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The manuscript “Multivariate autoregressive modelling and conditional sim-
ulation for temporal uncertainty propagation in urban water systems” aims to
select and characterize the main sources of input uncertainty in urban water
systems and quantifying the contributions of each uncertainty source to model
output uncertainty over time. It provides a good and well-structured example
of an uncertainty analysis for a quite simplified model. Especially the results on
CSO water quantity and quality are interesting and useful for further studies.
In general, I think the manuscript is a valuable addition to the field with some
minor discussion points I would like to bring up:

Reply: Thank you for your kind words and valuable comments that helped
us to improve the manuscript. We considered each comment and please find our
replies below after each comment from Referee 1.

[1] Page 2 – Line 40: Is the minimization of CSO volume alone a goal in
itself? There is the question if many events with a bad water quality (e.g. first
flush) are better than fewer events with higher volume and better water quality?
That may be a point for elaboration.

Reply: Good point. Minimization of CSO volume is not the only goal. In
the revision, we have changed the sentence to: (Revision, Page 2 L38-39) “To
reduce pollution in receiving waters it is important to minimise CSO load and
concentration”.

[2] Page 12 – Line 261: As your model is quite simple and requires “little”
computational time the chosen method is feasible, but that is not the case in
most of those integrated studies. Is that not a limitation worth mentioning and
discussing in 4.4? How could the approach look like in a more complex model?
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Reply: We agree that this point should be addressed in the Discussion and
have made appropriate adaptations in the revised manuscript in Section 4.4
(Revision, Page 30, L638-647):

6. Uncertainty analysis with complex models. In this
research we were able to conduct a comprehensive Monte Carlo
uncertainty propagation analysis, which required a large num-
ber of Monte Carlo runs. This was possible because we used
a strongly simplified urban water system model, EmistatR. For
more complex models that take much more computing time, ap-
plication of a Monte Carlo uncertainty propagation analysis is
more challenging. However, given sufficient resources it is pos-
sible, because each model run can be run independently and
hence the analysis is extremely suitable for parallisation and
cloud computing. In particular, the use of graphics processing
units (GPU) for heavy computation is promising. Some recent
examples that demonstrate the potential of GPU for this pur-
pose are Eranen et al. (2014), Sten et al. (2016) and Sandric et
al. (2019). Sriwastava et al. (2018) applied uncertainty propa-
gation to a complex hydrodynamic model, by selecting a small
subset of dominant input/model parameters that explain most
of the model output variance.

The methodology used in our study may be replicated for a model of higher
complexity because of the scalable approach that was followed. The main lim-
itation of application to a higher model complexity case is not the method
implementation itself but the hardware setup that is required to make the un-
certainty propagation feasible. It is necessary to speed up the computations of
a single model run, which is not always an easy task.

[3] Page 19 – Table 4: I quite like this very accessible and clear table for
the decision- making of which input variables you select. Still, I think that the
variables that are awarded ++ and + for uncertainty and sensitivity respectively
must be discussed more. Especially I think that on the infiltration, NH4 in
Rainwater, and C pervious where I don’t necessarily agree with omitting them,
at least not on the argues in the text of 3.1. On the other hand, I am surprised
on the uncertainty of the total area. So, the distinction where the authors
draw the deciding line in what to include into their analysis must be clearer.
It could be maybe better explained by using graphical panels (e.g. in QUICS
(Tscheikner-Gratl et al., 2017)) for illustrating that decision.

Reply: We agree that the decision between ++ and + for uncertainty and
sensitivity needs more justification and have made appropriate adaptations in
the revised manuscript for inflow of infiltration water, NH4 in rainwater, and C
pervious:

(Revision, Page 14, L326-328) “To better support our decisions we also in-
clude a graphical assessment of the degree of uncertainty and sensitivity of each
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input, as in Tscheikner-Gratl et al. (2017), see Figure S1 in the Supplementary
Material.

Adaptation Section 3.1.2 (Revision, Page 15, L341-343): Regarding the in-
flow of infiltration water (4), “Although this is a very uncertain input, the
quick-scan analysis showed that model output sensitivity is not very high as is
indicated in Table 3. For this reason we did not include this variable in the
uncertainty propagation analysis.”

Adaptation Section 3.1.3 (Revision, Page 15, L353-354): Regarding NH4 in
rainwater (9), “Although model output is very sensitive to this model input
variable, model input uncertainty is not very high as is indicated in Table 3.
For this reason it was not included in the uncertainty propagation analysis.”

Adaptation Section 3.1.4 (Revision, Page 15, L359-361): “Although model
output is very sensitive to the input variable Cper (13), the uncertainty about
this variable is not very high, as indicated in Table 3. The reason behind this
is that Cper can be derived fairly accurately from GIS products, such as land
use and soil type maps. Therefore, we did not include this variable in the
uncertainty propagation analysis.”

[4] Page 29 – Line 560: You don’t start with the accuracy of Monte Carlo
Analysis (which is then 4.2) but with Uncertainty and water quality impact
(4.1).

Reply: Thank you for noting this mistake. We have corrected this in the
revised manuscript, by changing the text to: (Revision, Page 25, L515-518)
“In the following discussion, we start with the uncertainty and water quality
impact of the model outputs to the environment, in relation to the uncertainty
analysis. Next, we discuss the accuracy of Monte Carlo analysis, followed by a
discussion of other sources of uncertainty. Finally, we highlight some limitations
and possible solutions of the approach used in this work.”

[5] Page 31 – Line 588: I agree that that is one of the very valuable contribu-
tion of this paper. Still I would like to see some comparisons to other attempts
on quantity (e.g. Sriwastava et al., 2018) and quality (especially measurements
taken at CSOs the measured water quality at the WWTP influent is expected
to render a low representativity of the conditions at the CSOs - e.g. Brombach
et al.(2005); Diaz-Fierros T et al. (2002))

Reply: Thank you for your kind words and suggestion. We have made
appropriate adaptations in the revised manuscript by expanding the text and
including comparisons with other quantity and quality studies as follows:

(Revision, Page 27, L544-566)“We also recognise other attempts on quan-
tity (e.g. Sriwastava et al., 2018) and quality, especially measurements taken
at CSOs, which demonstrate that the measured water quality at the WWTP
influent is expected to render a low representativity of the conditions at the
CSOs (e.g. Brombach et al.(2005); Diaz-Fierros T et al. (2002)). We present
some comparisons with these studies in the following lines.

Sriwastava et al. (2018) apply uncertainty propagation to a complex hy-
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Figure 1: Graphical assessment of the contribution of input uncertainty to model
output uncertainty. Numbers near each dot refer to the input variable number
as defined in Table 4 of the manuscript. Panel layout after Tscheikner-Gratl et
al. (2017).
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drodynamic model for quantifying uncertainty in sewer overflow volume. They
used MC for uncertainty propagation and Latin hypercube sampling (LHS) as
an efficient sampling scheme. Although LHS ensures a full coverage of the sam-
ple space and provides a faster convergence than simple random sampling, the
LHS application in the case of dynamic model inputs (e.g. precipitation, COD
and NH4 inputs) is not trivial and its implementation is more complex than
in the case of sampling from static variables (i.e., uncertain constants). In our
study, we sampled time series of dynamic inputs using an implementation in
stUPscales (Torres-Matallana et al., 2019; Torres-Matallana et al., 2018).

Diaz-Fierros et al. (2002), in a study in the city of Santiago de Compostela
(North-West Spain, population about 100,000 inhabitants), where a combined
sewer system feeds to a grossly under-sized wastewater treatment plant, reported
an event mean concentration (Diaz-Fierros et al. (2002), Table 4) for the output
variables CCOD,Sv ,av and CNH4 ,Sv ,av of 329.1 mg·l−1 and 8.7 mg·l−1, respec-
tively. These values are larger than those found by Brombach et al. (2005),
and more in agreement with our findings, especially for the case of CNH4 ,Sv ,av .
Diaz-Fierros et al. (2002) reported values of CCOD,Sv ,av as high as 1073 mg·l−1,
which agrees with the right-hand tail of the distribution obtained in our study
(i.e. a 0.995 quantile of 909.7 mg·l−1). Similarly, for the case of CNH4 ,Sv ,av ,
Diaz-Fierros et al. (2002) reported values as high as 32.5 mg·l−1, comparable
with the 0.995 quantile (29.20 mg·l−1) found in our study.

It is worth noting that regarding measurements taken at CSOs, the measured
water quality at the WWTP influent is expected to render a low representativ-
ity of the conditions at the CSOs as reported by Diaz-Fierros et al. (2002)
and Brombach et al. (2005). Thus, when comparing model outputs with in-
dependent measurements, one should bear in mind that discrepancies between
measured and predicted are not only caused by errors in model inputs, model
parameters and model structure, but are also the result of errors in the water
quality measurements.”

[6] Page 32 – Line 62: The point about linkage is an important one, but
I don’t see the big input from this paper on the topic. Can you elaborate on
this, why is the quantification at sub-module level advisable? Only due to the
computational budget limitations?

Reply: We agree that we did not address this aspect in our paper but in
the Discussion we did want to point to the possibility of obtaining uncertain-
ties at sub-model level. Some users may be interested at uncertainty levels of
sub-modules of the model. For example, sub-module outputs are of particular
interest in Bach et al. (2015), Burger et al. (2016) and Rauch et al. (2017).

Perhaps the text on lines 632-636 of the original manuscript was not very
clear. We will reformulate it to: (Revision, Page 29, L610-615) “Tscheikner-
Gratl et al. (2019) addressed the question as to whether there is an increase
in uncertainty by linking integrated models or whether a compensation effect
could take place by which overall uncertainty in key water quality parameters
decreases. Some further insight into this topic could be obtained by quanti-
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fying uncertainties at sub-model level, and analysing whether uncertainty at
sub-model level is greater or smaller than at the overall level. With our imple-
mentation this is not a difficult task because EmistatR has a stringent modular
design in which it is easy to analyse outputs and their uncertainties at sub-model
level.”

[7] Page 34 - Line 701: Your abstract starts with “Uncertainty is often
ignored in urban water systems modelling.” I would have therefore expected
and would like to read how this can be improved and how studies like yours can
provide guidance for the decision makers.

Reply: We believe that we have made a contribution towards making un-
certainty propagation analysis in urban water systems modelling more routine.
Clearly a single journal publication is not enough but we provide guidance, a
simplified model that is very suited for Monte Carlo uncertainty propagation,
and we shared the code scripts as well as the datasets to reproduce Figures 3
to 6, so that interested parties could more easily run an uncertainty analysis
themselves. Please also note that our study was part of the larger ‘QUICS’ EU
project (https://www.sheffield.ac.uk/quics), which aimed to stimulate the use
of uncertainty analysis in integrated catchment modelling, and which involved
partners from industry, water management authorities and consultancy firms.

Literature:

Brombach, H., Weiss, G., Fuchs, S., 2005. A new database on urban runoff
pollution: comparison of separate and combined sewer systems. Water Sci
Technol 51, 119–128. https://doi.org/10.2166/wst.2005.0039

Diaz-Fierros T, F., Puerta, J., Suarez, J., Diaz-Fierros V, F., 2002. Contam-
inant loads of CSOs at the wastewater treatment plant of a city in NW Spain.
Urban Water 4, 291–299. https://doi.org/10.1016/S1462-0758(02)00020-1

Sriwastava, A.K., Tait, S., Schellart, A., Kroll, S., Van Dorpe, M., Van
Assel, J., Shucksmith, J., 2018. Quantifying Uncertainty in Simulation of
Sewer Overflow Volume. Journal of Environmental Engineering 144, 04018050.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001392

Torres-Matallana, J., Leopold, U., and Heuvelink, G.: stUPscales: an R-
package for spatio-temporal Uncertainty Propagation across multiplescales with
examples in urban water modelling, Water, 10(7), 1–30, https://doi.org/10.
3390/w10070837, 2018.

Torres-Matallana, J., Leopold, U., and Heuvelink, G.: stUPscales: Spatio-
Temporal Uncertainty Propagation Across Multiple Scales, https://CRAN.R-project.
org/package=stUPscales, r package version 1.0.5.0, 2019.

Tscheikner-Gratl, F., Lepot, M., Moreno-Rodenas, A., Schellart, A., 2017.
A Framework for the application of Uncertainty Analysis (Deliverable No. 6.7),
QUICS. Zenodo, https://zenodo.org/record/1240926

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.
org/10.5194/hess-2020-342, 2020

6

https://doi.org/10.3390/w10070837
https://doi.org/10.3390/w10070837
https://CRAN.R-project.org/package=stUPscales
https://CRAN.R-project.org/package=stUPscales
https://doi.org/10.5194/hess-2020-342
https://doi.org/10.5194/hess-2020-342


Reply to interactive comment from Referee 2 on

“Multivariate autoregressive modelling and

conditional simulation for temporal uncertainty

propagation in urban water systems” by Jairo

Arturo Torres-Matallana et al.

Jairo Arturo Torres-Matallana, Ulrich Leopold,
Gerard B.M. Heuvelink

Received and published: 7 October 2020

Reply: We welcome your comments, which were very helpful to improve our
manuscript. In the text below we provide our replies (in blue) after each original
comment.

* General
This manuscript presents a detailed case study on uncertainty propagation

through a water quality model. The authors propose the use of auto-regressive
models to describe the dynamic of the input time-series.

For the reader it is currently unclear if the focus is on the method (“this
paper introduces an uncertainty analysis framework”) or the application case.
My suggestion is to focus on the case study, as the methodological contribution is
rather limited. In any case, the focus should be set clearer in the introduction.
In general, focusing more on the key points by moving some material to the
supporting information would help.

Reply: We agree that the added value of the paper is mainly in the applica-
tion, and we have made this clear in the revision, for example by no longer claim-
ing that we introduce an uncertainty analysis framework but instead recognising
that we build on existing methods (Revision, Page 1, L4-5). To emphasise that
the application is most important we also changed the title of the manuscript to
“Multivariate autoregressive modelling and conditional simulation for temporal
uncertainty analysis of an urban water system in Luxembourg”.

Even though the focus is on the application we do think that our paper also
makes a valid contribution on methods. For example, we use both univariate
and multivariate autoregressive models to characterise uncertainty in dynamic
variables, we use conditional simulation to sample from these models, and we
use bootstrap computation to summarise the Monte Carlo outputs. None of
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these methods are new but as far as we know they have not been used jointly
in uncertainty analysis of urban water systems. We have moved some of the
materials to the Supplementary Material, in particular the second part of Sec-
tion 2.5.4 where we explain the calibration and conditional simulation of the
precipitation time series (i.e., lines 223 to 255 in the original manuscript).

The authors use AR(1) processes to model dynamical inputs. However,
it needs also to be shown that these models captures the characteristics of
the inputs correctly, for example that the auto-correlation function and other
statistics match.

Reply: We agree that we did not provide evidence of our statement on
line 435 of the original manuscript that the simulated precipitation time series
captured the main statistics of the observed time series well. Please find below
evidence for this statement (Table 1 and Figure 1). The match is not perfect
but we judge it close enough, given that the model is only an approximation
of the real world (e.g., it assumes that the log-transformed precipitation has
a normal distribution, constant a priori mean and variance, and a stationary
near-exponential autocorrelation function that results from an AR(1) model
formulation). We made a note in the text (Revision, Page 19, L411-412) and
refer to the Supplementary Material, Table S1 and Figure S2.

Table 1: Mean and variance of the log-transformed observed precipitation time
series at Esch-sur-Sure and Dahl rain gauges and the simulated precipitation
time series at Goesdorf (random selection of simulation numbers 1, 750, 1500
and all).

Esch-sur-Sure Dahl Sim 1 Sim 750 Sim 1500 Sims (All)
Mean -6.6152 -6.5817 -6.3888 -6.3886 -6.3878 -6.3874

Variance 1.4188 1.5731 1.5636 1.5579 1.5594 1.5582

Table 2 shows comparisons of the means and variances for CCOD,S and
CNH4,S based on 91 measurements in the Haute-Sure catchment and simula-
tions at Goesdorf (note that for CODr a comparison cannot be made because
we had no measurements of CODr and a model for CODr was based on expert
judgement). The agreement between observed and simulated statistics is again
quite close. We could not evaluate the autocorrelation functions of the observed
CCOD,S and CNH4,S because there were too few observations to be able to com-
pute these (note that the 91 observations were from multiple locations within
the catchment, see original manuscript lines 401-403).

‘Uncertainty analysis’ is an umbrella term. Therefore I would encourage to
use always the more specific terms ‘uncertainty propagation’ and ‘sensitivity
analysis’ (SA) when referring to these concepts. SA is a well established term
for calculating the “contributions of input variables to total uncertainty”.

Reply: We agree that uncertainty analysis is an umbrella term and made
sure that we used it only in that way, while we use the terms ‘uncertainty prop-
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Figure 1: Autocorrelation function of the log-transformed observed precipitation
time series at Esch-sur-Sûre and Dahl rain gauges and simulated precipitation
at Goesdorf catchment.

Table 2: Mean and variance of log-transformed observed CCOD,S and CNH4,S

in the Haute-Sure catchment and of log-transformed simulated CCOD,S and
CNH4,S at Goesdorf (random selection of simulation numbers 1, 750, 1500 and
all).

Observations Sim 1 Sim 750 Sim 1500 Sims (All)
Mean (log(CCOD,S)) 4.3783 4.3752 4.3737 4.4106 4.3780

Variance (log(CCOD,S)) 0.5637 0.5261 0.5257 0.5394 0.5640
Mean (log(CNH4,S)) 1.4733 1.4656 1.4639 1.4865 1.4730

Variance (log(CNH4,S)) 0.1679 0.1704 0.1684 0.1615 0.1681

agation’ and ‘stochastic sensitivity analysis’ when we refer to a specific method.
We prefer to use ‘stochastic sensitivity analysis’ instead of just ‘sensitivity anal-
ysis’ because in fact there is a lot of confusion about this term in the literature.
Many deterministic modellers interpret sensitivity analysis as an approach that
analyses how the model responds to (small) changes in its inputs and parame-
ters, irrespective of how uncertain the inputs or parameters are. In fact that is
also how we interpreted ‘sensitivity’ in Sections 2.4 and 3.1 (when we did the
quick-scan). We quote from Smith and Smith (2007, page 71): “Whereas a sen-
sitivity analysis defines how the model responds to changes in its components,
an uncertainty analysis determines how much uncertainty is introduced into the
model by each component of the model”.

We checked the manuscript carefully to make the necessary changes, also in
the title (replaced ‘uncertainty propagation’ by ‘uncertainty analysis’) and some
section headings (i.e. Sections 2.6 (Revision, Page 11, L225) and 3.3 Revision,
Page 19, L417) in the revised manuscript).
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While hinted a several places, I think it would be beneficial to distinguish
the kind of uncertainty that one tries to model more explicitly. Some inputs
are intrinsically stochastic (e.g. precipitation), while others the uncertainty
expresses our lack of knowledge about a parameter value.

Reply: In this paper uncertainty is always an expression of limited knowl-
edge about a model input or model parameter. We are well aware that in the
literature different types of uncertainty are distinguished (such as epistemic and
stochastic, see Refsgaard et al. (2007, Section 3.3)), but we doubt that such
distinction is useful and can in fact be made. For example, precipitation is the
result of a physical-deterministic process and hence not intrinsically stochastic,
no matter that it is practically impossible to know it without error everywhere,
all the time. In fact, it is hard to imagine that there are truly stochastic pro-
cesses in nature (note the fundamental difference with chaotic processes, which
do exist but are deterministic). Some argue that there is stochastic uncertainty
at the quantum-mechanistic level, but even there, there are doubts (we only
need to quote Einstein who said “God does not play dice with the universe”).
Our paper intentionally does not go this philosophical road, and that is why we
refrained from distinguishing different kinds of uncertainty.

* Specific points

** Abstract
L4: the paper does not introduce a framework (which would be a theory

about how to deal with uncertainties).
Reply: We acknowledge that the main contribution is the application and

have removed all references to a ‘new framework’ from the paper. Please see
also our reply to your first general comment.

** Introduction
L54: ”determinism” is the absence of uncertainty, hence it cannot ”represent

uncertainty”
Reply: Here we merely cited the literature. But we see your point and

have rephrased the sentence to: (Revision, Page 2, L53-54)“Five approaches to
represent the presence or absence of uncertainty and how it is represented in
the context of urban water systems are often distinguished. . . .”.

** Material and methods
L115, eq2: Maybe I missed something, but is there no delay? The rain is

transformed immediately to runoff?
That is correct. Indeed, we had not explained in Section 2.1 that a delay is

included in EmiStatR (see also Torres-Matallana et al., 2018, Section 2.2.3) and
have corrected this in the revision. We replaced the text in lines 116-120 with:
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(Revision, Page 4, L116-120) The contribution of rainwater to the
combined sewage volume, Qr [m3·s−1], is derived from precipita-
tion as follows:

Qrt =
1

6
· Pt−tfS · [Cimp ·Aimp + Cper · (Atotal −Aimp)] (1)

where 1
6 is a factor for units conversion, Pt−tfS

precipitation at
time t− tfS [mm· min−1]; tfS is a delay in time response related
to flow time in the sewer system; Aimp is the impervious area of
the catchment [ha]; Atotal is the total area of the catchment [ha];
Cimp is the run-off coefficient for impervious areas [-]; and Cper is
the run-off coefficient for pervious areas [-].

L160: ”Some variable” - which one?
Reply: We assume that you refer to line 163: “Some of the variables were

calibrated based on observations...”. These variables are water consumption
(qs), infiltration flow (qf ), time flow (tfS ), run-off coefficient for impervious
area (Cimp), run-off coefficient for pervious area (Cper), orifice coefficient of
discharge (Cd) and initial water level (levini). We included the variable names
into the text to be clearer which variables have been calibrated (Revision, Page
7, L165-167).

Table 1: I would remove all irrelevant ”inputs”, such as ID, name of struc-
ture, ...

Reply: (Revision, Page 8, Table 1) We deleted ID of the structure, Name of
the structure, Name of the municipality, Name of the catchment and Number
of the catchment from Table 1. We also changed the table caption to: “Most
important general, CSO input and output variables of EmiStatR, with base
values for the general input variables.”.

Table 2: What are ”flow time structure” and ”curve level”? They do not
show up in the model equations

Reply: Thank you for spotting this mistake. Flow time structure (tfS)
should be included in Eq. 2 in the original manuscript, this is the delay in time
response related to the flow time in the sewer system. See also our reply to
your comment above on missing the delay from rain to runoff. The curve level
- volume (lev2vol) refers to a characteristic of a CSOT and translates the level
of the water in the CSOT tank to the CSOT volume. To save space we did not
include it in our paper (as mentioned in lines 101-102 of the original submission
full details are provided in Torres-Matallana et al., 2018). To avoid confusion
we removed this parameter from Tables 1 (Revision, Page 8) and 2 (Revision,
Page 9).
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L165: This is an example where “uncertainty propagation” should be used
instead of “uncertainty analysis”

Reply: We could not find the term “uncertainty analysis” in line 165. Per-
haps the reviewer refers to line 176? We have replaced “uncertainty analysis”
by “uncertainty propagation analysis” in line 176 of the original manuscript
(Revision: Page 9, L179).

L165ff: Why was the selection of inputs needed at all for the uncertainty
propagation? The computational efforts do not change with the number of
inputs (they do for the SA). Also there is not needed that the model is sensitive
to an input. If it is not, than we will just get smaller uncertainties.

Reply: We agree that from a computational point of view there is no need
to reduce the number of inputs. However, each uncertain input needs to be
modelled by means of a (complex) probability distribution, and as we indicated
in lines 176-177 of the original manuscript this is the most difficult and time-
consuming step. From this perspective, it definitely pays off to reduce the
number of uncertain inputs and focus on the most important ones.

L179: the equation is for the cdf, not the pdf. Also emphasize on ‘marginal’
implies that you want to model a joint distribution.

Reply: We had defined ‘pdf’ in line 175 as a ‘probability distribution func-
tion’. This can refer to a cumulative probability distribution, a probability mass
function (for discretely and categorical variables) and a probability density func-
tion (see statistical text books or https://en.wikipedia.org/wiki/Probability distribution function).
Eq. 6 is a cumulative probability distribution function, hence in the notation
that we introduced in line 175 it is a cumulative pdf.

L188ff: how did you determine the order of the AR process (seems always
to be 1)?

Reply: We chose the order to be 1 in all cases to keep the model as simple
as possible while still being able to handle autocorrelation.

L199: Not the uncertainties are correlated, but the values themselves
Reply: Thank you for this interesting perspective. However, we think that

uncertainties can also be correlated. For instance, suppose we estimated CCOD,S

and CNH4,S using some model but are uncertain about their true value because
of estimation errors. Then it is likely that if we overestimated CCOD,S we
will also have overestimated CNH4,S , because the model may have missed an
emission event. Similarly, underestimation of both CCOD,S and CNH4,S will
also tend to occur simultaneously. Thus, if we wish to model our uncertainty
(i.e., the estimation errors) by random variables (one for CCOD,S and one for
CNH4,S), then we would include a positive correlation between the two random
variables.
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L211: Precipitation lot of zeros. It is not clear how the presented model can
describe the dry periods.

Reply: As mentioned in lines 229-231 of the original manuscript, we applied
a Kernel smoothing to the precipitation time series prior to modelling. This
removed many of the zeroes. In addition, as explained in line 233 of the original
manuscript, we only used precipitation data for calibration of the AR(1) model
if these were above the threshold of 0.01 mm.

L215-255: Remove the description as the model is already described in
Torres-Matallana et al. (2017)

Reply: We agree that we provided too much detail. We have moved the text
from line 223 onward to the Supplementary Material. We prefer to keep the
text in lines 215-222 of the original manuscript in the main article to explain
the reader what we did. We have rephrased this text to:

(Revision, Page 11, L218-224) “Torres-Matallana et al. (2017)
present a model to simulate precipitation inside a target catch-
ment given a known precipitation time series in a nearby location
outside the catchment, while accounting for the uncertainty that is
introduced due to spatial variation in precipitation. The method
used for input precipitation uncertainty characterisation is essen-
tially the same as the application of a Kalman filter/smoother
(Kalman, 1960; Webster and Heuvelink, 2006). Calibration of the
model requires precipitation time series at two locations near the
catchment of interest. Once the model is calibrated, it is used to
simulate precipitation inside the target catchment from a single
precipitation time series nearby the catchment. Details of the cal-
ibration and conditional simulation are presented in the Section
S3 of the Supplementary Material.”

L257-260: Remove or move to introduction.
Reply: We agree and have removed these lines.

L304: This is sensitive analysis and does not belong under the section “un-
certainty propagation”

Reply: We changed the title of Section 2.6 to (Revision, Page 11, L225)
“Uncertainty analysis”.

L317: How did you aggregate for the whole year? Is it a problem that the
individual indices are not independent due to the auto-correlation?

Reply: We aggregated to a yearly value by taking the arithmetic mean of
all 10 minute indices within the year. We explain this in the revision. We agree
that there likely is temporal structure in the 10 minute indices but that has no
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effect on the usefulness of computing and interpreting a yearly aggregate. It
still is an overall annual measure of the stochastic sensitivity.

L340: “may be computed” - did you do so?
Reply: Thank you for noting our sloppy formulation. We changed this

sentence to: (Revision, Page 14, L306) “We used the German guideline ATV-A
128 (1992), which computes the throttle discharge at CSOs, Qt,CSO[l · s−1] as:”

** Results
L397: The wording is a bit confusing here: “evaluation of model output

sensitivities” sounds like a SA, but you are referring to the “manual” analysis
of the model.

Reply: As explained above the term ‘sensitivity analysis’ has multiple mean-
ings. To many it simply refers to the sensitivity of the model output to changes
in the model inputs. This is also the interpretation we used here. To avoid con-
fusion we rephrased the sentence to (Revision Page 16, L371) “After ranking all
inputs on level of uncertainty and model sensitivity, we selected...”

L415: was the COD modeled independently of the precipitation?
You are right, we did not include cross-correlation between CODr and pre-

cipitation, as mentioned in lines 637-638. We agree that it would be more real-
istic to include a correlation and had mentioned this under ‘possible improve-
ments’ in lines 637-641 of the original manuscript (Revision Page 29, L616-623).

Figure3: Please mention in the caption which density you used of the uncer-
tainty propagation. Also, maybe move figure to supporting information (SI).

Reply: Thank you for this comment and suggestion. We have moved this fig-
ure to the Supplementary Material (Page 6, Figure S3) and extended the caption
with: “Note that the blue densities were used in the uncertainty propagation”.

L435: Please show some evidence for that.
Reply: Please see our response to your general comment. We provided the

evidence in the Supplementary Material (Pages 1 and 3, Section S2).

L444-465: I propose to move this and figure 4 to the SI
We have moved Section 3.3.1 to the Supplementary Material (Page 5 and

7-8, Section S5) and refer to it in the main text (Revision, Page 19, L424-425).

** Discussion
L560: “we start with the accuracy...” - this topic comes second.
Reply: Thank you for noting this mistake, which was also pointed out by

Referee 1. We have corrected this in the revised manuscript, by changing the
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text to: (Revision, Page 25, L515-518) “In the following discussion, we start with
the uncertainty and water quality impact of the model outputs to the environ-
ment, in relation to the uncertainty analysis. Next, we discuss the accuracy of
Monte Carlo analysis, followed by a discussion of other sources of uncertainty.
Finally, we highlight some limitations and possible solutions of the approach
used in this work.”

L637: This is an important suggestions. I’m a bit confused why you did not
considered the correlation if the model is apparently able to do so (“We used
the latest version of EmiStat R (version 1.2.2.0), which considers this kind of
patterns.”)

Reply: This seems to be a misunderstanding. EmiStatR version 1.2.2.0 can
account for CCOD,S and CNH4,S to be correlated with the German ATV-A 134
curve, i.e. daily consumption. However, it cannot account for a correlation
between CODr and precipitation.
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Abstract. Uncertainty is often ignored in urban water systems modelling. Commercial software used in engineering practice

often ignores uncertainties of input variables and their propagation because of a lack of user-friendly implementations. This

can have serious consequences, such as the wrong dimensioning of urban drainage systems (UDS) and the inaccurate esti-

mation of pollution released to the environment. This paper introduces an uncertainty analysis framework in urban drainage

modellingand applies it ,
::::
built

:::
on

:::::::
existing

:::::::
methods

::::
and

::::::
applied

:
to a case study in the Haute-Sûre catchment in Luxembourg.5

The framework
:::
case

:::::
study

:
makes use of the EmiStatR model which simulates the volume and substance flows in UDS using

simplified representations of the drainage system and processes. A Monte Carlo uncertainty propagation analysis showed that

uncertainties in chemical oxygen demand (COD) and ammonium (NH4) loads and concentrations can be large and have a high

temporal variability. Further, a stochastic sensitivity analysis that assesses the uncertainty contributions of input variables to the

model output response showed that precipitation has the largest contribution to output uncertainty related with water quantity10

variables, such as volume in the chamber, overflow volume and flow. Regarding the water quality variables, the input variable

related to COD in the wastewater has an important contribution to the uncertainty for COD load (66%) and COD concentra-

tion (62%). Similarly, the input variable related to NH4 in the wastewater plays an important role in the contribution of total

uncertainty for NH4 load (34%) and NH4 concentration (35%). The Monte Carlo simulation procedure used to propagate input

uncertainty showed that among the water quantity output variables, the overflow flow is the most uncertain output variable with15

a coefficient of variation (cv) of 1.59. Among water quality variables, the annual average spill COD concentration and the av-

erage spill NH4 concentration were the most uncertain model outputs (coefficients of variation of 0.99 and 0.82, respectively).

Also, low standard errors for the coefficient of variation were obtained for all seven outputs. These were never greater than

0.05, which indicates that the selected MC replication size (1,500 simulations) was sufficient. We also evaluated how uncer-

tainty propagation can explain more comprehensively the impact of water quality indicators for the receiving river. While the20

mean model water quality outputs for COD and NH4 concentrations were slightly above the threshold, the 0.95 quantile was

2.7 times above the mean value for COD concentration, and 2.4 times above the mean value for NH4. This implies that there

is a considerable probability that these concentrations in the spilled CSO are substantially larger than the threshold. However,

1



COD and NH4 concentration levels of the river water will likely stay below the water quality threshold, due to rapid dilution

after CSO spill enters the river.25

Keywords: Stochastic sensitivity analysis; uncertainty analysis; input uncertainty; temporal uncertainty; urban water modelling

Copyright statement. TEXT

1 Introduction

Combined sewer systems are important components of the urban water infrastructure. These systems are typically found in old

and large cities (Baker, 2009; Litrico and Fromion, 2009) and are designed to transport the water generated and accumulated30

in an urban catchment to the receiving water body. During normal conditions all water is transported to the treatment facility

before it is released to the environment. This is the so-called throttled outflow or pass-forward flow (Hager, 2010). However,

during extreme conditions with heavy precipitation, the combined sewer overflow (CSO) discharges excess water directly to

nearby streams, rivers, lakes or other water bodies (Baker, 2009). The CSO contains polluted water and solid matter (Hager,

2010), which, when released to the environment, can have a damaging impact on the water quality status of the receiving waters35

(Bachmann-Machnik et al., 2018; Gasperi et al., 2012). CSO pollutant load emissions are of similar or greater magnitude

than the emissions from wastewater treatment plants (Gasperi et al., 2012; Bachmann-Machnik et al., 2018). CSO discharge

impacts are mainly high peak flows, high organic loads from single events, which can lead to oxygen depletion, and ecotoxic

concentrations of ammonia (NH3) (Miskewitz and Uchrin, 2013; Bachmann-Machnik et al., 2018). To reduce pollution in

receiving waters it is important to minimise CSO volume
:::
load

:::
and

::::::::::::
concentration.40

One of the main variables is chemical oxygen demand (COD), which is an indicator of organic compounds in water. It is

used to measure the effluent quality (Viana da Silva et al., 2011). High levels of COD are correlated with a decrease of the

amount of dissolved oxygen (DO) available for aquatic organisms. A depletion of DO concentration in the water column from

near 9 mg/l (the maximum solubility of oxygen in estuarine water on an average summer day), to below 2 mg/l, is referred to

as hypoxia. If hypoxic conditions are reached, the health of the ecosystem is affected, and cause physiological stress, and even45

death, to aquatic organisms (on Environmental and atural Resources - CENR, 2003). Ammonium (NH4) is another important

variable and is an indicator of nitrogen compounds in water. Concentrations of NH4 in water and wastewater are relevant

because high levels of nitrogen in receiving waters can cause eutrophication and, therefore, excessive growth of algae and

other micro-organisms, resulting in oxygen dissolved depletion and fish toxicity (Huang et al., 2010).

To better assess environmental impacts, numerical models are applied in urban hydrology to simulate CSO emissions into50

the environment. It is recommended, however, that such modelling approaches consider the inherent uncertainty associated

with the system representation and the approximation of the model to the reality (Hutton et al., 2011). Moreover, the model

inputs are also not free of errors and associated uncertainties will also propagate to the model output (Heuvelink, 1998).
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Five approaches to represent uncertainty
:::
the

:::::::
presence

::
or

:::::::
absence

:::
of

:::::::::
uncertainty

::::
and

::::
how

:
it
::
is
::::::::::
represented in the context of

urban water systems are often distinguished (Walker et al., 2003; Refsgaard et al., 2007; van der Keur et al., 2008; Bach et al.,55

2014): 1) determinism; 2) statistical uncertainty; 3) scenario uncertainty; 4) recognised ignorance; and 5) total (unrecognised)

ignorance. Following van der Keur et al. (2008), determinism applies when we have knowledge with absolute certainty about the

system under analysis. This is the “ideal world" case which is not realistic for urban hydrology systems. The statistical approach

is useful when it is possible to describe uncertainty in statistical terms, i.e. when uncertainty can be characterised by probability

distribution functions (pdfs). The scenario approach, in contrast, applies when quantitative probabilities cannot be determined,60

and instead qualitative measures of uncertainty are used. It is used when possible outcomes of uncertain inputs are known but

not the probabilities of these outcomes (Brown, 2004). There is also no claim that the list of possible outcomes (scenarios) is

exhaustive. Recognised ignorance occurs when there is awareness of lack of knowledge, but without any further possibility

to process and address the recognised uncertainty. This is the case of very complex functional or inherently unidentifiable

relationships, when e.g. predictions are infeasible due to chaotic behaviour of the system or when our understanding of the65

system behaviour is too limited (van der Keur et al., 2008). This is common in social systems where behaviour of humans and

groups of humans may often unpredictable. Finally, total ignorance is the state of “complete lack of awareness about imperfect

knowledge" (van der Keur et al., 2008). It is the opposite of determinism and reflects a state where we do not know that we do

not know (Walker et al., 2003). Among the approaches described above, in this paper we will use the statistical approach to

characterise and propagate uncertainties.70

Three main sources of uncertainty in the context of performance evaluation analysis and design of urban water infrastructure

and urban drainage modelling are identified (Walker et al., 2003; Neumann, 2007; Deletic et al., 2012). First, model input

uncertainty is related to errors in input data, i.e. in driving forces such as precipitation. Second, parameter uncertainty is

related to the uncertainty regarding the (calibrated) parameters of the model. Third, model structural uncertainty relates to

uncertainty due to model conceptualisation and simplification. For instance, an urban drainage model might ignore certain sub-75

processes such as evaporation or chemical transformation or might simplify a non-linear relation between model variables to a

linear relation. These type of uncertainties are not captured in model input and model parameter uncertainty and are represented

by model structural uncertainty. The focus of this work is on the propagation of model input uncertainty.

Regarding methods for uncertainty propagation analysis, a distinction can be made between analytical methods, such as

the Taylor series method (Heuvelink, 1998), and numerical techniques, such as Monte Carlo (MC) simulation. Numerical80

techniques are more flexible and hence more convenient to analyse uncertainty propagation with complex models (Zoppou,

2001). MC simulations are computationally demanding, especially in the case of complex models, but they can still be used

if there are sufficient computational resources (Bastin et al., 2013), among others because it can greatly benefit from parallel

computing.

Although uncertainty propagation analysis has been applied extensively in hydrologic modelling (e.g. Beven and Binley85

(1992); Kuczera and Parent (1998); Hutton et al. (2011); Vrugt et al. (2003b, a); Vrugt and Robinson (2007); Renard et al.

(2010); Datta (2011)), the number of applications of long-term simulations in urban drainage modelling is limited and typically

does not consider the influence of temporal and spatial correlation in the analysis of propagation of input uncertainty. Temporal
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correlation occurs in uncertain dynamic variables such as precipitation and COD of household wastewater, because values

of these variables over short time lags will be more similar than over large time lags. The same concept applies to variables90

that are spatially distributed (Webster and Oliver, 2007). It is important to take temporal (and spatial) correlation of uncertain

inputs into account because this may have a major influence on the outcomes of an uncertainty analysis (Heuvelink, 1998). In

this paper we perform a temporal uncertainty propagation analysis in urban water modelling, using MC simulation. As a case

study we use the simplified model EmiStatR (Torres-Matallana et al., 2018b) to predict wastewater volume, COD and NH4

concentrations in CSOs for three urban-rural sub-catchments of the Haute-Sûre catchment in the North-West of the Grand95

Duchy of Luxembourg.

The objectives of this study are to: 1) select and characterise the main sources of input uncertainty accounting for temporal

auto- and cross-correlation within EmiStatR; 2) propagate input uncertainty through EmiStatR, taking into account temporal

auto- and cross-correlation of uncertain dynamic inputs; 3) quantify and assess the contributions of each uncertainty source to

model output uncertainty dynamically (over time) for the Luxembourg case study.100

2 Materials and methods

2.1 The EmiStatR model

EmiStatR is used to simulate CSO flows and water quality concentrations. Details regarding the conceptual and mathematical

model are provided in Torres-Matallana et al. (2018b). The main components of the EmiStatR model are: 1) Dry Weather

Flow (DWF) including Infiltration Flow (IF); 2) Pollution of DWF; 3) Rain Weather Flow (RWF); 4) Pollution of RWF; 5)105

Combined Sewer Flow (CSF) and pollution; and 6) Combined Sewer Overflow (CSO) and pollution. Figure 1 illustrates the

scheme of the sewer system analysed.

Basically, the total dry weather flow, QDWF [l · s−1] is calculated as:

QDWFt =Qst +Qft (1)

where QDWFt
[l · s−1] is the dry weather flow at time t and Qst [l · s−1] is the dry weather flow of the residential sewage in110

the catchment at time t, calculated as 86,400−1 · pet · qst (where 86,400 = 24× 60× 60 is a measurement unit conversion

factor), with pet [PE] the population equivalents of the connected CSO structure at time t, and qst [l ·PE−1 ·d−1] the individual

water consumption of households at time t. Qft [l · s−1] is the infiltration flow at time t that enters the pipes from groundwater

flow through cracks and joints, calculated as Aimp · qft , where Aimp [ha] is the impervious area of the catchment, and qft
[l · s−1 ·ha−1] is the infiltration water inflow flux (specific infiltration discharge from groundwater flow) at time t. Variables qst115

and pet are dynamic and can be defined as time series with daily, weekly and seasonal patterns.

The contribution of rain water
::::::::
rainwater to the combined sewage flow,Qr [m3· s−1], is derived from precipitation as follows:

Qrt =
1

6
·PtPt−tfS

:::::
· [Cimp ·Aimp +Cper · (Atotal−Aimp)], (2)
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Figure 1. Scheme of the sewer system analysed. Adapted from: Andrés-Doménech et al. (2010)

where 1/6
:

1
6 is a factor for units conversion, Pt is a time series of precipitation per unit time at time t

:::::
Pt−tfS :::::::::::

precipitation
::
at

::::
time

:::::
t − tfS:[mm·min−1];

::
tfS::

is
:
a
:::::
delay

::
in

::::
time

:::::::
response

::::::
related

::
to
::::
flow

::::
time

::
in

:::
the

:::::
sewer

:::::::
system; Aimp is the impervious area120

of the catchment [ha];Atotal is the total area of the catchment [ha]; Cimp is the run-off coefficient for impervious areas [-]; and

Cper is the run-off coefficient for pervious areas [-]. From Qrt , the CSO volume calculation is based on the exceeding volume

stored in the Combined Sewer Overflow Chamber (CSOC). The CSO volume depends on four CSOC stages: (1) filling up; (2)

CSO spill volume; (3) stagnation; and (4) emptying. The sum of the total dry weather flow, QDWFt , and the rain water flow,

Qrt , is called combined sewer flow at time t, QCSFt .125

The COD load, BCOD,Sv [g], in the spill overflow volume is calculated as a function of the spill overflow volume at time t,

VSvt [m3], a combined sewer mixing ratio at time t, csmrt [-], the mean dry weather pollutant concentration at time t, CCODt

[mg · l−1], and the concentration due to rainwater pollution at time t, CODrt [mg · l−1]:

BCOD,Svt = (csmrt + 1)
−1

VSvt (csmrt ·CCODt
+CODrt ) (3)

The variable VSvt depends directly on the water volume in the CSO chamber at time t, VChambert [m3]. It is computed as:130

VSv t =


Vrt +Vdwt

−Vdt , if VChamber t = V,

VChambert−V if VChambert > V,

ε if VChambert < V.

(4)
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where Vrt is the rain weather volume at time t accumulated during a time interval ∆t [min], Vdwt
[m3] is the total dry weather

volume (amount of dry weather water in combined sewage flow) at time t, Vdt is the volume of throttled outflow to the WWTP

at time t [m3], V [m3] is the CSOC volume, and ε is a numerical precision term set equal to 10−5 [m3]. While VSv , csmr and

CCOD are dynamic, CODrt can either be dynamic or assumed constant if the pollution concentration is assumed constant in135

time. CCODt
[mg · l−1] is calculated as (Torres-Matallana et al., 2018b):

CCODt =
103 · pet ·CCOD,S

qst · pet + 86,400 ·Aimp · qft
(5)

where CCOD,S is the COD sewage pollution per capita [PE] load per day [g ·PE−1 · d−1]. Similar equations as above apply to

the second water pollution indicator NH4.

2.2 Sewer system in the Haute-Sûre catchment140

The study area is composed of three sub-catchments of the Haute-Sûre catchment in the north-west of the Grand-Duchy of

Luxembourg. The combined sewer system drains three villages: Goesdorf (GOE), Kaundorf (KAU), and Nocher-Route (NOR).

The local sewer system downstream each village has a CSO tank to store pollutant peaks in the first flush of combined sewage

flows. Table 2 shows the general characteristics of each CSO tank for each village. Figure 2 depicts the location of the CSO

tanks and the delineation of the sub-catchments. The main land use types in the villages are residential, smaller industries and145

farms. Outside of the villages forest as well as agricultural arable and grassland are the dominating land uses. The receiving

water bodies of the CSO structures are tributaries of the river Sûre (Sauer, in German).

2.3 Input data

The input variables of the EmiStatR model are shown in Table 1. Following Torres-Matallana et al. (2018b), seven input

variables were calibrated: water consumption (qst), infiltration flow (qft ), flow time structure equivalent to the time of concen-150

tration to the combined sewer overflow tank (CSOT) structure (tfS), run-off coefficient for impervious area (Cimp), run-off

coefficient for pervious area (Cper), orifice coefficient of discharge (Cd), and the initial water level (Levini). The main objective

of the calibration process is to represent appropriately the water volume in the CSOT.

The observed precipitation (Pt) is a one year time series for 2010 at 10 minute time interval, measured at stations Esch-sur-

Sûre and Dahl (Fig. 2). The variable water consumption (qst) is also dynamic and represented as a time series with a daily155

pattern according to factors proposed in the design German guideline ATV-A 134 (Evers et al., 2000).

The hydraulic variable measured is water level in the CSOT t, Lev [cm]. The temporal resolution of measurements of Lev

is 30 seconds. Regarding wastewater quality (WWQ) characterisation, values of CCODs
and CNH4s

in the wastewater were

derived from DWF measurements at Goesdorf, Kaundorf and Nocher-Route. A total of 91 two–hour composite samples were

taken and measured in the laboratory for determination of concentrations of COD [mg · l−1] and NH4 [mg · l−1]: 7 at Goesdorf160

on 4 May 2011, 48 between 19 June and 21 July 2010 at Kaundorf, and 36 between 9 March and 2 August 2011 at Nocher-

Route. The variables CODf and NH4f were set to zero because the pollution contribution of the infiltration water is negligible

in the study area. The contribution of ammonium from rainwater NH4r was assumed constant and set to 2.00 [mg · l−1],
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Figure 2. The three Haute-Sûre sub-catchments and locations of CSOT structures considered in this study. The background map is provided

by © Google Maps.

while CODr was equal to zero. Table 1 summarises the base values of the general input variables and Table 2 presents the

base values of input variables for each individual CSO. These base values were used when running EmiStatR in deterministic165

mode (see Section 3.1). Some of the variables were calibrated based on observations in the CSOT to simulate water level and

concentrations and loads of pollutants spilled in the CSO to the stream, river or lake.
:::::
These

::::::::
variables

:::
are

:::::
water

:::::::::::
consumption

::::
(qs),

:::::::::
infiltration

::::
flow

::::
(qf ),

::::
time

::::
flow

:::::
(tfS ),

::::::
run-off

:::::::::
coefficient

:::
for

:::::::::
impervious

::::
area

:::::::
(Cimp),

::::::
run-off

:::::::::
coefficient

::
for

::::::::
pervious

::::
area

::::::
(Cper),:::::

orifice
:::::::::
coefficient

::
of

:::::::::
discharge

::::
(Cd)

:::
and

:::::
initial

:::::
water

:::::
level

:::::::
(levini).

2.4 Selection of model input for uncertainty quantification170

Following recommendations from Nol et al. (2010), not all model inputs were taken into account in the uncertainty propagation

analysis. Only inputs that are very uncertain and to which the model output is very sensitive were included because these are

the ones that have the largest contribution to output uncertainty (Heuvelink (1998), Section 4.4). The level of uncertainty of the
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Table 1. General and
::::
Most

::::::::
important

::::::
general, CSO input , and output variables of EmiStatR. Base

::::::::
EmiStatR,

:::
with

::::
base values for the general

input variables.

General input Units Base value CSO input Units

1. Wastewater 1. Identification
:::::::
Catchment

:::
data

Water consumption, qs [l(PEa · d)−1] 152 ID of the structure
::::
Total

:::
area,

:::::
Atotal [-

::
ha]

Pollution CODb, CCOD,S [g(PE · d)−1] 104.2 Name of the structure
:::::::

Impervious
:::
area,

:::::
Aimp [-

::
ha]

Pollution NH4
c, CNH4,S [g(PE · d)−1] 4.7 2. Catchment data2. Infiltration waterName of the municipality -Inflow, qf l(s · ha)−10.116 Name of the catchment -Pollution COD, CODf [g(PE · d)−1] 0 Number of the catchment -Pollution NH4, NH4f [g(PE · d)−1] 0 Total area, Atotal ha3. RainwaterImpervious area, Aimp haRain time series, P mmRun-off coeff.d for impervious area, Cimp [-]

Pollution COD, CODr :
2.
:::::::
Infiltration

::::
water [mg · l−1] 71.0 Run-off coeff. for pervious area, Cper [-]

Pollution NH4, NH4r ::::
Inflow,

::
qf [mg · l−1] [

:
l(s

:
·
::::
ha)−1] 2.0

::::
0.116 Flow time structure, tfS [time step]

::::::
Pollution

::::
COD,

::::::
CODf :::::::::

[g(PE · d)−1]
:
0 Population equivalents, pe [PE]

::::::
Pollution

::::
NH4,

:::::
NH4f: :::::::::

[g(PE · d)−1]
:
0 3.

:
2. CSO structure data

:
3.
:::::::

Rainwater Volume, V [m3]

Curve level – volume, lev2vol
:::
Rain

::::
time

::::
series,

::
P [m, m3

::
mm] Initial water level, Levini [m]

::::::
Pollution

::::
COD,

::::::
CODr :::::::

[mg · l−1]
:::
71.0 Maximum throttled outflow, Qd,max [l· s−1]

::::::
Pollution

::::
NH4,

:::::
NH4r: :::::::

[mg · l−1]
::
2.0 Orifice diameter, Dd [m]

Orifice coefficient of discharge, Cd [-]

Output variables

1. Quantity

Volume in the CSO chamber, VChamber [m3]

Overflow spill volume, VSv [m3]

Overflow spill flow, QSv [l · s−1]

2. Quality

Spill COD load, BCOD,Sv [g]

Average spill COD conc.e, CCOD,Sv,av [mg · l−1]

99.9th perc..f spill COD conc., CCOD,Sv,99 .9 [mg · l−1]

Maximum overflow COD conc., CCOD,Sv,max [mg · l−1]

Spill NH4 load, BNH4 ,Sv [g]

Average spill NH4 conc., CNH4 ,Sv,av [mg · l−1]

99.9th perc. spill NH4 conc., CNH4 ,Sv,99 .9 [mg · l−1]

Maximum spill NH4 conc., CNH4 ,Sv,max [mg · l−1]

aPE = population equivalents; bCOD = chemical oxygen demand; cNH4 = ammonium;
dcoef. = coefficient; dconc. = concentration; fperc. = percentile.
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Table 2. The CSO structure input data for the EmiStatR model, after calibration. For structures
:::::::
Structures

:
2 and 3, only Cd was calibrated.

CSO input

1. Identification

ID of the structure 1 2 3

Name of the structure FBH Goesdorf FBN Kaundorf FBH Nocher-Route

2. Catchment data

Name of the municipality Goesdorf Kaundorf Nocher-Route

Name of the catchment Haute-Sûre Haute-Sûre Haute-Sûre

Number of the catchment 1 1 1

Land Usea R/I R/I R/I

Total area, Atotal [ha] 30.0 22 18.6

Impervious area, Aimp [ha] 5.0 11.0 4.3

Run-off coefficient for impervious area, Cimp [-] 0.28 0.3 0.3

Run-off coefficient for pervious area, Cper [-] 0.07 0.10 0.10

Flow time structure, tfS [min
:::
time

:::
step] 1 2 2

Population equivalents, pe [PE] 611 358 326

3. CSO structure data

Volume, V [m3] 190 180 157

Curve level – volume, lev2vol m, m3Goesdorf Kaundorf Nocher-Route Initial water level, Levini [m] 0.57 1.8 1.8

Maximum throttled outflow, Qd,max [l · s−1] 5.0 9 4

Orifice diameter, Dd, [m] 0.15 0.20 –

Orifice coefficient of discharge, Cd [-] 0.67 0.67 0.67
a R = residential, I = industrial.

inputs was defined by expert judgement and similar case studies in the literature. A quick-scan was used to determine the model

sensitivity to each of the model inputs, by running EmistatR in deterministic mode with input base values given in Table 1.175

The level of model sensitivity was defined by analysing the mathematical model structure and components of the model, expert

judgement and simulations with EmiStatR. Inputs that rank high on both the level of uncertainty and on model sensitivity were

selected and included in the uncertainty propagation analysis.

2.5 Uncertainty quantification of selected model input

Because we used a statistical approach, probability distribution functions (pdfs) are the basis to represent uncertainties of the180

selected model inputs. This constitutes the most difficult step of an uncertainty
:::::::::
propagation

:
analysis and is done in different

ways for constants and dynamic variables, as explained in the following sub-sections.
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2.5.1 Uncertain constants

Following Heuvelink et al. (2007), an uncertain continuous numerical constant C can be characterised by its marginal (cumu-

lative) pdf (mpdf):185

FC(c) = P (C ≤ c) (6)

Usually a parametric approach can be taken, meaning that a common shape for FC is chosen (e.g., normal, lognormal, exponen-

tial, uniform) so that the mpdf is reduced to a number of parameters. In this study, the input variables that are in this category

are: water consumption (qs), infiltration inflow (qf ), total area (Atotal), impervious area (Aimp), the run-off coefficients for

impervious area (Cimp) and pervious area (Cper), population equivalents (pe), flow time structure (tfS), and initial water level190

(Levini).

2.5.2 Univariate autoregressive modelling

Dynamic uncertain inputs may be temporally autocorrelated. This may dramatically influence the outcome of an uncertainty

propagation analysis and must therefore be accounted for. One way of doing this is by assuming an autoregressive order one

(AR(1)) model:195

yt = µ+φ(yt−1−µ) +wt, t= 1,2, ...,T, y0∼N (µ,σ2) (7)

where yt is the uncertain input at time t, µ is its mean, φ is the autoregressive parameter (0≤ φ < 1), and wt is a Gaussian

white noise time series with mean zero and variance σ2
w. The initial value y0 is taken from a normal distribution with mean µ

and variance σ2. The parameters of the model can be estimated based on observations, or in absence of observations, suitable

values are taken based on expert judgment or literature reference values. Note that the effect of the initial condition usually200

fades out quickly and hence is not of important concern.

The implementation of the AR(1) model in R was done via the R function arima.sim of the R base package stats (R-Core-

Team and contributors worldwide, 2017), both for model calibration and simulation.

2.5.3 Multivariate autoregressive modelling

In case of multiple uncertain dynamic inputs, cross-correlation between these inputs may also need to be included. For ex-205

ample, CCOD,S and CNH4 ,S and their uncertainties are likely correlated. This can be done using a multivariate AR(1) model

(Luetkepohl, 2005), which is a natural extension of the univariate AR(1) model:

Y (t+ 1) = µ+ A · [Y (t)−µ] + ε(t), t= 1,2, ...,T, Y0∼N (µ,Λ) (8)

where Y (t) is a vector of inputs at time t, A is a square matrix with parameters that define how the variables at time t+ 1

depend on those at time t, µ is now a vector of means and ε(t) a vector of zero-mean, normally distributed white noise210

processes. We further assume that the variance-covariance matrix C of ε(t) is time-invariant. The initial value Y0 is assumed

10



normally distributed and uncorrelated (Λ is a diagonal matrix). In order to estimate the vector µ and matrices A and C, a

sample of the variables of interest is needed. Parameter estimation is done by means of the R-package mAr (Barbosa, 2015).

2.5.4 Input precipitation model

In case precipitation is selected as an uncertain input to be included in the uncertainty analysis, then it too must be characterised215

by a pdf. Since precipitation, however, is not normally distributed and has many zeros, we cannot make the Gaussian assumption

and hence we cannot use the approach described in Section 2.5.2 to model its dynamic behaviour and uncertainty. In addition,

we usually have precipitation measurements nearby so we need to condition the simulations to these measurements. Recall

from Section 2.3 that in the case study precipitation data are recorded at stations Esch-sur-Sûre and Dahl.

Torres-Matallana et al. (2017) present a model to simulate precipitation inside a target catchment given a known precipitation220

time series in a nearby location outside the catchment, while accounting for the uncertainty that is introduced due to spatial

variation in precipitation. The method used for input precipitation uncertainty characterisation is essentially the same as the

application of a Kalman filter/smoother (Kalman, 1960; Webster and Heuvelink, 2006). Calibration of that
::
the

:
model requires

precipitation time series at two locations near the catchment of interest. We briefly summarise the method here. We denote the

measured time series of precipitation at the first location as P1(t) and that at the second location as P2(t). Once the model225

is calibrated, it is used to simulate precipitation inside the target catchment from a single precipitation time series nearby the

catchment.

Calibration

We begin by relating the two precipitation time series as:

P1(t) = P2(t) · δ(t)230

where δ(t) is a positive multiplicative factor that varies over time. We assume that P1(t), P2(t) and δ(t) are stationary and

log-normally distributed stochastic processes. After log-transformation we get

log(P1(t)) = log(P2(t)) + log(δ(t))

We apply a Kernel (daniell) smoothing to the precipitation time series to avoid rapid fluctuation of the time series for

precipitation depth values smaller than 0.1 mm. This also solves problems associated with taking logarithms of near-zero235

values. Next, in order to estimate the parameters of δ(t), we filter the time series allowing the computation of a ratio between

the two measured time series. This ratio represents the difference in precipitation as registered in two nearby rain gauge stations.

It is computed only for those cases where the precipitation depth of the two time series is greater than 0.01 mm.
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To simplify notation we write LP1(t) = log(P1(t)), LP2(t) = log(P2(t)) and Lδ(t) = log(δ(t)). Since two out of three

determine the third, we need only define two processes. We model the joint distribution of LP1(t) and Lδ(t) by a bivariate240

AR(1) process, as introduced before:


LP1(t+ 1)

Lδ(t+ 1)

=


µ1

µδ

+


B11 B12

B21 B22




LP1(t)

Lδ(t)

−

µ1

µδ


+


ε1(t+ 1)

εδ(t+ 1)


where ε1 and εδ are zero-mean, cross-correlated and normally distributed white noise processes.

To calibrate this model, i.e. estimate its parameters µ1, µδ , B11, B12, B21, B22, σ2
1 , σ2

δ and ρ1δ , where σ2
1 = var(ε1),

σ2
δ = var(εδ) and ρ1δ is the correlation between ε1 and εδ , we used the Rpackage mAr (Barbosa, 2015). Calibration is based245

on two time series of LP1 and Lδ derived from observed time series P1 and P2.

Conditional simulation

To simulate a time series P for the target catchment from an observed time series Po at a nearby location, we make use of the

fact that the calibrated AR(1) model quantifies how precipitation at one location relates to that at a nearby location. We make

use of Eq. ??:250

P (t) = Po(t) · δ(t)

This requires simulations of δ(t). These are obtained using the calibrated model Eq. ??, but now applied to the vector

[LPo Lδ]
T , which characterises the joint pdf of LPo and Lδ. We use this model to simulate Lδ conditional to the observed

time series LPo. Since the two processes are jointly normally distributed we can make use of a well known property of the

multivariate normal distribution (?, page 47). Let U and V be two jointly normally distributed random vectors. The conditional255

distribution of U given V = v is then also normal and given by:

(U |V ) = v∼NE[U ]+cov(U,V ) · var(V )−1 · (v−E[V ]), var(U)− cov(U,V ) · var(V )−1 · cov(V,U))

We make use of this equation to simulate δ by substituting:

U = Lδ(t+ 1) V =


Lδ(t)

LPo(t+ 1)

LPo(t)


for all t= 1, ...,T , while substituting the observed time seriesLPo for v. For details we refer to Torres-Matallana et al. (2017)260

::::::
Details

::
of

:::
the

:::::::::
calibration

:::
and

::::::::::
conditional

:::::::::
simulation

:::
are

::::::::
presented

::
in

::::::
section

:::
S3

::
of

:::
the

::::::::::::
Supplementary

::::::::
Material.
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2.6 Uncertainty propagation
::::::
analysis

Various methods can be used to analyse uncertainty propagation. ? summarised the characteristics of the main methods, which

range from deterministic methods such as minimum/maximum to hydrid methods as First- and Second-Order Reliability

Methods (FORM/SORM), considering as well the Taylor series approximation and Monte Carlo (MC) simulation. We used265

MC simulation (Hammersley and Handscomb, 1964; Kalos and Whitlock, 2008) to analyse how input uncertainty propagates

through the EmiStatR model, because it is flexible and straightforward to implement. It is also feasible in our case study

because EmistatR is a relatively simple model that does not involve a long computation time.

2.6.1 Monte Carlo simulation

The MC method runs the EmiStatR model repeatedly, each time using different model input values, sampled from their pdf.270

The method thus consists of the following steps:

1. Repeat n times:

(a) Generate a set of realisations of the uncertain model inputs at 10 min resolution

(b) For this set of realisations, run the model at 10 min resolution and store output. Later, in order to compute the

summary statistics, a temporal aggregation of the model output to one hour intervals is done.275

2. Compute and store sample statistics from the n model outputs.

Here, n is the number of MC runs, i.e. the MC sample size. Common sample statistics that measure the uncertainty are the

standard deviation and quantiles of the distribution of MC outputs, such as the difference between the 0.95 and % 0.05 quantile,

which can be easily calculated from the n Monte Carlo outputs.

Sampling from the pdf of uncertain inputs was done using simple random sampling.280

2.6.2 Monte Carlo output summary

Proper presentation of MC outputs is important to get the most out of the experiment. Therefore, summary statistics are one

important way to summarise the MC outputs. Commonly, a MC study yields nmodel outputs, which are stored in the MC result

matrix X in Boos and Osborne (2015). From this matrix, various statistics can be computed. Basic summary statistics include

the mean µMC, the standard deviation (σMC) and the variance σ2
MC. From these we can compute the coefficient of variation285

CVMC (σMC/µMC), which is a dimensionless expression of relative uncertainty. The coefficient of variation is a standardised

measure of the spread of a sampling distribution, being useful because it allows to directly compare variation in samples with

different units, or with very different means (Marwick and Krishnamoorthy, 2019). We computed estimates and standard errors

for these statistics and also for the interquartile range (IQRMC), 0.005 (ζ0.005) and 0.995 (ζ0.995) quantiles, and the 99% width

of the prediction band (ζw,0.99).290
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2.6.3 Bootstrap computation for Monte Carlo summary

Following Boos and Osborne (2015) “Good statistical practice dictates that summaries in MC studies should always be ac-

companied by standard errors", we used the bootstrap method to compute standard errors of all MC statistics. These tools are

particularly relevant in a case without analytic solutions (Boos, 2003). According to Boos and Osborne (2015, p. 228) standard

errors for MC output statistics are often not computed, being an additional computational step on top of the overall analysis.295

Standard errors are straightforward to compute for simple statistics such as the sample mean over the replications of the MC

output, but are more difficult to compute for more complex statistics, such as medians, sample variances and the classical

Pearson measures of skewness and kurtosis. Therefore, to avoid burdensome computations we opted to compute the standard

errors by the bootstrap method. We briefly explain the bootstrap method below. For a detailed explanation we refer to Efron

(1979).300

To compute the bootstrap variance of estimators we follow the logic given by Boos and Osborne (2015). From a MC sample

Y1, ...,Yn, we draw a random sample of size n with replacement Y ∗
1 , ...,Y

∗
n , and compute an estimator θ̂ of the MC statistic

θ from this resample. We independently repeat this process B times, resulting in a sample of estimators θ̂1, ..., θ̂B . Then the

bootstrap variance estimate, V̂B , is the sample variance of this sample of estimators:

V̂B =
1

B− 1

B∑
i=1

(
θ̂i− ¯̂

θ
)2

(9)305

where ¯̂
θ is the mean of the sample of estimators. The MC standard error, se, is simply the square root of the bootstrap variance.

We implemented in stUPscales (Torres-Matallana et al., 2019) specific routines for computing, by means of the bootstrap

method, the MC estimators and their standard error for all MC statistics, where the variance of the model output is the most

important. We compared our results with the results obtained using the Monte.Carlo.se R-package (Boos et al., 2019).

2.6.4 Contributions of input variables to total uncertainty310

A number of m+ 1 MC analysis are needed to compute the contributions of input variables to total uncertainty, where m is

the number of model input variables selected for uncertainty quantification. The first MC analysis, MCtot, is done to compute

the total output uncertainty by varying stochastically all input variables. The uncertainty associated with the first variable x1 is

quantified by a second MC analysis MC1, in which only x1 is equal to its deterministic value, while the other input variables

vary stochastically. Similarly, the other MC simulations MC2, MC3, ..., MCm are used to quantify the uncertainty for the315

variables x2, x3, ..., xm.

To quantify the contributions of individual input variables to the total uncertainty of the model inputs, the stochastic sen-

sitivity Si for each uncertain input xi is computed. The first-order stochastic sensitivity index Si is defined as (Saltelli et al.,

2008, p. 160-161):

Si =
Var(MCi)

Var(MCtot)
(10)320
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The first-order stochastic sensitivity index represents the main effect contribution of each input factor to the total variance of

the output. The larger the index, the more important the input uncertainty. We computed stochastic sensitivity indices per time

step and aggregated contributions for the whole year. For plotting purpose, we aggregated the outputs from 10 minutes time

step to hourly time steps. The aggregation was done for each individual MC run before the contributions were computed.

2.7 Water quality impact325

The results of the MC uncertainty propagation were also compared with the water quality standards. Standards are introduced

to evaluate the impact of emissions of COD and NH4 in CSOs into the receiving water. However, as Toffol (2006) recognises,

although there are European emission standards for wastewater treatment plant effluent, standards for combined sewer over-

flow are not so clear. According to Steinel and Margane (2011), the European Water Framework Directive (WFD) is mainly

concerned with the natural state of waters. Therefore, emission standards for effluent discharge are not set. The EU Directive330

91/271/EEC (1991) sets standards for COD and total Nitrogen, hence similar values have been adopted in many European

member states. For more details about guidelines and design procedures in Europe see Blumensaat et al. (2012). We assessed

the emissions accordingly to the German guideline ATV-A 128 (1992), which is the standard for dimensioning and design

of stormwater structures in combined sewers and commonly used in Luxembourg. The Austrian ÖWAV-RB 19 (2007) is also

taken into account because it provides key reference guidelines for design of urban water infrastructure in central Europe.335

Three main indicators are taken into account: hydraulic impact, COD concentration, and acute ammonium toxicity.

2.7.1 Hydraulic impact

According to the Austrian guidelines and as summarised by Kleidorfer and Rauch (2011), the evaluation of the hydraulic

impact is given by:

Q1 ≤ fh ·Qr1 (11)340

where 0.1≤ fh ≤ 0.5, Q1 [l·s−1] is the maximum sewer overflow discharge with return period one year, and Qr1 [l·s−1] is

the maximum water discharge in the river with return period once per year. The factor fh is taken as 0.1 in more sensitive

streams, whereas it is 0.5 for streams with more stable bed and higher re-colonisation potential Toffol (2006). Time series of

daily values recorded in 2006 to 2013 of the river Sûre at Heiderscheidergrund were used to compute the daily flow expected

with return period once per year (1.01 years), Qr1.345

According to
:::
We

::::
used

:
the German guideline ATV-A 128 (1992),

:::::
which

::::::::
computes

:
the throttle discharge at CSOs, Qt,CSO

l·s−1, may be computed using
::::::::::::
Qt,CSO[l · s−1]

:::
as:

Qt,CSO = ft ·Aimp (12)

where 7.5≤ ft ≤ 15 and Aimp [ha] is the impervious area connected to the combined sewer system. For the overflow flow MC

output mean, 0.95 quantile and 0.995 quantile, we computed the exceedance percentage over the thresholds, calculated as the350

proportion of time steps exceeding the number of total time steps in the year (8,759 time steps at 1-hour).
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2.7.2 COD concentration

Steinel and Margane (2011, Table 14) presents the effluent standards for discharging into freshwater adopted in selected Euro-

pean countries. A COD concentration of 125 [mg · l−1] is reported for the European Union countries. Austria has stricter rules

with a standard of 90 [mg · l−1] for populations between 50 and 500 inhabitants, and 75 [mg · l−1] for populations greater than355

500 inhabitants. The Goesdorf population by 2001 was 1,025 inhabitants and by 2011 was 1,297 inhabitants (Statec, 2020).

For NH4 a similar approach was used.

2.7.3 Acute ammonium toxicity

Following Kleidorfer and Rauch (2011), “the ammonia (NH3) concentration depends on the ammonium (NH4) concentration

and on the dissociation equilibrium between NH3 and NH4 (which is influenced by temperature and pH-value)". According360

to Kleidorfer and Rauch (2011), the Austrian guideline ÖWAV-RB 19 (2007) establishes a maximum value of 2.5 mg · l−1 for

the ammonium (NH4) concentration calculated for one hour duration for salmonid streams. For cyprinid streams a maximum

value of 5.0 mg · l−1 is recommended.

3 Results

3.1 Selection of model inputs for uncertainty quantification365

In this section we assess the degree of uncertainty and sensitivity for all input variables, following the procedure described

in Section 2.4. We summarise the results in Tables 3 and 4.
::
To

::::::
better

::::::
support

::::
our

::::::::
decisions

:::
we

::::
also

:::::::
include

:
a
:::::::::

graphical

:::::::::
assessment

::
of

:::
the

::::::
degree

::
of

:::::::::
uncertainty

::::
and

:::::::::
sensitivity

::
of

::::
each

:::::
input,

::
as

::
in

:::::::::::::::::::::::::
Tscheikner-Gratl et al. (2017).

:::
See

::::::
Figure

:::
S1

::
in

:::
the

::::::::::::
Supplementary

::::::::
Material.

3.1.1 Wastewater370

Water consumption, qs, is a fairly uncertain input variable and the model output is sensitive to this variable. Volume and flow

of CSO are sensitive to changes in qs. Regarding water quality output, total load of NH4 is very sensitive to changes in qs.

Pollution of sewage as COD load per capita per day, CCOD,S is the first selected input variable for propagation of uncertainty,

due to the fact that it is both a very uncertain input variable and the model output (average and 99.9 percentile overflow COD

concentration) is very sensitive to it. Pollution of sewage as NH4 load per capita per day, CNH4 ,S , is also included in the375

uncertainty propagation analysis. It is a very uncertain input variable and the model output (overflow load and concentrations

of NH4) is very sensitive to it. The variables CCOD,S and CNH4 ,S are very uncertain because these are correlated to the

temporal and spatial pattern of water consumption, which has a daily, weekly and seasonal temporal variability.
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3.1.2 Infiltration water

Inflow of infiltration water, qf is a very uncertain input variable because this inflow depends of the number of anomalies in380

the pipes (cracks or wrong connections) that allow infiltrations flowing into and out of the system. The distribution of these

anomalies has a strong random component and hence qf is very uncertain, and model output is sensitive to it.
:::::::
Although

::::
this

::
is

:
a
::::
very

::::::::
uncertain

:::::
input,

:::
the

:::::::::
quick-scan

:::::::
analysis

:::::::
showed

:::
that

::::::
model

:::::
output

:::::::::
sensitivity

::
is

:::
not

::::
very

::::
high

::
as

::
is

::::::::
indicated

::
in

:::::
Table

::
3.

:::
For

:::
this

::::::
reason

:::
we

:::
did

:::
not

::::::
include

::::
this

::::::
variable

:::
in

::
the

::::::::::
uncertainty

::::::::::
propagation

:::::::
analysis.

:

Pollution of infiltration water as COD load per capita per day, CODf and pollution of infiltration water as NH4 load per385

capita per day, NH4f are not uncertain because in the Haute-Sûre study area the values of these variables are negligibly small.

3.1.3 Rainwater

Precipitation, P is the main driving force of the model and given the spatial variability of the rain fields, this input is considered

very uncertain. The model output, additionally, is very sensitive to it. As a consequence, this input variable is treated as the

third input variable in the uncertainty propagation analysis. Pollution of runoff as COD concentration, CODr is the fourth390

input variable considered in the uncertainty propagation, given that it is a very uncertain and very sensitive input variable,

particularly to load and concentration of COD in the overflow. Pollution of runoff

:::::::
Pollution

:::
in

::::::::
rainwater as NH4 concentration, NH4r is considered fairly uncertain. The model output (overflow load and

concentration of NH4) is very sensitive to it.
:::::::
Although

::::::
model

::::::
output

:
is
::::
very

::::::::
sensitive

::
to

:::
this

::::::
model

::::
input

::::::::
variable,

:::::
model

:::::
input

:::::::::
uncertainty

::
is

:::
not

::::
very

::::
high

::
as

:
is
::::::::
indicated

::
in

:::::
Table

::
3.

:::
For

:::
this

::::::
reason

:
it
::::
was

:::
not

:::::::
included

::
in

:::
the

:::::::::
uncertainty

::::::::::
propagation

::::::::
analysis.395

3.1.4 Sub-catchment

The model is very sensitive to the total area Atotal and to the run-off coefficient for pervious area (Cper) and sensitive to the

impervious area Aimp and to the run-off coefficient for impervious area (Cimp). However, we did not include Atotal and Cper

in the uncertainty analysis because these
:
it
:
can be fairly accurately derived from spatial databases and hence their uncertainty400

is not large.
::::::::
Although

:::::
model

::::::
output

::
is

::::
very

:::::::
sensitive

::
to

:::
the

:::::
input

:::::::
variable

:::::
Cper,:::

the
:::::::::
uncertainty

:::::
about

::::
this

:::::::
variable

::
is

:::
not

::::
very

::::
high,

::
as

::::::::
indicated

::
in

:::::
Table

::
3.
::::
The

::::::
reason

::::::
behind

:::
this

::
is

::::
that

::::
Cper:::

can
:::

be
::::::
derived

:::::
fairly

:::::::::
accurately

:::::
from

:::
GIS

::::::::
products,

::::
such

:::
as

:::
land

::::
use

:::
and

:::
soil

::::
type

:::::
maps.

:::::::::
Therefore,

:::
we

:::
did

:::
not

::::::
include

::::
this

::::::
variable

::
in
:::
the

::::::::::
uncertainty

::::::::::
propagation

:::::::
analysis.

:
The population

equivalents pe is a sensitive variable but not very uncertain. Hence this variable was not included in the uncertainty analysis.

The theoretical largest flow time in the catchment tfS is not uncertain and not sensitive.405

3.1.5 CSO structure

Although model output is very sensitive to maximum throttled outflow Qd,max and volume V , these are not included in

the uncertainty analysis because their values are accurately known. The same is true for the variables curve level - volume

lev2vol, orifice diameter Dd and discharge coefficient Cd. These variables are accurately known and therefore not considered
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Table 3. Results of deterministic sensitivity analysis. Average percentage of change of model output caused by ±10% change in model

inputs (qs, CCOD,S , CNH4,S , CODr , pe, and P as time series, VAR(1) model for CCOD,S and CNH4,S , AR(1) model for CODr and

AR(1) conditioned for P . See Table 1 for nomenclature definition). Output change greater than 15% is considered very high. Variable Cd

(not shown in the table) leads to a percentage of change less than 0.3%, while variables tfS and Levini (not shown in the table) lead to no

change in the output. Values greater than 15 are shown in bold font.

Input variable

Output variable qs CCOD,S CNH4,S qf CODr NH4r Atotal Aimp Cimp Cper pe Qd,max V Dd P

VChamber 4.2 0.0 0.0 3.0 0.0 0.0 8.6 7.1 5.9 7.2 4.2 16.7 7.5 0.8 13.4

VSv 2.9 0.0 0.0 1.7 0.0 0.0 19.6 11.6 13.5 16.1 2.9 13.1 16.5 0.2 17.8

QSv 0.6 0.0 0.0 0.2 0.0 0.0 2.7 1.5 1.1 1.8 0.6 13.1 14.8 0.6 12.4

BCOD,Sv 2.9 2.4 0.0 1.7 7.7 0.0 20.1 11.8 13.7 16.6 5.3 15.7 14.5 0.2 20.7

CCOD,Sv,Av 0.7 4.6 0.0 0.5 5.4 0.0 0.5 0.6 0.6 0.7 4.0 3.2 4.0 0.2 1.1

CCOD,Sv,99 .9 1.6 6.7 0.0 0.8 3.4 0.0 2.8 2.3 1.9 2.4 5.1 0.0 0.0 0.0 9.2

CCOD,Sv,Max 1.6 6.7 0.0 0.8 3.4 0.0 2.8 2.3 1.9 2.4 5.1 0.0 0.0 0.0 9.2

BNH4 ,Sv 3.1 0.0 3.3 1.8 0.0 6.7 20.4 12.0 13.8 16.8 6.4 17.0 13.4 0.3 22.1

CNH4 ,Sv,Av 0.9 0.0 5.8 0.6 0.0 4.2 0.6 0.8 0.9 0.9 5.3 4.3 5.4 0.2 1.5

CNH4 ,Sv,99 .9 1.6 0.0 7.6 0.8 0.0 2.4 3.5 2.6 2.3 2.9 6.1 0.0 0.0 0.0 11.3

CNH4 ,Sv,Max 1.6 0.0 7.6 0.8 0.0 2.4 3.5 2.6 2.3 2.9 6.1 0.0 0.0 0.0 11.3

as uncertain variables. The initial water level in the chamber Levini is very uncertain but the model output is not sensitive to410

this variable. Therefore, Levini was not included in the uncertainty analysis.

3.2 Uncertainty quantification of selected model input

After evaluation of the model output sensitivityand taking into account the degree of uncertainties of each input
::::::
ranking

:::
all

:::::
inputs

::
on

:::::
level

::
of

:::::::::
uncertainty

::::
and

:::::
model

:::::::::
sensitivity, we selected four input variables to be included in the uncertainty analysis.

These are CCOD,S , CNH4 ,S , CODr and P (Table 4).415

3.2.1 Sewage per capita COD and Ammonium

The fit of pdfs for the two uncertain inputs CCOD,S and CNH4 ,S was based on measurements under dry weather flow condi-

tions. Measurement campaigns were done in Goesdorf from 28th April to 24th June 2011, in Kaundorf from 22nd June to 18th

August in 2010 and from 20th July to 5th August in 2011, and in Nocher-Route from 18th November 2010 to 27th April 2011.

Samples of COD and NH4 in mg·l−1 (91 in total for each variable) were analysed. An average wastewater amount was420

calculated for Goesdorf (153 l·PE−1·d−1), Kaundorf (112 l·PE−1·d−1) and Nocher-Route (94.3 l·PE−1·d−1). Table 5 presents

summary statistics of the dry weather flow measurements of COD and NH4 and the corresponding value of CCOD,S and
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Table 4. Input variables of the EmiStatR model and selection of inputs for uncertainty analysis based on input uncertainty level and model

sensitivity level (legend: from ++ very uncertain/sensitive to – – not uncertain/sensitive).

Input variable Input uncertainty Model sensitivity Uncertainty analysis

Wastewater

1. qs + + no

2. CCOD,S ++ ++ yes

3. CNH4,S ++ ++ yes

Infiltration water

4. qf ++ + no

5. CODf – – – – no

6. NH4f – – – – no

Rainwater

7. P ++ ++ yes

8. CODr ++ ++ yes

9. NH4r + ++ no

Sub-catchment

10. Atotal + ++ no

11. Aimp + + no

12.Cimp + + no

13. Cper + ++ no

14. pe + + no

15. tfS – – – no

CSO structure

16. Qd,max – ++ no

17. V – ++ no

18. Dd – – – – no

19. Cd – – – – no

20. Levini ++ – – no
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CNH4,S . COD is converted to CCOD,S by means of a simple conversion from mg·l−1 to g·PE−1·d−1, by multiplying COD by

the measured per capita flow (112 l·PE−1·d−1) and dividing by 1,000. NH4 was converted to CNH4,S in a similar way.

Table 5. Summary statistics of dry weather flow measurements for CCOD,S and CNH4,S characterisation.

COD CCOD,S log(CCOD,S) NH4 CNH4,S log(CNH4,S)

[mg·l−1] [g·PE−1·d−1] log(g·PE−1·d−1) [mg·l−1] [g·PE−1·d−1] log(g·PE−1·d−1)

Min 61.9 6.9 1.936 16.10 1.745 0.556

P5 216.8 23.8 3.167 20.55 2.102 3.018

Mean 925.5 104.2 4.378 44.38 4.733 1.473

P95 2032.0 236.8 5.466 79.00 7.684 2.039

Max 3454.0 528.5 6.270 81.20 10.771 2.377

St. deviation 631.7 87.5 0.751 18.56 1.917 0.410

Closer inspection showed that CCOD,S and CNH4 ,S observations are best characterised by a lognormal distribution (Fig. ??
::::::::::::
Supplementary425

:::::::
Material,

:::::::
Section

:::
S4). Since CCOD,S and CNH4 ,S are dynamic and cross-correlated, we calibrated a bivariate AR(1) model

with state vector Y = [log(CCOD,S ) log(CNH4 ,S )]T . The estimated parameters of the model using the methodology described

in Section 2.5.3 are:

µ =

 4.40947

3.70411

 A =

 0.99165 − 0.00319

−0.00009 0.99455

 C =

 0.00913 0.00224

0.00224 0.00185

 (13)

The defined multivariate autoregressive model also capture the dynamic behaviour, temporal correlation and cross-correlati-430

on of the input variables, deriving the probability distributions of CCOD,S and CNH4 ,S from measurements in the Haute-Sûre

catchment, which agreed well with values reported in the literature (Katukiza et al., 2014; Heip et al., 1997).

3.2.2 Runoff COD concentration

Regarding CODr , due to the fact that no field measurements were available, expert judgement and reference values from the

literature were the basis to characterise the pdf of this input variable. The variable was assumed to be lognormally distributed435

with a mean value of 71 [mg·l−1]. Although, House et al. (1993) and Welker (2008) reported a higher value, 107 [mg·l−1] for

CODr , we selected a lower value due to the specific characteristics of the CSO system in the Haute-Sûre catchment. The value

of 150 [mg·l−1] as standard deviation of CODr leads to a coefficient of variation (sd·mean−1) equal to 2.11, which is greater

than the coefficient of variation for CCOD,S (0.84). We allow the standard deviation of CODr to be greater than the standard

deviation of CCOD,S , because COD measurements in rain water are very uncertain.440

Histogram of observations, empirical density (red dashed line) and theoretical normal density (blue line) for (a) log(CCOD,S );

(b) log(CNH4 ,S ); (c) log(CODr ).
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3.2.3 Input precipitation model

Precipitation and its associated uncertainty was modelled as an autoregressive model conditioned to the observed precipitation

at a nearby measurement station. We assumed a multivariate lognormal distribution and included temporal correlation of the445

simulated time series. Calibration of the precipitation model is done with the mAr package as explained in Section 2.5.4 and

using 10-minute precipitation time series of stations Esch-sur-Sûre and Dahl for 2010. Upon calibration of the multivariate

autoregressive model, we proceeded with the conditional simulation of Yc (
:::::::::::::
Supplementary

:::::::
Material,

:::::::
Section

::::
S3.2,

:
Eq. (??

:
5)).

For this, we computed the parameters of the model as shown in Eq. (14). The model parameters are given by (Torres-Matallana

et al., 2017):450

µ1 = 2.85501

µδ = 0.10194
B =

 0.95650 0.03980

0.02429 0.88304

 σ2
1 = 0.07241

σ2
δ = 0.07951

ρ1δ =−0.03876

(14)

Next we generated conditional simulations of the 10-minute precipitation for 2010 for each subcatchment using the approach

described in Section 2.5.4. Note that this involves simulating log-transformed precipitation which can easily be transformed

to precipitation data using the antilog. The simulation procedure was repeated as many times as simulated precipitation time

series were required for the MC uncertainty propagation analysis.455

The simulated precipitation time series captured the main statistics of the observed time series well.
:::
The

:::::
reader

::::
can

::::
find

:::::::
evidence

:::
for

:::
this

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::
(Table

:::
S1

:::
and

::::::
Figure

:::
S2).

:
Despite the satisfactory performance of the proposed

method, some cases showed an overestimation of the simulated precipitation, mainly due to high values of the ratio of the

multiplicative factor δ(t). This behaviour was also recognised by McMillan et al. (2011), who stated that the multiplicative

factor used in their study “does not capture the distribution tails, especially during heavy precipitation where input errors460

would have important consequences for runoff prediction”.

3.3 Uncertainty propagation
::::::
analysis

Model output sensitivity and the degree of uncertainties evaluation of each model input helped to define the four input variables

included in the uncertainty analysis: CCOD,S , CNH4 ,S , CODr and P . In this section we present the results of the uncertainty

propagation for these four selected input variables to the model output, both for water quantity (volume in the combined sewer465

overflow tank, CSOT, and overflow volume and flow) and for water quality (loads and concentrations of chemical oxygen

demand, COD, and ammonium, NH4).

3.3.1 Monte Carlo simulation size
::::::
output

:::
and

:::::::::::
uncertainty

::::::::::::
quantification

In order to perform the MC propagation analysis, we first did a convergence test to estimate the number of simulations required.

Besides this test, we also computed the standard error of all MC outputs. These two methods have the same aim and are closely470

related. In the convergence test, the standard deviation of two different MC simulations with different random seeds were
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computed and compared for the
:::
The

:
seven output variables of

::::
from EmiStatR , three representing water quantity variables

(VChamber, VSv and QSv) and four for water quality (BCOD,Sv , BNH4,Sv, CCOD,Sv,av , and CNH4,Sv,av). The results of the

test indicated that in most cases between 250 and 1,000 MC simulations are enough to reach stable results in terms of the

Nash–Sutcliffle model efficiency coefficient (NSE), where a NSE of 1 means a perfect match between observations and model475

output. In this case we got a NSE≈ 0.998 for overflow volume. Regarding the water quality variableBCOD,Sv , the test showed

that a larger number of MC simulations is required. Between 1,000 and 2,000 simulations are required to reach stable results

(NSE ≈ 0.880 for overflow COD load and 0.998 for overflow NH4 load). Therefore, a number of 1,500 MC simulations was

used to perform the uncertainty analysis of the water quantity and water quality outputs. Figure ?? illustrates results of the

convergence test for the cases where the number of MC replications is 250, 1,000 and 1,500. In this figure the MC1 output is480

plotted on the x-axis and MC2 output on the y-axis. Although the model output corresponds to yearly time series at 10 minutes

resolution, we only plotted those points where the overflow magnitude, and therefore COD and NH4 load, is different from

zero. As an indication, for a MC replication size of 1,500, the NSE values for overflow COD and NH4 concentrations are 0.816

and 0.998, respectively.

Results of the MC convergence test for (a, b, c) volume in overflow; (d, e, f) overflow COD load; (g, h, i) overflow NH4485

load. Each open circle refers to a ten minute time instant in 2010. As an indication, for a MC replication size of 1,500, the NSE

values for overflow COD and NH4 concentrations are 0.816 and 0.998, respectively. Dotted line is the 1:1 line. SD = Standard

Deviation.

The computing times per MC replication are presented in Table ??. The computations were performed with two different

Linux machines, a laptop with four cores for simulations between 50 and 500 replications, and a server with 80 cores for490

performing the simulations above 500 replications. Similar execution times were reached for MC1
::::
were

:::::::
analysed

:::
by

:::
MC

:::::
input

:::::::::
uncertainty

:::::::::::
propagation.

::
A

:::::::
detailed

::::::::::
description

::
of

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::::
size

:
and MC2 for one-month time series at

10-min time steps (August 2010, 4,464 time steps), while substantial differences were obtained when the 80 cores server was

used. We obtained similar timing for 1,500 replications with 50 cores as for 250 replications using three cores in the laptop.

The timing reached demonstrates the feasibility to perform a solid MC uncertainty propagation analysis with EmiStatR.495

Average running time in minutes for Monte Carlo (MC) replications and specific cores used with two different seeds for the

pseudo-random number generator in R. The rainfall input used was a one year length time series with 10 minutes time steps

from 1 to 31 August 2010 (4,464 time steps). Replications 250 500 1000 1500 2000 cores 3 3 50 50 50 MC1 7.12 14.23 4.84

7.33 9.40 MC2 7.09 14.63 4.96 7.26 9.53 Average 7.10 14.43 4.90 7.29 9.46
:::::
timing

::
is

::::::::
presented

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::
(Section

:::
S5).

:
500

3.3.2 Monte Carlo output and uncertainty quantification

The seven output variables from EmiStatRwere analysed by MC input uncertainty propagation. Figure 3 illustrates the un-

certainty propagation outcomes for the first Monte Carlo simulation, where all input variables vary stochastically. The MC

simulations were performed for the entire year 2010 at 10 minutes time step, which were aggregated to hourly time steps in

the figure. The aggregation function used for precipitation, CSO chamber volume, CSO spill volume and loads was the sum,505
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whereas for CSO spill flow and concentrations the aggregation function it was the mean. The figure (top) shows input precipi-

tation as main driving input. For illustration purposes, two events of two-day duration each are shown. The first event occurred

in spring (May 2010), the second in both events, and shows that the uncertainty is high when there is a high precipitation event.

The more intense the precipitation input, as seen in the figure inset at top-left (May event), the greater the uncertainty band

width for overflow flow, as well as for COD and NH4 loads (insets three and four) and concentrations (insets five and bottom).510

The MC estimated statistics and the standard errors (se) are presented in Table 6. The table shows the uncertainty quantification

of outputs obtained from the MC uncertainty propagation for the first MC simulation (all selected input variables are uncertain).

Table 6. Monte Carlo estimated statistics and standard errors (se) by bootstrapping for the MC simulations, where all selected input variables

are uncertain R (model run at 10 minute time steps and MC results aggregated to one hour averages over one year period). See Table 1 for

output variable nomenclature and units. Interq. = Interquartile; quant. = quantile; pbw = prediction band width; sd = standard deviation; var

= variance; cv = coefficient of variation.

Mean Interq. Range 0.005 quant. 0.995 quant. 99% pbw 0.05 quant. 0.95 quant. 90% pbw sd var cv

µMC IQR ζ0.005 ζ0.995 ζw,0.99 ζ0.05 ζ0.95 ζw,0.90 σMC σ2
MC CVMC

VChamber 92.51 13.65 77.55 109.16 31.60 81.02 104.28 23.25 8.27 2,984 0.100

se 2.53 1.17 2.18 3.17 1.48 2.27 2.95 1.36 0.56 482 0.001

VSv 3.18 3.69 0.85 6.60 5.76 0.94 5.76 4.82 1.98 1,100 0.070

se 0.51 0.73 0.24 0.95 0.95 0.26 0.91 0.83 0.35 259 0.012

QSv 55.49 76.77 0.37 267.1 266.7 1.24 165.3 164.1 64.50 7,332 1.585

se 5.67 10.26 0.13 13.75 14.54 0.22 10.82 10.89 4.57 1,102 0.048

BCOD,Sv 1.18 1.69 0.04 6.11 6.06 0.07 3.49 3.41 1.27 394 0.087

se 0.20 0.31 0.02 1.02 1.00 0.03 0.59 0.59 0.21 81.71 0.013

BNH4,Sv 0.052 0.077 0.004 0.174 0.170 0.006 0.125 0.120 0.045 0.546 0.075

se 0.009 0.014 0.002 0.029 0.028 0.002 0.022 0.021 0.008 0.115 0.013

CCOD,Sv,av 170.0 164.6 3.80 909.7 905.9 15.49 465.8 450.3 161.9 36,151 0.988

se 9.02 11.38 0.33 40.12 40.40 1.02 24.66 24.03 7.94 4,615 0.016

CNH4,Sv,av 7.19 6.65 0.47 29.20 28.74 0.86 17.51 16.64 5.66 46.93 0.815

se 0.41 0.61 0.02 1.23 1.22 0.06 0.91 0.87 0.29 6.62 0.016

Table 6 shows the standard deviation (sd) and the coefficient of variation (cv) for the seven output variables considered

in the uncertainty propagation. For the volume in the CSO chamber, VChamber, the annual mean standard deviation, σMC,

(8.27 m3) is lower than the mean, µMC, (92.51 m3). This goes along with an annual mean coefficient of variation (CVMC)515

of 0.100. A (CVMC) greater than 1 means large uncertainty. The overflow spill volume, VSv, had a coefficient of variation of

0.070, while it was 1.585 for the overflow flow, QSv. This shows that the relative uncertainty of the overflow flow is very

large. Regarding the overflow COD load, the annual mean (1.18 kg) is similar as the annual mean standard deviation (1.27

kg). Similar behaviour was observed for the overflow COD concentration, which had an annual mean value of 170 mg/l and

a standard deviation of 162 mg/l. For overflow NH4 load and overflow NH4 concentration the annual mean also had the same520

order of magnitude as the annual mean standard deviation. Overflow COD and NH4 loads had a coefficient of variation of
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0.087 and 0.075, respectively, whereas the coefficient of variation for concentrations were 0.988 and 0.815, respectively. This

suggests that overflow concentrations are more uncertain.

Low standard errors (se) for the coefficient of variation were obtained for all seven outputs. These were never greater than

0.05, which indicates that the selected MC replication size (1,500 formc1) is a suitable value. This holds for all output statistics,525

because in all cases the standard error is small to the estimated value.

3.3.2 Contributions of input variables to total uncertainty

The contributions of input variables to the total uncertainty of the model inputs were also computed using the procedure

described in Section 2.6.4. A total of four MC simulations with a total of 6,000 runs were performed for estimating Si (Eq.

(10)). Afterwards, four contributions were evaluated per time step and aggregated for the whole year. Following Eq. (10), the530

per time step contributions of input variables to output variables in terms of percentage of variance, stochastic sensitivity Si of

the input variables CCOD,S , CNH4,S , CODr and P were calculated. An example of the contributions analysis per time step

is presented in Fig. 4. Here we remark that a high uncertainty over time is shown mainly for the Spring event.

The aggregated over time contributions of input variables to output variables in terms of percentage of variance, stochastic

sensitivity Si of the input variables, were also calculated (Table 7). Note that P is the only source of uncertainty for VChamber535

and VSv, while uncertainty in NH4 inputs only propagates to NH4 outputs, and similar for COD (Fig. 4).

Table 7. Aggregated over time contribution of input variables to output variables in terms of percentage of total variance

Stochastic sensitivity, Si, of input variable [%]

Output variable Total CCOD,S CNH4,s CODr P

VChamber 100.0 0.0 0.0 0.0 100.0

VSv 100.0 0.0 0.0 0.0 100.0

BCOD,Sv 100.0 65.7 0.0 2.9 31.4

CCOD,Sv,av 100.0 62.4 0.0 8.7 28.9

BNH4 ,Sv 100.0 0.0 34.4 0.0 65.6

CNH4 ,Sv,av 100.0 0.0 35.3 0.0 64.7

We found, as expected, that precipitation, P , is the only source of uncertainty from all uncertain input considered for water

quantity output variables VChamber and VSv. Regarding average values for the whole year, for the water quality output variables

BCOD,Sv and CCOD,Sv ,av , CCOD,s has the largest contribution to the output variance, about 66 percent for BCOD,Sv and about

62 percent for CCOD,Sv ,av . The second variable that contributes to uncertainty of these COD output variables is P , with about540

3 percent for BCOD,Sv and 9 percent for CCOD,Sv ,av . Similarly, the input variable CNH4,S play an important role in the

contribution of total uncertainty for BNH4 ,Sv (on average about 34 percent of the variance for the whole year) and CNH4 ,Sv ,av

(about 35 percent). Equally contributing to uncertainty of these NH4 output variables is P with about 66 percent for BNH4 ,Sv
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Figure 3. Uncertainty propagation outcomes for the first Monte Carlo simulation, where all input variables vary stochastically. The 99%

prediction interval is shown as light grey shade, 90% prediction interval is shown as dark grey shade, mean value as blue line. The MC

simulations were performed for the entire year 2010 at 10 minutes time step, aggregated to hourly time steps in the figure. Input precipitation

(top). Overflow spill flow, the upper dashed red line indicates the 75 l/s threshold, lower dotted red line the 37.5 l/s threshold (second).

Load of overflow COD (third). Load of overflow NH4 (fourth). Average spill COD concentration. Upper dashed red line indicates the 125

mg/l threshold and the lower dotted red line indicates the 90 mg/l threshold (fifth). Average spill NH4 concentration. Upper dashed red line

indicates the 5.0 mg/l threshold, lower dotted red line the 2.5 mg/l threshold (bottom).
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Figure 4. Temporal contributions of input variables to load of overflow COD (top) load of overflow NH4 (second); concentration of overflow

COD (third); concentration of overflow NH4 (bottom) in terms of variance. The MC simulations were performed for the entire year 2010

at 10 minutes time step, which were aggregated to hourly time steps. For illustration two periods are shown from 28 to 30 May 2010 (left);

and from 7 to 9 September 2010 (right).
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and 65 percent for CNH4 ,Sv ,av . From these results we can infer that precipitation is a main source of uncertainty for all six

outputs considered.545

3.4 Uncertainty and water quality impact

Quantification and assessment of the water quality impact is an important step after the uncertainty propagation. As described

in Section 2.7, the assessment of water quality standards was done taking into account the reference thresholds recommended

in the European Union guidelines for COD, and the German and Austrian guidelines for hydraulic impact and acute ammonium

toxicity.550

3.4.1 Hydraulic impact

From the time series of daily values for 2006 to 2013 of the river Sûre, a daily flow expected with return period once per year

(1.01 years),Qr1 of 16 m3·s−1 was computed at Heiderscheidergrund, which corresponds with the entire catchment area of the

Haute-Sûre stormwater system (182.1 ha). Therefore, we estimated the river daily flow in the Goesdorf CSOT as a proportion

to 30 ha, which is equal to 2.6 m3·s−1. Following Eq. (11), the maximum sewer overflow discharge with return period one555

year Q1 can have a value between 0.26 m3·s−1 and 1.32 m3·s−1. Accordingly, with the German guideline ATV-A 128 (1992)

(Eq. (12)), two additional thresholds are defined for the maximum sewer overflow discharge with return period one year for the

Goesdorf catchment (Aimp = 5.0 ha). Q1 is expected to vary between 37.5 l·s−1 and 75.0 l·s−1. We contrasted these values

with those obtained from the uncertainty analysis. From Table 6, we obtained a one hour mean value for the overflow spill flow,

QSv, of 55.5 l·s−1, 90% prediction band width of 164.1 l·s−1, and standard deviation of 64.5 l·s−1. Figure 3 (second) presents560

the overflow spill flow for the two periods chosen for illustration. The upper dashed red line indicates the 75 l·s−1 threshold

and the lower dotted red line indicates the 37.5 l·s−1 threshold. Table 8 (top) shows the exceedance percentage of overflow

spill flow over the 37.5 and 75.0 l·s−1 thresholds for the mean, 0.95 quantile and 0.995 quantile. We found a 0.49% exceedance

of the mean value over the 37.5 l·s−1 threshold and about 1.7% for the quantiles. As expected, slightly lower percentages were

found for the 75.0 l·s−1 threshold.565

3.4.2 COD concentration

A reference COD concentration emission in CSOs was presented in Section 2.7.2. For the European Union, a value of 125

mg·l−1 is used. We obtained a one hour average spill COD concentration with a mean of 170 mg·l−1, standard deviation of 162

mg · l−1, and a 90% prediction band width of 450 mg · l−1. Figure 3 (fifth) presents the average spill COD concentration. Upper

dashed red line indicates the 125 mg/l threshold, lower dotted red line the 90 mg/l threshold. The mean COD concentration570

in the overflow volume was higher than the thresholds. However, note that when entering the river system it will quickly be

diluted, suggesting that the negative impact on the environment will be dampened by the receiving water body.

Table 8 (centre) shows the exceedance percentage of overflow COD concentration over the 90 and 125 mg·l−1 thresholds for

the mean, 0.95 quantile and 0.995 quantile. We found a 1.62% exceedance of the mean value over the 90 mg·l−1 threshold and
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about 1.8% for the quantiles. Slightly lower percentages were found for the 125 mg·l−1 threshold for the mean value (1.03%).575

For the quantiles equal values were found as for the 90 mg·l−1 threshold.

3.4.3 Acute ammonium toxicity

We compared the acute ammonium toxicity reference values presented in Section 2.7.3 (2.5 mg · l−1 for the ammonium con-

centration calculated for one hour duration for salmonid streams, and for cyprinid streams a maximum value of 5.0 mg · l−1),

with the values we found for ammonium. An average spill NH4 concentration with a mean of 7.19 mg · l−1, standard deviation580

of 5.66 mg · l−1, and 90% prediction band width of 16.64 mg · l−1 was obtained. Figure 3 (bottom) shows the average spill NH4

concentration for the two periods chosen for illustration. The ammonium (NH4) concentrations in the overflow flow are higher

than the reference values, which are given for concentrations in the river.

Table 8 (bottom) shows the exceedance percentage of overflow NH4 concentration over the 2.5 and 5.0 mg·l−1 thresholds

for the mean, 0.95 quantile and 0.995 quantile. We found a 1.8% exceedance of the mean and quantile values over the 2.5 and585

5.0 mg·l−1 thresholds. A slightly lower percentage (1.1%) was found for the 5.0 mg·l−1 threshold, regarding mean value.

Table 8. Frequency (percentage) over time that environmental thresholds are exceeded for different statistics of the overflow spill flow, COD

and NH4 concentration.

Output variable Threshold Statistic Exceedance percentage

QSv [l·s−1] 37.5 Mean 0.49

37.5 0.95 quantile 1.71

37.5 0.995 quantile 1.74

75.0 Mean 0.31

75.0 0.95 quantile 1.51

75.0 0.995 quantile 1.72

CCOD,Sv,av [mg · l−1] 90.0 Mean 1.62

90.0 0.95 quantile 1.80

90.0 0.995 quantile 1.82

125.0 Mean 1.03

125.0 0.95 quantile 1.80

125.0 0.995 quantile 1.82

CNH4,Sv,av [mg · l−1] 2.5 Mean 1.78

2.5 0.95 quantile 1.80

2.5 0.995 quantile 1.82

5.0 Mean 1.05

5.0 0.95 quantile 1.78

5.0 0.995 quantile 1.82
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4 Discussion

This study aimed to select and characterise the main sources of input uncertainty in urban water systems, while accounting

for temporal auto- and cross-correlation of uncertain model inputs, by propagating input uncertainty through the EmiStatR

model, and quantifying and assessing the contributions of each uncertainty source to model output uncertainty dynamically590

(over time). In the following discussion, we start with the accuracy of Monte Carlo analysis. Then, we discuss the
:::::::::
uncertainty

:::
and water quality impact of the model outputs to the environment, in relation to the uncertainty analysis, and finally.

:::::
Next,

:::
we

::::::
discuss

:::
the

:::::::
accuracy

:::
of

:::::
Monte

::::::
Carlo

:::::::
analysis,

::::::::
followed

::
by

::
a
:::::::::
discussion

::
of

:::::
other

::::::
sources

::
of

::::::::::
uncertainty.

:::::::
Finally, we highlight

some limitations and possible solutions of the approach used in this work.

4.1 Uncertainty and water quality impact595

Next we discuss how the uncertainty propagation analysis done gives additional insight regarding hydraulics, COD concentra-

tion and acute ammonium toxicity impact on water quality over the river Sûre due to the CSO discharges under study. After

doing the uncertainty propagation analysis we not only have predictions of model outputs but we also know how uncertain

these are. An added value arises when we take into account the uncertainty information. For the case of the overflow spill flow,

the expected model output (mean of 55.5 l·s−1) is below the environmental threshold of 75 l·s−1, but the 0.95 quantile (164.1600

l·s−1) is much above the threshold. This indicates that there is a considerable chance of being above the threshold.

Regarding water quality outputs, although the mean model output for COD and NH4 concentrations is fairly above of the

thresholds, the 0.95 quantile is 2.7 times above the mean value for COD concentration, and 2.4 times above the mean value

for NH4. Also here we can conclude that we are not certain that we are below the threshold, because there is a considerable

probability that the true values are above, even though the expected value is below the thresholds.605

We were able to compute the water quantity and quality at CSO outlet to the river. We found that water quality (COD and

NH4) were sometimes above the environmental threshold. Even if the expected value was below the threshold there could

still be a considerable probability that the quality was above the threshold because of the large uncertainty. Therefore, policy

and decision makers and water managers need to be aware of this, because whenever concentrations are above the threshold

this may harm the environment. Nevertheless it is worth noting that we computed concentration in the outlet of the CSO.610

When this spilled water enters the river it will quickly mix with the much cleaner river water and concentrations will drop

quickly, so it is only a local problem. How local it is and how the river water quality is distributed in space and time is not

an easy problem to solve and requires the use of hydrological and hydraulic river models e.g. SIMBA (IFAK, 2007) or MIKE

11 (DHI, 2017). Those models have been well-developed and for some of them uncertainty analyses have also been done

(Beven and Binley, 1992; Refsgaard, 1997; Beven and Freer, 2001; Vrugt et al., 2003a, 2008; Beven et al., 2010; Andrés-615

Doménech et al., 2010; Beven, 2012; Jerves-Cobo et al., 2020; Yu et al., 2020), but obviously such uncertainty analyses can

only be done if the inputs to these models are known as well as the uncertainty associated with these inputs. One of these

inputs is inlet from CSO. That is where our paper makes a very valuable contribution, because our work has quantified water

quantity and quality of CSO structures, including uncertainty, and that is exactly what these river models need to be able to do
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an uncertainty propagation analysis.
::
We

::::
also

:::::::::
recognise

::::
other

::::::::
attempts

::
on

:::::::
quantity

:::::
(e.g.

:::::::::::::::::::
Sriwastava et al. (2018)

:
)
:::
and

:::::::
quality,620

::::::::
especially

::::::::::::
measurements

:::::
taken

::
at

:::::
CSOs,

::::::
which

::::::::::
demonstrate

:::
that

:::
the

::::::::
measured

:::::
water

::::::
quality

::
at
:::
the

:::::::
WWTP

::::::
influent

::
is
::::::::
expected

::
to

:::::
render

::
a
:::
low

:::::::::::::
representativity

:::
of

:::
the

:::::::::
conditions

::
at

:::
the

:::::
CSOs

::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::
Brombach et al. (2005); Diaz-Fierros T et al. (2002)

::
).

:::
We

::::::
present

::::
some

:::::::::::
comparisons

::::
with

:::::
these

::::::
studies

::
in

:::
the

::::::::
following

:::::
lines.

:::::::::::::::::::
Sriwastava et al. (2018)

:::::
apply

::::::::::
uncertainty

::::::::::
propagation

::
to

::
a
:::::::
complex

:::::::::::::
hydrodynamic

::::::
model

:::
for

::::::::::
quantifying

:::::::::
uncertainty

:::
in

:::::
sewer

:::::::
overflow

::::::::
volume.

:::::
They

::::
used

::::
MC

:::
for

::::::::::
uncertainty

::::::::::
propagation

::::
and

:::::
Latin

:::::::::
hypercube

::::::::
sampling

::::::
(LHS)

:::
as

::
an

::::::::
efficient625

:::::::
sampling

:::::::
scheme.

:::::::::
Although

::::
LHS

:::::::
ensures

:
a
:::
full

::::::::
coverage

::
of

:::
the

:::::::
sample

:::::
space

:::
and

::::::::
provides

:
a
:::::
faster

:::::::::::
convergence

::::
than

::::::
simple

::::::
random

:::::::::
sampling,

:::
the

::::
LHS

:::::::::
application

:::
in

:::
the

::::
case

::
of

:::::::
dynamic

::::::
model

:::::
inputs

:::::
(e.g.

:::::::::::
precipitation,

:::::
COD

:::
and

::::
NH4:::::::

inputs)
::
is

:::
not

:::::
trivial

:::
and

:::
its

:::::::::::::
implementation

:
is
:::::
more

:::::::
complex

::::
than

:::
in

::
the

::::
case

:::
of

:::::::
sampling

:::::
from

:::::
static

:::::::
variables

::::
(i.e.,

::::::::
uncertain

::::::::::
constants).

::
In

:::
our

:::::
study,

::
we

::::::::
sampled

:::
time

:::::
series

::
of

::::::::
dynamic

:::::
inputs

:::::
using

::
an

:::::::::::::
implementation

::
in

:::::::::
stUPscales

:::::::::::::::::::::::::::::::
(Torres-Matallana et al., 2019, 2018a)

:
.630

::::::::::::::::::::::
Diaz-Fierros T et al. (2002)

:
,
::
in

:
a
:::::
study

::
in

:::
the

:::
city

:::
of

:::::::
Santiago

:::
de

::::::::::
Compostela

::::::::::
(North-West

::::::
Spain,

:::::::::
population

:::::
about

:::::::
100,000

::::::::::
inhabitants),

:::::
where

::
a

::::::::
combined

:::::
sewer

::::::
system

:::::
feeds

:
to
::
a
::::::
grossly

::::::::::
under-sized

:::::::::
wastewater

::::::::
treatment

:::::
plant,

:::::::
reported

::
an

:::::
event

:::::
mean

:::::::::::
concentration

:::::::::::::::::::::::
(Diaz-Fierros T et al. (2002)

:
,
::::
Table

:::
4)

::
for

:::
the

::::::
output

:::::::
variables

:::::::::::
CCOD,Sv ,av :::

and
::::::::::
CNH4 ,Sv ,av::

of
:::::
329.1

::::::
mg·l−1

::::
and

:::
8.7

::::::
mg·l−1,

:::::::::::
respectively.

:::::
These

::::::
values

:::
are

:::::
larger

::::
than

::::
those

::::::
found

::
by

:::::::::::::::::::
Brombach et al. (2005)

:
,
:::
and

:::::
more

::
in

::::::::
agreement

:::::
with

:::
our

:::::::
findings,

:::::::::
especially

:::
for

:::
the

::::
case

::
of

:::::::::::
CNH4 ,Sv ,av .

:::::::::::::::::::::::
Diaz-Fierros T et al. (2002)

:::::::
reported

:::::
values

:::
of

::::::::::
CCOD,Sv ,av:::

as
::::
high

::
as

:::::
1073635

::::::
mg·l−1,

::::::
which

:::::
agrees

::::
with

:::
the

:::::::::
right-hand

:::
tail

:::
of

:::
the

:::::::::
distribution

::::::::
obtained

::
in

:::
our

:::::
study

::::
(i.e.

:
a
:::::
0.995

:::::::
quantile

::
of

:::::
909.7

::::::::
mg·l−1).

::::::::
Similarly,

:::
for

::
the

::::
case

::
of
:::::::::::
CNH4 ,Sv ,av ,

:::::::::::::::::::::::
Diaz-Fierros T et al. (2002)

:::::::
reported

:::::
values

::
as

::::
high

::
as

::::
32.5

:::::::
mg·l−1,

::::::::::
comparable

::::
with

:::
the

:::::
0.995

::::::
quantile

::::::
(29.20

:::::::
mg·l−1)

:::::
found

::
in

:::
our

::::::
study.

:
It
::
is

:::::
worth

::::::
noting

:::
that

::::::::
regarding

::::::::::::
measurements

:::::
taken

::
at

:::::
CSOs,

:::
the

:::::::::
measured

::::
water

::::::
quality

::
at
:::
the

:::::::
WWTP

::::::
influent

::
is
::::::::
expected

::
to

:::::
render

:
a
::::
low

::::::::::::
representativity

::
of

:::
the

:::::::::
conditions

::
at

:::
the

:::::
CSOs

::
as

:::::::
reported

::
by

:::::::::::::::::::::::
Diaz-Fierros T et al. (2002)

:::
and

:::::::::::::::::::
Brombach et al. (2005)640

:
.
:::::
Thus,

::::
when

::::::::::
comparing

:::::
model

:::::::
outputs

::::
with

::::::::::
independent

:::::::::::::
measurements,

:::
one

::::::
should

::::
bear

::
in

:::::
mind

:::
that

::::::::::::
discrepancies

:::::::
between

::::::::
measured

:::
and

::::::::
predicted

:::
are

:::
not

::::
only

::::::
caused

:::
by

:::::
errors

::
in

:::::
model

::::::
inputs,

::::::
model

:::::::::
parameters

:::
and

::::::
model

::::::::
structure,

:::
but

:::
are

::::
also

:::
the

::::
result

:::
of

:::::
errors

::
in

:::
the

:::::
water

::::::
quality

::::::::::::
measurements.

:

4.2 Accuracy of Monte Carlo analysis

Regarding the Monte Carlo replication size for uncertainty propagation, we presented in Fig. ??
::
S4

::::::::::::::
(Supplementary

::::::::
Material)645

the results for three output variables and three replications size 250, 1,000 and the selected 1,500 (NSE closer to 1.0 for most of

the output variables). We compute replications for 50, 100, and from 250 to 2,000 at steps of 250 replications the comparison

of two equal MC runs (MC1 and MC2) with different seed for the pseudo-random number generator. the results suggest that

the output variables related to COD (load and concentration) have a larger dispersion when we compare MC1 and MC2 for the

same replications size. This is also reflected in the larger standard errors reported in Table 6 for e.g. the overflow COD load.650

Nevertheless, 1,500 runs are a feasible MC replication size for running a relative simple and fast model as EmiStatR (7.29

minutes in average execution time using parallel computing and 50 cores for a time series with 4,464 time steps). For a more

complex full hydrodynamic model with a high computational burden, 1,500 replication four times to compute contributions
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it may be not possible. Therefore, we suggest to check the intermediate results of the MC convergence test and we will find

that e.g. for quantity variables as the spill overflow volume and quality variables as the overflow NH4 load, 250 replications655

(7.10 minutes in average execution time using parallel computing and three cores for a time series with 4,464 time steps) per

individual MC execution seem to be enough, which make more feasible the execution of this kind of uncertainty propagation.

Figures 3 and 4 shows that there is a large uncertainty for the early May event and smaller uncertainty for the September

event. This is due mainly to the presence of a large dry period before the spill event in May, i.e. a shorter dry period preceding

the spill flow leads to a lower uncertainty. This finding suggest also an interaction between the antecedent dry period and the660

concentration of pollutants.

4.3 Other sources of uncertainty

In this work we only looked at input uncertainty and not at parameter and model structural uncertainty. Further research can

be done on those topics. Neumann (2007) address how are uncertainty ranges for parameters of full scale systems obtained

and how does model structure uncertainty manifest itself and can be quantified for performance evaluation and design of urban665

water infrastructure. Moreno-Rodenas et al. (2019) also studied and depicted how model parameter is an important source of

uncertainty. They emphasised that “still, uncertainty analysis is seldom applied in practice and the relative contribution of

the individual model elements is poorly understood.”. Also, they highlighted that after inferring the river process parameters

with system measurements of flow and dissolved oxygen, combined sewer overflow pollution loads became the dominant

uncertainty source along with rainfall variability. These findings agreed with our results.670

Bachmann-Machnik et al. (2018) recognised that the most important parameters causing uncertainties in the sewer system

model are connected area and the stormwater runoff quality. Our analysis confirms these findings, specifically regarding the

stormwater runoff quality. In our study the input variable runoff COD was an important source of uncertainty with relation to

the annual mean overflow COD released from the CSO.

4.4 Limitations and possible improvements675

Despite the extensive temporal uncertainty propagation analysis the approach also has some limitations which we present

hereafter addressing possible solutions in future work.

1. Incorporation of the spatial distribution of model inputs. Specifically for precipitation, Breinholt et al. (2012) stated

that due to a poor representation of the spatial precipitation that is measured by point gauges and the complexity of

the sewer systems, large output uncertainty can be expected. We also infer that we obtained a large output uncertainty680

due to neglect of the inherent spatial variability of precipitation. Therefore, we suggest that further research is needed

to account for spatial variability of precipitation, that can bring light to understand how this variability impacts in the

output uncertainty and quantify it properly. This issue should be related also to the problem of change of support. When

modelling precipitation, we also ignored the support effect, i.e. we ignored that the sub-catchment area is much greater
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than a point. Future research may address this issue of change-of-support. Studies that tackled this issue are found e.g.685

Leopold et al. (2006); Wadoux et al. (2017); Cecinati et al. (2018).

2. Linkage of sub-models and uncertainty compensation effect. Tscheikner-Gratl et al. (2019) addressed the question

as to whether there is an increase in uncertainty by linking integrated models or if
:::::::
whether a compensation effect could

take place and that
::
by

::::::
which overall uncertainty in key water quality parameters actually decreases. We contribute in

this discussion by advising to quantify
::::::::
decreases.

:::::
Some

::::::
further

::::::
insight

::::
into

:::
this

:::::
topic

:::::
could

::
be

:::::::
obtained

:::
by

::::::::::
quantifying690

uncertainties at sub-model level, because as we demonstrated the computational budget can be reduced and make it

feasible when dealing at the sub-module uncertainty propagation
:::
and

:::::::::
analysing

:::::::
whether

:::::::::
uncertainty

::
at
:::::::::
sub-model

:::::
level

:
is
::::::
greater

:::
or

::::::
smaller

::::
than

::
at

:::
the

::::::
overall

:::::
level.

::::
With

:::
our

:::::::::::::
implementation

::::
this

:
is
:::
not

::
a
:::::::
difficult

:::
task

:::::::
because

:::::::
Emistat

:
R

::
has

::
a

:::::::
stringent

:::::::
modular

::::::
design

::
in

:::::
which

::
it
::
is

::::
easy

::
to

::::::
analyse

:::::::
outputs

:::
and

::::
their

:::::::::::
uncertainties

::
at

:::::::::
sub-model

::::
level.

3. Accounting for cross-correlation between the inputs precipitation and runoff COD concentration. It is worth noting695

that we did not include correlation between CODr and P . Including such correlation would yield a more realistic

model of the uncertainty because these variables are known to have a strong correlation. It is highly recommendable to

include correlations between CODr and precipitation, because loads in chemical oxygen demand are correlated with

the overland flow due to precipitation, which may transport distributed pollutants to the sewer system. Also the inputs

CCOD,s and CNH4 ,s can be related with a daily curve that reflect the pattern of consumption in the household like700

the German ATV-A 134 curve. We used the latest version of EmiStatR (version 1.2.2.0), which considers this kind of

patterns.

4. Absence of high frequency water quality observations to compare with model outputs and uncertainty prediction

bands. In order to gain understanding of the temporal dynamics of nutrients (nitrogen, N, and phosphorus, P), Yu et al.

(2020) applied high frequency monitoring in a groundwater fed low-lying urban polder in Amsterdam (The Netherlands).705

They argued that although spatial and temporal concentration patterns from discrete sampling campaigns of water quality

parameters, such as EColi, showed a clear dilution pattern, the temporal patterns of N and P were still poorly understood,

given their reactive nature and more complex biogeochemistry. Therefore, high frequency measurement, is a key factor

to understand these temporal dynamics and patterns.

5. Absence of a joint spatio-temporal uncertainty analysis. According to Zhou et al. (2020), the limitations in algorithms710

for classic uncertainty estimates is the cause that only the uncertainty in one dimension (either temporal variability or

spatial heterogeneity) is considered, whereas the variation in the other dimension is dismissed, resulting in an incomplete

assessment of the uncertainties. Zhou et al. (2020), also showed that classic metrics underestimate the uncertainty through

averaging, which means a loss of information in the variation across spatio-temporal scales. To handle this limitation,

suitable methods are the three-dimensional variance partitioning for a new uncertainty estimation in both spatio-temporal715

scales (Zhou et al., 2020), or spatio-temporal geostatistics (Gräler et al., 2016).
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6.
::::::::::
Uncertainty

::::::::
analysis

::::
with

::::::::
complex

:::::::
models.

:
In

::::
this

:::::::
research

:::
we

:::::
were

:::
able

:::
to

:::::::
conduct

:
a
:::::::::::::
comprehensive

::::::
Monte

:::::
Carlo

:::::::::
uncertainty

::::::::::
propagation

:::::::
analysis,

::::::
which

:::::::
required

:
a
::::
large

:::::::
number

::
of

::::::
Monte

::::
Carlo

:::::
runs.

::::
This

:::
was

:::::::
possible

:::::::
because

:::
we

::::
used

:
a
:::::::
strongly

:::::::::
simplified

:::::
urban

:::::
water

::::::
system

::::::
model,

:::::::
Emistat

:
R

:
.
:::
For

:::::
more

:::::::
complex

::::::
models

::::
that

::::
take

:::::
much

:::::
more

:::::::::
computing

::::
time,

::::::::::
application

::
of

::
a
::::::
Monte

:::::
Carlo

::::::::::
uncertainty

::::::::::
propagation

:::::::
analysis

:::
is

::::
more

:::::::::::
challenging.

::::::::
However,

::::::
given

::::::::
sufficient720

::::::::
resources

:
it
::
is
::::::::
possible,

:::::::
because

::::
each

::::::
model

:::
run

:::
can

:::
be

:::
run

::::::::::::
independently

:::
and

:::::
hence

:::
the

:::::::
analysis

::
is
:::::::::
extremely

:::::::
suitable

::
for

:::::::::::
parallisation

:::
and

:::::
cloud

::::::::::
computing.

::
In

:::::::::
particular,

:::
the

:::
use

::
of

::::::::
graphics

:::::::::
processing

::::
units

::::::
(GPU)

:::
for

:::::
heavy

:::::::::::
computation

:
is
::::::::::

promising.
:::::
Some

:::::
recent

:::::::::
examples

:::
that

:::::::::::
demonstrate

:::
the

::::::::
potential

::
of

:::::
GPU

:::
for

:::
this

:::::::
purpose

::::
are

::::::::::::::::
Eränen et al. (2014)

:
,

::::::::::::::
Sten et al. (2016),

::::
and

::::::::::::::::
Sandric et al. (2019)

:
.
::::::::::::::::::::
Sriwastava et al. (2018)

:::::
applied

::::::::::
uncertainty

::::::::::
propagation

::
to

:
a
:::::::
complex

::::::::::::
hydrodynamic

::::::
model,

:::
by

:::::::::
selecting

:
a
:::::
small

:::::
subset

::
of
:::::::::
dominant

::::::::::
input/model

:::::::::
parameters

:::
that

:::::::
explain

::::
most

::
of

:::
the

::::::
model

:::::
output

::::::::
variance.

:
725

5 Conclusions

In this final section we conclude with highlighting the importance of temporal uncertainty propagation analysis and the selec-

tion and characterisation of uncertain model inputs impacting model sensitivity. We also point out that uncertainty propagation

analysis helps to identify the most contributing sources and can provide better evidence for the impact assessment of pollutant

release from sewer systems to the environment, in particular to the receiving waters.730

1. Uncertainty analysis is important because it quantifies the accuracy of model outputs and quantifies the uncer-

tainty source contributions. The latter provides essential information to take informed decisions about how to improve

the accuracy of the model output. But MC uncertainty analysis is only possible if it is computationally feasible. We used a

simplified urban water system model with capabilities to apply for minimising transient pollution from urban wastewater

systems in parallel mode, which minimises model running time, allowing uncertainty propagation, long term simulations735

and evaluation of complex scenarios. These capabilities are crucial also for e.g. real time control applications, where

simplified models of fast running times are desirable.

2. Input variables that were very uncertain for which model output was very sensitive were selected to be included

in the uncertainty propagation analysis. We found four main input variables to be analysed: 1) Precipitation, P ; 2)

Chemical oxygen demand sewage pollution per capita load per day, CCOD,S ; 3) Ammonium pollution per capita load740

per day, CNH4 ,S ; and 4) Chemical oxygen demand CODr concentration.

3. Selected input variables for uncertainty propagation can be characterised in terms of input uncertainty in four

specific cases, depending on the type of input variable: i) Uncertain constant inputs, characterised by their marginal

(cumulative) pdf e.g. water consumption, infiltration flow, impervious area and run-off coefficients; ii) Temporally au-

tocorrelated dynamic uncertain inputs, characterised by univariate time series autoregressive modelling e.g. CODr ; iii)745

Temporally cross-correlated multiple dynamic uncertain inputs, characterised by multivariate time series modelling, con-

sidering cross- and no-correlations among variables e.g. CCOD,S and CNH4 ,S ; and iv) rain gauge input precipitation,

characterised by autoregressive model conditioned to the observed precipitation (P ).

33



4. Model input uncertainty propagation through the simplified combined sewer overflow model (EmiStatR) helped

to understand how does uncertainty propagate and how large is the uncertainty of EmiStatR outputs in a case750

study. Three output variables were considered for water quantity and four variables for water quality. The Monte Carlo

uncertainty propagation analysis showed that among the water quantity output variables, the overflow flow, QSv, is the

more uncertain output variable and has a large coefficient of variation (cv of 1.585). Among water quality variables, the

annual average spill COD concentration, CCOD,Sv ,av , and the average spill NH4 concentration, CNH4 ,Sv ,av , were found

to have large uncertainty (coefficients of variation of 0.988 and 0.815, respectively). Also, low standard errors (se) for755

the coefficient of variation were obtained for all seven outputs. They were never greater than 0.05, which indicated that

the selected MC replication size (1,500 simulations) was a suitable value.

5. Regarding the main sources of uncertainty model outputs, for water quantity outputs, was precipitation, while for

COD water quality outputs were P , CCOD,S and CODr , and for NH4 outputs P and CNH4 ,S .

6. Finally, we evaluated how uncertainty propagation analysis can explain more comprehensively the impact of water760

quality indicators to the receiving river for the Luxembourg case study. Although the mean model water quality

outputs for COD and NH4 concentrations is fairly above of the thresholds, the 0,95 quantile is 2.7 times above the mean

value for COD concentration, and 2.4 times above the mean value for NH4. We conclude that we are not certain that

environmental thresholds are not exceeded, because there is a considerable probability that values are above, even though

the expected value is below the thresholds. This is valid for concentrations in the spilled CSO, therefore, is important to765

highlight that the results confirmed our hypothesis that annual mean COD and NH4 river concentrations are lower than

the released CSO concentrations due to dilution and henceforth compliant with the water quality thresholds given by the

guidelines consulted.
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