∗, could become an HSHM site based on characteristics defined through the 

following type-A and type-B indicators, respectively: 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                                           (4) 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑

∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
,                                                                  (5) 200 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗, 𝑎𝑛𝑑 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑
∗  

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
,                                            (6) 

where 𝑍𝑑
∗  represents the critical conditions needed to trigger the hot moment, whereas 𝑍𝑑(𝜴∗, 𝑡∗) represents the 

corresponding, critical-state local conditions at 𝑡∗ and 𝜴∗. The statistical model of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed 

using the statistical models of 𝐼𝑠  and 𝐼𝑑 , as shown in Eq. (2).  

2.4 HSHMs induced by multiple type-B (dynamic) indicators 205 

A confluence of dynamic processes could result in the formation of a HSHM (Figure 1c). Unlike the previous 

scenarios where static locations can be determined through known characteristics provided by geophysical or other 
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types of data, HSHMs can also emerge due to a confluence of dynamic processes. For example, Gu et al. (2012) 

analyzed how streamflow fluctuations could trigger a nitrogen HSHM. In their example, the dynamics of the 

streamflow and groundwater controlled the transport and mixing of the chemical reactants, thus triggering the 210 

occurrences of HSHMs. For this case, the static locations of 𝜴∗ are determined by the confluence of multiple dynamic 

processes, not being restricted by a set of local conditions. In this case, only type-B indicators need to be modeled.  

We can consider the case where an HSHM is predicated on 𝑚 dynamic processes, 𝑑𝑗, where 𝐼𝑑,𝑗(𝜴∗, 𝑡∗) is 

the dynamic for each dynamic 𝑑𝑗 at 𝜴∗ and time 𝑡∗. The hot spot location 𝜴∗ is determined by the confluence of all 

dynamic processes at time 𝑡∗.  These dynamic processes are not necessarily independent. Therefore, generally, the 215 

statistical model for the comprehensive dynamic indicator (which covers all dynamic contributors) assumes the 

following form: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,1(𝜴∗, 𝑡∗) = 1, … , 𝐼𝑑,𝑚(𝜴∗, 𝑡∗) = 1].                                        (7) 

In situations where the various dynamic contributors can be viewed as independent (e.g., Destouni and 

Cvetkovic, 1991)—i.e., where the reactants travel via different paths—then, assuming independence, we can state that   220 

𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1] = ∏ 𝑃[𝐼𝑑,𝑗(𝜴∗, 𝑡∗) = 1]

𝑚

𝑗=1

.                                                         (8) 

Here, the mean of the dynamic indicator becomes  

< 𝐼𝑑(𝜴∗, 𝑡∗) > =  ∏ < 𝐼𝑑,𝑗(𝜴∗, 𝑡∗) > .                                                              (9)

𝑚

𝑗=1

 

If 𝜴∗ is a hot spot, then Eq. (9) also defines < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. However, if 𝜴∗ is not a hot spot, then we 

need to resort to coupled statistical modeling, as suggested by Eq. (2). 225 

2.5 Additional advantages of stochastic formalism 

The statistical framework provides several benefits. Unified formulations of HSHMs through indicators 

provide us a platform to evaluate alternative HSHM models thoroughly and objectively. For example, the Akaike 

information criteria (AIC, Akaike, 1974) and Bayesian information criteria (Schwarz, 1978) can be used to rank 

between alternative indicator formulations and evaluate their ability to explain HSHM observations. Smaller AIC and 230 

BIC values indicate more information preserved in a given indicator HSHM model and implies better model quality 

than other indicator models. On the other hand, if larger AIC and BIC values are observed, important processes for 

HSHMs are likely missing indicating the necessity of increasing site characterization and refinement of conceptual 

models.  

In addition, informative priors constructed from similar HSHM sites (Cucchi et al., 2019; Li et al., 2018) 235 

could advance early stage planning for HSHM site investigation. Knowledge from studies at similar HSHM sites can 

be summarized into prior distributions, which can account for variabilities within and between sites. For example, 

Cucchi et al. (2019) demonstrated how the distribution of hydraulic parameters at unknown target sites can be 

predicted using information from hydrologically similar sites with existing tool packages such as exPrior. Goal-

oriented site characterization also becomes feasible with informative priors; for example, Li et al. (2018) demonstrated 240 

the usefulness of informative priors in reducing model uncertainty and potential risks for estimating groundwater 
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drawdown at Mintang tunnel in China. Therefore, through integration with statistical concepts, unified formulations 

of HSHMs enable us to integrate Bayesian concepts to obtain combined and less risky estimations of HSHMs at new 

sites, which can help us gain better understanding of the underlying mechanism.  

3 Examples of the statistical formulation of HSHMs with case studies 245 

In this section, we selected numerous examples from published research to present how our approach can be 

used to derive statistical representations for the HSHMs investigated in these studies. We grouped these studies into 

three categories based on the similarities of their underlying HSHM mechanisms, as described in section 2. Section 

3.1 demonstrate the formulation of static only HSHM; section 3.2 present the case with static and dynamic triggered 

HSHMs and section 3.3 summarize the steps to construct multiple dynamic indicators for HSHMs. Table 1 presents a 250 

summary of these cases, where environmental risk levels as well as impacts on ecosystem were also included.  
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Reference HS Location Category Seasonality Environmental 

Risk 

Causes Impact Static Mechanism Dynamic 

Mechanism 

HSHM Action Metrics for 

threshold 

Equation(s) 

Examples of static only mechanisms   

Wainwright 

et al. (2015) 

Naturally reducing 

zone 

Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Mineralogical  and 

lithological 

differences 

-- Vanadium, 

uranium, 

metallic 

minerals 

Concentration (3) 

Sassen et al. 

(2012) 

Reactive facies Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Lithological 

differences  

-- Uranium and 

other isotopes 

Concentration (3) 

Examples of static + dynamic mechanism   

Andrews et 

al. (2011) 

Shale hill Subsurface 

+ Surface 

Snowmelt and 

fall flushing 

periods 

Low risk Natural Neutral South-facing 

concave hillslopes 

Snowmelt and 

fall flushing 

periods 

Organic carbon Concentration (4) – (6) 

Henri et al. 

(2015) 

Preferential flow 

path 

Subsurface -- High risk Anthropogenic Negative Subsurface 

heterogeneity 

Contaminant 

transport and 

travel time 

distribution 

Chlorinated 

compounds 

Concentration (4) – (6) 

Duncan et 

al. (2013) 

Microtopography Surface Unimportant High risk Natural Positive Riparian hollows Transport and 

retention of 

reactants 

Nitrogen Concentration 

or reaction 

rate  

(4) – (6) 

Arora et al. 

(2016) 

Naturally reducing 

zone-induced 

transport 

Subsurface Temperature 

and water 

table 

fluctuation 

Low risk Anthropogenic 

+ Natural 

Neutral Naturally reduced 

zones 

Temperature and 

water table 

fluctuation 

Carbon fluxes Concentration 

or reaction 

rate 

(4) – (6) 

Examples of multiple dynamic mechanisms   

Hill et al. 

(2000) 

Riparian zone Subsurface -- High risk Natural Positive Interfaces in the 

riparian zone 

Supply of 

electron donor 

and acceptor 

from flow 

transport 

Nitrogen and 

carbon 

Concentration 

or reaction 

rate 

(7) – (9) 

Mitchell et 

al. (2008) 

Peatlands Subsurface 

+ Surface 

Summer 

periods 

High risk Natural Negative Upland-peatland 

interfaces induced 

by flow 

Interactions 

between upland 

and peatland 

flow 

Methylmercury Concentration (7) – (9) 

Frei et al. 

(2012) 

Microtopography Surface -- Neutral Natural Neutral Flowpaths induced 

by 

microtopography 

Biogeochemical 

evolution along 

flow paths 

Organic matter 

and nitrogen 

Concentration 

or reaction 

rate 

(7) – (9) 

Gu et al. 

(2012) 

Mixing zones Subsurface 

+ Surface 

River 

discharge + 

Water table 

fluctuation 

High risk Natural Positive Mixing zones 

caused by river 

stages 

Interaction 

between surface 

water and 

groundwater 

Nitrogen Concentration 

or reaction 

rate 

(7) – (9) 

  

 Table 1. Example cases considered in this study for constructing the statistical formulation of HSHM.
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3.1 HSHMs triggered by static contributors only 

In this section, we use Wainwright et al. (2015) as an example to illustrate our process to construct 255 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) following Eq. (3), where an HSHM is triggered by static contributors only (section 2.1). NRZs within 

floodplain environments at the Rifle site are considered biogeochemical hot spots because they represent elevated 

concentrations of uranium, organic matter, and geochemically reduced minerals and they have been found to 

contribute to significant carbon fluxes to the atmosphere and to local rivers (Arora et al., 2016). Due to its 

characteristics, we considered the spatial distribution of an NRZ to be a static-mechanism-based hot spot. Wainwright 260 

et al. (2015) used geophysical data (e.g., induced polarization) to map the distribution of an NRZ at the subsurface 

level. They found that the phase shift (𝜙) from the induced polarization data of the NRZ was within [4.5, 5]𝑚𝑟𝑎𝑑, 

compared to non-NRZ locations at 𝜙 ⊆ [1, 3.5]𝑚𝑟𝑎𝑑. Thus, 𝜙 can be used to construct the static indicator with a 

critical condition of [4.5, 5]𝑚𝑟𝑎𝑑. Therefore, 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝜙(𝜴∗) ⊆ [4.5, 5] 𝑚𝑟𝑎𝑑

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.                                                      (10) 265 

Other static attributes, including but not limited to elevation, hydraulic conductivity, and resistivity, can also 

be used to define the critical conditions to construct the static indicator for hot spots through Bayesian conditioning. 

3.2 HSHMs occurring when dynamic contributors coincide at locations defined by static contributors 

The second case we present here utilizes Eq. (4)–(6), where HSHMs are triggered when dynamic contributors 

coincide at hot spots determined by static contributors. Here, we present the case investigated by Duncan et al. (2013), 270 

where riparian hollows representing less than 1% of the total catchment area contributed to more than 99% of the total 

denitrification within the watershed. In their study, the denitrification rates peaked during the base flow (midsummer) 

period, when the riparian hollows were partially oxygenated and the hydrologic fluxes were at a minimum. The site 

was considered to have low inorganic N availability, and thus, nitrate was supplied via nitrification. The highest rates 

of denitrification were therefore tied to nitrification and the partially aerated conditions.  275 

The static indicator needs to be constructed based on the micro-topographical features within the riparian 

zone. Specifically, the topographic wetness index (TWI) (Beven and Kirkby, 1979; Sørensen et al., 2006) was used in 

Duncan et al. (2013) to delineate the riparian hollows from other riparian locations. Terrain analysis indicated a TWI 

threshold value of 6.0 and 8.0 for riparian hollows under wet and dry conditions, respectively, whereas 4.8 and smaller 

TWI values corresponded to other riparian locations (e.g., hummocks). Thus, the static indicator can be constructed 280 

using the TWI values within the riparian zone to determine the hot spot locations—the hollows. Hence,  

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑇𝑊𝐼(𝜴∗) > 6 (𝑤𝑒𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 8 (𝑑𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

.                         (11) 

Multiple dynamic processes control the denitrification rate at the riparian hollows. As examined by Duncan 

et al. (2013), a partially aerated condition (𝐶𝑂2
> 5%) is needed to support nitrification, which supplies the nitrate for 

denitrification. As quiescent, non-storm periods during base flow favor the coupled nitrification-denitrification 285 

mechanism, this is another key process that needs to be represented by a dynamic indicator. Although Duncan et al. 
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(2013) did not mention specific concentration ranges for nitrogen species, the major components, such as organic N, 

should be available. Therefore, we can construct the dynamic indicators as follows: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = 1],             (12) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) is the dynamic indicator representing the streamflow stages; this will be 1 if the base flow 290 

conditions are met. Additionally, here, 𝐼𝑑,𝑁 (𝜴∗, 𝑡∗) is the dynamic indicator for the transport of the nitrogen species 

in the subsurface that support the coupled nitrification-denitrification mechanism.  

𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = {

1,      𝑖𝑓 𝐶𝑂2
(𝜴∗, 𝑡∗) > 5%

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
, 

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑡∗ ⊆ 𝑏𝑎𝑠𝑒 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

,                                             (13)   

𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝐶𝑁(𝜴∗, 𝑡∗) > 0
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

. 295 

It is noted that these dynamic processes are not statistically independent. Usually, when one condition is met 

(e.g., base flow conditions), other conditions may consistently be satisfied (e.g., the transport of nitrogen in riparian 

hollows). Alternatively, numerical modeling approaches can be used to construct the dynamic indicators based on the 

critical conditions at riparian hollows (𝜴∗), where we could directly target 𝑁2 fluxes using a Monte Carlo approach. 

The statistical formulation used here is constructed specifically for the mechanisms described by Duncan et al. (2013). 300 

Thus, the detailed threshold limits could change under other denitrification HSHMs cases, such as the case presented 

in Hill et al. (2000), who focus on desert landscapes, or the one by Harms and Grimm  (2008), where the monsoon 

season is influential for the nitrogen transport. Nonetheless, the general formulation of HSHMs using indicators is still 

applicable.  

3.3 HSHMs occurring when multiple dynamic processes converge in space 305 

HSHMs can also be triggered by the confluence of multiple dynamic processes that lead to the convergence 

of complementary reactants at 𝜴∗. Complementary reactants can be mobilized and transported via different hydrologic 

flowpaths. They can converge at hot spot locations and trigger hot moments during the mixing. Following the 

statistical framework developed in this study, Eqs. (7) to (9) are suitable for this condition. In order to illustrate how 

the dynamic indicators are constructed, we consider here the case reported by Gu et al. (2012), where high 310 

biogeochemical activity was observed at the interface of groundwater and surface water during the stream stage 

fluctuations, which resulted in significant in-stream denitrification and 𝑁𝑂3
− removal.  

In their study, hot spots form around the near-stream riparian subsurface during river stage fluctuations, 

where active biogeochemical reaction (e.g., denitrification) requires both 𝑂2 depletion and the simultaneous presence 

of 𝑁𝑂3
− and the dissolved organic carbon (DOC). Specifically, the spatiotemporal distribution of denitrification hot 315 

spots coincides with an 𝑂2 depletion zone along the DOC infiltration flowpaths. In order to determine the mixing of 

groundwater and surface water during stage fluctuations, Gu et al. (2012) defined bank storage volume 𝑉(𝑡) and 

maximum bank storage volume 𝑉𝑚𝑎𝑥 . The flood hydrograph was subdivided into the rising limbs, recession limbs and 

return flow, the latter representing the slow restitution of part of the water that infiltrated during the previous stages. 

Considering the different dynamics of these components, they observed that the largest infiltration rate occurred prior 320 
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to the maximum stage rise, while 𝑉𝑚𝑎𝑥 = 5𝑚3𝑚−1 (critical condition) occurred in the recession limb of the flood 

event. Instead, maximum return flow occurred toward the end of the recession curve before stream hydrograph 

stabilizes. Maximum 𝑁𝑂3
− rate removal occurred when return flow phase was almost complete and then decreased 

until the depletion of 𝑁𝑂3
−. Through statistical analysis, they found that 𝑉𝑚𝑎𝑥, viewed as an integrated index for 

hydrological exchange, could explain 64% of the variation in the  𝑁𝑂3
− removal. Thus, 𝑉𝑚𝑎𝑥 can be used as the critical 325 

state to determine whether or not the hyporheic dynamics is significant to enhance relevant biogeochemical processes. 

In order for the hot moments to be significant, the stream-riparian zone should also be microbially active. Based on 

these conditions, the dynamic indicators can be constructed as follows: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[ 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = 1],                                (14) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) represents the dynamic process induced by the hydrologic conditions (e.g., stage fluctuation), 330 

and 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) represents the dynamic process controlled by the transport and accumulation of chemical reactants. 

Based on the critical values or ranges, we formulate the indicators as follows:  

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1, 𝑍𝑉𝑚𝑎𝑥

(𝜴∗, 𝑡∗) ≥ 5𝑚3𝑚−1

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
, 

                𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = {
1,    𝑖𝑓 𝐶𝑂2

(𝜴∗, 𝑡∗) 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝐶𝑁𝑂3
−(𝜴∗, 𝑡∗) > 0 𝑎𝑛𝑑 𝐶𝐷𝑂𝐶(𝜴∗, 𝑡∗) >  0

0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    
.  

Typically, because of the complexity of the processes, no analytical solutions are available for formulating 335 

the indicators. However, Monte Carlo simulations can be useful in constructing such indicators. For this case, an 

HSHM at any given location and time (𝜴∗, 𝑡∗) will only be triggered when all of the conditions are met and the 

ensemble mean of the indicator assumes the following form: 

< 𝐼𝑑(𝜴∗, 𝑡∗) > =
1

𝑁
∑ 𝐼𝑑,𝑖(𝜴∗, 𝑡∗)

𝑁

𝑖=1

 ,                                                                           (16) 

where 𝐼𝑑,𝑖(𝜴∗, 𝑡∗) is the value that the indicator assumes in the 𝑖𝑡ℎ realization and N is the total number of realizations. 340 

Overall, our choices of the three studies should not limit the generalizability of the indicator statistics 

approach for deriving statistical formulations for HSHM applications. The critical conditions chosen to construct the 

indicators are determined solely on the findings from these selected studies, and they will vary under different 

scenarios. 

4 HSHM applications in groundwater hydrology 345 

This section focuses on HSHMs in the subsurface for demonstration of linking HSHM models with the 

contributing physical processes, such as the migration of groundwater carrying reducing substrates, nuclear waste 

transport within the subsurface, the accumulation and transport of dense non-aqueous phase liquid (DNAPL) and other 

biogeochemical processes. Some current modeling approaches that focus on subsurface HSHMs assume simplified 

hydrologic structures (e.g., homogeneous and isotropic domains) in quantifying the fate and transport of solutes in the 350 

subsurface. However, such assumptions neglect the effect of the heterogeneity in the subsurface, potentially missing 

localized HSHMs arising as the combined effect of heterogeneity in physical and geochemical properties, and do not 

allow to assess uncertainties in the HSHM occurrences.  

(15) 
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This section therefore focuses on HSHMs taking place in the subsurface, with a particular emphasis on the 

role of spatial variability of the hydrologic parameters. Section 4.1 illustrates the potential of subsurface heterogeneity 355 

for triggering and timing of HSHMs. In section 4.2, we develop closed-form analytical solutions for HSHM 

probability.  In doing this, we demonstrate the linking between our indicator model and the physics of the HSHMs in 

the subsurface. In section 4.3 we demonstrate applications under various conditions of spatial variability.  

4.1 Importance of spatial variability in the subsurface 

The heterogeneous structure of hydraulic conductivity leads to significant variability in the transport of 360 

solutes in the subsurface, which couples with heterogeneous geochemical properties leading to a spatially varying 

reactivity (Arora et al., 2019b; Loschko et al., 2016; Sassen et al., 2012; Wainwright et al., 2015). Figure 2 

demonstrates the uncertainty associated with HSHMs by looking at the flow fields in two-dimensional log-hydraulic 

conductivity (𝑌 = 𝑙𝑛 (𝐾)) fields with streamlines resulting from a uniform mean head gradient, left to right. The three 

panels differ in terms of the variance, 𝜎𝑌
2, of the log-conductivity. The covariance function used for generating the 365 

fields is exponential and isotropic. 𝜎𝑌
2 is shown to have a profound impact upon the conductivity field. As the variance 

increases, regions of high and low log-conductivity emerge, creating preferential flow paths bypassing the low 

conductivity zones as shown by particle trajectories. At smaller variance (i.e., 𝜎𝑌
2 = 0.1), particles mainly travel along 

the mean flow direction with very limited departure from the mean trajectory, which are the straight lines connecting 

the left and right boundaries. In this situation, the arrival times of solute particles to a critical location (i.e., 𝜴∗,  where 370 

for example geochemical conditions are favorable to certain types of reactions to occur) are predictable. With large 

variances (i.e., 𝜎𝑌
2 = 2), the streamlines assume a very irregular, hard-to-predict geometry, and we can observe the 

emergence of flow channels, where particles can move fast, next to stagnant flow regions. Arrival times become more 

uncertain, because the exact geometry of the streamlines is hard to predict unless the Y field is known deterministically. 

However, since this is never the case, in another equally likely realization of the 𝑌 field, the situation may be different, 375 

resulting in significant uncertainties in predicting the particle travel times. Thus, spatial variability of log-conductivity 

is a major uncertainty-inducing factor, and by extension, obviating the need for stochastic modeling of HSHMs in 

situations where the associated processes and attributes are subject to uncertainty. In the following sections, we will 

present illustrative examples to analyze how subsurface spatial variability influences < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >, including 

variance and anisotropy ratio of the log-conductivity.  380 
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Figure 2. Illustrative example of a heterogeneous log-hydraulic conductivity field and solute particle transport. Black 

lines represent simulated particle travel paths. A left to right hydraulic gradient of 0.1 is applied. Mean of log-

conductivity is set at -3. Note color scales for log-conductivity are consistent in all three panels.  

4.2 Illustrative example and indicator formulation 385 

In this section we illustrate the proposed indicator approach by means of synthetic case studies developed by 

using methods of stochastic hydrogeology. The choice of the synthetic case studies does not limit our approaches to 

broader applications where stochastic modeling with Monte Carlo simulations are applicable. Figure 3 displays the 

configuration of this case example. Consider the case of an instantaneous point source release of a target compound 

at the location 𝒙𝟎 and time  𝑡0. HSHMs are triggered at any (𝜴∗, 𝑡∗) if the solute is present. Consider the hot spot (𝜴∗) 390 

to be confined within the following volume: 𝑤1 ≤ 𝑥1 ≤ 𝑤1
′ ; 𝑤2 ≤ 𝑥2 ≤ 𝑤2

′ ; 𝑤3 ≤ 𝑥3 ≤ 𝑤3
′ , the dynamic indicator is 

therefore defined as follows:   

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,                       𝑖𝑓 𝑋(𝑡∗) ⊆ 𝜴∗ 𝑎𝑡 𝑡∗

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
.                                                  (17) 

The injected solute can be modelled in a Lagrangian framework as a particle moving according to the velocity 

field without changing its volume. The latter is the consequence of neglecting pore scale dispersion. The expected 395 

value of this dynamic indicator at 𝑡∗ is therefore: 

                      < 𝐼𝑑(𝜴∗, 𝑡∗) >= ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,                                                           (18) 

where 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0) is the probability distribution function (pdf) of the particle’s trajectory at time  𝑡∗ (Dagan and 

Nguyen, 1989; Rubin, 2003). If we also assume steady, uniform in the average flow with mild heterogeneity of the 

log hydraulic conductivity field with Gaussian displacement pdf—then we can compute  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > 400 

analytically using the following equation: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >=< 𝐼𝑠(𝜴∗) > < (𝐼𝑑(𝜴∗, 𝑡∗) > 

= 𝑝𝑟𝑜𝑏(𝐼𝑑(𝜴∗, 𝑡∗) = 1) =  𝑝𝑟𝑜𝑏 {𝑋(𝑡∗) ⊆ 𝜴∗ } 

= ∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

= ∫ 𝑓𝑋1(𝑡∗)(𝑎1|𝑥0, 𝑡0)𝑑𝑎1

𝑤1
′

𝑤1

∫ 𝑓𝑋2(𝑡∗)(𝑎2|𝑥0, 𝑡0)𝑑𝑎2

𝑤2
′

𝑤2

∫ 𝑓𝑋3(𝑡∗)(𝑎3|𝑥0, 𝑡0)𝑑𝑎3

𝑤3
′

𝑤3

  

=
1

(2𝜋)
3
2√𝑋11(𝑡∗)𝑋22(𝑡∗)𝑋33(𝑡∗)

∫ exp [−
1

2

(𝑎1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
]

𝑤1
′

𝑤1

𝑑𝑎1 405 

∙ ∫ exp [−
1

2

𝑎2
2

𝑋22(𝑡∗)
] 𝑑𝑎2

𝑤2
′

𝑤2

∫ exp [−
1

2

𝑎3
2

𝑋33(𝑡∗)
] 𝑑𝑎3.

𝑤3
′

𝑤3

                                          (19) 

which can be integrated to yield: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > =  
1

8
[erfc (

𝑤1 − 𝑈𝑡∗

√2𝑋11(𝑡∗)
) − erfc (

𝑤1
′ − 𝑈𝑡∗

√2𝑋11(𝑡∗)
)] 

 

∙ [erfc (
𝑤2

√2𝑋22(𝑡∗)
) − erfc (

𝑤2
′

√2𝑋22(𝑡∗)
)] [erfc (

𝑤3

√2𝑋33(𝑡∗)
) − erfc (

𝑤3
′

√2𝑋33(𝑡∗)
)].           (20) 410 
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For simplicity, but without lack of generality, in Eq. (20) we assumed 𝒙0 = (0,0,0). The displacement 

variances 𝑋𝑖𝑖 , 𝑖 = 1, 2, 3 depend on the spatial distribution of the hydraulic conductivity in the subsurface. Eqs. (A4) 

to (A6) present the displacement variances for an axisymmetric exponential covariance function of the log-

conductivity (A3) are given in the Appendix A. In Eqs. from  (A7) to (A19), we have provided derivations of indicator 

formulations for other HSHMs scenarios, including indicator formulation for complex concentration thresholds and 415 

indicator formulation for hot moment durations. Notice that in obtaining Eq. (20) we postulated ergodicity, which in 

practical terms reflects the actual situation of an instantaneous injection into a source zone with transverse dimension 

much larger than the integral scale of the hydraulic conductivity (Dagan, 1990), such that the ensemble mean is 

representative of  the effects of the actual, but unknown, distribution of hydraulic conductivity. 

 420 

 

Figure 3. Configuration of the synthetic case study. 𝑥1, 𝑥2 and 𝑥3 represent the longitudinal, transverse and vertical 

directions, respectively. 𝑤1, 𝑤1
′ , 𝑤2, 𝑤2

′ , 𝑤3 and 𝑤3
′  are the coordinates that set up the volume of 𝜴∗ 

4.3 Probability of HSHM occurrence controlled by subsurface heterogeneity 

In the following sections, we present the results from the case study described in section 4.3. Specifically, in 425 

section 4.3.1 and 4.3.2, we explore how heterogeneity of log-hydraulic conductivity influences the probability of 

HSHM occurrences. To make results as general as possible, lengths are made dimensionless with respect to the integral 

scales (𝐼𝑌ℎ  in the two horizontal directions and 𝐼𝑌𝑣   in the vertical one) and time with respect to the following advective 

time scale: 𝐼𝑌ℎ/𝑈, where 𝑈 is the mean velocity). In the following, we explore the effect of the remaining parameters, 

i.e. the anisotropy ratio 𝑒 =
𝐼𝑌𝑉

𝐼𝑌𝐻
  and the variance of the log-conductivity 𝜎𝑌

2, on the emergence of HSHM. We placed 430 

𝜴∗ along the mean trajectory at (21𝐼𝑌𝐻 , 0, 0) with dimensions as (2𝐼𝑌𝐻 , 2𝐼𝑌𝐻 , 2𝐼𝑌𝑉). The dimensions of the hot spot 

are therefore of two integral scales in the three coordinate directions (𝑥1, 𝑥2, 𝑥3) and is placed at a dimensionless 

distance of 21 from the point source. 
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4.3.1 Dependence of 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on variance in the spatial correlation structure of the log-

conductivity  435 

 
Figure 4.  Dependence of 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on time (𝜏) and on the level of spatial variability of the log-hydraulic 

conductivity (𝜎𝑌
2) 

Figure 4 shows 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) , which is the propability that a HSHM is triggered at 

𝜴∗ and the dimensionless time 𝜏 =
𝑡𝑈

𝐼𝑌ℎ
, for a few values of  𝜎𝑌

2. Here,  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1 represents the situation in 440 

which a HSHM is triggered. At early time (e.g., 𝜏 < 5), larger probability 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) is observed with 

increase in 𝜎𝑌
2. At intermediate time, i.e., at times comparable with the mean travel time 𝜏 = 21, 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) =

1) is inversely proportional to 𝜎𝑌
2. At late time (e.g., 𝜏 > 40), the largest 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) occurs at intermediate 

𝜎𝑌
2. We observe that 𝜎𝑌

2 regulates the timing of the peak in  𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) , which is located in the proximity 

of the mean travel time, 𝜏 = 21, for weak heterogeneity, and shifts towards earlier times as 𝜎𝑌
2 increases. From the 445 

practical perspective, Figure 4 shows the probability of developing a HSHM at the identified position 𝜴∗ at the given 

time 𝜏. 

These effects relate to the relationship between travel times (from the source to 𝜴∗) and 𝜎𝑌
2. The key point to 

note is that 𝜎𝑌
2 controls the spread of the travel time around its mean value. A larger 𝜎𝑌

2 enhances channeling effects 

(Fiori and Jankovic, 2012; Moreno and Tsang, 1994, also in Figure 2), which in turn enable earlier arrival times. But 450 

at the same time, it also leads to the emergence low-conductivity zones with low velocity or stagnant groundwater. 

The solute tends to bypass low hydraulic conductivity zones, as shown by the streamlines depicted in Figure 2,  

however, the small amount of solute that actually penetrates these zones by slow advection and diffusion gets trapped 

for long time before being released and this results in an extended tailing with low concentration, which increases the 

probability of observing a HSHM at later times. Thus, with an increase in 𝜎𝑌
2, we notice an increase in the probability 455 

to observe both increasingly earlier and increasingly delayed arrival times, which widens the probability distribution. 

On the contrary at small variance, particles deviate little from the ensemble mean trajectory, because of the small 

contrast in conductivity between high and low conductivity zones. This results in small particle spreading and travel 
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times that differ only slightly from the mean travel time (𝜏 = 21), and a probability distribution less spread around 

the mean, where the peak is observed.  460 

In summary, hydraulic conductivity contrast between low and high conductive lithofacies increases with 𝜎𝑌
2 

leading to the emergence of organized high conductivity pathways sneaking through surrounding low conductivity 

zones with the latter acting as “trapping” elements. This causes the emergence of both early and late arrival times, 

with the consequent larger probability of triggering HSHMs at early and later times, with respect to the case of low 

heterogeneity. Early arrival times are controlled by the connected high conductivity pathways and the late arrival times 465 

are influenced by the low conductivity zones, which act as low-release reservoirs for solutes.  

4.3.2 Dependence of 𝑷(𝑰𝑯𝑺𝑯𝑴(𝜴∗, 𝝉) = 𝟏)  on on anisotropy in the spatial correlation structure of the log-

hydraulic conductivity 

 
Figure 5. Dependence of 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on (𝜏) and on anisotropy ratio 𝑒. Solid and dashed lines represent, 470 

respectively, the probabilities for large (𝜎𝑌
2 = 2.0) and small (𝜎𝑌

2 = 0.5) variance of the log-hydraulic conductivity. 

The discussion here (accompanying Figure 5) focuses on the impact of the anisotropy ratio in the correlation 

structure (𝑒, defined above) on the probability of triggering HSHMs. The anisotropy ratio, 𝑒, provides an indication 

about the persistence of the log-conductivity (𝑌) in the principal directions. The spatial correlation model used here 

for demonstration is that of axis-symmetry, which is common to sedimentary formations (Dagan, 1989; Rubin, 2003), 475 

with 𝑒 providing the ratio between the persistence of 𝑌 in the vertical (𝑥3) direction, represented by 𝐼𝑌𝑉, and the ones 

on the horizontal plane (𝑥1 − 𝑥2), represented by 𝐼𝑌𝐻 . In unconsolidated sedimentary formations, 𝐼𝑌𝑉 is typically 

smaller than 𝐼𝑌𝐻 by as much as one order of magnitude, due to the different time scales of the depositional process 

taking place in the horizontal and vertical directions, which leads to thin and elongated lithofacies and consequently 

to a much smaller persistence of 𝑌 values in normal to the horizontal plane (Miall, 1985, 1988; Ritzi et al., 2004). 480 

Figure 5 compares 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) between formations defined by different anisotropy ratios and 

different 𝜎𝑌
2. It shows that we have two factors to consider when explaining the differences in 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1). 
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First factor, as discussed earlier, is the widening of the probability distribution (direct consequence of the widening of 

the travel times distribution) due to increase in 𝜎𝑌
2. With larger variance, we observe higher probabilities for departure 

of the travel times away from the average. The anisotropy ratio 𝑒 adds a compounding factor. To understand its effect, 485 

we should recall the analyses of lateral displacement variances of solute particles moving in heterogeneous formations 

(cf., Dagan, 1989, and Eq. A4 to A6 here), showing that smaller 𝑒 leads to smaller lateral (both vertical and horizontal) 

displacement variances, implying smaller probabilities for lateral departures from the mean flow trajectory. Smaller 𝑒 

limits lateral spreads, and increase the probability of particle to enter 𝜴∗ , sooner or later, and to trigger HSHM.  The 

effect could also be viewed as a channeling effect of sorts: smaller 𝑒 implies 𝑌 blocks of small aspect ratio (i.e., long 490 

but thin elements), which provide fast tracks for particles when defined by high 𝑌 values, while blocking lateral 

spreads when defined by low 𝑌 values.  

In additional notes: first,  𝜴∗ is known in the present analysis is located downstream from the source, along 

with the mean trajectory of the solute displacement. We expect different results in situations where 𝜴∗ is positioned 

at an offset with respect to the mean flow direction, or when its position is unknown. In both cases we expect a 495 

reduction of the probability of triggering a HSHM. Relevant of our discussion is that the proposed probabilistic 

framework can address the case of unknown position for 𝜴∗ as well. Second, we note that the analytical models used 

to compute the displacement statistics are formally limited to small variance of the log-conductivity (𝜎𝑌
2 < 1), 

although they are shown to provide good approximations for large variances (Bellin et al., 1992; Salandin and Fiorotto, 

1998). Third, the stochastic formulation provides the theoretical and computational formalism for conditioning the  500 

probabilities on in-situ measurements (Ezzedine and Rubin, 1996; Rubin and Dagan, 1992) as well as on information  

borrowed from similar sites (Li et al., 2018; Cucchi et al., 2019).  

5 Discussion and Summary 

In this study, we developed a general stochastic framework for characterizing the spatiotemporal distribution 

of environmental Hot Spots Hot Moments (HSHMs). The stochastic formulation is built around the following 505 

principles: 

 The HSHMs are defined as random variables and the goal is to derive their stochastic distribution in terms 

of the relevant processes and attributes. 

 HSHMs processes cover the dynamic components of the HSHMs. An example could be the transport of 

solutes and reactants. HSHMs attributes refer to the static components of the HSHMs, e.g., in situations 510 

related to the nitrogen cycle, attributes could represent pyrite concentration or naturally-reducing zones. 

HSHMs could be defined through the confluence of a variety of contributors, both static and dynamic.  

 The processes and attributes are modeled as stochastic processes and random variables, respectively, based 

on the underlying physics.  

 The static contributors are modeled stochastically using geostatistical space random functions. 515 

 The dynamic contributors are modeled stochastically using probability distribution functions derived from 

the underlying mathematical-physical models.  
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 Several HSHMs categories are defined, based on the contributing factors, as follows: HSHMs defined by 

dynamic contributors only, HSHMs defined by static contributors, and most commonly, HSHMs requiring 

the coupling of static and dynamic contributors. The HSHMs stochastic formulations are expressed in terms 520 

of the stochastic formulations of the relevant contributors.  

 We provided a detailed review of multiple HSHMs and showed how they relate to our definitions.  

The framework we proposed in this study is advantageous in that it allows to calculate the uncertainty 

associated with HSHMs based on the uncertainty associated with its contributors. Additionally, it provides a 

formalism, well established by Bayesian theory, for conditioning the HSHM probabilities on in-situ measurements as 525 

well as on information borrowed from geologically and otherwise similar sites.  

We demonstrated our proposed approach through applications in the area of subsurface transport and 

hydrogeology, focusing on the impacts of subsurface heterogeneity on HSHMs. We analyzed, quantitatively, how 

subsurface heterogeneity of the conductivity field control the HSHM statistics, for example, the time expected for the 

probability of the HSHM to occur to reach a-priori set thresholds or time to peak probability.  530 

Lastly, as mentioned both here and in previous studies, statistical methods for quantifying the occurrences of 

HSHMs and the associated uncertainties are needed to advance our understanding of the mechanisms that cause 

HSHMs, as well as to enhance our ability to predict HSHMs and manage their consequences.  
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Appendix  

A1. Equations for the displacement pdf 545 

Assuming steady, uniform in the average flow, with mild heterogeneity of the log-hydraulic conductivity 

field with Gaussian displacement, the pdf of the longitudinal (𝑥1, Figure 3) displacement of a solute particle starting 

at time 𝑡0 = 0, at 𝒙0 =(0,0,0) is given by the following equation (Dagan and Nguyen, 1989; Dagan and Rubin, 

1992): 

𝑓𝑋1(𝑡∗)(𝑥1) =
1

√2𝜋𝑋11(𝑡∗)
exp [−

1

2

(𝑥1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
].                                                     (A1) 550 

Additionally, the displacement pdf in the transverse directions (𝑥2 and 𝑥3) is given by 
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𝑓𝑋𝑖(𝑡∗)(𝑥𝑖) =
1

√2𝜋𝑋𝑖𝑖(𝑡∗)
exp [−

1

2

𝑥𝑖
2

𝑋𝑖𝑖(𝑡∗)
] , 𝑖 = 2,3.                                                    (A2) 

A2. Equations for displacement variances under anisotropic conditions 

 Dagan (1984) developed a solution of the displacement variances 𝑋𝑖𝑖 , 𝑖 = 1,2,3 for an exponential and 

axisymmetric log-conductivity covariance function:  555 

 𝐶𝑌(𝒓) = 〈(𝑌(𝒙) − 〈𝑌〉) (𝑌(𝒙 + 𝒓) −  〈𝑌〉)〉 = 𝜎𝑌
2exp [−√

𝑟1 
2+𝑟2

2

𝐼𝑌ℎ
2 +

𝑟3
2

𝐼𝑌𝑣
2  ] ,                               (A3) 

𝑋11 = 𝜎𝑌
2𝐼𝑌

2{2𝑡∗ + 2[exp(−𝑡∗) − 1] + 8𝑒 ∫[𝐽0̅(𝐾𝑡∗) − 1]

∞

0

 

∙ [
1

(1 + 𝐾2 − e2𝐾2)2
−

e𝐾

(1 + 𝐾2 − e2𝐾2)2(1 + 𝐾2)0.5
−

e𝐾

2(1 + 𝐾2 − e2𝐾2)(1 + 𝐾2)1.5
] 𝑑𝐾 

−2e ∫ [𝐽0̅(𝐾𝑡∗) −
𝐽1̅(𝐾𝑡∗)

𝐾𝑡∗
−

1

2
]

∞

0

∙ [
e3𝐾3(e2𝐾2 − 5 − 5𝐾2)

(e2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5e2𝐾2

(1 + 𝐾2 − e2𝐾2)3
] 𝑑𝐾},           (𝐴4) 

 560 

𝑋22 = −2e𝜎𝑌
2𝐼𝑌

2 

∙ ∫ [
𝐽1̅(𝐾𝑡∗)

𝑡∗
−

𝐾

2
] [

e3𝐾2(e2𝐾2 − 5𝐾2 − 5)

(e2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5e2𝐾2

𝐾(1 + 𝐾2 − e2𝐾2)
] 𝑑𝐾,                 (A5)

∞

0

 

𝑋33 = −4e𝜎𝑌
2𝐼𝑌

2 ∫ [𝐽0̅(𝐾𝑡∗) − 1]
∞

0

 

∙ {
1

(e2𝐾2 − 1 − 𝐾2)2
[
1

2
+

2e2𝐾2

1 + 𝐾2 − e2𝐾2
+

e𝐾(e2𝐾2 + 3 + 3𝐾2)

2(e2𝐾2 − 1 − 𝐾2)(1 + 𝐾2)0.5
]} 𝑑𝐾.           (A6) 

where 𝒓 is the two-point separation distance and 〈𝑌〉 the ensemble mean of the log-conductivity 𝑌 = ln 𝐾.  𝐽0̅ and 𝐽1̅ 565 

are, respectively, the zero and first order of the first kind Bessel functions.  

A3. Equations for displacement variances under isotropic conditions 

 Dagan (1984) provided analytical solutions for longitudinal and transverse displacement variances. This is a 

special case for the anisotropic case with 𝑒 = 1.The solutions are as follows:  

𝑋11 = 𝜎𝑌
2𝐼𝑌

2 {2𝑡∗ − 2 ∙ [
8

3
−

4

𝑡∗
+

8

𝑡∗3
−

8

𝑡∗2
(1 +

1

𝑡∗
) exp(−𝑡∗)]}.                              (A7) 570 

𝑋22 = 𝑋33 = 2𝜎𝑌
2𝐼𝑌

2 [
1

3
−

1

𝑡∗
+

4

𝑡∗3
− (

4

𝑡∗3
+

4

𝑡∗2
+

1

𝑡∗
) exp(−𝑡∗)] .                             (A8) 

 

A4. Indicator formulation for complex concentration thresholds  

When considering local dispersion, or in case of a reactive tracer, the condition that the particle is inside the 

volume 𝜴∗ does not suffice to define the dynamic indicator and a concentration threshold 𝐶𝑡ℎ should be introduced: 575 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑿(𝑡∗; 𝒙0, 𝑡0) ⊆ 𝜴∗ 𝑎𝑛𝑑 𝐶(𝑿, 𝑡∗) > 𝐶𝑡ℎ

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
.                                (A9) 
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In the absence of local dispersion and for a reactive solute decaying at a (spatially) constant rate 𝑘, the 

ensemble mean assumes the following expression (Cvetkovic and Shapiro, 1990): 

𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1) =< 𝐼𝑑(𝜴∗, 𝑡∗) >= {1 − 𝐻 [𝑡∗ −
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ

)]} ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,              (A10) 

where 𝐶0 is the initial concentration and 𝐻[∙] is the Heaviside step function. The ensemble mean (Eq. A10) is the 580 

product of the probability that the particle assumes a concentration larger than the threshold at 𝑡∗ (given that reaction 

rate 𝑘 is constant, this probability is either 0 or 1) and the probability that at the same time 𝑡∗ the particle is within the 

hot spot 𝜴∗. In other words, Eq. (A10) expresses the fact that a particle inside 𝜴∗ contributes to the hot moment only 

if its concentration is greater than the threshold, and this occurs for 𝑡∗ <
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ
). Eq. (A10) can be generalized to the 

cases of instantaneous injection into a source of volume 𝑉0, as discussed before for the non-reactive case. For other 585 

complex situations, such as that in which 𝑘 is spatially variable and complex reaction networks, the ensemble mean 

of the indicators can be addressed by Eq. (16) in a Monte Carlo framework.  

A5. Indicator formulation for hot moment durations  

As hot moments can persist over short time periods, estimating the corresponding probabilities for any given 

time interval becomes also very important. The probability that the hot moment persists over the interval [𝑡1, 𝑡2] at 𝜴∗ 590 

can be formally computed as follows: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= 𝑃(𝑡1, 𝜴∗)𝑃(𝑡2|𝑡1, 𝜴∗),                                                             (A11) 

where 𝑃(𝑡1, 𝜴∗) is the probability that the particle is inside 𝜴∗ at time 𝑡∗ = 𝑡1 and 𝑃(𝑡2|𝑡1, 𝜴∗) is the probability that 

the particle is still inside 𝜴∗ at time 𝑡∗ = 𝑡2,  provided that at time 𝑡1, it was also inside 𝜴∗. If the particle exits 𝜴∗ 

during interval[𝑡1, 𝑡2], this time interval will not be qualified as hot moment; and thus the probability computation 595 

needs to ensure the particle stays within 𝜴∗ during the entire time interval.  

Under the First-Order Approximation (FOA) (see e.g., Dagan, 1989; Gelhar 1993; Rubin, 2003), the pdf of 

the particle displacement is normal with mean < 𝑿(𝑡∗; 𝒙𝟎, 𝑡0) > and auto-covariance tensor of the residual 

displacements 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉  defined by 𝑿𝑖𝑗(𝑡∗; 𝒙0, 𝑡0) =  〈𝑿𝑖
′(𝑡∗; 𝒙0, 𝑡0)𝑿𝑗

′(𝑡∗; 𝒙0, 𝑡0)〉, 𝑖, 𝑗 = 1, 2, 3. 

For simplicity in the following, we assume𝒙0 = 0 𝑎𝑛𝑑 𝑡0 = 0. Under these assumptions, 600 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑿(𝑡1)(𝒂)𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 𝑑𝒃 𝑑𝒂

𝜴∗𝜴∗
,                                   (A12) 

where the conditional pdf 𝑓𝑿(𝑡2)
𝑐 (𝒃|𝑿(𝑡1) = 𝒂) is multi-normally distributed with conditional mean and variance 

tensor given by  

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉 = < 𝑿(𝑡2) > 

+𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1 ∙ (𝒂−< 𝑿(𝑡1) >),                                          (A13) 605 

and 

𝝈(𝑡1, 𝑡2) = 𝑉𝑎𝑟[𝑿′(𝑡2)] −  𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1  ∙ 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)],        (A14)  

respectively, which further yields the following,  

𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 
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= exp [−
1

2
 [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉]𝑇 ∙  𝝈(𝑡1, 𝑡2)−1 ∙  [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉] ] 610 

∙ {8 𝜋3  ∙ |𝝈(𝑡1, 𝑡2)|}−
1

2 ,                                                                   (A15)   

where |⋅| indicates the determinant, 𝑒𝑥𝑝 is the exponential function and the exponent T indicates the transpose of the 

vector. 

In Eq. (A13) and (A14), 𝑿′(𝑡∗) = 𝑿(𝑡∗) − 〈𝑿(𝑡∗)〉 stands for the departure of the particle’s displacement 

with respect to the ensemble mean trajectory, and 𝑉𝑎𝑟[𝑿]−1 is the auto-covariance tensor of the residual displacement 615 

whose  elements are defined above. Similarly, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] is the covariance tensor of residual displacement 

which elements are: 𝑿𝑖𝑗(𝑡1, 𝑡2; 𝒙𝟎, 𝑡0) = 〈𝑋𝑖
′(𝑡1) 𝑋𝑗

′(𝑡2)〉, 𝑖, 𝑗 = 1, 2, 3. Note that in the general three-dimensional case 

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉  is a three-dimensional vector and 𝝈(𝑡1, 𝑡2) is a 3 × 3 second-order tensor.  

For 𝑡2 → 𝑡1, 𝑓𝑋(𝑡2)
𝑐 [𝒃|𝑿(𝑡1) = 𝒂] →  𝛿(𝒃 − 𝒂), where 𝛿(∙) is the Dirac Delta, such that 𝑃(𝑡2|𝑡1, 𝜴∗) → 1. On the other 

hand, for 𝑡2 ≫ 𝑡1, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] → 0 and 𝑃(𝑡2|𝑡1, 𝜴∗) → 𝑃(𝑡2, 𝜴∗) the marginal probability that the particle is 620 

within 𝜴∗ at time 𝑡∗ = 𝑡2. Eq. (A12) to (A15) are obtained under the FOA approximation and assuming that the 

particle can enter 𝜴∗ only once. Such assumption is needed to obtain analytical solutions and is reasonable for 

situations with small to mild subsurface heterogeneity (e.g., 𝜎𝑌
2 ≤ 1.6), such as the cases presented in Bellin et al. 

(1992, 1994); Cvetkovic et al. (1992). In particular, FOA assumes small heterogeneity and under this assumption the 

particle trajectory deviates slightly from its ensemble mean, which is directed along the regional hydraulic head 625 

gradient. For a regular volume 𝜴∗,  this reduces the probability of the particle entering more than once the hot spot. 

This probability reduces further if in horizontal and vertical transverse directions  𝜴∗ is much larger than the respective 

integral scales, because the probability of observing negative longitudinal velocity components (i.e., along the mean 

flow field) is much smaller than in the transverse directions (Bellin et al., 1992) and vanishes as formation 

heterogeneity reduces.  630 

If the hotspot 𝜴∗ is the volume confined between two planes at 𝑥1 −
𝑙1

2
  and 𝑥1 +

𝑙1

2
 , with the other two 

dimensions much larger than the transverse horizontal and vertical integral scales: 𝑙2 ≫ 𝐼ℎ  , 𝑙3 ≫ 𝐼𝑣 , Eq. (A13) 

simplifies to: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑋1(𝑡∗)(𝑎1)𝑓𝑋𝟏(𝑡∗)
𝑐 ( 𝑏1|𝑋1(𝑡1) = 𝑎1) 𝑑𝑏1 𝑑𝑎1

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

,                (A16) 

where 𝑋1 is the longitudinal component of the particle’s trajectory and 𝑓𝑋1(𝑡∗)
𝑐  is its conditional pdf, which is normal 635 

with conditional mean and variance given by 

𝜇[𝑎1] =  〈𝑋1(𝑡2)| 𝑋1(𝑡1) = 𝑎1)〉 = < 𝑋1(𝑡2) > +
𝑋11(𝑡1, 𝑡2)

𝑋11(𝑡1)
(𝑎1−< 𝑋1(𝑡1) >),            (A17) 

and 

𝜎2(𝑡1, 𝑡2) =  𝑋11(𝑡2) −  
𝑋11(𝑡1, 𝑡2)2

𝑋11(𝑡1)
,                                                                    (A18) 

respectively. Consequently, 𝑓𝑋𝑐(𝑡∗) in Eq. (A16) assumes the following form: 640 

𝑓𝑋1(𝑡∗)
𝑐 (𝑏1|𝑋1(𝑡1) = 𝑎1) =

1

√2 𝜋 𝜎(𝑡1, 𝑡2)
exp [−

1

2
(𝑏1 − 𝜇[𝑎1])2 𝜎(𝑡1, 𝑡2)−1] .                 (A19) 
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Substituting Eq. (A16) into Eq. (A19) allows us to compute  < 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >. For situations where the FOA 

assumptions are not valid (e.g., large heterogeneity), Monte Carlo simulation framework is still applicable as 

alternative approach to construct the dynamics indicators (see Eq. 16).  
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