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We thank the editor and two anonymous referees for the comments and for giving us the opportunity to improve our 

manuscript. Below are our point-by-point responses to the referees’ comments, followed by a revised manuscript 

showing all track changes made through the major revision. Note: all line numbers are based upon the revised 

manuscript.  

 

Response to anonymous referees #1.  

 

1. Restructuring the paper. In the revised manuscript, we have improved the readability by streamlining the 

introduction and the objectives of the work, followed by a much clearer separation between the presentation of the 

framework, the illustrative examples and the discussion, as requested by the reviewer. Any duplication have been 

carefully handled in the revised manuscript. Specifically, in the introduction, we separated previous HSHM studies, 

summarized limitations and remaining challenges; proposed the benefits of stochastic approaches and indicator 

formulation and introduced our proposed statistical framework. We also specified the main objectives of each section 

(L89-L94; L96-L101; L246-L251; L346-L353). Section 2.5 was added to the manuscript to better demonstrate the 

advantages and linkages between our statistical framework and Bayesian statistics (L226-L244). We moved the 

mathematical heavy previous section 4.2 into the Appendix to increase the continuity of section 4. In Figure 4 and 5 

and following discussions, we changed the y-axis label from previous < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > to 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) to 

highlight the probability perspective.  

 

2. Definition of ‘disproportionate’. Based on the complex nature of HSHMs, it is not practical and beneficial to look 

for a universal mathematical definition using percentage or proportion. For example, a 60 th percentile denitrification 

rate may trigger HSHM at a riparian site, but may fail to indicate HSHM condition at other sites as other static and/or 

dynamic factors can also control HSHM occurrences significantly. However, our proposed statistical framework 

provides a very flexible approach that can incorporate different types of HSHMs through static and dynamic 

contributors, modeled with indicator random variables and stochastic processes. For example, the permanent control 

points (as defined by Bernhardt et al., 2017) can be modeled with static-only indicators whereas activated control 

points will require both static and dynamics indicators. The cutoff values, percentage or proportion are defined by 

users and can be modified at will, as in equation (1). One can change these quantities based on prior information, risk 

tolerance or through statistical quantities. For certain HSHMs that have negative influences on ecosystems, thresholds 

are often introduced in environmental regulations in order to identify levels of contamination above which to consider 

a site as contaminated. In addition, activation thresholds may be used for chemical reactions that are necessary for 

biogeochemically driven HSHMs. These changes can be found at L48-L52, L55-L61, L62-L67, L118-L131, L226-

L244.  

 

3. Novelty. We appreciate the reviewer’s recommendations of relevant references and studies. We agree with the 

reviewer that there are many theoretical, empirical models and experimental approaches dealing with the  HSHM 

dynamics. There are also various approaches to define ‘hotness’ as summarized in Bernhardt et al. (2017), such as 

simple comparison to average or matrix; substantial percentage of total flux; outlier in distribution of data; statistically 

significant difference between or among landscape elements or time periods categorized a priori; and contribution to 

flux/total area or time (L48-L52). However, most of these quantitative methods are derived based on site-specific data 

or simulation results, which limits the transferability from one site to other sites; and from one type of HSHM to other 

types of HSHMs (L54-L55). Thus the challenge is not how we define a single cutoff value for a specific HSHM at a 

specific site, but rather to develop a statistical framework, capable of handling a generality of cases, and therefore 

progressing beyond local conditions. From this perspective, our proposed framework is novel and beneficial for future 

HSHM studies, summarized as follows: (a) With the indicator formulation, the framework is flexible enough to handle 

different scenarios of cutoff values (see point #2); (b) Our proposed framework is unified and allows us to investigate 

HSHMs under conditions of uncertainty; (c) Our framework can integrate results from HSHM studies using different 

approaches, whether results from Monte-Carlo simulations or direct data based quantifications; (d) Probabilities are 

assigned to the entire domain and time of HSHM concerns and modeled with corresponding stochastic processes; (e) 

Our framework can be easily integrated with Bayesian concepts such as conditioning as well as utilization of prior 

information from other sites (L54-L66, L226-L244, L506-L521). Based on the above points, we believe the statistical 

framework can make contributions to the HSHM community.  

 

 

Response to anonymous referee #2. 
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Summary notes: 

1. Why stochastic? The processes governing the HSHMs are very likely subject to some uncertainty. There may be 

uncertainty in the parameters and also in the governing equations. This is the reason to adopt a stochastic formulation. 

In this way, the uncertainty can be modeled and even reduced by taking advantage of the information provided by the 

data. The mechanism for modeling and reducing uncertainty are built into our approach. For example, we can use 

prior information from similar sites, and we can use local measurements for conditioning. We have better 

demonstrated this point in L74-L77.  

 

2. Defining places in space and time as either being or not being HSHMs. Our characterization of HSHMs is not 

binary, because we use probabilities. In our approach, all space and time intervals in the investigated domain are 

associated with probabilities to be or not to be a HSHM. Notice that the location of the HSs is uncertain due to the 

combined effect of physical system heterogeneity and limitations in its characterization.  In addition, even if the 

positions of the HSs are known without uncertainty, hot moments may depend on other factors (e.g., solute pathway, 

retention time), which can also be uncertain.  

 

3. Arbitrary cutoffs. In our approach, the cutoffs are defined by the user and can be modified at will. One can change 

the cutoff values based on prior information and based on risk tolerance. For HSHMs that have negative influences, 

thresholds are often introduced in environmental regulations in order to identify levels of contamination above which 

to consider a site as contaminated. In addition, activation thresholds may be used to identify the thresholds for reactions 

that are necessary for biogeochemical driven HSHMs (see also point 5 below). 

 

4. Binary view of HSHMs. As stated in point 2, we model the HSHMs stochastically. For example, we can have a 

zone with high probability next to other zones with lower probabilities in terms of HSHMs occurrence. Thus, we do 

adopt a continuum approach by creating HSHM probability maps. In another note, we suggest that there might be 

situations that require focusing on a particular area because of a need to focus on the site investigation efforts. Thus, 

in our approach, we can identify areas that are more critical/sensitive compared to others, and this could assist the 

project managers in defining priorities. For example, at the Rifle site (Wainwright et al. 2010), geophysical datasets 

indicated the presence of naturally reducing zones (NRZs), which may have higher level of uranium and nitrate. Based 

on this information, site investigation and parameter estimation were both goal oriented, which reduces efforts and 

uncertainties in quantifying the corresponding HSHMs.  

 

5. Improving understanding. We expanded our discussion in order to improve understanding. In particular, we make 

the following points: (a) Our framework can be used to investigate HSHM sites and identify the process and 

parameters controlling the HSHMs. (b) As the reviewer noted, there’s uncertainty associated with the HSHMs. Using 

our approach, we can identify which models and parameters work, using for example Bayesian model comparison and 

identifying the best performing models or whether the current understanding of a certain HSHM is lacking. (c) The 

probabilistic approach offers great advantages of addressing the uncertainty on HSHMs and reducing it. (d) We will 

also add information on where to get the threshold parameters.  

 

6. Why a statistical framework? Based on the experiences in the hydrology community, the coupling of probabilistic 

concepts with the physics led to a tremendous progress in our ability to model the complex phenomena taking place 

in the subsurface. Similar observations have been made on multiple disciplines within earth sciences. There is a vast 

body of knowledge accumulated in hydrology and what we want to show in this paper is that this knowledge could 

also bring enormous potential to HSHMs investigations.  

 

7. Simple language. We added plain language discussion in the revised manuscript.  

 

Detailed responses: 

L40: I am having a hard time with the definition used for HSHM as it depends on the event having a negative effect 

on something (health or environment). But what if a HSHM does something beneficial like remove a pollutant. Is that 

not considered here? Maybe a slight modification of the definition is all that’s needed.  

 

Response: We modified the definition to include the beneficial perspectives (L35-L39). Table 1 in the revised paper 

exhibit a column (Impact) indicating whether a specific HSHM has a positive, neutral or negative impact on the 

ecosystem.  
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L90: Here again the focus is on the negative side of HSHMs, I suggest taking a more balanced view that includes their 

benefits as well.  

 

Response: We expanded the HSHM definition to cover both positive and negative perspectives of HSHMs. Please 

also see our response to L40 comment.  

 

L100: I would suggest adding 1 sentence providing a non-jargon definition of indicator statistics. It will make the 

work more accessible.  

Response: We have made necessary modifications to make the reading more accessible. Technical discussions about 

indicator statistics are currently presented in Section 2 rather than the introduction. We have also better defined 𝜴∗, 

𝑡∗ and the indicator random variable in L105-L108. 

 

L135: While I appreciate the development of a rigorous statistical framework, I question the utility of the binary 

definition of whether a place/time is or is not a HSHM. Do we care more about the definition or its influence? The 

influence is some continuous function of the magnitude to which it deviates from background conditions. It would be 

more powerful to define a statistical framework that captured this more continuous perspective. At a minimum, I think 

the authors should discuss the limitation of their framework and provide ideas for developing a more continuous 

approach. For example, maybe one could continuously vary the Cth and Rth from equation 1 to examine outcomes 

across a continuum of thresholds? 

 

Response: As discussed in items 2, 3 and 4 above, our framework is flexible as it can incorporate different conditions 

that trigger HSHMs.  The cutoff values are chosen by users and can be modified at will. With this flexibility, one 

could definitely vary 𝐶𝑡ℎ and 𝑅𝑡ℎ values, and examine how the probability of HSHM occurrences changes 

correspondingly, as suggested by the Reviewer (L118-L131). Thus our approach indeed captures the continuous 

perspectives as specified in the previous answers.  

 

L145-L150: All examples are for concentrations (Cth). It would be good to provide some examples for rates (Rth).  

 

Response: In the revised manuscript, we included multiple examples for rates. For example, 𝑅𝑡ℎ = 0 can be used for 

chemical reactions that have significant negative impact on ecosystem (e.g., nuclear reactions). 𝑅𝑡ℎ values can also be 

obtained based on similar studies, such as denitrification and carbon cycling rates summarized in Harms and Grimm 

(2008). These changes are reflected in L118-L131. 

 

L160: Please briefly explain why type B includes the spatial component instead of only including the temporal. 

 

Response: The idea here is to identify where the dynamic conditions exist in conjunction with spatial zones to trigger 

a hot spot. For example, following the reviewer’s comments, a zone of high concentration may be a location for 

HSHMs, only that we do not know where it gets triggered. An example here could be nuclear waste remediation sites 

where natural attenuation strategies are in place. While contaminants can be held in place; within the zones where 

contamination occurred, yet some temporal conditions may trigger the formation of these HSHMs. Here it is 

worthwhile to note both the temporal conditions, but also the spatial domain of HS. Furthermore, the hot spot may 

also depend on variables different from the concentration of the species of original interest. For example, a nuclear 

contamination site that has historically looked at uranium can now be potential hot spots for strontium.   

  

Equation 3: This seems a bit circular to me. It seems like this says that a location is a hot spot because it has the 

conditions (e.g., concentration) needed to be a hot spot given our defined threshold of what counts as a hot spot. So 

it’s a hot spot because it’s a hot spot. Maybe this can be clarified in terms of how this isn’t circular? In other words, 

explain further why it is useful to call some place a hot spot based on defined criteria. Why don’t we just define the 

location based on its levels of continuous variables relevant to a given situation? This goes back to my comment above 

about the very binary nature of this approach. I am not yet convinced that this is really moving us forward a great 

deal. Though I am keeping an open mind as I read.  

 

Response: As mentioned in L160 response, the location in time and space may be unknown. Equation (3) is related to 

spatial variability and uncertainty in site characterization, which leads to uncertainty in identifying the locations 

critical for HSHMs. The definition is needed to define the corresponding statistical random variables.  
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L225: I like the statistical framework here, though it presumes that we have complete (or very good) knowledge of the 

spatial and temporal factors governing HSHM ‘activation’ and I wonder if that makes this framework difficult to use? 

That is, if we already know the conditions that lead to HSHM behavior, then we already know that, and I am not clear 

on what we are learning from this framework.  

 

Response: We agree with the reviewer that work in the HSHM community thus far has been remarkably site-specific. 

To enable the transferability of HSHM features from one site to the other, we have proposed this statistical framework. 

For example, static indicators at riparian sites could be quite similar – riparian buffer strips or microtopographic 

depressions. By using a statistical formulation to capture these spatial zones and applying them to a new site under 

corresponding dynamic conditions can help us pre-identify potential zones of HSHMs. It is also important to note that 

the impact of HSHMs does not depend only on the fact that they may exist in a certain compartment, i.e. riparian and 

hyporheic zones, but also on their location and duration in the active state, which may be intermittent. All these factors 

are uncertain because we don’t know the exact location of HS and for how long they are active under new conditions 

and new sites. Thus, our stochastic approach is beneficial to enhance applicability to other sites. We have better 

demonstrated the key advantages of the approach in the revised manuscript (L54-L66, L226-L244, L506-L521). 

 

L265: Again I am not understanding what we are learning here. The hot spots have been defined as NRZ with specific 

quantitative conditions. So what more is equation 10 telling us? I was expecting to see a figure or analysis here that 

went to the next level of understanding through the use of eq. 10. 

 

Response: Equation 10 is an example how we can construct a static indicator quantitatively. Please also see our 

responses to L225 comment.  

 

L340: Unless I am missing something, the examples are based around meeting specific conditions in space and/or 

time, and saying that if all conditions are met, then a HSHM should occur. That’s all fine, but again, what are learning 

from that? It seems like this boils down to an if-else statement that is built around previous analyses of a given system. 

That seems really straightforward to the point that I fell like I am missing something. Maybe more of the implications 

can be drawn out through these sections? 

 

Response: There is a challenge in knowing what the conditions required to trigger HSHMs are, but knowing the 

conditions may not suffice to predict when and where. This is where our proposed approach comes in. As mentioned 

above, our proposed framework is unified and allows us to investigate a variety of HSHMs, with complex dynamics 

multi-dimensional dynamics and under diverse conditions of uncertainty. It also can be easily integrated with the 

concept of Bayesian conditioning in order to reduce uncertainty and to develop site investigation schemes with 

information from similar sites. We do not promulgate an if-else approach, because we assign probabilities over the 

entire domain. The proposed equations and formula in this section are mainly presented to show how the framework 

can be utilized and how the corresponding indicators can be constructed.  

 

Section 4.2.3: To be honest, I am not savvy enough to follow the math in this section. I can only assume that it is 

correct, and maybe other reviewers can go through it. Regardless of whether it is correct or not, however, I do not 

understand the purpose of the formulations. Maybe they come clear further into the paper. At this point this section 

and the previous two seem esoteric, and I am not sure what the work is really driving towards. 

 

Response: In previous sections we focused on evaluating the probability of HSHMs occurring at a given time 𝑡. This 

allows us to evaluate when and where we could observe the highest probability of HSHM occur. As hot moments can 

persist over time periods, estimating the corresponding probabilities for given time intervals becomes also quite 

important. And this is the main reason for introduced section 4.2.3. In the revised manuscript, we have moved this 

section to the Appendix to balance mathematical deviation and discussion.  

 

Specifically, Equation (22) – (26) describes the dynamic indicator and an analytical stochastic solution for the HSHM. 

These equations can be simplified into Equation (27) – (30) if the hot spot can be defined by a simple geometry as 

described in Line 458. The deviations of these equations are based on stochastic theories, which are well documented 

and extensively verified cf., Dagan. (1989) and Rubin. (2003). 
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Section 4.3: Not clear on what ‘w’ is in this case. More generally, I continue to struggle to understand what we are 

learning. I really want to get on board and I feel strongly about HSHMs as important features, I just am struggling to 

connect the conceptual dots.  

 

Response: In most world conditions, HSHMs occur within a volume rather than a single spot. And this is why we 

introduced ‘w’ in the mathematical formulations, which represents the corresponding dimensions of this control 

volume (L422). We have also better defined 𝜴∗, 𝑡∗ and the indicator random variable in L105-L108. 

  

L515: Can you show a figure of this? pretty hard to understand as is. 

 

Response: Hot spot 𝛺 was placed 21𝐼𝑌𝐻 away from the source, and the dimension of 𝛺 is (2𝐼𝑌𝐻 , 2𝐼𝑌𝐻 , 2𝐼𝑌𝑉). Figure 

3 presents the configuration of this example, where the red box is the candidate hot spot 𝛺.  

 

L520-540: Okay, so now we start to see some results from the framework, in which the time course of HSHM 

development is linked to variation in conductivity. This is nice, though I must wonder whether the formal statistical 

framework is necessary. Could this be done just as well with a Monte Carlo approach? What I am missing is a 

convincing argument that the formal framework is needed. Could one not just run a simulation and sample it to 

characterize the spatial distribution of biogeochemical rates, use that to determine the frequency and magnitude of 

hot spots and then do that through time to show the time course?  

 

Response: Our approach can definitely be applied using Monte-Carlo (MC) approaches. We present a framework, and 

it can be applied using analytical models (when available) or using MC simulation. These approaches are 

complementary rather than exclusive. One can use our framework to define the flowchart for the Monte-Carlo analysis. 

Although MC approach can be used for implementation, our approach goes further than MC because it can easily 

incorporate Bayesian concepts such as conditioning as well as utilization of prior information from other sites. For 

example, knowledge from previous nitrogen HSHM studies can be implemented with the proposed framework and 

guide new HSHM investigation at other new sites (L219-L225). Additional benefits are presented in L226-L244.  

 

L595: I don’t recall seeing any results showing how the framework can be used to study uncertainty. This seems 

important, but not presented.  

 

Response: As we stated in point 1 and 6 above, our proposed framework incorporate uncertainty through modeling 

the dynamics as stochastic processes and through modeling the parameters as random variables. For example, in 

Section 4.4 (section 4.3 in revised manuscript), we show how the uncertainty surrounding the hydraulic conductivity 

influences the probability of HSHM occurrence in the subsurface. 

 

L605: I think it would be useful to expand on the discussion through the manuscript in terms of how the framework 

provides understanding of mechanisms. Through much the paper it seemed that the mechanisms were known a priori 

and were actually used to define conditions that result in HSHMs. I don’t fully understand how we are gaining more 

mechanistic understanding, but I am open to hearing more.  

 

Response: We appreciate this comment. In the revised manuscript, we have incorporated certain Bayesian statistics 

theories into the indicator formulation and expanded the discussion correspondingly. The wide range of approaches 

used for modeling HSHMs reported in the literature are helpful in gaining a better understanding of HSHMs, however 

it is challenging to evaluate and rank the suitability of the models for realistic scenarios. This is where our study 

becomes useful. The flexibility of our proposed framework enables us to compare the performance of competing 

models and select appropriate models for new sites. And we would cite here a couple of examples. First, Bayesian 

model averaging approaches (Volinsky et al., 1999) could be implemented to obtain a combined and less risky 

estimation of HSHMs at new sites. Second, model comparison criteria, such as the Akaike information criteria (AIC, 

Akaike, 1974) and Bayesian information criteria (Schwarz, 1978) can also be applied to compare and rank the 

performance of different HSHM indicator models and their ability to explain observations. For example, smaller AIC 

and BIC values indicate a better match between a HSHM model and data. Large AIC and BIC values would suggest 

an incomplete and possibly even faulty model.  Through this process of model inter-comparison, we could gain better 

understanding of the underlying mechanism, which, in essence, is the learning process that the reviewer rightfully 

wishes us to show. These modifications are reflected in L226-L244.  
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Abstract 10 

Environmental hot spots and hot moments (HSHMs) represent rare locations and events that exert disproportionate 

influence over the environment. While several mechanistic models have been used to characterize HSHMs behavior 

at specific sites, a critical missing component of research on HSHMs has been the development of clear, conventional 

statistical models. In this paper, we introduced a novel stochastic framework for analyzing HSHMs and the 

uncertainties. This framework can easily incorporate heterogeneous features in the spatiotemporal domain and can 15 

offer inexpensive solutions for testing future scenarios. The proposed approach utilizes indicator random variables 

(RVs) to construct a statistical model for HSHMs. The HSHMs indicator RVs are comprised of spatial and temporal 

components, which can be used to represent the unique characteristics of HSHMs. We identified three categories of 

HSHMs and demonstrated how our statistical framework are adjusted for each category. The three categories are (1) 

HSHMs defined only by spatial (static) components, (2) HSHMs defined by both spatial and temporal (dynamic) 20 

components, and (3) HSHMs defined by multiple dynamic components. The representation of an HSHM through its 

spatial and temporal components allows researchers to relate the HSHM’s uncertainty to the uncertainty of its 

components. We illustrated the proposed statistical framework through several HSHM case studies covering a variety 

of surface, subsurface, and coupled systems.  

1 Introduction 25 

Environmental hot spots and hot moments (HSHMs) were originally defined as rare locations or events that 

support or induce disproportionately high activity levels (e.g., chemical reaction rates) compared to surrounding areas 

or preceding times (McClain et al., 2003). Vidon et al. (2010) further classified HSHMs into either transport-driven 

or biogeochemically-driven HSHMs, based on the mechanisms causing the HSHMs. Bernhardt et al. (2017) derived 

the concept of ecological control points (CPs) related to HSHMs, defining CPs as areas of the landscape that exert a 30 

disproportionate influence on the biogeochemical behavior of an ecosystem under study. These definitions have 

mainly focused on HSHMs related to elevated biogeochemical activities triggered by hydrological or biogeochemical 

processes, or a confluence of both processes. The concept of HSHMs is also used in climate science, where it is related 

to elevated greenhouse gas emissions or specific locations that are subject to extreme natural hazards (e.g., sea-level 

rise, floods, hurricanes, or earthquakes) caused by climate change (Arora et al., 2020; Shrestha and Wang, 35 

2018).(Arora et al., 2021; Shrestha and Wang, 2018). Further, Henri et al. (2015) related HSHMs to locations 

mailto:rubin@ce.berkeley.edu
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experiencing elevated environmental risks and developed the incremental lifetime cancer risk (ILCR) model to 

quantify the effects of hot spots on human health. Overall, these studies have focused on quantifying the consequences 

of HSHMs by way of environmental risks and costs while also emphasizing the importance of characterizing the 

occurrences of environmental HSHMs. In the present study, we combined these definitions provide a unified treatment 40 

of both positive and negative impacts of HSHMs such that, henceforth, HSHMs are referred to as rare locations or 

events that could exert a disproportionate beneficial or destructive influence on an ecosystem and, which are associated 

with heightened health or environmental risksallows us to present an integrative analytical framework for 

understanding and modeling HSHMs in various fields.  

Characterizing HSHMs dynamics is useful for understanding hydrological and ecological dynamics related 45 

to nutrient cycling, contaminant transport, and accurate assessment of ecosystem and hydrological perturbations under 

climate change. For example, Duncan et al. (2013) demonstrated that riparian hollows, which represent less than 1.0% 

of the landscape but contribute to more than 99% of total denitrification of a whole catchment area, function as hot 

spots. Additionally, wetlands have been considered biogeochemical hot spots for mercury mobilization and 

methylation production since the early 1990s (Vidon et al., 2010). The spatial patterns of methylmercury (MeHg) hot 50 

spots in wetlands can vary significantly across space. Indeed, the MeHg concentration at the interface between upland 

and peatland can be 100 times greater than a different patch within the same wetland (Mitchell et al., 2008). In 

managed temperate peatlands, drainage ditches that account for less than 5% of a land area can act as hot spots and 

can contribute to over 84% of total greenhouse gas emissions (Teh et al., 2011). The disproportionate contributions 

from HSHMs to the overall hydrological and ecological dynamics strongly indicate the necessities of characterizing 55 

HSHMs.    

Quantifying HSHMs has also been recognized as important for assessing the consequences after catastrophes 

and the environmental risks, such as water crises (Baum et al., 2016) or nuclear disasters  (Kamidaira et al., 2018; 

Morino et al., 2011; Showstack, 2014). The migration of contaminants after a catastrophe creates zones of different 

toxicity levels and poses disproportionate threats to the surrounding natural and urban environment. In contrast, 60 

existing HSHMs caused by the leakage of nuclear waste or heavy metals largely influence site characterization needs 

and the remediation efforts needed to minimize environmental and economic losses (Bao et al., 2014; Harken et al., 

2019). Thus far, studies in this area have focused on the environmental implications and usefulness of characterizing 

HSHMs. However, special tools for characterizing and modeling HSHMs are still needed, such as physically-based 

and statistical models, which can provide additional benefits to capture the disproportionate effects of an HSHM on a 65 

whole ecosystem.  

Reactive transport models have been used to understand and predict HSHMs. Dwivedi et al. (2017), for 

instance, developed a 3-D high-resolution numerical model to investigate whether organic-carbon-rich and 

chemically-reduced sediments located within the riparian zone act as denitrification hot spots. Their study 

demonstrated a significantly higher potential (~70%) of the naturally reduced zones (NRZs) to remove nitrate than the 70 

non-NRZ locations. Arora et al. (2016) used a 2-D transect model and showed that temperature fluctuations constituted 

carbon hot moments in a contaminated floodplain aquifer that resulted in a 170% increase in annual groundwater 

carbon fluxes. Gu et al. (2012) developed a Monte Carlo reactive transport approach and discovered how 
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denitrification HSHMs are triggered by river stage fluctuations. Despite these studies, clear statistical conventions of 

HSHMs are missing, which significantly limits the transferability of these approaches. In fact, distinguishing HSHMs 75 

based on statistical formulations has been identified as a major gap in the current HSHM literature (Bernhardt et al., 

2017; Arora et al., 2020). 

Statistical approaches offer multiple advantages for furthering the HSHM concept. First, statistical 

approaches can develop common formulations that integrate biogeochemical and hydrogeological knowledge from 

multiple HSHMs studies. Once developed, these formulations can be readily applied to identify HSHMs at similar 80 

sites. Second, statistical approaches can easily incorporate categorical indicators that represent spatial heterogeneity 

and quantify the uncertainty of HSHM occurrences tied to these features. Such approaches can be used as predictive 

tools to estimate future occurrences of HSHMs, and provide an alternative to computationally-expensive high-

resolution mechanistic models. This would greatly aid decision-makers in identifying scenarios (e.g., changes in the 

climate or in environmental conditions) that increase risks associated with the occurrence of HSHMs phenomena.  85 

Statistical concepts and models have been widely applied in hydrology and hydrogeology, including but not 

limited to modeling flow and contaminant transport, quantifying subsurface heterogeneity and the associated 

uncertainties, developing strategies for site characterization, and providing informative priors for ungauged 

watersheds. For example, Rubin (1991) described a Lagrangian approach to obtain the spatial and temporal moments 

of contaminant concentrations in the subsurface. These statistical moments were deemed both necessary and sufficient 90 

to define the probability distribution of contaminant concentrations over space and time, and thus, quite useful for 

quantifying HSHMs. In a similar manner, statistical moments can be used to characterize the occurrences of HSHMs. 

Statistical terms, such as concentration mean and variance, concentration cumulative density function (CDF), 

exceedance probabilities, and exposure time CDF also provide significant guidance to assess the environmental risks 

associated with HSHMs (Rubin et al., 1994). Although there is a lack of conventional statistical approaches in current 95 

HSHM studies, we believe it is feasible and valuable to develop statistical formulations to characterize HSHMs 

dynamics.  

Successful characterization of HSHMs through physically-based models or statistical approaches relies on 

experts’ knowledge of a site, intensive field characterization, and possibly continuous field sampling to provide the 

data to develop and validate these approaches. Understandably, intensive site characterization and long-term sampling 100 

can be quite challenging due to the associated costs and efforts. Thus, it is necessary to develop approaches that could 

simplify but still effectively and efficiently represent the underlying structure of HSHMs. In this regard, indicator 

statistics, defined by the  Bernoulli distribution, can be useful, on two counts. First, it is suitable for modeling bimodal 

situations. For example, a situation where an event might or might not take place. Indicators are also appealing in 

applications because of the sparsity of the Bernoulli probability model.  Indicator statistics have previously been 105 

applied to model flow and transport phenomena in groundwater (Rubin and Journel, 1991), where indicators were 

used to model the spatial distribution in a sand-shale formation.  Rubin (1995) applied an indicator spatial random 

function to model contaminant flow and transport in bimodal heterogeneous formations. Ritzi et al. (2004) developed 

a hierarchical architecture to represent the spatial correlation of permeability in cross-stratified sediment using 

indicator statistics. Wilson and Rubin (2002) and Bellin and Rubin (2004) used indicator statistics that describe 110 
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whether particles were captured by sampling points to characterize the level of aquifer heterogeneity. These studies 

suggest that the simplification of the system’s structure through indicator formulation significantly lower the number 

of measurements needed, and thus reduce the costs associated with site characterization, while maintain sufficient 

information for modeling flow and contaminant transport. In addition, indicator formulation is useful in that it allows 

to aggregate multiple variables (e.g., all HSHM relevant variables) into a single random variable. Instead of 115 

characterizing the full distributions of each parameter, indicator formulation only requires knowledge of the critical 

condition for relevant parameters. Such indicator RV will take a value of 1 if the critical conditions are met, regardless 

of the original distribution for the parameters. These advantages are further explored in section 2 and 3.  With indicator 

formulations for HSHMs, researchers can focus on identifying the most relevant parameters for HSHMs 

quantification, which can significantly reduce the efforts and costs required for intensive site characterization.   120 

In this study, we developed a statistical framework to quantify HSHMs occurrences and uncertainties. The 

developed statistical framework can help determine HSHM-occurrence probabilities under user-defined scenarios. It 

can also be used for estimating future occurrences of HSHMs. Based on the mechanisms that drive HSHM 

occurrences, we determinedVarious approaches have been developed to better quantify HSHMs dynamics, including 

numerical modeling, empirical modeling and data-based approaches with statistics. For example, Dwivedi et al. (2017) 125 

developed a 3-D high-resolution numerical model to investigate whether organic-carbon-rich and chemically-reduced 

sediments located within the riparian zone act as denitrification hot spots. Their study demonstrated a significantly 

higher potential (~70%) of the naturally reduced zones (NRZs) to remove nitrate than the non-NRZ locations. Arora 

et al. (2016b) used a 2-D transect model and showed that temperature fluctuations constituted carbon hot moments in 

a contaminated floodplain aquifer that resulted in a 170% increase in annual groundwater carbon fluxes. Gu et al. 130 

(2012) developed a Monte Carlo reactive transport approach and discovered how denitrification HSHMs are triggered 

by river stage fluctuations. Abbott et al. (2016) developed the HotDam frameweork that combines the HSHM concept 

and Darmköhler number with multiple tracers to advance our understanding of ecohydrology. Statistical concepts 

have also been used to identify HSHMs through simple comparison to average or matrix; substantial percentage of 

total flux; outlier in distribution of data; statistically significiant difference between or among landsape elements and 135 

contribution to flux/total area or time (Bernhardt et al. (2017) and references therein). Wavelet and entropy-based 

approaches have also been used to identify non-uniform regions and times and consequently HSHMs (Arora et al., 

2013, 2019a). However, most of these quantitative methods are derived based on site-specific data, which severely 

limits the transferability of these approaches. In contrast, a unified HSHM approach offers multiple advantages. First, 

a unified strategy based on commonly-used parameters for a given HSHM would allow modelers to create probability 140 

priors that could be used for prediction of said HSHM at unnsampled- or poorly-sampled sites (Li et al., 2018). Second, 

such a standardized approach for modeling HSHMs could be beneficial to developing and implementing monitoring 

standards and regulations for environmentally-senstive HSHMs. Last, but not the least, a unified approach can be used 

together with mechanistic models to capture uncertaintiy and heterogeneity for HSHMs in environmentally-relevant 

applications. 145 

Successful characterization of HSHMs through deterministic physically-based models or purely statistical 

approaches relies on experts’ knowledge of a site, intensive field characterization, and possibly continuous field 
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sampling to provide the data to develop and validate these approaches. Understandably, intensive site characterization 

and long-term sampling can be quite challenging due to the associated costs and efforts. In this regard, having access 

to a stochastic approach that could improve predictions through built-in model updating (i.e., Bayesian) capabilities 150 

could prove to be an advantage.  

Stochastic concepts and models have been widely applied in hydrology and hydrogeology for addressing 

situations subject to uncertainty, including but not limited to modeling flow and contaminant transport, quantifying 

subsurface heterogeneity and the associated uncertainties, developing strategies for site characterization, and 

providing informative priors for ungauged watersheds. Bayesian approaches were found particularly useful, especially 155 

through the conceprts such as conditioning and updating. In this paper, we aim to bring the experience gained in 

hydrology and hydrogeology into HSHM modeling.  

An important characteristic of HSHMs is that they occupy a limited portion of the investigated domain and 

may be active for a limited amount of time since they are activated when the control variable exceeds a given threshold. 

Physical and geochemical heterogeneities, and the impossibility to fully characterize them, render the deterministic 160 

identification of HSHMs a vanishing objective. To address the hurdle, we propose to cast the problem into a 

probabilistic framework by seeking the probability of HSHM occurrence at a given position and time. For a given 

time and/or space intervals and for a-priori specified HSHM criteria, an HSHM occurrence could be viewed as a 

binary variable where the ensemble mean is the probability of occurrence. Indicator statistics have previously been 

applied to model flow and transport phenomena in groundwater (Rubin and Journel, 1991), where indicators were 165 

used to model the spatial distribution in a sand-shale formation. Wilson and Rubin (2002) and Bellin and Rubin (2004) 

used indicator statistics to characterize aquifer heterogeneity. These studies suggest that representation of a system’s 

structure through indicator formulation holds the potential of taking informed decisions, for example concerning 

remediation actions, under incomplete site characterization.   

Based on the mechanisms that trigger HSHMs, we identified three categories of HSHMs: (1) those triggered 170 

only by spatial (static) contributors, (2) those triggered by both spatial (static) and temporal (dynamic) contributors, 

and (3) those triggered by multiple dynamic contributors. Within each category, cases from existing studies were used 

to illustrate the procedures for constructing the statistical formulations. We focused specifically on HSHMs 

applications in groundwater, where we derived analytical solutions for the statistical formulation of HSHMs and 

analyzed the probabilities of HSHM occurrences and their corresponding levels of uncertainty using synthetic case 175 

studiesApplications of the proposed indicator formulation to a diverse range of HSHM situations  are presented to 

illustrate the generality of our proposed approach. The remainder of the paper is structured as follows. Section 2 

outlines the proposed statistical framework for predicting HSHMs. In section 3, various reported cases from previous 

HSHM studies are presented using the framework of our proposed approach, intended to demonstrate its generality. 

In section 4, we present an HSHM application in groundwater hydrology and show how the HSHM uncertainty relates 180 

to the spatial variability of the hydraulic conductivity. Advantages and limitations of our approach are discussed in 

section 5.  
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2 StatisticalMethodology and statistical formulation of HSHMs 

Herein, we present a statistical formulation of hot spots and hot moments, which considers the HSHM 

occurrence as a binary event, expressed through indicator statistics embedded with the HSHM underlying physics. 185 

Section 2.1 summarizes the indicator formulation of HSHMs. Based on the contributors to HSHMs, we classified 

HSHMs into three different types, and we demonstrate how indicators are constructed for each type of HSHM in 

sections 2.2, 2.3 and 2.4, respectively. Section 2.5 focuses on the linkages between indicators and Bayesian concepts. 

Case studies for each class of HSHMs are provided in Section 3. 

2.1 Indicator formulation of HSHMs  190 

HSHMs represent rare places intervals in space and/or events with increasedtime characterized by 

hydrobiogeochemical activity rates or fluxes that arediffer significantly elevated abovefrom the background 

conditionconditions, thus exerting disproportionate influences over an ecosystem’s dynamics. We define (𝜴∗, 𝜴∗ as 

the volume (subdomain) within which the hot spot is verified and 𝑡∗) as the jointly distributed RVs for HSHMs, and 

𝜴∗ and 𝑡∗ represent the spatial components of hot spots and temporal components of  the time at which the hot 195 

moments, respectively. moment occurs. An indicator random variable, 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗), is used to representidentify 

whether the pairHSHM occurs at (𝜴∗, 𝑡∗) is an HSHM or not. If there exists a pair of (𝜴∗, 𝑡∗) that satisfies the user-

defined critical conditions ofneeded to trigger an HSHM, are met at (𝜴∗, 𝑡∗), then 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1, and it is equal 

to zero otherwise. What makes the indicator a random variable is the uncertainty in the pair (𝜴∗, 𝑡∗) represents the 

locationspatial and time oftemporal distribution of the quantities triggering the HSHM. 200 

 event in real-life applications. Following the original definition by McClain et al. (2003), in our method,  

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can take the value of 0 or 1, depending on the concentration or reaction rate measure at (𝜴∗, 𝑡∗), 

respectivelywhether suitable thresholds are exceeded or not as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝐶(𝒙, 𝑡∗) > 𝐶𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
, or  

    𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝑅(𝒙, 𝑡∗) > 𝑅𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
.,                                         (1) 205 

where 𝐶(𝒙, 𝑡∗) 𝑎𝑛𝑑 𝑅(𝒙, 𝑡∗) are the concentration and reaction rate at the position 𝒙 and time 𝑡∗, respectively. 

𝐶𝑡ℎ 𝑎𝑛𝑑 𝑅𝑡ℎ represent the concentration and reaction rate thresholds, respectively., which identify whether HSHM is 

triggered or not. Defining indicators with concentration, or reaction rate depends on the target of HSHM. Similar 

definitionsThe threshold values can also be introduced based on the regulatory limits or the interest of the investigator, 

using the mean concentration or the solute mass within the volume 𝜴∗.defined by the user.  210 

The critical values, of 𝐶𝑡ℎ and/or 𝑅𝑡ℎ, are keykeys to an effective application of the above framework and 

should be determined based on the specific scenario. under investigation. For example, forin the case of contaminants 

that are associated with significant environmental or health risks (e.g., nuclear waste or a cancerous substance), 𝐶𝑡ℎ =

0 or 𝑅𝑡ℎ = 0 can be used so that the HSHM will be triggered as soon as there is the presence of such contaminants. 

and relevant chemical reactions. As an alternative, a limit in the total accumulated mass or fluxes within hot spots may 215 

also be set, such as suggested by EPA (USEPA, 2001), but in this case the definition (1) of the indicators should be 

modified. For water quality parameters, 𝐶𝑡ℎ = 𝑀𝐶𝐿 or 𝑅𝑡ℎ = 𝑅∗ can be assigned, where 𝑀𝐶𝐿 represents the maximum 
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concentration limit for a specific solute. whereas 𝑅∗ could represent a critical reaction rate. The critical thresholds can 

be determined based on statistics, such as percentiles and extremes as defined by regulations or analytical studies. 

Alternatively, 𝐶𝑡ℎ = 𝐶∗ can be used in cases where 𝐶∗ is and 𝑅𝑡ℎ could also be chosen based on the experts’ domain 220 

knowledge. This or from well-documented studies at similar environments. Through the flexibility to adopt different 

choices for activation thresholds, our approach requires that such decisions be made before deriving any solutions to 

determinecould allow users to compare relevant indicator models and assess their applicability by testing how different 

thresholds would influence the probability of the HSHM occurrencesto occur and assessing said probabilities against 

risk tolerance and/or regulations.  225 

GivenFollowing the definition of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗), as a binary random variable (Eq. 1), we observe that 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) followspropose to model it with  a Bernoulli distribution, such as  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(<

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >), where < . > is the operator indicating the ensemble mean of the indicator represented as a random 

variableaveraging operator. An important characteristic of the Bernoulli distribution is that all the statistical moments 

of the RV 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed as a function of the ensemble mean < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. For example, the 230 

variance is given by 𝑣𝑎𝑟(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > ∙ (1− < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >). Thus, being able to fold the 

HSHM physics into an indicator formulation, a simplified approach is presented through Eq. (1).  

CharacterizationCase-based formulation of the spatiotemporalBernoulli distribution of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) 

requires the incorporation of the mechanisms that govern the development and occurrence of HSHMs. However, the 

direct quantification of < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > can be difficult in both time and space domain. Thus, to into the indicator 235 

model. To facilitate this undertaking, we propose to decompose 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) into a Type-A (static) indicator random 

variable—𝐼𝑠, 𝐼𝑠(𝜴∗)—), and a Type-B (dynamic) indicator random variable—𝐼𝑑, 𝐼𝑑(𝜴∗, 𝑡∗). Definitions of the Type-

A and Type-B contributorsindicators are as followsprovided herein: 

 Type-A (Static) Contributors. This category covers discrete spatial elements (and their associated critical 

states) that could trigger an HSHM once they come into contact with Type-B contributors (see discussion 240 

below). Critical states are the range of values needed to trigger an HSHM (either in standalone mode or when 

coupled with Type-B contributors).  

 Type-B (Dynamic) Contributors. This category covers dynamic variables (and their associated critical 

states) that could trigger an HSHM once they come into contact with Type-A contributors. This category 

includes, for example, mass transport variables. It also includes changes in local hydrological and 245 

environmental conditions (e.g., water table fluctuations). The displacement of solutes in the subsurface 

(trajectories and travel times) from below- and above-ground processes are prime examples of Type-B 

contributors.  

As an example, naturally reduced sediments (Type-A contributor)  occurring next to the river corridor at the 

Rifle site were identified as carbon export hot spots (Arora et al., 2016; Wainwright et al., 2015)(Arora et al., 2016a; 250 

Wainwright et al., 2015). Studies showed that these hot spots were triggered when temperature conditions (Type-B 

contributor) varied in the subsurface, resulting in a 170% increase in groundwater carbon export from the floodplain 

site to the river (Arora et al., 2016).(Arora et al., 2016b). In another example, topographic features, such as the 
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backslope of the lower montane hillslope (Type-A contributor) within the East River Watershed (Hubbard et al., 

2018), were considered denitrification hot spots, which can have a significant impact on the watershed-scale nitrogen 255 

loss pathway. These hot spots were often triggered by spring snowmelt and storm events (Type-B contributor).  

Both indicators of the Typetype-A and Typetype-B contributors assume a value of either 0 or 1. If one of 

these indicators takes a value of 1, it can be viewed as an HSHM contributor. However, for an HSHM to occur, both 

indicators must have a value of 1 at the same location and time. This idea can be expressed as follows: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) = 𝑃(𝐼𝑠(𝜴∗) = 1, 𝐼𝑑(𝜴∗, 𝑡∗) = 1) 260 

= 𝑃(𝐼𝑠(𝜴∗) = 1) ∙ 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1|𝐼𝑠(𝜴∗) = 1) 

= 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1) ∙ 𝑃(𝐼𝑠(𝜴∗) = 1|𝐼𝑑(𝜴∗, 𝑡∗) = 1).                                                (2)      

In Eq. (2),  𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1|𝐼𝑠(𝜴∗) = 1) is the probability of observing a dynamic HSHM within  𝜴∗,   at 

time 𝑡∗ conditional to the fact that 𝜴∗ is a static hotspot and 𝑃(𝐼𝑠(𝜴∗) = 1|𝐼𝑑(𝜴∗, 𝑡∗) = 1) is defined similarly.  Based 

on the mechanisms of HSHMs, we can classify HSHMs into three different categories as discussed below. These 265 

categories can be used to guide the application of the above statistical framework in a variety of complex HSHM 

scenarios, and they can also be used to develop analytical or numerical solutions for both static and dynamic indicators. 

Furthermore, the three categories provide guidance on using indicator approaches for both transport-driven and 

biogeochemically-driven HSHMs, as discussed by Vidon et al. (2010).  

 270 
Figure 1. Identified categories of HSHMs. Based on the mechanisms of HSHMs, we can distinguish between 

three different HSHM categories as discussed below. These categories can be used to guide the application of the 

above statistical framework in a variety of complex HSHM scenarios, and they can also be used to develop analytical 

or numerical solutions for both type-A and type-B contributors.  

 275 

Figure 1. Identified categories of HSHMs. Panel (a) presents HSHMs resulting from only Type-A (static) indicator 

only; panel (b) presents HSHMs resulting from coupled action (static + dynamic) and panel (c) presents HSHMs 

resulting from multiple (two) dynamic indicators. 

2.12 HSHMs induced by type-A (static) indicators 

In this section, we consider HSHMs that are defined by static indicators only (Figure 1a). This list can include 280 

zones of high, persistent concentration and reactivity that are due to the subsurface or the ecosystem’s unique 

hydrological and biogeochemical properties. For example, the accumulation of contaminants in the subsurface (e.g., 
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the high nuclide concentration in the subsurface at the Hanford site) could lead to the evolution of persistent, high 

reactivity zones. An aquifer’s reactivity is another example that could distinguish certain regions with high reactivity 

compared to surrounding areas (Loschko et al., 2016). Such high reactivity spots (hereafter denoted as 𝜴∗) can be 285 

characterized by static indicator RVs due to the persistence of high concentration or reactivity. The static indicators 

are defined as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗) = 𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍(𝜴∗) ⊆ 𝑍𝑠

∗

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                          (3) 

where 𝑍𝑠
∗ represents the conditions needed to trigger a hot spot at 𝜴∗, and 𝑍(𝜴∗) represents the corresponding local 

conditions at 𝜴∗. Notice that 𝜴∗ is a volume centered at a selected position of the domain where the probability of 290 

developing HSHM is evaluated.  

2.23 HSHMs induced by type-A (static) and type-B (dynamic) indicators 

HSHMs can also result from dynamic processes encountering specific local conditions at 𝜴∗ (Figure 1b). 

This is the situation described by Eq. (2), where the statictype-A indicators are determined first, and then used jointly 

with the dynamictype-B indicators for complete HSHM characterization. For example, Bundt et al. (2001) concluded 295 

that locations (𝜴∗) interested by preferential flow paths are possible biological hot spots for soil microbial activities. 

Preferential flow paths in such cases are candidate hot spot locations (𝜴∗). Meanwhile, dynamic factors, such as 

snowmelt, or rainfall infiltration control contaminant transport via the preferential flow paths, and thus, they 

determinedconstitute the hot moment component. The duration of these events presents the temporal component of 

the HSHMAdditional case studies are presented in Section 3.  300 

 For an HSHMHSHMs induced by both statictype-A and dynamictype-B indicators, the static locations are 

selected first, based on their HSHM-related properties. After this, we can focus on characterizing the HSHM dynamics 

as they relate to the relevant locations. A selected location, 𝜴∗, could become an HSHM site based on characteristics 

defined through the following statictype-A and dynamictype-B indicators, respectively: 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                                           (4) 305 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑

∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
,                                                                  (5) 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗, 𝑎𝑛𝑑 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑
∗  

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
,                                            (6) 

where 𝑍𝑑
∗  represents the critical conditions needed to characterize a trigger the hot moment, andwhereas 𝑍𝑑(𝜴∗, 𝑡∗) 

represents the corresponding, critical-state local conditionconditions at 𝑡∗ and 𝜴∗. The statistical model of 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed using the statistical models of 𝐼𝑠  and 𝐼𝑑 , as shown in Eq. (2).  310 

2.34 HSHMs induced by multiple type-B (dynamic )) indicators 

VariousA confluence of dynamic processes could jointly evolve into anresult in the formation of a HSHM 

(Figure 1c). Unlike the previous scenarios where static locations can be determined through known characteristics 

provided by geophysical or other types of data, HSHMs can also emerge due to thea confluence of dynamic processes. 

This situation is described in Eq. (7). For example, Gu et al. (2012) analyzed how streamflow fluctuations could trigger 315 
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a nitrogen HSHM. In their example, the dynamics of the streamflow and groundwater controlled the transport and 

mixing of the chemical reactants, thus triggering the occurrences of HSHMs. For this case, the static locations of 𝜴∗ 

are determined by the confluence of multiple dynamic processes., not being restricted by a set of local conditions. In 

this case, only type-B indicators need to be modeled.  

We can consider the case where an HSHM is predicated on 𝑚 dynamic processes, 𝑑𝑗, where 𝐼𝑑,𝑗(𝜴∗, 𝑡∗) is 320 

the dynamic indicator representing the action (or inaction) offor each dynamic 𝑑𝑗 at 𝜴∗ and time 𝑡∗. The hot spot 

location 𝜴∗ is determined by the confluence of all dynamic processes at time 𝑡∗.  These dynamic processes are not 

necessarily independent. Therefore, generally, the statistical model for the comprehensive dynamic indicator (which 

covers all dynamic contributors) assumes the following form: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,1(𝜴∗, 𝑡∗) = 1, … , 𝐼𝑑,𝑚(𝜴∗, 𝑡∗) = 1].                                        (7) 325 

In situations where the various dynamic contributors can be viewed as independent (e.g., Destouni and 

Cvetkovic, 1991)—Destouni and Cvetkovic, 1991)—i.e., where the reactants travel via different paths—then, 

assuming independence, we can state that   

𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1] = ∏ 𝑃[𝐼𝑑,𝑗(𝜴∗, 𝑡∗) = 1]

𝑚

𝑗=1

.                                                         (8) 

Here, the mean of the dynamic indicator becomes  330 

< 𝐼𝑑(𝜴∗, 𝑡∗) > =  ∏ < 𝐼𝑑,𝑗(𝜴∗, 𝑡∗) > .                                                              (9)

𝑚

𝑗=1

 

If 𝜴∗ is a hot spot, then Eq. (9) also defines < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. However, if 𝜴∗ is not a hot spot, then we 

need to resort to coupled statistical modeling, as suggested by Eq. (2). 

2.5 Additional advantages of stochastic formalism 

The statistical framework also provides several benefits. Unified formulations of HSHMs through indicators 335 

provide us a platform to evaluate alternative HSHM models thoroughly and objectively. For example, the Akaike 

information criteria (AIC, Akaike, 1974) and Bayesian information criteria (Schwarz, 1978) can be used to rank 

between alternative indicator formulations and evaluae their ability to explain HSHM observations. Smaller AIC and 

BIC values indicate more information preserved in a given indicator HSHM model and implies better model quality 

than other indicator models. On the other hand, if larger AIC and BIC values are observed, important processes for 340 

HSHMs are likely missing indicating the necessity of increasing site characterization and refinement of conceptual 

models.  

In addition, informative priors constructed from similar HSHM sites (Cucchi et al., 2019; Li et al., 2018) 

could advance early stage planning for HSHM site investigation. Knowledge from studies at similar HSHM sites can 

be summarized into prior distributions, which can account for variabilities within and between sites. For example, 345 

Cucchi et al. (2019) demonstrated how the distribution of hydraulic parameters at unknown target sites can be 

predicted using information from hydrologically similar sites with existing tool packages such as exPrior. Goal-

oriented site characterization also becomes feasible with informative priors; for example, Li et al. (2018) demonstrated 

the usefulness of informative priors in reducing model uncertainty and potential risks for estimating groundwater 
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drawdown at Mintang tunnel in China. Therefore, through integration with statistical concepts, unified formulations 350 

of HSHMs enable us to integrate Bayesian concepts to obtain combined and less risky estimations of HSHMs at new 

sites, which can help us gain better understanding of the underlying mechanism.  

3 Examples of the statistical formulation of HSHMs with case studies 

In this section, we selected numerous examples from published research to present how our approach can be 

used to derive statistical representations for the HSHMs investigated in these studies. We grouped these studies into 355 

three categories based on the similarities of their underlying HSHM mechanisms, as described in section 2. We also 

characterizedSection 3.1 demonstrate the environmental risk levels formulation of static only HSHM; section 3.2 

present the case with static and impacts based on their targetdynamic triggered HSHMs. and section 3.3 summzerize 

the steps to construct multiple dynamic indicators for HSHMs. Table 1 presents a summary of these cases. The 

indicator formulation is constructed in sections 3.1–3.3.where environmental risk levels as well as impacts on 360 

ecosystem were also included.  
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Reference HS Location Category Seasonality Environmental 

Risk 

Causes Impact Static Mechanism Dynamic 

Mechanism 

HSHM Action Metrics for 

threshold 

Equation(s) 

Examples of static only mechanisms   

Wainwright et 

al. (2015) 

Naturally reducing 

zone 

Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Mineralological  

and lithological 

differences 

-- Vanadium, 

uranium, 

metallic 

minerals 

Concentration (3) 

Sassen et al. 

(2012) 

Reactive facies Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Lithological 

differences  

-- Uranium and 

other isotopes 

Concentration (3) 

Examples of static + dynamic mechanism   

Andrews et 

al. (2011) 

Shale hill Subsurface 

+ Surface 

Snowmelt and 

fall flushing 

periods 

Low risk Natural Neutral South-facing 

concave hillslopes 

Snowmelt and 

fall flushing 

periods 

Organic carbon Concentration (4) – (6) 

Henri et al. 

(2015) 

Preferential flow 

path 

Subsurface -- High risk Anthropogenic Negative Subsurface 

heterogeneity 

Contaminant 

transport and 

travel time 

distribution 

Chlorinated 

compounds 

Concentration (4) – (6) 

Duncan et al. 

(2013)Duncan 

et al. (2013) 

Microtopography Surface Unimportant High risk Natural Positive Riparian hollows Transport and 

retention of 

reactants 

Nitrogen Concentration 

or reaction 

rate  

(4) – (6) 

Arora et al. 

(2016)Arora 

et al. (2016) 

Naturally reducing 

zone-induced 

transport 

Subsurface Temperature 

and water 

table 

fluctuation 

Low risk Anthropogenic 

+ Natural 

Neutral Naturally reduced 

zones 

Temperature and 

water table 

fluctuation 

Carbon fluxes Concentration 

or reaction 

rate 

(4) – (6) 

Examples of multiple dynamic mechanisms   

Hill et al. 

(2000) 

Riparian zone Subsurface -- High risk Natural Positive Interfaces in the 

riparian zone 

Supply of 

electron donor 

and acceptor 

from flow 

transport 

Nitrogen and 

carbon 

Concentration 

or reaction 

rate 

(7) – (9) 

Mitchell et al. 

(2008) 

Peatlands Subsurface 

+ Surface 

Summer 

periods 

High risk Natural Negative Upland-peatland 

interfaces induced 

by flow 

Interactions 

between upland 

and peatland 

flow 

Methylmercury Concentration (7) – (9) 

Frei et al. 

(2012) 

Microtopography Surface -- Neutral Natural Neutral Flowpaths induced 

by 

microtopography 

Biogeochemical 

evolution along 

flow paths 

Organic matter 

and nitrogen 

Concentration 

or reaction 

rate 

(7) – (9) 

Gu et al. 

(2012) 

Mixing zones Subsurface 

+ Surface 

River 

discharge + 

Water table 

fluctuation 

High risk Natural Positive Mixing zones 

caused by river 

stages 

Interaction 

between surface 

water and 

groundwater 

Nitrogen Concentration 

or reaction 

rate 

(7) – (9) 

  

 Table 1. Example cases considered in this study for constructing the statistical formulation of HSHM.
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3.1 HSHMs triggered by static contributors only 

In this section, we use Wainwright et al. (2015) as an example to illustrate our process to construct 365 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) following Eq. (3), where an HSHM is triggered by static contributors only (section 2.1). NRZs within 

floodplain environments at the Rifle site are considered biogeochemical hot spots because they represent elevated 

concentrations of uranium, organic matter, and geochemically reduced minerals and they have been found to 

contribute to significant carbon fluxes to the atmosphere and to local rivers (Arora et al., 2016). Due to its 

characteristics, we considered the spatial distribution of an NRZ to be a static-mechanism-based hot spot. Wainwright 370 

et al. (2015) used geophysical data (e.g., induced polarization) to map the distribution of an NRZ at the subsurface 

level. They found that the phase shift (𝜙) from the induced polarization data of the NRZ was within [4.5, 5]𝑚𝑟𝑎𝑑, 

compared to non-NRZ locations at 𝜙 ⊆ [1, 3.5]𝑚𝑟𝑎𝑑. Thus, 𝜙 can be used to construct the static indicator with a 

critical condition of [4.5, 5]𝑚𝑟𝑎𝑑. Therefore, 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝜙(𝜴∗) ⊆ [4.5, 5] 𝑚𝑟𝑎𝑑

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.                                                      (10) 375 

Other static attributes, including but not limited to elevation, hydraulic conductivity, and resistivity, can also 

be used to define the critical conditions to construct the static indicator for hot spots through Bayesian conditioning. 

3.2 HSHMs occuring when dynamic contributors coincide at locations defined by static contributors 

The second case we present here utilizes Eq. (4)–(6), where HSHMs are triggered when dynamic contributors 

coincide at hot spots determined by static contributors. Here, we present the case investigated by Duncan et al. 380 

(2013)Duncan et al. (2013), where riparian hollows representing less than 1% of the total catchment area contributed 

to more than 99% of the total denitrification within the watershed. In their study, the denitrification rates peaked during 

the base flow (midsummer) period, when the riparian hollows were partially oxygenated and the hydrologic fluxes 

were at a minimum. The site was considered to have low inorganic N availability, and thus, nitrate was supplied via 

nitrification. The highest rates of denitrification were therefore tied to nitrification and the partially aerated conditions.  385 

The static indicator needs to be constructed based on the microtopographical features within the riparian 

zone. Specifically, the topographic wetness index (TWI) (Beven and Kirkby, 1979; Sørensen et al., 2006)(Beven and 

Kirkby, 1979; Sørensen et al., 2006) was used in Duncan et al. (2013) to delineate the riparian hollows from other 

riparian locations. Terrain analysis indicated a TWI threshold value of 6.0 and 8.0 for riparian hollows under wet and 

dry conditions, respectively, whereas 4.8 and smaller TWI values corresponded to other riparian locations (e.g., 390 

hummocks). Thus, the static indicator can be constructed using the TWI values within the riparian zone to determine 

the hot spot locations—the hollows. Hence,  

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑇𝑊𝐼(𝜴∗) > 6 (𝑤𝑒𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 8 (𝑑𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

.                         (11) 

Multiple dynamic processes control the denitrification rate at the riparian hollows. As examined by Duncan 

et al. (2013)Duncan et al. (2013), a partially aerated condition (𝐶𝑂2
> 5%) is needed to support nitrification, which 395 

supplies the nitrate for denitrification. As quiescent, non-storm periods during base flow favor the coupled 

nitrification-denitrification mechanism, this is another key process that needs to be represented by a dynamic indicator. 
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Although Duncan et al. (2013)Duncan et al. (2013) did not mention specific concentration ranges for nitrogen species, 

the major components, such as organic N, should be available. Therefore, we can construct the dynamic indicators as 

follows: 400 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = 1],             (12) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) is the dynamic indicator representing the streamflow stages; this will be 1 if the base flow 

conditions are met. Additionally, here, 𝐼𝑑,𝑁 (𝜴∗, 𝑡∗) is the dynamic indicator for the transport of the nitrogen species 

in the subsurface that support the coupled nitrification-denitrification mechanism.  

𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = {

1,      𝑖𝑓 𝐶𝑂2
(𝜴∗, 𝑡∗) > 5%

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
, 405 

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑡∗ ⊆ 𝑏𝑎𝑠𝑒 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

,                                             (13)   

𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝐶𝑁(𝜴∗, 𝑡∗) > 0
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

. 

It is noted that these dynamic processes are not statistically independent. Usually, when one condition is met 

(e.g., base flow conditions), other conditions may consistently be satisfied (e.g., the transport of nitrogen in riparian 

hollows). Alternatively, numerical modeling approaches are more feasible to construct the dynamic indicators based 410 

on the critical conditions at riparian hollows (𝜴∗), where we could directly target 𝑁2 fluxes using a Monte Carlo 

approach. The statistical formulation used here is constructed specifically for the mechanisms described by Duncan 

et al. (2013). Thus, the detailed threshold limits could change under other denitrification HSHMs cases, such as the 

case presented in Alternatively, numerical modeling approaches can be used to construct the dynamic indicators based 

on the critical conditions at riparian hollows (𝜴∗), where we could directly target 𝑁2 fluxes using a Monte Carlo 415 

approach. The statistical formulation used here is constructed specifically for the mechanisms described by Duncan 

et al. (2013). Thus, the detailed threshold limits could change under other denitrification HSHMs cases, such as the 

case presented in Hill et al. (2000), who focus on desert landscapes, or the one by Harms and Grimm  (2008), where 

the monsoon season is influential for the nitrogen transport., who focus on desert landscapes, or the one by Harms and 

Grimm  (2008), where the monsoon season is influential for the nitrogen transport. Nonetheless, the general 420 

formulation of HSHMs using indicators is still applicable.  

3.3 HSHMs occuring when multiple dynamic processes converge in space 

HSHMs can also be triggered by the confluence of multiple dynamic processes that lead to the convergence 

of complementary reactants at 𝜴∗. Accumulation of complementaryComplementary reactants iscan be mobilized and 

transported via different hydrologic flowpaths. They can converge at hot spot locations and trigger hot moments during 425 

the mixing. Following the statistical framework developed in this study, EqEqs. (7) to (9) are suitable for this 

condition. In order to illustrate how the dynamic indicators are constructed, we consider here the case reported by Gu 

et al. (2012), where high biogeochemical activity was observed at the interface of groundwater and surface water 

during the stream stage fluctuations, which resulted in significant in-stream denitrification and 𝑁𝑂3
− removal.  

In their study, hot spots form around the near-stream- riparian subsurface during river stage fluctuations, 430 

where active biogeochemical reaction (e.g., denitrification) requires both 𝑂2 depletion and the simultaneous presence 
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of 𝑁𝑂3
− and the dissolved organic carbon (DOC). Specifically, the spatiotemporal distribution of denitrification hot 

spots coincides with an 𝑂2 depletion zone along the DOC infiltration flowpaths. In order to determine the mixing of 

groundwater and surface water during stage fluctuations, Gu et al. (2012) defined bank storage volume 𝑉(𝑡) and 

maximum bank storage volume 𝑉𝑚𝑎𝑥 . The flood hydrograph was subdivided into the rising limbs, recession limbs and 435 

return flow, the latter representing the slow restitution of part of the water that infiltrated during the previous stages. 

Considering the different dynamics of these components, they observed that the largest infiltration rate occurred prior 

to the maximum stage rise, while 𝑉𝑚𝑎𝑥 = 5𝑚3𝑚−1 (critical condition) occurred in the recession limb of the flood 

event. Instead, maximum return flow occurred toward the end of the recession curve before stream hydrograph 

stabilizes. Maximum 𝑁𝑂3
− rate removal occurred when return flow phase was almost complete and then decreased 440 

until the depletion of 𝑁𝑂3
−. Through statistical analysis, they found that 𝑉𝑚𝑎𝑥, viewed as an integrated index for 

hydrological exchange, could explain 64% of the variation in the  𝑁𝑂3
− removal. Thus, 𝑉𝑚𝑎𝑥 can be used as the critical 

state to determine whether or not the hyporheic dynamics is significant to enhance relevant biogeochemical processes. 

In order for the hot moments to be significant, the stream-riparian zone should also be microbially active. Based on 

these conditions, the dynamic indicators can be constructed as follows: 445 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[ 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = 1],                                (14) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) represents the dynamic process induced by the hydrologic conditions (e.g., stage fluctuation), 

and 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) represents the dynamic process controlled by the transport and accumulation of chemical reactants. 

Based on the critical values or ranges, we formulate the indicators as follows:  

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1, 𝑍𝑉𝑚𝑎𝑥

(𝜴∗, 𝑡∗) ≥ 5𝑚3𝑚−1

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
, 450 

                𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = {
1,    𝑖𝑓 𝐶𝑂2

(𝜴∗, 𝑡∗) 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝐶𝑁𝑂3
−(𝜴∗, 𝑡∗) > 0 𝑎𝑛𝑑 𝐶𝐷𝑂𝐶(𝜴∗, 𝑡∗) >  0

0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    
.  

Typically, because of the complexity of the processes, no analytical solutions are available for formulating 

the indicators. However, Monte Carlo simulations can be useful in constructing such indicators. For this case, an 

HSHM at any given location and time (𝜴∗, 𝑡∗) will only be triggered when all of the conditions are met and the 

ensemble mean of the indicator assumes the following form: 455 

< 𝐼𝑑(𝜴∗, 𝑡∗) > =
1

𝑁
∑ 𝐼𝑑,𝑖(𝜴∗, 𝑡∗)

𝑁

𝑖=1

 ,                                                                           (16) 

where 𝐼𝑑,𝑖(𝜴∗, 𝑡∗) is the value that the indicator assumes in the 𝑖𝑡ℎ realization and N is the total number of 

simulationsrealizations. 

Overall, our choices of the three studies should not limit the generalizability of the indicator statistics 

approach for deriving statistical formulations for HSHM applications. The critical conditions chosen to construct the 460 

indicators are determined solely on the findings from these selected studies, and they will vary under different 

scenarios. 

(15) 
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4 HSHM applications in groundwater hydrology 

Processes occurring withinThis section focuses on HSHMs in the subsurface are important factors leading 

tofor demonstration of linking HSHM occurrences. Among others, thesemodels with the contributing physical 465 

processes include, such as the migration of groundwater carrying reducing substrates, nuclear waste transport within 

the subsurface, the accumulation and transport of dense non-aqueous phase liquid (DNAPL) and other biogeochemical 

processes. Some current modeling approaches that focus on subsurface HSHMs assume simplified hydrologic 

structures (e.g., homogeneous and isotropic domains) in quantifying contaminantthe fate and transport of solutes in 

the subsurface. However, such an assumption neglectsassumptions neglect the effect of the heterogeneity in the 470 

subsurface, leading to the underestimation ofpotentially missing localized HSHMs arising as the combined effect of 

heterogeneity in physical and geochemical properties, and do not allow to assess uncertainties in the HSHM 

occurrences. Thus, in this 

This section, we focus therefore focuses on HSHM applications in groundwater hydrologyHSHMs taking 

place in the subsurface, with a particular emphasis on the role of spatial variability in the subsurface. Specifically, we 475 

consider several situations often encountered in groundwater contamination studies and present the indicator statistical 

formulations of HSHMs. With these results, we can determineof the probability of HSHMs occurrences inhydrologic 

parameters. Section 4.1 illustrates the potential of subsurface at a given time and space. Further, we are able to 

determine howheterogeneity for triggering and timing of HSHMs. In section 4.2, we develop closed-form analytical 

solutions for HSHM probability.  In doing this, we demonstrate the linking between our indicator model and the 480 

physics of the HSHMs in the subsurface. In section 4.3 we demonstrate applications under various conditions of spatial 

variability influences HSHM occurrences and how this is translated into environmental health risks.  

4.1 Importance of spatial variability in the subsurface 

The heterogeneous structure of hydraulic conductivity leads to significant variability in the contaminant 

transport in the subsurface, which further results in the heterogeneity of biogeochemical cycling, such as the 485 

development of NRZs, reactive facies, and heterogeneity in aquifers’ reactivity (Li et al., 2010; Loschko et al., 2016; 

Sassen et al., 2012; Wainwright et al., 2015).  

transport of solutes in the subsurface, which couples with heterogeneous geochemical properties leading to 

a spatially variaying reactivity (Arora et al., 2019b; Loschko et al., 2016; Sassen et al., 2012; Wainwright et al., 2015). 

Figure 2 demonstrates the uncertainty associated with HSHMs by looking at the flow fields in two-dimensional log-490 

hydraulic conductivity (𝑌 = 𝑙𝑛 (𝐾)) fields with streamlines resulting from a uniform mean head gradient, left to right. 

The three panels differ in terms of the variance, 𝜎𝑌
2, of the log-conductivity. The covariance function used for 

generating the fields is exponential and isotropic. 𝜎𝑌
2 is shown to have a profound impact upon the conductivity field. 

As the variance increases, regions of high and low log-conductivity emerge, creating preferential flow paths bypassing 

the low conductivity zones as shown by particle trajectories. At smaller variance (i.e., 𝜎𝑌
2 = 0.1), particles mainly 495 

travel along the mean flow direction with very limited departure from the mean trajectory, which are the straight lines 

connecting the left and right boundaries. In this situation, the arrival times of solute particles to a critical 

locationslocation (i.e., 𝜴∗)),  where for example geochemical conditions are favorable to certain types of reactions to 

occur) are predictable. With large variances (i.e., 𝜎𝑌
2 = 2), the streamlines assume a very irregular, hard-to-predict 
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geometry, and we can observe the emergence of flow channels, where particles can move fast, next to stagnant flow 500 

regions. Arrival times become more uncertain, because the exact geometry of the streamlines is hard to predict unless 

the Y field is known deterministically. However, since this is never the case, in another equally likely realization of 

the 𝑌 field, the situation may be totally different, resulting in significant uncertainties in predicting the particle travel 

times. Thus, spatial variability of log-conductivity is a major uncertainty-inducing factor, and by extension, obviating 

the need for stochastic modeling of HSHMs in situations where the associated processes and attributes are subject to 505 

uncertainty. In the following sections, we will present illustrative examples to analyze how subsurface spatial 

variability influences < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >, including variance and anisotropy ratio of the log-conductivity.  
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Figure 2. Illustrative example of a heterogeneous log-hydraulic conductivity field and solute particle transport. Black 

lines represent simulated particle travel paths. A left to right hydraulic gradient of 0.1 is applied. Mean of log-510 

conductivity is set at -3. Note color scales for log-conductivity are consistent in all three panels.  

4.2 Case studies Illustrative example and expansions of indicatorsindicator formulation 

In this section we illustrate the proposed indicator approach by means of synthetic case studies 

developed by using methods of stochastic hydrogeology. The choice of the synthetic case studies 

does not limit our approaches to broader applications where stochastic modeling with Monte 515 

Carlo simulations are applicable. 4.2.1 Single-particle 𝑰𝒅 within 𝜴∗ 

Figure 3 displays the configuration of this case example. Consider the case of aan instantaneous point source 

release of non-reactive tracer originated from (𝒙𝟎, 𝑡0).  The dynamic indicator depends on a particle being within 𝜴∗ a 

target compound at the location 𝒙𝟎 and time  𝑡0. HSHMs are triggered at any (𝜴∗, 𝑡∗ or not. If local (pore scale) 

dispersion) if the solute is present. Consider the hot spot (𝜴∗) to be confined within the following volume: 𝑤1 ≤ 𝑥1 ≤520 

𝑤1
′ ; 𝑤2 ≤ 𝑥2 ≤ 𝑤2

′ ; 𝑤3 ≤ 𝑥3 ≤ 𝑤3
′ neglected,, the dynamic indicator is therefore defined as follows:   

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,                       𝑖𝑓 𝑿(𝒕∗𝑋(𝑡∗) ⊆ 𝜴∗ 𝑎𝑡 𝑡∗

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
.                                                  (17) 

Given that the particle does not change its volume while traveling.The injected solute can be modelled in a 

Lagrangian way as a particle moving according to the velocity field  without changing its volume. The latter is the 

consequence of neglecting pore scale dispersion. The expected value of this dynamic indicator at 𝑡∗ is therefore: 525 

                      < 𝐼𝑑(𝜴∗, 𝑡∗) >= ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,                                                           (18) 

where 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0) is the probability distribution function (pdf) of the particle’s trajectory at 𝑡∗ (Dagan and Nguyen, 

1989; Rubin, 2003). Other situations may be addressed by using the same framework. For example, for an 

instantaneous injection within a source volume 𝑉0, the ensemble mean of the dynamic indicator assumes the following 

form: 530 

< 𝐼𝑑(𝜴∗, 𝑡∗) >=
1

𝑉0

∫ ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂𝑑𝒙0
Ω∗𝑉0

.                                               (19) 

4.2.2 Concentration-based 𝑰𝒅 within 𝜴∗   

When considering local dispersion, or in case of a reactive tracer, the condition that the particle is inside the 

volume 𝜴∗ does not suffice to define the dynamic indicator and a concentration threshold 𝐶𝑡ℎ should be introduced: 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑿(𝑡∗; 𝒙0, 𝑡0) ⊆ 𝜴∗ 𝑎𝑛𝑑 𝐶(𝑿, 𝑡∗) > 𝐶𝑡ℎ

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
.                                (20) 535 

In the absence of local dispersion and for a reactive solute decaying at a (spatially) constant rate 𝑘, the 

ensemble mean assumes the following expression (Cvetkovic and Shapiro, 1990): 

< 𝐼𝑑(𝜴∗, 𝑡∗) >= {1 − 𝐻 [𝑡∗ −
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ

)]} ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,                           (21) 

where 𝐶0 is the initial concentration and 𝐻[∙] is the Heaviside step function. The ensemble mean (21) is the product 

of the probability that the particle assumes a concentration larger than the threshold at 𝑡∗ (given that reaction rate 𝑘 is 540 

constant, this probability is either 0 or 1) and the probability that at the same time 𝑡∗ the particle is within the hot spot 
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𝜴∗. In other words, Eq. (21) expresses the fact that a particle inside 𝜴∗ contributes to the hot moment only if its 

concentration is greater than the threshold. Equation (21) can be generalized to the cases of instantaneous injection 

into a source of volume 𝑉0, as discussed before for the non-reactive case. For other complex situations, such as that in 

which 𝑘 is spatially variable and complex reaction networks, the ensemble mean of the indicators can be addressed 545 

by Eq. (16) in a Monte Carlo framework.  

4.2.3 Assessing the duration of hot moment and probabilities 

The probability that the hot moment persists over the interval [𝑡1, 𝑡2] at 𝜴∗ can be formally computed as 

follows: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= 𝑃(𝑡1, 𝜴∗)𝑃(𝑡2|𝑡1, 𝜴∗),                                                             (22) 550 

where 𝑃(𝑡1, 𝜴∗) is the probability that the particle is inside 𝜴∗ at time 𝑡∗ = 𝑡1 and 𝑃(𝑡2|𝑡1, 𝜴∗) is the probability that 

the particle is still inside 𝜴∗ at time 𝑡∗ = 𝑡2,  provided that at time 𝑡1, it was also inside 𝜴∗. If the particle exits 𝜴∗ 

during interval [𝑡1, 𝑡2], this time interval will not be qualified as hot moment; and thus the probability computation 

needs to ensure the particle stays within 𝜴∗ during the entire time interval.  

Under the First-Order Approximation (FOA) (see e.g., Dagan, 1989; Gelhar 1993; Rubin, 2003), the pdf of 555 

the particle displacement is normal with mean < 𝑿(𝑡∗; 𝒙𝟎, 𝑡0) > and auto-covariance tensor of the residual 

displacements 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉  defined by 𝑿𝑖𝑗(𝑡∗; 𝒙0, 𝑡0) =  〈𝑿𝑖
′(𝑡∗; 𝒙0, 𝑡0)𝑿𝑗

′(𝑡∗; 𝒙0, 𝑡0)〉, 𝑖, 𝑗 = 1, 2, 3. 

For simplicity in the following, we assume 𝒙0 = 0 𝑎𝑛𝑑 𝑡0 = 0. Under these assumptions, 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑿(𝑡1)(𝒂)𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 𝑑𝒃 𝑑𝒂

𝜴∗𝜴∗
,                                   (23) 

where the conditional pdf 𝑓𝑿(𝑡2)
𝑐 (𝒃|𝑿(𝑡1) = 𝒂) is multi-normally distributed with conditional mean and variance 560 

tensor given by  

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉 = < 𝑿(𝑡2) > 

+𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1 ∙ (𝒂−< 𝑿(𝑡1) >),                                          (24) 

and 

𝝈(𝑡1, 𝑡2) = 𝑉𝑎𝑟[𝑿′(𝑡2)] −  𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1  ∙ 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)],        (25)  565 

respectively, which further yields the following,  

𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 

= exp [−
1

2
 [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉]𝑇 ∙  𝝈(𝑡1, 𝑡2)−1 ∙  [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉] ] 

∙ {8 𝜋3  ∙ |𝝈(𝑡1, 𝑡2)|}−
1

2 ,                                                                   (26)   

where |⋅| indicates the determinant, 𝑒𝑥𝑝 is the exponential function and the exponent T indicates the transpose of the 570 

vector. 

In Eq. (24) and (25), 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉 stands for the departure of the particle’s displacement with 

respect to the ensemble mean trajectory, and 𝑉𝑎𝑟[𝑿]−1 is the auto-covariance tensor of the residual displacement 

whose  elements are defined above. Similarly, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] is the covariance tensor of residual displacement 
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which elements are: 𝑿𝑖𝑗(𝑡1, 𝑡2; 𝒙𝟎, 𝑡0) = 〈𝑋𝑖
′(𝑡1) 𝑋𝑗

′(𝑡2)〉, 𝑖, 𝑗 = 1, 2, 3. Note that in the general three-dimensional case 575 

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉  is a three-dimensional vector and 𝝈(𝑡1, 𝑡2) is a 3 × 3 second-order tensor.  

For 𝑡2 → 𝑡1, 𝑓𝑋(𝑡2)[𝒃|𝑿(𝑡1) = 𝒂] →  𝛿(𝒃), where 𝛿(∙) is the Dirac Delta, such that 𝑃(𝑡2|𝑡1, 𝜴∗) → 1. On the other 

hand, for 𝑡2 ≫ 𝑡1, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] → 0 and 𝑃(𝑡2|𝑡1, 𝜴∗) → 𝑃(𝑡2, 𝜴∗) the marginal probability that the particle is 

within 𝜴∗ at time 𝑡∗ = 𝑡2. Equations (23) to (26) are obtained under the FOA approximation and assuming that the 

particle can enter 𝜴∗ only once. Such assumption is needed to obtain analytical solutions and is reasonable for 580 

situations with small to mild subsurface heterogeneity (e.g., 𝜎𝑌
2 ≤ 1.6), such as the cases presented in Bellin et al. 

(1992, 1994); Cvetkovic et al. (1992). In particular, FOA assumes small heterogeneity and under this assumption the 

particle trajectory deviates slightly from its ensemble mean, which is directed along the regional hydraulic head 

gradient. For a regular volume 𝜴∗,  this reduces the probability of the particle entering more than once the hot spot. 

This probability reduces further if in horizontal and vertical transverse directions  𝜴∗ is much larger than the respective 585 

integral scales, because the probability of observing negative longitudinal velocity components (i.e., along the mean 

flow field) is much smaller than in the transverse directions (Bellin et al., 1992) and vanishes as formation 

heterogeneity reduces.  

If the hotspot 𝜴∗ is the volume confined between two planes at 𝑥1 −
𝑙1

2
  and 𝑥1 +

𝑙1

2
 , with the other two 

dimensions much larger than the transverse horizontal and vertical integral scales: 𝑙2 ≫ 𝐼ℎ  , 𝑙3 ≫ 𝐼𝑣 , Eq. (24) simplifies 590 

to: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑋1(𝑡∗)(𝑎1)𝑓𝑋𝟏(𝑡∗)
𝑐 ( 𝑏1|𝑋1(𝑡1) = 𝑎1) 𝑑𝑏1 𝑑𝑎1

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

,                (27) 

where 𝑋1 is the longitudinal component of the particle’s trajectory and 𝑓𝑋1(𝑡∗)
𝑐  is its conditional pdf, which is normal 

with conditional mean and variance given by 

𝜇[𝑎1] =  〈𝑋1(𝑡2)| 𝑋1(𝑡1) = 𝑎1)〉 = < 𝑋1(𝑡2) > +
𝑋11(𝑡1, 𝑡2)

𝑋11(𝑡1)
 (𝑋1(𝑡1)−< 𝑋1(𝑡1) >),            (28) 595 

and 

𝜎2(𝑡1, 𝑡2) =  𝑋11(𝑡2) −  
𝑋11(𝑡1, 𝑡2)2

𝑋11(𝑡1)
,                                                                    (29) 

respectively. Consequently, 𝑓𝑋𝑐(𝑡∗) in Eq. (27) assumes the following form: 

𝑓𝑋1(𝑡∗)
𝑐 (𝑏1|𝑋1(𝑡1) = 𝑎1) =

1

√2 𝜋 𝜎(𝑡1, 𝑡2)
exp [−

1

2
(𝑏1 − 𝜇[𝑎1])2 𝜎(𝑡1, 𝑡2)−1] .                 (30) 

Substituting Eq. (30) into  Eq. (27) allows us to compute  < 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >. For situations where the FOA assumptions 600 

are not valid (e.g., large heterogeneity), Monte Carlo simulation framework is still applicable as alternative approach 

to construct the dynamics indicators (see Eq. 16).  

4.3 Illustrative example and indicator formulation 

Following sections 4.1 and 4.2, we present here synthetic case studies that demonstrate the statistical formulation of 

the indicators using methods developed in stochastic hydrogeology. The choice of the synthetic case studies does not 605 

limit our approaches to broader applications where stochastic modeling with Monte Carlo simulations are applicable. 
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In most applications, the locations of hot spots (𝜴∗) are determined by static indicators, such as riparian hollows 

(Duncan et al., 2013), reactive facies (Sassen et al., 2012), and NRZs (Wainwright et al., 2015). The static indicator 

is constructed according to the corresponding critical conditions provided by ancillary data such as topography, remote 

sensing, and/or geophysical data. Hence, in this case, assuming the boundaries of 𝜴∗ are determined by a static 610 

indicator, we consider a hot spot (𝜴∗) to be confined within the following volume: 𝑤1 ≤ 𝑥1 ≤ 𝑤1
′ ; 𝑤2 ≤ 𝑥2 ≤

𝑤2
′ ; 𝑤3 ≤ 𝑥3 ≤ 𝑤3

′ time  𝑡∗ (Dagan and Nguyen, 1989; Rubin, 2003). If we also assume steady, uniform in the average 

flow with mild heterogeneity of the log hydraulic conductivity field with Gaussian displacement pdf—then we can 

compute  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > analytically using the following equation: 

.   615 

 

Figure 3. Configuration of the synthetic case study 

Given this case, the hot moment will be triggered only when the contaminant particle is found within 𝜴∗. The 

probability of finding the contaminant particle within 𝜴∗ is given by 

𝑝𝑟𝑜𝑏 {𝑿(𝑡∗) ⊆ 𝜴∗ } 620 

= ∏ 𝑝𝑟𝑜𝑏{𝑤𝑖 ≤ 𝑋𝑖(𝑡∗) ≤ 𝑤𝑖
′} = ∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

,                             

𝑚

𝑖=1

(33) 

where m denotes the space dimensionality. Equation (33) defines the dynamic indicator for this case. If 𝜴∗ is already 

identified as a hot spot location, then𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) =< 𝐼𝐻𝑆𝐻𝑀 Eq. (33) provides  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. 

Otherwise, the static indicator should be incorporated to determine the boundaries of 𝜴∗ in order to compute <

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > as shown in Eq. (10) where geophysical data is used to identify the spatial context of 𝜴∗. If we also 625 

assume steady, uniform in the average flow with mild heterogeneity of the log hydraulic conductivity field with 

Gaussian displacement pdf—then we can compute  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > analytically using the following equation: 

< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >=< 𝐼𝑠(𝜴∗) > < (𝐼𝑑(𝜴∗, 𝑡∗) > 



 

28 
 

= 𝑝𝑟𝑜𝑏(𝐼𝑑(𝜴∗, 𝑡∗) = 1) =  𝑝𝑟𝑜𝑏 {𝑋(𝑡∗) ⊆ 𝜴∗ } 

= ∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

= ∫ 𝑓𝑋1(𝑡∗)(𝑎1|𝑥0, 𝑡0)𝑑𝑎1

𝑤1
′

𝑤1

∫ 𝑓𝑋2(𝑡∗)(𝑎2|𝑥0, 𝑡0)𝑑𝑎2

𝑤2
′

𝑤2

∫ 𝑓𝑋3(𝑡∗)(𝑎3|𝑥0, 𝑡0)𝑑𝑎3

𝑤3
′

𝑤3

  630 

=
1

(2𝜋)
3
2√𝑋11(𝑡∗)𝑋22(𝑡∗)𝑋33(𝑡∗)

∫ exp [−
1

2

(𝑎1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
]

𝑤1
′

𝑤1

𝑑𝑎1 

∙ ∫ exp [−
1

2

𝑎2
2

𝑋22(𝑡∗)
] 𝑑𝑎2

𝑤2
′

𝑤2

∫ exp [−
1

2

𝑎3
2

𝑋33(𝑡∗)
] 𝑑𝑎3.

𝑤3
′

𝑤3

                                          (3419) 

which can be integrated to yield : 

< 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > =  
1

8
[erfc (

𝑤1 − 𝑈𝑡∗

√2𝑋11(𝑡∗)
) − erfc (

𝑤1
′ − 𝑈𝑡∗

√2𝑋11(𝑡∗)
)] 

 635 

∙ [erfc (
𝑤2

√2𝑋22(𝑡∗)
) − erfc (

𝑤2
′

√2𝑋22(𝑡∗)
)] [erfc (

𝑤3

√2𝑋33(𝑡∗)
) − erfc (

𝑤3
′

√2𝑋33(𝑡∗)
)].           (3520) 

The form of the displacement variances is controlled by the spatial distribution of the hydraulic conductivity 

in the subsurface. Equations (A4)-(A6) of the appendix show the displacement variances for an axisymmetric 

exponential covariance function of the log-conductivity (A3).  

4.4 Implications for HSHMs 640 

For simplifiy, but without lack of generality, in Eq. (20) we assumed 𝒙0 = (0,0,0). The displacement 

variances 𝑋𝑖𝑖 , 𝑖 = 1, 2, 3 depends on the spatial distribution of the hydraulic conductivity in the subsurface. Eqs. (A4) 

to (A6) present the displacement variances for an axisymmetric exponential covariance function of the log-

conductivity (A3) are given in the Appendix A. In Eqs. from  (A7) to (A19), we have provided derivations of indicator 

formulations for other HSHMs scenarios, including indicator formulation for complex concentration thresholds and 645 

indicator formulation for hot moment durations. Notice that in obtaining Eq. (20) we postulated ergodicity, which in 

practical terms reflects the actual situation of an instantaneous injection into a source zone with transverse dimension 

much larger than the integral scale of the hydraulic conductivity (Dagan, 1990), such that the ensemble mean is 

representative of  the effects of the actual, but unknown, distribution of hydraulic conductivity. 

 650 
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Figure 3. Configuration of the synthetic case study. 𝑥1, 𝑥2 and 𝑥3 represent the longitudinal, transverse and vertical 

directions, respectively. 𝑤1, 𝑤1
′ , 𝑤2, 𝑤2

′ , 𝑤3 and 𝑤3
′  are the coordinates that set up the volume of 𝜴∗ 

4.3 Probability of HSHM occurrence controlled by subsurface heterogeneity 

In the following sections, we present the results from the case study described in section 4.3. Specifically, in 655 

section 4.43.1 and 4.43.2, we explore how heterogeneity of log-hydraulic conductivity influences the probability of 

HSHM occurrences. To make results as general as possible, lengths are made dimensionless with respect to the integral 

scales (𝐼𝑌ℎ  in the two horizontal directions and 𝐼𝑌𝑣   in the vertical one) and time with respect to the following advective 

time scale: 𝐼𝑌ℎ/𝑈, where 𝑈 is the mean velocity). In the following, we explore the effect of the remaining parameters, 

i.e. the anisotropy ratio 𝑒 =
𝐼𝑌𝑉

𝐼𝑌𝐻
  and the variance of the log-conductivity 𝜎𝑌

2, on the emergence of HSHM. We placed 660 

𝜴∗ along the mean trajectory at (21𝐼𝑌𝐻 , 0, 0) with dimensions as (2𝐼𝑌𝐻 , 2𝐼𝑌𝐻 , 2𝐼𝑌𝑉). The dimensions of the hot spot 

are therefore of two integral scales in the three coordinate directions (𝑥1, 𝑥2, 𝑥3) and is placed at a dimensionless 

distance of 21 from the point source. 
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4.43.1 Dependece of < 𝑰𝑯𝑺𝑯𝑴(𝜴∗, 𝝉) > 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on variance in the spatial correlation structure of 

the log-conductivity  665 

 

 

Figure 4.  Dependence of < 𝐼𝐻𝑆𝐻𝑀(𝛺∗, 𝜏) > 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on 𝜎𝑌
2 

Isotropic heterogeneity (𝑒 = 1time (𝜏) and on the particle moments given by Eqs. (A7) and (A8)) was considered to 

investigatelevel of spatial variability of the dependence of < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > on log-hydraulic conductivity (𝜎𝑌
2) 670 

Figure 4 shows 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) , which is the propability that a HSHM is triggered at 

𝜴∗ and the dimensionless time 𝜏 =
𝑡𝑈

𝐼𝑌ℎ
, for a few values of  𝜎𝑌

2. Here,  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) with results presented= 1 

represents the situation in Figure 4. 𝜏 = 𝑡𝑈/𝐼𝑌ℎ   is the dimensionless time.which a HSHM is triggered. At early time 

(e.g., 𝜏 < 5), larger probability < 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  = 1) is observed with increase in 𝜎𝑌
2. At intermediate 

time, i.e., at times comparable with the mean travel time 𝜏 = 21, < 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  = 1) is inversely 675 
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proportional to 𝜎𝑌
2. At late time (e.g., 𝜏 > 40), the largest < 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  = 1) occurs at intermediate 𝜎𝑌

2. 

We observe that 𝜎𝑌
2 regulates the timing of the peak in  < 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >= 1) , which is located in the 

proximity of the mean travel time, 𝜏 = 21, for weak heterogeneity, and shifts towards earlier times as 𝜎𝑌
2 increases. 

From the practical perspective, Figure 4 shows the probability of developing a HSHM at the identified position 𝜴∗ at 

the given time 𝜏. 680 

These effects relate to the relationship between travel times (from the source to 𝜴∗) and 𝜎𝑌
2. The key point to 

note is that 𝜎𝑌
2 controls the spread of the travel time around theits mean travel time. Larger variance enhancevalue. A 

larger 𝜎𝑌
2 enhances channeling effects (Fiori and Jankovic, 2012; Moreno and Tsang, 1994, also in Figue 2), which in 

turn enable earlier arrival times. But at the same time, large 𝜎𝑌
2 also leads to the low-conductivity zones. Streamlines 

of the solute tend to bypass low hydraulic conductivity zones, however, the small amount of solute that actually 685 

penetrates these zones by(Fiori and Jankovic, 2012; Moreno and Tsang, 1994, also in Figure 2), which in turn enable 

earlier arrival times. But at the same time, it also leads to the emergence low-conductivity zones with low velocity or 

stagnant groundwater. The solute tends to bypass low hydraulic conductivity zones, as shown by the streamlines 

depicted in Figure 2,  however, the small amount of solute that actually penetrates these zones by slow advection and 

diffusion gets trapped for long time before being released and this results in an extended tailing with low concentration 690 

and therefore low < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >., which increases the probability of observing a HSHM at later times. Thus, with 

an increase in 𝜎𝑌
2, we notice an increase in the probability to observe both increasingly earlier and increasingly delayed 

arrival times, which widens the probability distribution. On the contrary at small variance, particles deviate little from 

the ensemble mean trajectory, because of the small contrast in conductivity between high and low conductivity zones. 

This results in small particle spreading and travel times that differ only slightly from the mean travel time (𝜏 = 21), 695 

and a probability distribution less spread around the mean, where the peak is observed.  

In summary, hydraulic conductivity contrast between low and high conductive lithofacies increases with 𝜎𝑌
2 

leading to the emergence of organized high conductivity pathways sneaking through surrounding low conductivity 

zones with the latter acting as “trapping” elements. This causes the emergence of both early and late arrival times, 

with the consequent larger probability of triggering HSHMs at early and later times, with respect to the case of low 700 

heterogeneity. Early arrival times are controlled by the connected high conductivity pathways and the late arrival times 

are influenced by the low conductivity zones, which act as low-release reservoirs for solutes.  
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4.4.13.2 Dependece of < 𝑰𝑯𝑺𝑯𝑴𝑷(𝑰𝑯𝑺𝑯𝑴(𝜴∗, 𝝉) >= 𝟏)  on on anisotropy in the spatial correlation structure of 

the log-hydraulic conductivity 

 705 
Figure 5. Dependence of < 𝐼𝐻𝑆𝐻𝑀(𝛺∗, 𝜏) > on 𝑒 

 

Figure 5. Dependence of 𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1) on (𝜏) and on anisotropy ratio 𝑒. Solid and dashed lines represent, 

respectively, the probabilities for large (𝜎𝑌
2 = 2.0) and small (𝜎𝑌

2 = 0.5) variance of the log-hydraulic conductivity. 

The discussion here (accompanying Figure 5) focuses on the impact of the anisotropy ratio in the correlation 710 

structure (𝑒, defined above) on the HSHM probabilities.probability of triggering HSHMs. The anisotropy ratio, 𝑒, 

provides an indication about the persistence of the log-conductivity (𝑌) in the variousprincipal directions. The spatial 

correlation model used here for demonstration is that of axis-symmetry, which is common to sedimentary formations 
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(Dagan, 1989; Rubin, 2003), with 𝑒 providing the ratio between the persistence of 𝑌 in the vertical (𝑥3)(Dagan, 1989; 

Rubin, 2003), with 𝑒 providing the ratio between the persistence of 𝑌 in the vertical (𝑥3) direction, represented by 𝐼𝑌𝑉, 715 

and the ones on the horizontal plane (𝑥1 − 𝑥2), represented by 𝐼𝑌𝐻 . In unconsolidated sedimentary formations, 𝐼𝑌𝑉 is 

typically smaller than 𝐼𝑌𝐻  by as much as one order of magnitude, due to the different time scales of the depositional 

process taking place in the horizontal and vertical directions, which leads to thin and elongated lithofacies and 

consequently to a much smaller persistence of 𝑌 values in normal to the horizontal plane (Miall, 1985, 1988; Ritzi et 

al., 2004). 720 

Figure 5 compares < 𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > = 1) between formations defined by different anisotropy 

ratios and different 𝜎𝑌
2. It shows that we have two factors to consider when explaining the differences in <

𝐼𝐻𝑆𝐻𝑀𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) = 1). (𝜴∗, 𝜏) >. First factor, as discussed earlier, is the expansion inwidening of the range of 

probability distribution (direct consequence of the widening of the travel times distribution) due to increase in 𝜎𝑌
2. 

With larger variance, we observe higher probabilities for departure of the travel times away from the average. The 725 

anisotropy ratio 𝑒 adds a compounding factor. To understand its effect, we should recall the analyses of lateral 

displacement variances of solute particles moving in heterogeneous formations (cf., Dagan, 1989, and Eq.Dagan, 

1989, and Eq. A4 to A6 here), showing that smaller 𝑒 leads to smaller lateral (both vertical and horizontal) 

displacement variances, implying smaller probabilities for lateral departures from the mean flow trajectory. Smaller 𝑒 

limits lateral spreads, and increase the probability of particle to enter 𝜴∗ , sooner or later, and to trigger HSHM.  The 730 

effect could also be viewed as a channeling effect of sorts: smaller 𝑒 implies 𝑌 blocks of small aspect ratio (i.e., long 

but thin elements), which provide fast tracks for particles when defined by high 𝑌 values, while blocking lateral 

spreads when defined by low 𝑌 values.  

There are a few additional things to note here for completeness. First, 𝜴∗ in the present analysis is located 

downstream from the source, along with the mean trajectory of the solute displacement. We expect different results 735 

in situations where 𝜴∗ is positioned at an offset with respect to the mean flow direction. Second, we note that the 

analytical models used to compute the displacement statistics are formally limited to smaller variance (𝜎𝑌
2 < 1), 

although they are shown to provide good approximations for large variances (Bellin et al., 1992).Third, the stochastic 

formulation provides the theoretical and computational formalism for conditioning the  probabilities on in-situ 

measurements (Copty et al., 1993; Ezzedine and Rubin, 1996; Hubbard et al., 1997; Maxwell et al., 1999; Rubin, 740 

1991a; Rubin et al., 1992; Rubin and Dagan, 1992) as well as on information  borrowed from similar sites (Li et al., 

2018; Cucchi et al., 2019).  

In additional notes: first,  𝜴∗ is known in the present analysis is located downstream from the source, along 

with the mean trajectory of the solute displacement. We expect different results in situations where 𝜴∗ is positioned 

at an offset with respect to the mean flow direction, or when its position is unknown. In both cases we expect a 745 

reduction of the probability of triggering a HSHM. Relevant of our discussion is that the proposed probabilistic 

framework can address the case of unknown position for 𝜴∗ as well. Second, we note that the analytical models used 

to compute the displacement statistics are formally limited to small variance of the log-conductivity (𝜎𝑌
2 < 1), 

although they are shown to provide good approximations for large variances (Bellin et al., 1992; Salandin and Fiorotto, 

1998). Third, the stochastic formulation provides the theoretical and computational formalism for conditioning the  750 
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probabilities on in-situ measurements (Ezzedine and Rubin, 1996; Rubin and Dagan, 1992) as well as on information  

borrowed from similar sites (Li et al., 2018; Cucchi et al., 2019).  

5 Discussion and Summary 

In this study, we developed a general stochastic framework that could be used to characterizefor 

characterizing the spatiotemporal distribution of environmental Hot Spots Hot Moments (HSHMs), with groundwater 755 

applications.). The stochastic formulation is built around the following principles: 

 The HSHMs are defined as random variables and the goal is to derive their stochastic distribution in terms 

of the relevant processes and attributes. 

 HSHMs processes cover the dynamic components of the HSHMs. An example could be the transport of 

solutes and reactants. HSHMs attributes refer to the static components of the HSHMs, e.g., in situations 760 

related to the nitrogen cyclescycle, attributes could represent pyrite concentrationsconcentration or naturally-

reducing zones. HSHMs could be defined through the confluence of a variety of contributors, both static and 

dynamic.  

 The processes and attributes are modeled as stochastic processes and random variables, respectively, based 

on the underlying physics.  765 

 The static contributors are modeled stochastically using geostatistical space random functions. 

 The dynamic contributors are modeled stochastically using probability distribution functions derived from 

the underlying mathematical-physical models.  

 Several HSHMs categories are defined, based on the contributing factors, as follows: HSHMs defined by 

dynamic contributors only, HSHMs defined by static contributors, and most commonly, HSHMs requiring 770 

the coupling of static and dynamic contributors. The HSHMs stochastic formulations are expressed in terms 

of the stochastic formulations of the relevant contributors.  

 We provided a detailed review of multiple HSHMs and showed how they relate to our definitions.  

The framework we proposed in this study is advantageous in that it allows to calculate the uncertainty 

associated with HSHMs based on the uncertainty associated with its contributors. Additionally, it provides a 775 

formalism, well established by Bayesian theory, for conditioning the HSHM probabilities on in-situ measurements as 

well as on information borrowed from geologically and otherwise similar sites.  

We demonstrated our proposed approach through applications in the area of subsurface transport and 

hydrogeology, focusing on the impacts of subsurface heterogeneity on HSHMs. We analyzed, quantitatively, how 

subsurface heterogeneity of the conductivity field control the HSHM statistics, for example, the time expected for the 780 

probability of the HSHM to occur to reach a-priori set thresholds or time to peak probability.  

Lastly, as mentioned both here and in previous studies, statistical methods for quantifying the occurrences of 

HSHMs and the associated uncertainties are needed to advance our understanding of the mechanisms that cause 

HSHMs, as well as to enhance our ability to predict HSHMs and manage their consequences.  
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Appendix  

A1. Equations for the displacement pdf 940 

Assuming steady, uniform in the average flow, with mild heterogeneity of the log-hydraulic conductivity 

field with Gaussian displacement, the displacement pdf inof the longitudinal direction (𝑥1), Figure 3) displacement 

of a solute particle starting at time 𝑡0 = 0, at 𝒙0 =(0,0,0) is given by the following equation (Dagan and Nguyen, 

1989; Dagan and Rubin, 1992)(Dagan and Nguyen, 1989; Dagan and Rubin, 1992): 

𝑓𝑋1(𝑡∗)(𝑥1) =
1

√2𝜋𝑋11(𝑡∗)
exp [−

1

2

(𝑥1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
].                                                     (A1) 945 

Additionally, the displacement pdf in the transverse directions (𝑥2 and 𝑥3) is given by 

𝑓𝑋𝑖(𝑡∗)(𝑥𝑖) =
1

√2𝜋𝑋𝑖𝑖(𝑡∗)
exp [−

1

2

𝑥𝑖
2

𝑋𝑖𝑖(𝑡∗)
] , 𝑖 = 2,3.                                                    (A2) 

A2. Equations for displacement variances under anisotropic conditions 

 Dagan (1984) developed a solution for the displacement variances for an exponential and axisymmetricDagan 

(1984) developed a solution of the displacement variances 𝑋𝑖𝑖 , 𝑖 = 1,2,3 for an exponential and axisymmetric 950 

logconductivity covariance function:  

 𝐶𝑌(𝒓) = 〈(𝑌(𝒙) − 〈𝑌〉) (𝑌(𝒙 + 𝒓) −  〈𝑌〉)〉 = 𝜎𝑌
2exp [−√

𝑟1 
2+𝑟2

2

𝐼𝑌ℎ
2 +

𝑟3
2

𝐼𝑌𝑣
2  ] ,                               (A3) 

𝑋11 = 𝜎𝑌
2𝐼𝑌

2{2𝑡∗ + 2[exp(−𝑡∗) − 1] + 8𝑒 ∫[𝐽0̅(𝐾𝑡∗) − 1]

∞

0

 

∙ [
1

(1 + 𝐾2 − e2𝐾2)2
−

e𝐾

(1 + 𝐾2 − e2𝐾2)2(1 + 𝐾2)0.5
−

e𝐾

2(1 + 𝐾2 − e2𝐾2)(1 + 𝐾2)1.5
] 𝑑𝐾 

−2e ∫ [𝐽0̅(𝐾𝑡∗) −
𝐽1̅(𝐾𝑡∗)

𝐾𝑡∗
−

1

2
]

∞

0

∙ [
e3𝐾3(e2𝐾2 − 5 − 5𝐾2)

(e2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5e2𝐾2

(1 + 𝐾2 − e2𝐾2)3
] 𝑑𝐾},           (𝐴4) 955 

 

𝑋22 = −2e𝜎𝑌
2𝐼𝑌

2 

∙ ∫ [
𝐽1̅(𝐾𝑡∗)

𝑡∗
−

𝐾

2
] [

e3𝐾2(e2𝐾2 − 5𝐾2 − 5)

(e2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5e2𝐾2

𝐾(1 + 𝐾2 − e2𝐾2)
] 𝑑𝐾,                 (A5)

∞

0

 

𝑋33 = −4e𝜎𝑌
2𝐼𝑌

2 ∫ [𝐽0̅(𝐾𝑡∗) − 1]
∞

0
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∙ {
1

(e2𝐾2 − 1 − 𝐾2)2
[
1

2
+

2e2𝐾2

1 + 𝐾2 − e2𝐾2
+

e𝐾(e2𝐾2 + 3 + 3𝐾2)

2(e2𝐾2 − 1 − 𝐾2)(1 + 𝐾2)0.5
]} 𝑑𝐾.           (A6) 960 

where 𝒓 is the two-point separation distance and 〈𝑌〉 the ensemble mean of the log-conductivity 𝑌 = ln 𝐾.  𝐽0̅ and 𝐽1̅ 

are, respectively, the zero and first order of the first kind Bessel functions.  

A3. Equations for displacement variances under isotropic conditions 

 Dagan (1984)Dagan (1984) provided analytical solutions for longitudelongitudinal and transverse 

displacement variances. This is a special case for the anisotropic case with 𝑒 = 1.The solutions are as follows:  965 

𝑋11 = 𝜎𝑌
2𝐼𝑌

2 {2𝑡∗ − 2 ∙ [
8

3
−

4

𝑡∗
+

8

𝑡∗3
−

8

𝑡∗2
(1 +

1

𝑡∗
) exp(−𝑡∗)]}.                              (A7) 

𝑋22 = 𝑋33 = 2𝜎𝑌
2𝐼𝑌

2 [
1

3
−

1

𝑡∗
+

4

𝑡∗3
− (

4

𝑡∗3
+

4

𝑡∗2
+

1

𝑡∗
) exp(−𝑡∗)] .                             (A8) 

 

A4. Indicator formulation for complex concentration thresholds  

When considering local dispersion, or in case of a reactive tracer, the condition that the particle is inside the 970 

volume 𝜴∗ does not suffice to define the dynamic indicator and a concentration threshold 𝐶𝑡ℎ should be introduced: 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑿(𝑡∗; 𝒙0, 𝑡0) ⊆ 𝜴∗ 𝑎𝑛𝑑 𝐶(𝑿, 𝑡∗) > 𝐶𝑡ℎ

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
.                                (A9) 

In the absence of local dispersion and for a reactive solute decaying at a (spatially) constant rate 𝑘, the 

ensemble mean assumes the following expression (Cvetkovic and Shapiro, 1990): 

𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1) =< 𝐼𝑑(𝜴∗, 𝑡∗) >= {1 − 𝐻 [𝑡∗ −
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ

)]} ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,              (A10) 975 

where 𝐶0 is the initial concentration and 𝐻[∙] is the Heaviside step function. The ensemble mean (Eq. A10) is the 

product of the probability that the particle assumes a concentration larger than the threshold at 𝑡∗ (given that reaction 

rate 𝑘 is constant, this probability is either 0 or 1) and the probability that at the same time 𝑡∗ the particle is within the 

hot spot 𝜴∗. In other words, Eq. (A10) expresses the fact that a particle inside 𝜴∗ contributes to the hot moment only 

if its concentration is greater than the threshold, and this occurs for 𝑡∗ <
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ
). Eq. (A10) can be generalized to the 980 

cases of instantaneous injection into a source of volume 𝑉0, as discussed before for the non-reactive case. For other 

complex situations, such as that in which 𝑘 is spatially variable and complex reaction networks, the ensemble mean 

of the indicators can be addressed by Eq. (16) in a Monte Carlo framework.  

A5. Indicator formulation for hot moment durations  

As hot moments can persist over short time perids, estimating the corresponding probabilities for any given 985 

time interval becomes also very importatnt. The probability that the hot moment persists over the interval [𝑡1, 𝑡2] at 

𝜴∗ can be formally computed as follows: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= 𝑃(𝑡1, 𝜴∗)𝑃(𝑡2|𝑡1, 𝜴∗),                                                             (A11) 

where 𝑃(𝑡1, 𝜴∗) is the probability that the particle is inside 𝜴∗ at time 𝑡∗ = 𝑡1 and 𝑃(𝑡2|𝑡1, 𝜴∗) is the probability that 

the particle is still inside 𝜴∗ at time 𝑡∗ = 𝑡2,  provided that at time 𝑡1, it was also inside 𝜴∗. If the particle exits 𝜴∗ 990 
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during interval [𝑡1, 𝑡2], this time interval will not be qualified as hot moment; and thus the probability computation 

needs to ensure the particle stays within 𝜴∗ during the entire time interval.  

Under the First-Order Approximation (FOA) (see e.g., Dagan, 1989; Gelhar 1993; Rubin, 2003), the pdf of 

the particle displacement is normal with mean < 𝑿(𝑡∗; 𝒙𝟎, 𝑡0) > and auto-covariance tensor of the residual 

displacements 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉  defined by 𝑿𝑖𝑗(𝑡∗; 𝒙0, 𝑡0) =  〈𝑿𝑖
′(𝑡∗; 𝒙0, 𝑡0)𝑿𝑗

′(𝑡∗; 𝒙0, 𝑡0)〉, 𝑖, 𝑗 = 1, 2, 3. 995 

For simplicity in the following, we assume 𝒙0 = 0 𝑎𝑛𝑑 𝑡0 = 0. Under these assumptions, 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑿(𝑡1)(𝒂)𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 𝑑𝒃 𝑑𝒂

𝜴∗𝜴∗
,                                   (A12) 

where the conditional pdf 𝑓𝑿(𝑡2)
𝑐 (𝒃|𝑿(𝑡1) = 𝒂) is multi-normally distributed with conditional mean and variance 

tensor given by  

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉 = < 𝑿(𝑡2) > 1000 

+𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1 ∙ (𝒂−< 𝑿(𝑡1) >),                                          (A13) 

and 

𝝈(𝑡1, 𝑡2) = 𝑉𝑎𝑟[𝑿′(𝑡2)] −  𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1  ∙ 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)],        (A14)  

respectively, which further yields the following,  

𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 1005 

= exp [−
1

2
 [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉]𝑇 ∙  𝝈(𝑡1, 𝑡2)−1 ∙  [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉] ] 

∙ {8 𝜋3  ∙ |𝝈(𝑡1, 𝑡2)|}−
1

2 ,                                                                   (A15)   

where |⋅| indicates the determinant, 𝑒𝑥𝑝 is the exponential function and the exponent T indicates the transpose of the 

vector. 

In Eq. (A13) and (A14), 𝑿′(𝑡∗) = 𝑿(𝑡∗) − 〈𝑿(𝑡∗)〉 stands for the departure of the particle’s displacement 1010 

with respect to the ensemble mean trajectory, and 𝑉𝑎𝑟[𝑿]−1 is the auto-covariance tensor of the residual displacement 

whose  elements are defined above. Similarly, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] is the covariance tensor of residual displacement 

which elements are: 𝑿𝑖𝑗(𝑡1, 𝑡2; 𝒙𝟎, 𝑡0) = 〈𝑋𝑖
′(𝑡1) 𝑋𝑗

′(𝑡2)〉, 𝑖, 𝑗 = 1, 2, 3. Note that in the general three-dimensional case 

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉  is a three-dimensional vector and 𝝈(𝑡1, 𝑡2) is a 3 × 3 second-order tensor.  

For 𝑡2 → 𝑡1, 𝑓𝑋(𝑡2)
𝑐 [𝒃|𝑿(𝑡1) = 𝒂] →  𝛿(𝒃 − 𝒂), where 𝛿(∙) is the Dirac Delta, such that 𝑃(𝑡2|𝑡1, 𝜴∗) → 1. On the other 1015 

hand, for 𝑡2 ≫ 𝑡1, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] → 0 and 𝑃(𝑡2|𝑡1, 𝜴∗) → 𝑃(𝑡2, 𝜴∗) the marginal probability that the particle is 

within 𝜴∗ at time 𝑡∗ = 𝑡2. Eq. (A12) to (A15) are obtained under the FOA approximation and assuming that the 

particle can enter 𝜴∗ only once. Such assumption is needed to obtain analytical solutions and is reasonable for 

situations with small to mild subsurface heterogeneity (e.g., 𝜎𝑌
2 ≤ 1.6), such as the cases presented in Bellin et al. 

(1992, 1994); Cvetkovic et al. (1992). In particular, FOA assumes small heterogeneity and under this assumption the 1020 

particle trajectory deviates slightly from its ensemble mean, which is directed along the regional hydraulic head 

gradient. For a regular volume 𝜴∗,  this reduces the probability of the particle entering more than once the hot spot. 

This probability reduces further if in horizontal and vertical transverse directions  𝜴∗ is much larger than the respective 

integral scales, because the probability of observing negative longitudinal velocity components (i.e., along the mean 
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flow field) is much smaller than in the transverse directions (Bellin et al., 1992) and vanishes as formation 1025 

heterogeneity reduces.  

If the hotspot 𝜴∗ is the volume confined between two planes at 𝑥1 −
𝑙1

2
  and 𝑥1 +

𝑙1

2
 , with the other two 

dimensions much larger than the transverse horizontal and vertical integral scales: 𝑙2 ≫ 𝐼ℎ  , 𝑙3 ≫ 𝐼𝑣 , Eq. (A13) 

simplifies to: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑋1(𝑡∗)(𝑎1)𝑓𝑋𝟏(𝑡∗)
𝑐 ( 𝑏1|𝑋1(𝑡1) = 𝑎1) 𝑑𝑏1 𝑑𝑎1

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

,                (A16) 1030 

where 𝑋1 is the longitudinal component of the particle’s trajectory and 𝑓𝑋1(𝑡∗)
𝑐  is its conditional pdf, which is normal 

with conditional mean and variance given by 

𝜇[𝑎1] =  〈𝑋1(𝑡2)| 𝑋1(𝑡1) = 𝑎1)〉 = < 𝑋1(𝑡2) > +
𝑋11(𝑡1, 𝑡2)

𝑋11(𝑡1)
(𝑎1−< 𝑋1(𝑡1) >),            (A17) 

and 

𝜎2(𝑡1, 𝑡2) =  𝑋11(𝑡2) −  
𝑋11(𝑡1, 𝑡2)2

𝑋11(𝑡1)
,                                                                    (A18) 1035 

respectively. Consequently, 𝑓𝑋𝑐(𝑡∗) in Eq. (A16) assumes the following form: 

𝑓𝑋1(𝑡∗)
𝑐 (𝑏1|𝑋1(𝑡1) = 𝑎1) =

1

√2 𝜋 𝜎(𝑡1, 𝑡2)
exp [−

1

2
(𝑏1 − 𝜇[𝑎1])2 𝜎(𝑡1, 𝑡2)−1] .                 (A19) 

Substituting Eq. (A16) into Eq. (A19) allows us to compute  < 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >. For situations where the FOA 

assumptions are not valid (e.g., large heterogeneity), Monte Carlo simulation framework is still applicable as 

alternative approach to construct the dynamics indicators (see Eq. 16).  1040 
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