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Abstract. Land surface models underpin coupled climate model projections of droughts and heatwaves. However, the lack of 14 

simultaneous observations of individual components of evapotranspiration, concurrent with root-zone soil moisture, has 15 

limited previous model evaluations. Here, we use a comprehensive set of observations from a water-limited site in southeastern 16 

Australia including both evapotranspiration and soil moisture to 4.5 m depth to evaluate the Community Atmosphere-17 

Biosphere Land Exchange (CABLE) land surface model. We demonstrated that alternative process representations within 18 

CABLE had the capacity to improve simulated evapotranspiration, but not necessarily soil moisture dynamics - highlighting 19 

problems of model evaluations against water fluxes alone. Our best simulation was achieved by resolving a soil evaporation 20 

bias; a more realistic initialisation of the groundwater aquifer state; higher vertical soil resolution informed by observed soil 21 

properties; and further calibrating soil hydraulic conductivity. Despite these improvements, the role of the empirical soil 22 

moisture stress function in simulated water fluxes remained important: using a site calibrated function reduced the median 23 

level of water stress by 36 % during drought and 23 % at other times. These changes in CABLE not only improve the seasonal 24 

cycle of evapotranspiration, but also affect the latent and sensible heat fluxes during droughts and heatwaves. Alternative 25 

parameterisations led to differences of ~150 W m-2 in the simulated latent heat flux during a heatwave, implying a strong 26 

impact of parameterisations on the capacity for evaporative cooling and feedbacks to the boundary layer (when coupled). 27 

Overall, our results highlight the opportunity to advance the capability of land surface models to capture water cycle processes, 28 

particularly during meteorological extremes, when sufficient observations of both evapotranspiration fluxes and soil moisture 29 

profiles are available.  30 

1 Introduction  31 

Droughts and heatwaves can have severe and long-lasting impacts on terrestrial ecosystems (Allen et al., 2015; Reichstein et 32 

al., 2013) and humans (Matthews et al., 2017; Pal and Eltahir, 2016). Global climate models are commonly used to project 33 

how anthropogenic climate change will affect the magnitude, frequency and intensity of droughts and heatwaves. Heatwaves 34 

are projected to increase in the future in response to climate change (Dosio et al., 2018; Zhao and Dai, 2017). The future of 35 

droughts is less clear: projections of an increase in future droughts are common in the literature (Ault, 2020), yet regional 36 

precipitation projections remain uncertain (Collins et al., 2013) and land surface processes relevant to drought are poorly 37 

represented in climate models (Ukkola et al., 2018a). 38 

 39 

While there is no universal definition, drought can be classified into meteorological, agricultural, hydrological and 40 

socioeconomic drought. From a climate model perspective, drought is an anomalous lack of water at the land–atmosphere 41 
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interface sustained over time. It begins with a reduction in precipitation (“meteorological” drought) and if this persists it can 42 

evolve into “agricultural” drought via low soil moisture or into “hydrological” drought through low streamflow or groundwater. 43 

A critical feedback exists between low soil moisture availability and heatwaves (Seneviratne et al., 2010; Teuling et al., 2010; 44 

Vogel et al., 2017). As soil moisture becomes depleted, the surface energy partitioning becomes increasingly dominated by 45 

sensible heat fluxes (QH) relative to latent heat fluxes (QE). This can lead to a positive feedback whereby the high sensible heat 46 

fluxes warm the boundary layer, which, combined with the reduced evaporation, leads to increased atmospheric demand for 47 

moisture exacerbating land desiccation (Miralles et al., 2019). A combination of drought and heatwaves lead to wide ranging 48 

impacts on the functioning of terrestrial ecosystems (Reichstein et al., 2013; Schumacher et al., 2019). For example, during 49 

the European heatwave and drought in 2003, terrestrial carbon losses of up to 0.5 Pg C were reported, corresponding to roughly 50 

four years of European terrestrial net carbon uptake (Ciais et al., 2005).  51 

 52 

Given projections of worsening heatwaves and potentially more droughts under future climate change, the importance of land 53 

surface models (LSMs) to capture land responses and feedbacks to the atmosphere during climate extremes is becoming 54 

increasingly recognised (Mazdiyasni and AghaKouchak, 2015; Schumacher et al., 2019; Yang et al., 2019). Despite many 55 

improvements to LSMs over the past decades, LSMs have remained poor at simulating water fluxes during water-stressed 56 

periods (Egea et al., 2011; De Kauwe et al., 2017; Powell et al., 2013; Trugman et al., 2018; Ukkola et al., 2016a), which likely 57 

contributes to biases in land-atmosphere feedbacks during heatwaves (Sippel et al., 2017). LSMs commonly underestimate 58 

interannual variations in terrestrial water storage (Humphrey et al., 2018), underestimate QE during droughts (Powell et al., 59 

2013; Ukkola et al., 2016a) and lack “persistence” by responding too strongly to short-term precipitation variation (Tallaksen 60 

and Stahl, 2014). Poor representation of hydrological processes has been identified as a key reason for model biases. There is 61 

uncertainty around soil moisture dynamics, how soil texture information is translated to soil hydraulic properties through 62 

pedotransfer functions and how water fluxes are partitioned to different components of evapotranspiration and runoff (Clark 63 

et al., 2015; Lian et al., 2018; Van Looy et al., 2017). Various approaches have been adopted to improve LSM hydrology, such 64 

as the introduction of groundwater dynamics (Niu et al., 2007), alternative pedotransfer functions (Best et al., 2011) and 65 

subgrid-scale processes for runoff generation (Decker, 2015). By contrast, the functions used in LSMs to represent the effect 66 

of declining water availability on vegetation function are poorly constrained by data (Medlyn et al., 2016), and not consistently 67 

applied. Specifically, some models down-regulate the maximum rate of Rubisco carboxylation, whilst others reduce stomatal 68 

parameters (De Kauwe et al., 2013). Models also do not account for differences in species-level sensitivity to drought (De 69 

Kauwe et al., 2015; Klein, 2014; Zhou et al., 2014). This model gap has driven a significant investment in new theoretical 70 

approaches (Dewar et al., 2018; Sperry et al., 2017; Wolf et al., 2016).  71 

 72 

Despite model developments, it has remained difficult to disentangle the reasons behind poor model performance due to a lack 73 

of suitable observations. Root-zone soil moisture estimates are rare and whilst satellite estimates are available, they only cover 74 

the top few centimetres or are only available at coarse spatial resolution. Meanwhile, QE is routinely measured at the site-scale, 75 

but gridded large-scale estimates remain highly uncertain (Pan et al., 2020). As such, many past model evaluations have 76 

focused on observed QH and QE from eddy-covariance observations (Best et al., 2015) or near-surface soil moisture and 77 

evaporation from water balance sites (e.g. Schlosser et al., 2000). What is rare is evaluation of LSMs, designed for use in 78 

climate models, utilising observations of soil moisture extending root zone with concurrent measurements of water fluxes at 79 

high temporal frequency. In this paper, we use a novel dataset from the water-limited Eucalyptus Free-Air CO2 Enrichment 80 

(EucFACE) experiment site in southeastern Australia to evaluate the Community Atmosphere-Biosphere Land Exchange 81 

(CABLE) LSM. At this site, frequent measurements of each component of the water balance were made coincident with soil 82 

moisture observations to a depth of 4.5 m. The highly variable rainfall at this site leads to extended dry-downs, and the 83 

heatwaves in summer commonly exceed 35°C. We use this high-quality dataset to assess multiple model assumptions 84 
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commonly used across LSMs within a single model framework, evaluating both simulated fluxes and state variables at seasonal 85 

to annual scales and across weather (heatwaves) and climate (drought) phenomena. 86 

2. Methods and data 87 

2.1 Site information  88 

The EucFACE experiment is located on an ancient alluvial floodplain, 3.6 km from the Hawkesbury River in Western Sydney, 89 

Australia (33°36′59″S, 150°44′17″E) (Gimeno et al., 2018a; Figure 1). The site has a temperate-subtropical transitional climate 90 

with a mean annual temperature of 17.8 °C and the mean annual precipitation of 719.1 mm evenly distributed over the year. 91 

EucFACE is a water-limited site experiencing frequent droughts and low water availability. The site is in an open woodland 92 

with a canopy height of 18–23 m and a plant area index (including leaf and woody components) that varied between 1.3 and 93 

2.2 m2 m-2 (mean = 1.7 m2 m-2) over the study period. The overstorey is dominated by a single species Eucalyptus tereticornis 94 

Sm. with scattered individuals of Eucalyptus amplifolia Naudin. The upper soil layer is a loamy sand with a sand fraction >75%; 95 

at 30–80 cm depth, there is a higher clay content layer (15%–35% clay), and below the clay layer sand clay loam soil extends 96 

to the depth of 300 cm. Between 300–350 cm and 450 cm depth, the soil is > 40% clay (Gimeno et al., 2016). The observed 97 

water table is at ~ 12 m. The site is characterized as nutrient poor, especially lacking in available phosphorus (Crous et al., 98 

2015; Ellsworth et al., 2017). In this paper we evaluate CABLE against the averaged data from Rings 2, 3 and 6, which are 99 

exposed to the ambient atmospheric CO2 concentration.  100 

2.2 Observation data 101 

In our study, CABLE is driven by in situ meteorological data and observed leaf area index (LAI) from 2013 to 2019. The 102 

photosynthetically active radiation (PAR; LI-190, LI-COR, Inc., Lincoln, NE, USA), air temperature, and relative humidity 103 

(HUMICAP ® HMP 155, Vaisala, Vantaa, Finland) were measured every second and one-minute averages were recorded on 104 

data loggers (CR3000, Campbell Scientific Australia, Townsville, Australia). Meteorological data were gap-filled by linear 105 

interpolation and aggregated to 30-minute averages following Yang et al. (2020). LAI was calculated from the measurements 106 

of above- and below-canopy PAR at each ring following Duursma et al. (2016). Since the site LAI represents the plant area 107 

index (including both woody part and leaves), to reflect the actual leaves condition we follow Yang et al. (2020) and reduce 108 

the LAI by a constant branch and stem cover (0.8 m2 m−2) estimated by the lowest LAI when the canopy shed almost all leaves 109 

during November 2013. The CO2 concentration was measured every 5 minutes at each ring and then gap-filled and aggregated 110 

to 30-minute averages.  111 

 112 

To evaluate CABLE, we used measurements of transpiration (Etr), soil evaporation (Es) and volumetric water content (θ) at 113 

different soil depths (see below). Etr and  Es come from a dataset published in Gimeno et al. (2018a). Etr estimates are derived 114 

from tree sapflow using the heat pulse compensation technique (Gimeno et al., 2018a). Es is computed from the soil moisture 115 

change in the top 5 cm depth monitored at two locations in each of the three ambient rings. The Es data also includes 116 

transpiration from the dynamic (flushes and wilts) understorey vegetation (Collins et al., 2018; Pathare et al., 2017). For Es, 117 

Gimeno et al. (2018a) excluded rainy days and days preceded by a day with > 2 mm d−1 of precipitation. 118 

 119 

We used two sets of observations for θ to evaluate CABLE’s simulated soil hydrology. The first dataset is from neutron probe 120 

measurements monitored at two locations in each ring every 10 to 21 days (lower frequency in 2017), covering the period 121 

January 2013 to July 2019. These data are collected at 12 different depths: 25 cm intervals from 25 to 150 cm depth, and 50 122 

cm intervals from 150 to 450 cm depth. The second dataset is daily derived measurements from frequency-domain 123 
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reflectometers (CS650, Campbell Scientific Australia, Garbutt, Qld.) at each ring, monitoring to a depth of 25 cm and covering 124 

the period January 2013 to December 2019. 125 

2.3 Model description  126 

CABLE is a LSM that can be used in stand-alone mode with prescribed meteorological forcing (Haverd et al., 2013; Ukkola 127 

et al., 2016b; Yang et al., 2020), or coupled to the Australian Community Climate and Earth System Simulator (ACCESS (Bi 128 

et al., 2013; Law et al., 2017)) or the Weather and Research Forecasting (WRF) model (Decker et al., 2017; Hirsch et al., 129 

2019b) to provide energy, water and momentum fluxes to the lower atmosphere. The standard version of CABLE has been 130 

widely evaluated (De Kauwe et al., 2015; Li et al., 2012; Lorenz et al., 2014; Ukkola et al., 2016b; Wang et al., 2011; Williams 131 

et al., 2009) and the model’s overall performance in simulating energy, water and energy fluxes is in line with other LSMs 132 

(Best et al., 2015). A detailed description of model components can be found in Kowalczyk et al. (2006) and Wang et al. 133 

(2011). The version of CABLE used here includes multiple process updates (Decker, 2015; Decker et al., 2017; Kala et al., 134 

2015).  135 

2.3.1 Hydrology scheme 136 

We use the hydrology scheme from Decker (2015) that includes an improved representation of sub-surface hydrology similar 137 

to that implemented in the Community Land Model (Lawrence and Chase, 2007; Oleson et al., 2008). Saturation- and 138 

infiltration-excess runoff generation mechanisms are represented, and a dynamic groundwater component with aquifer water 139 

storage is included. CABLE uses six soil layers covering a depth to 4.6 m and allows for vertical heterogeneity in soil 140 

parameters. The scheme solves the vertical redistribution of soil water following the modified Richards equation (Decker and 141 

Zeng, 2009): 142 

 143 
డఏ

డ௧
= −

డ

డ௭
𝐾

డ

డ௭
(𝛹 − 𝛹ா) − 𝐹௦௢௜௟           (1) 144 

 145 

where θ is the volumetric water content of the soil (mm3 mm-3), 𝐾 (mm s-1) is the hydraulic conductivity, 𝛹 (mm) is the soil 146 

matric potential, 𝛹ா  (mm) is the equilibrium soil matric potential, 𝑧 (mm) is soil depth and 𝐹௦௢௜௟  (mm mm-1 s-1) is the sum of 147 

subsurface runoff and 𝐸௧௥ (Decker, 2015). A 25 m deep unconfined aquifer is simulated below the 6-layer soil column by 148 

incorporating a simple water balance model: 149 

 150 
ௗௐೌ ೜

ௗ௧
= 𝑞௥௘ − 𝑞௔௤,௦௨௕           (2) 151 

 152 

where 𝑊௔௤ (mm) is the mass of water in the aquifer, 𝑞௔௤,௦௨௕ (mm s-1) the subsurface runoff removed from aquifer and 𝑞௥௘ (mm 153 

s-1) the water flux between the aquifer and the bottom soil layer, computed by the modified Darcy’s law as 154 

 155 

𝑞௥௘ = 𝐾௔௤
൫అೌ೜ିఅ೙൯ି൫అಶ,ೌ೜ –అಶ,೙൯

௭ೢ೟೏ି௭೙
           (3) 156 

 157 

where 𝐾௔௤ (mm s-1) is the hydraulic conductivity within the aquifer, 𝛹௔௤ and 𝛹ா,௔௤ (mm) are the soil matric potential and the 158 

equilibrium soil matric potential for the aquifer, and 𝛹௡ and 𝛹ா,௡ (mm) are the soil matric potential and the equilibrium soil 159 

matric potential for the bottom soil layer. 𝑧௪௧ௗ  and 𝑧௡  (mm) are the depth of the water table and the lowest soil layer, 160 

respectively. The groundwater aquifer is assumed to sit above an impermeable layer of rock, giving a bottom boundary 161 

condition of  162 
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 163 

𝑞௢௨௧ = 0             (4) 164 

 165 

Subsurface runoff (𝑞௦௨௕, mm s-1) is calculated from 166 

 167 

𝑞௦௨௕ = sin
ௗ೥

ௗ೗
𝑞ො௦௨௕𝑒

ି
೥ೢ೟೏

೑೛            (5) 168 

 169 

where 
ௗ೥

ௗ೗
 is the mean subgrid-scale slope, 𝑞ො௦௨௕ (mm s-1) is the maximum rate of subsurface drainage assumed to be achieved 170 

when the whole soil column is saturated and 𝑓௣ is a tunable parameter. 𝑞௦௨௕  is generated within the aquifer and for each 171 

saturated soil layer below the third soil layer.  172 

2.3.2 Soil evaporation (Es) 173 

The computation of 𝐸௦ (kg m-2 s-1) considers the subgrid-scale soil moisture heterogeneity within a grid square (Decker, 2015), 174 

and is given as  175 

𝐸௦ = 𝐹௦௔௧𝐸௦
∗ + (1 − 𝐹௦௔௧)𝛽௦𝐸௦

∗          (6) 176 

where 𝐹௦௔௧ is the saturated fraction of a grid cell, 𝐸௦
∗ (kg m-2 s-1) is the potential evaporation without soil moisture stress, and 177 

𝛽௦ is an empirical soil moisture stress factor (see below) that limits evaporation as water becomes limiting in the top soil layer 178 

(Sakaguchi and Zeng, 2009). 𝐸௦
∗ is given by 179 

𝐸௦
∗ =  

 ఘೌ(௤ೞೌ೟(்ೞೝ೑)ି௤ೌ)

௥೒
           (7) 180 

where 𝜌௔ (kg m-3) is the air density, 𝑞௦௔௧(𝑇௦௥௙) (kg kg-1) is the saturated specific humidity at the surface temperature, 𝑞௔ (kg 181 

kg-1) is the specific humidity of the air and 𝑟௚ (s m-1) is the aerodynamic resistance term.  182 

𝛽௦ is computed as:  183 

𝛽௦ = 0.25 ൬1 − 𝑐𝑜𝑠 ൬𝜋
ఏೠ೙ೞೌ೟

ఏ೑೎
൰ ൰

ଶ

           (8) 184 

where 𝜃௨௡௦௔௧  (mm3 mm-3) is the volumetric water content in the unsaturated portion of the top soil layer (top 2 cm), and 𝜃௙௖ 185 

(mm3 mm-3) is the field capacity in the top soil layer.  186 

2.3.3 Transpiration (𝑬𝒕𝒓) 187 

CABLE’s canopy is represented using a two-leaf model, which computes photosynthesis, stomatal conductance, 𝐸௧௥ (kg m-2 188 

s-1) and leaf temperature separately for sunlit and shaded leaves. 𝐸௧௥ (for each sunlit/shaded leaf) is calculated following the 189 

Penman-Monteith equation: 190 

 191 

𝐸௧௥ =
௱ோ೙∗ା஼೛ெೌ஽೗ (௚೓ା௚ೝ)

ఒቆ௱ାఊቀ
೒೓శ೒ೝ

೒ೢ
ቁቇ

            (9) 192 

where 𝜆 (J kg-1) is the latent heat of vapourisation, 𝐷௟  (Pa) is the vapour pressure deficit at the leaf surface, 𝐶௣ (J kg-1 K-1) is 193 

the air heat capacity, 𝑀௔  (kg mol-1) is the molar mass of air,  𝛥 (Pa K-1) is the slope of the curve relating saturation vapour 194 
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pressure to air temperature and 𝛾 (Pa K-1) is the psychrometric constant. 𝑔௛, 𝑔௥, and 𝑔௪ (mol m-2 s-1) are the conductances for 195 

heat, radiation and water, respectively. 𝑅௡∗
 (W m-2) is the non-isothermal net radiation calculated as: 196 

 197 

𝑅௡∗
= 𝑅௡ − 𝐶௣𝑀௔(𝑇௔ − 𝑇௟)𝑔௥             (10) 198 

 199 

where 𝑅௡ (W m-2) is the net radiation under isothermal conditions and 𝑇௔ and 𝑇௟  is the air and leaf temperature (K), respectively. 200 

 201 

 𝑔௪ is calculated as:  202 

 203 

𝑔௪
ିଵ = 𝑔௔

ିଵ +  𝑔௕
ିଵ +  𝑔௦

ିଵ            (11) 204 

 205 

where 𝑔௔ (mol m-2 s-1) is canopy aerodynamic conductance, and 𝑔௕ (mol m-2 s-1) is leaf boundary layer conductance for free 206 

and forced convection (Kowalczyk et al., 2006). 𝑔௦ (mol m-2 s-1) is the leaf stomatal conductance following Medlyn et al.(2011):  207 

 208 

𝑔௦ = 𝑔଴ + 1.6 ൬1 +
௚భ ఉ

ඥ஽೗
൰

஺

஼ೞ
           (12) 209 

 210 

where 𝐴 (µmol m−2 s−1) is the photosynthetic rate,  𝐶௦ (µmol mol−1) is the CO2 concentration at the leaf surface, 𝛽 (unitless) is 211 

the soil moisture stress factor on plants, 𝑔଴ (mol m−2 s−1) and 𝑔ଵ (kPa0.5) are fitted parameters representing the residual stomatal 212 

conductance when 𝐴 = 0 and the sensitivity of conductance to the assimilation rate, respectively. 𝑔ଵ reflects the plant's water 213 

use strategy and was derived for each plant functional type in CABLE (De Kauwe et al., 2015) based on a global synthesis of 214 

stomatal behaviour (Lin et al., 2015).  𝛽 is calculated as: 215 

 216 

𝛽 = ∑ 𝑓௥௢௢௧,௜
ఏ೔ିఏೢ,೔

ఏ೑೎,೔ିఏೢ,೔

௡
௜ୀଵ             (13) 217 

  218 

where 𝜃௜, 𝜃௙೎,௜ and 𝜃௪,௜ (mm3 mm-3) are the soil moisture content, the field capacity and wilting point for soil layer 𝑖, and 𝑓௥௢௢௧,௜ 219 

is the root mass fraction of soil layer 𝑖. 220 

 221 

CABLE does not have the capacity to simulate interacting water fluxes between the understorey and overstorey vegetation. 222 

Instead, it uses a “tiling” approach (fractionally weights separate simulations). As a result, comparisons between CABLE’s Es 223 

and data-derived Es during wetter periods would be expected to be an underestimate as we only consider the fluxes from the 224 

overstorey trees. To quantify the effect of the understorey transpiration on the water balance, we also ran an extra simulation 225 

for the grass understorey at this site with the same setting as Watr (see below) but using CABLE default grass physiology 226 

parameters and a fixed LAI (1 m2 m-2 – site average). The estimated multi-year mean transpiration of 0.94 mm d-1 can be 227 

regarded as an upper estimate since the simulation does not consider grass dynamics, overstorey rainfall interception, or water 228 

and energy competition between tree and grass. Not accounting for understorey transpiration will lead to an overestimate of 229 

moisture availability in the soil profile. 230 

 231 

2.4 Experiment design 232 

We conducted a series of model experiments based on weaknesses identified in previous LSM evaluation studies. In our 233 

experiments, we deliberately adopted a “layering” approach: sequentially resolving a key systematic model bias and then 234 
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layering additional experiments to examine how much additional benefit each experiment added to model performance. A 235 

summary of all experiments is provided in Table 1. 236 

 237 

In all experiments, LAI and physiology parameters were prescribed based on site observations (Table S1). We tested the 238 

difference of using the CABLE default evergreen broadleaf physiology parameters (Figure S1) compared to using the site 239 

physiology (Figure 2) and found that using site parameters increases Etr (due to higher g1 and increased sensitivity of carbon 240 

fixation to temperature), in turn reducing Es and .  241 

 242 

All experiments were spun-up using an iterative process recycling all years of the meteorological forcing until the change 243 

between two iterations was < 0.001 m3 m-3 for soil moisture, < 0.01°C for soil temperature and < 0.0001 m3 m-3 for aquifer 244 

moisture. 245 

2.4.1 Control experiment (Ctl) 246 

The control simulation (Ctl) uses the default version of CABLE with 6 soil layers (but with site physiology and LAI). The soil 247 

hydraulic parameters are derived via the pedotransfer functions based on Cosby et al. (1984) using the global soil texture map 248 

from the Harmonized World Soil Database (Fischer et al., 2008). Soil parameters are the same throughout the 6-layer soil 249 

column.  250 

2.4.2 Increasing the resistance for soil evaporation (Sres)  251 

Previous studies suggest LSMs vary widely in their simulation of Es. For example, De Kauwe et al. (2017) found that in an 252 

ensemble of 10 models, six models simulated ~2-3.5 times more Es than the other four models. LSMs also partition 253 

evapotranspiration between Etr and Es with a high degree of uncertainty (Lian et al., 2018). At many sites, high springtime 254 

evapotranspiration can be linked to excessive Es rather than Etr (Decker et al., 2017; Ukkola et al., 2016b) and can lead to 255 

biases in soil moisture availability later in the growing season. 256 

 257 

We note that models have attempted to resolve this Es bias through different mechanisms, for example, via a litter layer (Haverd 258 

and Cuntz, 2010; Sakaguchi and Zeng, 2009) or by limiting Es via adding the resistances to vapour diffusion through the soil 259 

pores and the surface viscous sublayer (Decker et al., 2017; Haghighi and Or, 2015; Swenson and Lawrence, 2014). Here, we 260 

adopt a simple litter layer (Decker et al., 2017) which adds an additional surface resistance to vapour and heat fluxes but does 261 

not limit rainfall infiltration. After adding the additional resistance, 𝐸௦
∗ is calculated as 262 

 263 

𝐸௦
∗ =  

 ఘೌ(௤ೞೌ೟(்ೞೝ೑)ି௤ೌ)

௥೒ା௥೗೔೟
            (14) 264 

 265 

where 𝑟௟௜௧ is the resistance (s m-1) for diffusion via the litter layer of depth 𝑧௟ (m) (default value is 10cm) given by: 266 

 267 

𝑟௟௜௧ =  
௭೗

ௗ
             (15) 268 

 269 

where 𝑑 is the diffusivity of water vapour in air (m2 s-1). 270 

2.4.3. Water table initialisation experiment (Watr) 271 

The parameters governing the groundwater aquifer saturation and water table depth are both highly uncertain and difficult to 272 

constrain from observations. We investigated the importance of a correct water table depth to the simulation soil moisture and 273 
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water fluxes. To better match the observed water table depth at EucFACE, we changed the aquifer θsat from the model default 274 

value (0.235 m3 m-3) to θsat set based on the observed soil texture at 4.5m depth (0.448 m3 m-3). This has the effect of lowering 275 

the water table to ~12 m, in line with observations (Gimeno et al. 2018a). 276 

2.4.4 High resolution soil experiment (Hi-Res)  277 

Most LSMs assume that soil parameters are depth invariant through the soil profile. The number of layers typically ranges 278 

from a minimum of 2, through to 6 in CABLE and up to 20 in Community Land Model (Lawrence et al., 2019). Here, we test 279 

the impact of increasing the number of discrete soil layers, informed by observations of the varying vertical soil texture at the 280 

EucFACE site. Recent soil maps (e.g. SoilGrids (Hengl et al., 2017)) have begun to capture vertical variations in soil texture, 281 

so it is important to test the impact in LSMs.  282 

 283 

We performed two sub-experiments in Hi-Res:  284 

 285 

1) the number of vertical soil layers was increased from 6 to 31 (for later maximising the utilization of soil texture observations) 286 

(Hi-Res-1); 287 

 288 

2) soil parameters were allowed to vary vertically based on observed soil texture (Hi-Res-2). 289 

 290 

To implement vertically varying soil parameters, the observed fractions of sand, clay and silt, soil bulk density and organic 291 

carbon fraction were taken from measurements at each ambient CO2 ring and interpolated into 31 layers using the ~15 cm 292 

resolution of the observations. Soil hydraulic parameters are computed using the same pedotransfer functions as used in Ctl 293 

but allowed to vary with depth based on the vertical heterogeneity in soil properties. Since CABLE assumes the aquifer’s 294 

suction at saturation and Clapp and Hornberger parameter are identical to the bottom soil layer, adding depth-varying soil 295 

parameters in Hi-Res-2 also changes these two parameters for the aquifer.  296 

2.4.5 Soil parameter optimisation experiment (Opt)  297 

As it is impractical to measure soil hydraulic parameters at the global scale, pedotransfer functions are used to convert widely 298 

measured soil properties into global soil hydraulic parameter datasets (Dai et al., 2013; Kishné et al., 2017). However, most of 299 

the widely-used pedotransfer functions are empirical equations derived from the limited experimental samples measured for 300 

the specific locations (Cosby et al., 1984; van Genuchten, 1980). The adaptability of these pedotransfer functions are always 301 

confined by their underrepresentation of some soil properties, such as soil aggregate stability or macroporosity (Puhlmann and 302 

von Wilpert, 2012) and can lead to a divergence in model parameters (Van Looy et al., 2017; Zhang and Schaap, 2019). As a 303 

result, parameter calibrations are common to obtain more accurate representations.  304 

 305 

First, we used the site observations to adjust the plant wilting point (θw) and volumetric water content at saturation (θsat). With 306 

each layer as θw is changed, the corresponding residual water content (θres) was also updated to ensure it was smaller than θw. 307 

θsat was set to the observed maximum from the daily data measured by frequency-domain reflectometers for the top 30 cm. 308 

Due to muted variability in deeper soil layers, θsat below 30 cm was not adjusted. θw and θres were adjusted for each 15 cm 309 

layer in the soil column using the observed minimum (OBSmin) in each layer. When OBSmin was below the default θres, θres was 310 

set to OBSmin and θw to OBSmin + 0.0001 m3 m-3. When θres < OBSmin < θw, θw was set to OBSmin. Otherwise θres and θw were 311 

not adjusted.  312 

 313 
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Second, we optimised Ksat to test whether allowing the soil column to drain faster or slower reduced model biases in the soil 314 

moisture profile. Ksat was optimised by minimising errors between modelled and observed soil moistures over total column 315 

and in the top 0.25 m, transpiration and soil evaporation.  316 

2.4.6 Soil water limitation on transpiration (β-hvrd and β-exp) 317 

LSMs use different, empirical functional forms to represent the effect of water stress on vegetation function (see Introduction). 318 

To explore the influence of different functional formulations, we compare CABLE’s default function (Equation 13) to two 319 

alternative parameterisations: 1) an alternative hypothesis that plants optimise their root water uptake to exploit resources, with 320 

the wettest soil layer determining soil water stress on plants (β-hvrd; Haverd et al., 2016) and 2) a site calibrated function to 321 

observations at EucFACE over the top 1.5 m (β-exp; Yang et al., 2020). We note that a number of studies have tested different 322 

water stress formulations (e.g. Egea et al. (2011)) but this process evaluation is often decoupled from analysis of other 323 

contributing errors (e.g. LAI and/or soil hydrology).  324 

 325 

The β-hvrd method tends to predict less water stress than the default function (Equation 13) in CABLE when the moisture is 326 

unevenly distributed within the soil column.  This function takes the form: 327 

 328 

𝛽 = 𝑚𝑎𝑥 ( 𝛼௜ ∙ 𝛿௜, 𝑖 = 1, 𝑛 )          (16) 329 

 330 

where:  331 

 332 

𝛼 = ൝
(

ఏିఏೢ

ఏೞ
)ఊ⁄(ఏି ఏೢ)    , (𝜃 − 𝜃௪) > 0

       0                       , (𝜃 − 𝜃௪) ≤ 0
           (17)   333 

 334 

where 𝛼௜ is proportional to the root “shut-down” function (Lai and Katul, 2000) in the ith soil layer, and 𝛿௜ = 1 if there are 335 

roots at the ith soil layer, otherwise 𝛿௜ = 0. 𝑛 is the total number of soil layers. 336 

 337 

In β-exp,  𝛽 is an exponential function calibrated to the site observations. Yang et al. (2020) fitted a non-linear relationship 338 

between 𝛽  and 𝜃 , based on a fitted exponent term 𝑞  (Table S1) using measured soil moisture over the top 1.5 m from 339 

EucFACE: 340 

𝛽 = ∑ 𝑓௥௢௢௧,௜ ൬
ఏ೔ିఏೢ,೔

ఏ೑೎,೔ିఏೢ,೔
൰

௤
௡
௜ୀଵ           (18) 341 

2.4.7. Evaluation metrics 342 

We used five metrics to evaluate CABLE’s performance compared to observations. Root Mean Squared Error (RMSE) and 343 

Mean Bias Error (MBE) were used to evaluate overall performance and Pearson’s correlation coefficient (r) the temporal 344 

variability. The absolute differences in modelled and observed 5th (P5) and 95th (P95) percentile values were used to evaluate 345 

the lower and upper tails, respectively. As the observed data have gaps, the metrics were only calculated for days for which 346 

observations were available. 347 

https://doi.org/10.5194/hess-2020-339
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 

10 

 

3. Results 348 

3.1 Control experiment (Ctl) 349 

We first evaluate the Ctl simulation by comparing to the observed Etr, Es and soil moisture (Figure 2). Overall, CABLE 350 

simulates Etr similarly to the observed (r = 0.85, RMSE = 0.34 mm d-1, Table 2) but overestimates peak Etr, which is particularly 351 

evident in the austral summer of 2014, by 0.54 mm d-1 on average (P95 in Table 2). However, it is worth noting that during 352 

the summer of 2014 there was an outbreak of psyllids leading to canopy defoliation (Gherlenda et al., 2016), which may 353 

explain part of the model-data mismatch (CABLE only accounts for this via a decline in LAI). Compared to Etr, CABLE 354 

simulates Es less well (r = 0.65, RMSE = 0.70 mm d-1; Table 2, Figure 2a). Whilst the observations exclude rainy days when 355 

CABLE reaches its highest Es, CABLE systematically overestimates mean and peak Es during observed days by 0.12 and 1.22 356 

mm d-1, respectively (MBE and P95 in Table 2). Figure 2b shows that CABLE has a significant wet bias in the top 0.25 m soil 357 

moisture and never falls to the observed values below 0.08 m3 m-3 during drier periods. Given the excessive Es (Figure 2a), the 358 

failure of the top 25 cm to dry out is surprising and suggests either a parameterisation error and/or the impact of not accounting 359 

for understorey transpiration (see methods). Figure 2e shows that the wet bias in soil moisture is systematic, extending 360 

throughout the soil column (particularly between 2.5 and 4.5 m).  361 

 362 

Taken together, the evaluation of the Ctl simulation implies that a good simulation in one evaporative flux (Figure 2a) can be 363 

achieved for the wrong physical reasons and is associated with major systematic biases in the simulation of near surface and 364 

root zone soil moisture (Figures 2b-d).  365 

3.2 Increasing the resistance to soil evaporation experiment (Sres) 366 

Implementing a litter layer (a proxy for additional surface resistance to Es) in CABLE significantly reduces Es from 305 mm 367 

y-1 in Ctl to 204 mm y-1 in Sres (Figure 3a, Table 3). The simulation of peak Es is significantly improved compared to Ctl but 368 

CABLE still overestimated Es (MBE and P95 in Table 2); this is particularly evident during an observed dry period in late 369 

2013. As a consequence of lower Es compared to Ctl, Etr is markedly increased (from 341 mm y-1 in Ctl to 402 mm y-1 in Sres, 370 

Table 3) which implies a reduction in soil moisture stress in the profile (lower 𝛽). This degrades the simulated Etr relative to 371 

the observations for all metrics, particularly from around October 2013 to March 2014 (Figure 3b). With an overall reduction 372 

in evapotranspiration, CABLE displays a considerably worse soil moisture profile (cf. Figure 3c and 2d) and a larger wet bias 373 

through most of the soil profile (cf. Figure 3d and 2e). Thus, resolving the Es bias alone, relocated the bias to other model 374 

components, where it less easily identified using commonly available measurements.  375 

3.3 Water table (Watr) and vertical soil structure (Hi-Res) experiments 376 

Figure 4 shows that reconciling the parameterisation of the aquifer 𝜃sat with the bottom layer 𝜃sat based on observed soil 377 

properties (Watr) leads to a marked improvement in the simulated soil moisture profile. By increasing the point of saturation 378 

and initialising the aquifer to be drier, CABLE simulates a more negative water potential in the aquifer, which promotes vertical 379 

drainage and results in a realistic water table depth in line with observations (simulated and observed ~ 12 m over 2013-2014). 380 

The wet bias in the top 3 m is markedly reduced (cf. Figure 4d and 2e); however, the model now has a clear dry bias between 381 

3 and 4.6 m. The simulated moisture in the top 0.25 m (Figure 4b) is now also in better agreement with the observations (0.06 382 

m3 m-3 in Watr vs 0.11 m3 m-3 in Sres, MBE in Table S2). Finally, both the bias in the simulated Es and Etr is reduced by > 0.2 383 

mm d-1 (MBE in Table 2), particularly evident during the summer of 2014.   384 

 385 

Increasing the number of soil layers from 6 to 31 (Hi-Res-1; Figure S2), leads to a small improvement in the simulated temporal 386 

correlation (0.78 in Watr vs 0.83 in Hi-Res-1; Table 2) of soil moisture, without notably changing the fluxes. The higher 387 
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vertical resolution in the soil enables the transition of the dry-down to be better captured, in contrast to the alternating wet and 388 

dry patterns associated with the coarse vertical resolution at depths between 0.5-3.0 m depth in Watr (cf. Figure S2c and 4c).  389 

 390 

Allowing the soil parameters to vary vertically based on observed soil texture (Hi-Res-2; Figure 5) reduces the dry bias in the 391 

lower layers in Watr (Figure 4) but leads to a greater wet bias throughout the upper soil profile (< 3 m). The error in soil 392 

moisture has reduced in the mean, low and high extremes compared to Ctl and Sres (MBE, P5 and P95 in Table 2). Overall, 393 

Figure 5 highlights a simulation with CABLE where the fluxes of Etr, Es and soil moisture are all in reasonable agreement with 394 

the observations (Table 3), albeit with an overestimation of peak Etr.  395 

3.4 Soil parameter optimisation experiment (Opt) 396 

To address the simulated wet bias in the soil moisture profile (Figure 5), we used observations to prescribe the critical soil 397 

hydraulic parameters θw and θsat (Figure S3) and to optimise Ksat (Figure S4 and S5). Prescribing θw and θsat led to a much 398 

improved “operating range” of soil moisture in the top 0.25 cm (Figure S3b) but did not reduce the wet bias in the soil profile 399 

or solve the slow drainage after rainfall events (cf. Figure 5c and Figure 2c). Overall, these changes had a limited effect on 400 

simulated Etr (344 mm y-1 vs 327 mm y-1 in Hi-Res-2 in Table 3) as might be expected because the profile was sufficiently wet 401 

as not to limit evapotranspiration, especially in the root zone of top 1.5 m (Figure S5d). A reduction of the simulated Es (138 402 

mm y-1 vs 165 mm y-1 in Hi-Res-2; Table 3) was mainly associated with the drier shallow soil (Figure S5b). The optimised Ksat 403 

increased drainage speed (cf. Figure 5c and Figure 3c) and lowered the overall wet biases (0.04 m3 m-3 in Opt vs 0.07 m3 m-3 404 

in Hi-Res-2, MBE in Table 2).  405 

3.5 Soil water limitation on transpiration (β-hvrd and β-exp) 406 

Replacing CABLE’s default soil moisture stress function with an alternative hypothesis that plants maximise their root water 407 

uptake to exploit resources (β-hvrd) led to a substantial increase in Etr relative to experiment Opt (from 344 mm y-1 to 403 mm 408 

y-1, Table 3) because the function assumes that the soil water stress on plants is determined by the availability of water in the 409 

wettest soil layer. This overestimation of Etr led to a small reduction in the wet soil moisture bias (cf. Figure S5d and Figure 410 

6d).  411 

 412 

Figure 7 shows the impact of using a site-calibrated β function (β-exp) (Yang et al., 2020). Using this function also increased 413 

Etr relative to experiment Opt (from 344 mm y-1 to 373 mm y-1, Table 3), degrading the simulation relative to the standard β 414 

(Opt). In both experiments, owing to the overall simulated wet bias in the soil profile, a decreased sensitivity to soil moisture 415 

availability (either using β-hvrd or β-exp) did not improve simulated evapotranspiration. 416 

3.6 Implications for Drought 417 

Improving the simulation of Etr, Es and soil moisture in LSMs is important on the seasonal timescale, but the increasing use of 418 

models to simulate future drought highlights the value of examining how these improvements impact the expression of drought 419 

in LSMs. We focus on a period of extensive drought across southeastern Australia that begins in October 2017 and extends to 420 

the end of 2019. Due to rainfall data availability, we focus on the dry-down period between October 2017 and September 2018.  421 

 422 

Figure 8 shows selected fluxes during the drought period over which the soil slowly dries in the observations and in the models 423 

(Figure 8a) and the shallow soil moisture was close to wilting point (e.g. Figure 6b). The Sres experiment maintains the highest 424 

soil moisture throughout the drought period and β-hvrd the lowest, with the range across all experiments exceeding 0.1 m3 m-425 
3. These soil moisture variations lead to inconsistent behaviour in Etr (Figure 8b) due to resulting differences in β (Figure 8c). 426 

β-hvrd Etr is very high despite having the driest soil moisture (Figure 8a) because it is derived from the wettest soil layer where 427 
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there is notably muted temporal variation. The differences in soil moisture, and as a result β, lead to differences in Etr (Figure 428 

8b) of 20 ~ 50 mm month-1 until autumn/winter (~April-July) when lower evaporative demand leads to more similar 429 

simulations. Through summer (~November-February), Es varies markedly from around 10 mm month-1 (β-hvrd) to 35 mm 430 

month-1 (Ctl) (Figure 8d). The differences in Etr and Es are mirrored by differences in QH (Figure 8e) which varies by > 30 W 431 

m-2 between the experiments between October 2017 and March 2018.  432 

 433 

Integrating the simulations over the drought period highlights the differences in simulating water stress (expressed as β) 434 

between experiments. Figure 9a shows that Sres and β-hvrd maintain a relatively high β during drought periods (median > 0.7) 435 

while the remaining experiments are notably lower. The β-exp simulates median values of 0.63, which is notably higher than 436 

the Hi-Res-2 of 0.33 and Opt of 0.46. This difference originates from the calibrated functional form shown in Figure 9b, where 437 

the exponent in the β-exp function leads to a delay in the onset (point of inflection) of moisture stress relative to the default 438 

linear function used in CABLE. Overall, in a single model, parameterisations led to a difference of 98 % between simulated β 439 

during drought. 440 

3.7 Implications for Heatwaves 441 

The link between soil moisture and heatwaves is well known (Teuling et al., 2010) and is usually examined in the context of 442 

a drying soil leading to higher QH relative to QE (as our simulations are uncoupled, we cannot examine the consequences of 443 

these changes on the boundary layer).  444 

 445 

Figure 10 shows a heatwave that occurred on 19-22 January 2018, where the air temperatures exceeded 35°C for four 446 

consecutive days and exceeded 40°C on the last day (Figure 10a). The evaporative fraction during the daytime (9am - 4pm) is 447 

shown in Figure 10b and highlights a remarkable range from ~0.2 in Ctl to ~0.7 in β-hvrd, suggesting much stronger 448 

evaporative cooling in β-hvrd. An obvious diurnal variation in evaporative fraction is characterised by a progressive decline 449 

from a peak at 9 am. QE gradually declines through the four heatwave days (Figure 10c) in all experiments. At the beginning 450 

of the heatwave (19 January) daytime QE ranges from > 200 W m-2 in β-hvrd and Sres to around 100 W m-2 in Ctl, Watr, Hi-451 

Res-1, Hi-Res-2 and Opt. The differences in QE are mirrored by differences in QH (Figure 10d) with daytime fluxes varying 452 

on the heatwave days by more than 150 W m-2. 453 

 454 

Figures 10c and 10d also highlight a key divergence in energy partitioning due to parameterisations and the emergent 455 

interactions with soil water availability. Models that show a pronounced midday depression in QE (e.g. Ctrl, Watr and Hi-Res-456 

2) due to increasing diurnal vapour pressure deficit (D) and soil moisture stress, show earlier diurnal peaks in QH (Figure 10d). 457 

By contrast, parameterisations that are less limited by β (e.g. β-hvrd despite the lowest soil moisture, Figure 10a), see an 458 

emergent shift in peak in QH to later in the afternoon. When coupled, these emergent differences due to the role of soil water 459 

availability – and importantly, how this is translated in canopy gas exchange via β – may have implications for surface 460 

interactions with the boundary layer.  461 

 462 

Given the importance of the role of D during heat extremes, to further explore the role of high D on simulated Etr, we plotted 463 

modelled and measured transpiration as a function of binned D (Figure 11). At high D (> 2 kPa), simulated Etr is overestimated. 464 

As the mismatch between simulated Etr and observed occurs at both low and high D (Figure 11), it implies that model 465 

improvements are unlikely to simply be relate to an alternative parameterisation of the stomatal sensitivity to D, but instead 466 

suggest a missing mechanism to limit canopy gas exchange with increasing D. The impact of this overestimation would likely 467 

have greater significance for summers with concurrent heatwaves and droughts (compound events that are common in 468 

Australia), as during heatwaves the model would overestimate Etr, using up available soil moisture.  469 
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4. Discussion and conclusions 470 

Land surface schemes used in climate models range in complexity and different approaches translate into contrasting 471 

predictions of the exchange of carbon, energy and water (Fisher and Koven, 2020). Perhaps critically, how strongly the land 472 

is coupled to the atmosphere also varies widely and is typically attributed to soil moisture variability (Brantley et al., 2017; 473 

Dirmeyer, 2011; Guo et al., 2006). A key component of LSMs is how soil moisture availability impacts processes internal to 474 

the land model and, in turn, how these impact fluxes of carbon and water. 475 

 476 

In this paper we used a rich observational dataset from a water-limited site that experiences both high temperatures and 477 

pronounced periods of low rainfall, to explore a range of alternative model-based assumptions within a single model framework. 478 

We focussed on the capacity of the model to simulate both the state (soil moisture) and the fluxes (evapotranspiration and its 479 

components). We demonstrated that the default simulation (Ctl, Figure 2) was able to simulate good transpiration fluxes but 480 

for the wrong reasons: erroneously high soil evaporation with a marked wet soil moisture bias. Errors of this kind may not 481 

have been identified in previous LSM evaluations against eddy covariance data which mostly focus on QE (Best et al., 2015). 482 

Our results highlight a potential bias in model evaluations due to a limited capacity to assess soil moisture or the partitioning 483 

of evapotranspiration. We demonstrated that poor model behaviour could be overcome via four key steps: (i) reducing soil 484 

evaporation biases; (ii) correctly initialising the aquifer moisture content, (iii) adjusting soil parameters to match site conditions 485 

and (iv) replacing the function used to constrain transpiration as soil moisture becomes limiting. Given the critical role of 486 

drought-prone ecosystems in contributing to interannual variability in the land CO2 sink size (Ahlström et al., 2015), our 487 

approach has the potential to improve the representation of these systems in models. We note that despite these improvements 488 

we still simulated a persistent wet soil moisture bias (e.g. Figure 5d). We think on balance this is unlikely to originate from 489 

not simulating a seasonal understorey transpiration as β-hvrd, which grossly overestimated overstorey transpiration and did 490 

not sufficiently dry out the profile (cf. Figure S5d and Figure 6d). Instead the soil moisture bias must relate to CABLE’s 491 

representation of sub-surface processes. 492 

Soil evaporation  493 

Biases in soil evaporation are commonplace in model intercomparisons (De Kauwe et al., 2017), suggesting this is a key model 494 

weakness. Errors in soil evaporation are rarely isolated in models and often contribute to errors in transpiration by limiting soil 495 

moisture availability later in the growing season (Ukkola et al., 2016b) as well as affecting the distribution of shallow versus 496 

deep soil moisture draw-down during drought. A number of approaches have been suggested to improve simulations (Haghighi 497 

and Or, 2015; Haverd and Cuntz, 2010; Lehmann et al., 2018; Or and Lehmann, 2019). Here we used a simple approach that 498 

increased resistance to surface evaporation, approximating the role of surface litter (Decker et al., 2017). At this site, this 499 

increased resistance to surface evaporation improved agreement with observations (Sres; Figure 3a) but did not resolve all 500 

biases. Soil evaporation was not directly measured at the site, but instead derived from the change in observed soil moisture, 501 

while ignoring days following rain (when the evaporative flux would likely be largest). As these fluxes also contain changes 502 

due to the transpiration of a seasonal grass understorey, model evaluation is complicated. As many soil evaporation schemes 503 

used in LSMs lack a physical basis (e.g. ignoring the role of soil pores), a focussed intercomparison of competing approaches 504 

against data originating from different ecosystems would be a valuable future direction.  505 

Aquifer initialisation 506 

Our results showed that the initialisation of the aquifer moisture store was critical to an improved simulation of the soil moisture 507 

profile. By default, CABLE equilibrates the aquifer state by assuming almost complete saturation at the start. If, as happened 508 

with the Ctl, the aquifer is initialised too wet, the simulated water table is too high and the water potential in the aquifer is 509 

https://doi.org/10.5194/hess-2020-339
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 

14 

 

unlikely to be below the lowest soil moisture layer, impeding vertical aquifer recharge. When we initialised from a drier starting 510 

position (Watr), the simulated soil moisture profile matched the observed better. There are a number of implications of this 511 

result. First, it obviously implies that LSMs that incorporate groundwater schemes need to be careful about aquifer initialisation 512 

because it strongly affects soil moisture dynamics. Second, there is no obvious solution to this initialisation and spin-up 513 

problem because drainage into the aquifer is a slow process, and it may take hundreds of years to reach a realistic equilibrium 514 

state. For global simulations, this suggests the need to a priori initialise the starting aquifer state and to assess against satellite-515 

based products like GRACE (Döll et al., 2014; Niu et al., 2007) or implement off-line spin-up using meteorological forcing 516 

consistent with the subsequent simulations. However, while spin-up with observations is attractive, when the resulting states 517 

are taken into a coupled global model, inconsistencies are inevitable. Third, CABLE currently assumes an identical spin-up 518 

approach for the aquifer as the soil moisture, iterating until state changes between sequences of years are smaller than some 519 

threshold. LSMs that employ similar iteration approaches (Gilbert et al., 2017) are likely to encounter similar problems as 520 

CABLE because the rate of drainage into the aquifer is very slow, leading to negligible changes between iterations and thus, 521 

satisfying the criteria for equilibrium.  522 

Soil layers and pedotransfer functions 523 

LSMs typically define a fixed number of soil layers globally, anywhere up to 20 layers. Most LSMs assume constant 524 

parameters across the entire soil profile, based on limited measurements and uncertain pedotransfer functions. We explored 525 

the implications of these assumptions by first increasing the number of soil layers to match the number of observed layers (Hi-526 

Res-1; Figure S2) and then implementing soil parameters that varied vertically based on site texture (Hi-Res-2; Figure 5). 527 

Increasing the vertical resolution had a small impact on the soil moisture and fluxes but did improve the temporal variability 528 

in soil moisture compared to observations. The use of site soil texture better depicts the moisture distribution in the soil profile 529 

but led to a slightly degraded soil moisture simulation. These results again highlight uncertainties in the translation of soil 530 

texture information to soil parameters via pedotransfer functions (Van Looy et al., 2017) and the value of parameter calibration 531 

as an alternative in site-level studies. The availability of site soil information at EucFACE further enabled the separation of 532 

parameter uncertainties from biases in process representations and model structural errors, a highly valuable step in better 533 

constraining LSM simulations. 534 

Calibration of soil hydraulic parameters 535 

A number of studies have used satellite-derived (passive and active microwave) estimates of soil moisture to optimise soil 536 

hydraulic parameters in the top few soil layers (Harrison et al., 2012). Clearly these approaches are a potential way to constrain 537 

LSMs globally given the plethora of satellite observations extending back to the 1970s. However, these approaches implicitly 538 

assume that improving near-surface soil moisture translates to improvements over the entire soil column, an assumption not 539 

supported by our results.  Whilst the use of observation-constrained θw and θsat over top 0.3 m improved the simulated dynamics 540 

of shallow soil, it did not result in a large reduction in the bias simulated in deeper soil moisture layers (Figure S3). At this 541 

site, the inability to significantly improve soil moisture dynamics through calibration of soil hydraulic conductivity against 542 

observed soil moisture data likely relates to the complexity of the soil profile, which contains two clay layers at depth (30-80 543 

cm and 300-450 cm). This vertical texture complexity meant that it was difficult to obtain unique parameter solutions that 544 

would sufficiently improve vertical drainage, whilst simultaneously simulating moisture dynamics well (Figure S5). However, 545 

the neutron probe measurement of soil moisture also involves the calibration of instruments and assumptions of soil 546 

characteristics. It is possible that some of the differences between our simulation and the observations are therefore associated 547 

with measurement errors. Overall, our sensitivity experiments demonstrated that there is likely to be an upper bound to model 548 

improvement achievable from adjusting empirical pedotransfer functions, the water retention curve and hydraulic conductivity 549 

functions despite the utilisation of the high-quality soil texture data at the site. As such, our study suggests that optimising soil 550 
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properties alone is not sufficient and calibration exercises should also account for vegetation information to reduce biases in 551 

sub-surface processes. 552 

Water stress functions 553 

Studies commonly highlight the functions used to limit photosynthesis and stomatal conductance with water stress as a key 554 

weakness among models. The lack of theory in this space (Medlyn et al., 2016) has led to models employing a range of 555 

functions encompassing different shapes and sensitivities that are not constrained by data. More recently, plant hydraulic 556 

(Christoffersen et al., 2016; Xu et al., 2016) and stomatal optimality approaches have emerged to fill the theoretical gap (Sperry 557 

et al., 2017) but are yet to be widely adopted in LSMs (but see (Eller et al., 2020; De Kauwe et al., 2020; Kennedy et al., 2019; 558 

Sabot et al., 2020)). Trugman et al. (2018) explored the role of soil moisture stress in simulated “potential” gross primary 559 

productivity (GPP) among CMIP5 models and argued that the functional form used to represent the effect of soil moisture 560 

stress was the major driver of carbon cycle uncertainty. Here we deliberately attempted to first resolve model biases through 561 

other avenues (e.g. soil evaporation, soil parameterisation), because it is likely that model biases originate from multiple 562 

sources (e.g. leaf area, soil moisture dynamics, etc.). We were subsequently able to assess the capacity to then further improve 563 

model behaviour via the functional forms used to represent water stress. 564 

 565 

We examined three alternative water stress functions: the function used in Ctl (common among models), a function based on 566 

Haverd et al. (2016) (β-hvrd) and a calibrated β (β-exp) for this site based on Yang et al. (2020). Haverd et al. (2016) 567 

hypothesised that plants optimise their root water uptake, only limiting function when water in the deepest accessible soil layer 568 

becomes limiting. They further argued that this behaviour did not vary among sites (and so species). De Kauwe et al. (2015) 569 

previously tested this hypothesis and demonstrated that it led to an underestimation of the effect of moisture stress, inconsistent 570 

with observations. Our results again show that this hypothesis is not supported by data and led to an overestimation of 571 

transpiration (Figure 6) and little evidence of moisture stress (Figure 9b). Integrated over the drought periods, we found that 572 

after reducing other model biases, the use of the calibrated β-exp function did reduce the simulated soil moisture stress (median 573 

β = 0.63 vs 0.33 in Hi-Res-2 and 0.46 in Opt; Fig 9). Overall, the various experiments show markedly different median β 574 

(ranging from 0.67 to 0.99, considering all simulated years), consistent with previous evaluations that have highlighted 575 

differences in simulated β across models (De Kauwe et al., 2017; Medlyn et al., 2016; Powell et al., 2013; Trugman et al., 576 

2018). However, our results highlight that differences originate as much from alternative model assumptions and biases (e.g. 577 

soil evaporation, soil parameters) as the functional forms themselves.  578 

Heatwaves  579 

Differences between the versions of CABLE lead to a different initial soil moisture state at the beginning of a heatwave ranging 580 

from ~ 0.15 m3 m-3 (β-hvrd) to ~ 0.23 m3 m-3 (Sres) (Figure 10). In addition to the impact of the initial state, differences 581 

between parameterisation also affect estimates of β, leading to large divergences in evaporative cooling during a heatwave. 582 

Consequently, some versions of CABLE respond to the heatwave with a depression of QE and a peak of QH during the early to 583 

mid-afternoon while other simulations maintain a high QE during the earlier parts of the day and shift the peak of QH to later 584 

in the afternoon (Figure 10c-d). The magnitudes of QE and QH between simulations are also substantially different: Ctl would 585 

amplify a heatwave, warming and drying the boundary layer while β-hvrd would tend to moisten and (relatively) cool the 586 

boundary layer. Many studies have shown that the land surface can play a key role in amplifying heatwaves (Hirsch et al., 587 

2019a; Miralles et al., 2014; Teuling et al., 2010) and LSMs exhibit systematic biases in representing this feedback (Sippel et 588 

al., 2017; Ukkola et al., 2018b). For a mega-heatwave like the 2010 European Heatwave, the contribution of local surface to 589 

sensible heat anomaly was ~ 20 W m-2 (Schumacher et al., 2019). However, our results show the differences between 590 

parameterisations within a single LSM can result in a greater divergence than this value. Therefore, these feedbacks can be 591 
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substantially changed through different parameterisations and, if coupled to an atmospheric model, may be large enough to 592 

change the frequency and magnitude of heatwaves within a model.  593 

 594 

We also showed that at high D, our model overestimated transpiration, which would have consequences for subsequent soil 595 

moisture availability. Renchon et al. (2018) recently highlighted this point at the Cumberland Plains eddy covariance site 596 

which neighbours the EucFACE site. Yang et al. (2019) showed that the MAESPA canopy gas exchange model similarly 597 

overpredicted trnspiration at high D, leading to an overprediction of annual transpiration by 19%. By examining leaf gas 598 

exchange data, they demonstrated that the reduction of transpiration could be attributed to non-stomatal limitation of 599 

photosynthesis at high D. Although non-stomatal limitation is commonly observed under low soil moisture content (e.g. Zhou 600 

et al. 2013) and implemented in a number of LSMs (De Kauwe et al., 2015), non-stomatal limitation at high D has been much 601 

less commonly reported and is not, to our knowledge, implemented in any LSMs. To echo Yang et al. (2019), further data on 602 

non-stomatal limitation at high D should be a priority, to determine whether this mechanism is sufficiently widespread to 603 

warrant inclusion in LSMs.  604 

Future directions 605 

We have shown that improving a LSM for one water flux is achievable, but improving a model to capture individual 606 

components of evapotranspiration and the associated soil moisture state is more challenging. No single step is sufficient in 607 

isolation and if observations only constrain one element of a model, biases can be transferred within a model. This can lead to 608 

a tendency to hide biases in seldom observed states because soil moisture profiles are rarely measured along with aboveground 609 

fluxes. International observational networks (e.g. FLUXNET; Baldocchi et al., 2001) rarely report QE , QH and soil moisture 610 

through and below the root zone simultaneously, although soil moisture profiles do sometimes exist. Expanding observational 611 

networks to include soil moisture profiles could accelerate model development. The EucFACE dataset holds exceptional 612 

promise as a means of evaluating model simulations and refining new theory. It is freely available, contains observations of 613 

the complete water balance and captures responses to both droughts and heatwaves. More broadly, our results also speak for 614 

the importance of multi-variable model evaluation methods for LSMs (e.g. iLAMB; Hoffman et al., 2017). 615 

Finally, our results imply that caution is needed in the interpretation of simulated heatwaves and droughts in coupled climate 616 

models. The feedback via the land surface is a key component and as our model experiments show, a range of alternative 617 

approaches can produce very different coupling between the land and the atmosphere if embedded in a coupled model. Despite 618 

the difficulties in acquiring datasets of the complete water balance, as a community we need to find an avenue to better assess 619 

(coupled) model predictions. Critical Zone Observatory Networks (Brantley et al., 2017) may be one means to better constrain 620 

models, but in all likelihood, targeted field campaigns that collect observations of soil moisture, eddy-covariance and the 621 

boundary layer are also needed.  622 

 623 

Code and data availability. CABLE code is available at https://trac.nci.org.au/trac/cable/wiki after registration. Here, we use 624 

CABLE revision r7278. Scripts for plotting and processing model outputs are available at 625 

https://github.com/bibivking/Evaluate_CABLE_EucFACE.git. EucFACE observations are publicly available in Western 626 

Sydney University's archive http://doi.org/10.4225/35/5ab9bd1e2f4fb (Gimeno et al., 2018b), and in 627 

https://doi.org/10.5281/zenodo.3610698 (Yang, 2019). 628 
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 990 

 991 
Figure 1. (a) Location of the experimental site in western Sydney, Australia (33°36′59″S, 150°44′17″E) shown by the red star. (b) 992 
Distribution of six rings (© Google Maps, 2020. EucFACE experiment site, 1:50. Google Maps [https://www.google.com/maps/@-993 
33.6177915,150.7379194,356m/data=!3m1!1e3]). (c) Understorey vegetation and infrastructure inside a ring (photograph taken by M. M.). 994 
(d) Canopy structure and central tower (photograph taken by M. M.).  995 
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 998 
Figure 2. Control simulation (Ctl). (a) Etr, Es and precipitation (P) between 2013 and 2015. The shaded areas represent uncertainty between 999 
three ambient rings. Both simulations and observations are smoothed with a 3-day window to aid visualisation. (b) θ in the top 0.25m from 1000 
2013 to 2019. (c) The vertical distribution of θ measured at observed dates from 2013 to 2019. (d) The vertical distribution of θ in Ctl for 1001 
observed dates from 2013 to 2019. (e) θ differences between CABLE and observations (note, for (c), (d) and (e) the horizontal axis is not 1002 
linear, rather it reflects periods of observations).    1003 
 1004 
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 1007 
Figure 3. Increasing soil evaporation resistance experiment (Sres). (a) Es between 2013 and 2015. (b) Etr between 2013 and 2015. In panel 1008 
(a) and (b) the shaded areas represent uncertainty between three ambient rings, and both simulations and observations are smoothed with a 1009 
3-day window to aid visualisation. (c) The vertical distribution of θ in Sres at observed dates from 2013 to 2019. (d) θ difference between 1010 
CABLE and observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations). 1011 
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 1013 
Figure 4. Water table initialisation experiment (Watr). (a) Etr and Es between 2013 and 2015. The shaded areas represent uncertainty between 1014 
three ambient rings. Both simulations and observations are smoothed with a 3-day window to aid visualisation. (b) θ in the top 0.25m from 1015 
2013 to 2019. (c) The vertical distribution of θ in Watr at observed dates from 2013 to 2019. (d) θ difference between CABLE and 1016 
observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations). 1017 
 1018 
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 1019 
Figure 5. High soil resolution experiment (Hi-Res-2), which uses 31 soil layers with depth-varying hydraulic parameters informed by 1020 
observed soil properties. (a) Etr and Es between 2013 and 2015. The shaded areas represent uncertainty between three ambient rings. Both 1021 
simulations and observations are smoothed with a 3-day window to aid visualisation. (b) θ in the top 0.25 m from 2013 to 2019. (c) The 1022 
vertical distribution of θ in Hi-Res-2 at observed dates from 2013 to 2019. (d) θ difference between CABLE and observations (note, for (c) 1023 
and (d) the horizontal axis is not linear, rather it reflects periods of observations). 1024 
 1025 
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 1030 
Figure 6. Haverd water stress function experiment (β-hvrd). (a) Etr and Es between 2013 and 2015. The shaded areas represent uncertainty 1031 
between three ambient rings. Both simulations and observations are smoothed with a 3-day window to aid visualisation. (b) θ in the top 1032 
0.25m from 2013 to 2019. (c) The vertical distribution of θ in β-hvrd at observed dates from 2013 to 2019. (d) θ difference between CABLE 1033 
and observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations). 1034 
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 1036 
Figure 7. Site-based water stress function experiment (β-exp). (a) Etr and Es between 2013 and 2015. The shaded areas represent uncertainty 1037 
between three ambient rings. Both simulations and observations are smoothed with a 3-day window to aid visualisation. (b) θ in the top 1038 
0.25m from 2013 to 2019. (c) The vertical distribution of θ in β-exp at observed dates from 2013 to 2019. (d) θ difference between CABLE 1039 
and observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations). 1040 
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 1043 
Figure 8. Simulations for each experiment during the drought period (October 2017 to September 2018). (a) the root zone soil moisture over 1044 
top 1.5 m (θ1.5m) and rainfall (P; bars), with blue dots showing the observed soil moisture. (b) Etr, (c) water stress factor (β), (d) Es and (e) 1045 
sensible heat (QH). All lines are smoothed with a 30-day window. 1046 
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 1048 
Figure 9. (a) Box plot of simulated β during a drought year (October 2017 - September 2018) and all simulated years (2013-2019). The 1049 
dashed line is the mean value of β in Ctl over the dry period. (b) β variance with root zone soil moisture over the top 1.5m (θ1.5m) during all 1050 
simulated years.  1051 
 1052 
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 1054 
Figure 10. Simulations during an observed heatwave with relatively low soil moisture (19-22 January 2018). (a) Air temperature (Tair; in 1055 
black) and soil moisture within root zone over the top 1.5m (θ1.5m). The black dashed line shows the 35°C threshold. (b) evaporative fraction 1056 
(EF; calculated for day-time conditions), (c) latent heat (QE) and (d) sensible heat (QH). One day before the heatwave is also shown. 1057 
 1058 
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 1060 
Figure 11. Modelled hourly Etr compared with measured hourly Etr over 2013. The solid line represents the 1:1 line. The dashed line is the 1061 
linear fit between modelled and measured Etr. Colours of dots indicate the range of vapour pressure deficit.  1062 
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Table 1. The experiments conducted. Layers refers to the number of soil layers. Increase resistance refers to whether increasing surface 1098 
resistance to soil evaporation. Soil heterogeneity indicates whether soil properties and hydraulic parameters change with depth. The 1099 
adjustment of θw, θsat and Ksat and the method used to calculate β are the final two columns. 1100 
 1101 

Experiment Layers 
Increase 

Resistance 
Soil 

heterogeneity 
Parameter adjustment β 

Ctl 6    default 
Sres 6 Y   default 
Watr 6 Y   default 
Hi-Res-1 31 Y   default 
Hi-Res-2 31 Y Y  default 
Opt 31 Y Y Constrain θw over 4.6m, θsat 

over top 0.3m and Ksat◊10 
over 4.6m 

default 

β-hvrd 31 Y Y As per Opt Haverd 
β-exp 31 Y Y As per Opt in situ 

 1102 
 1103 
Table 2. Performance metrics for the different experiments. Bold numbers are the best value among these experiments. 1104 
 1105 

Simulation Variable r 
RMSE 
mm or  
m3 m-3 

MBE 
mm or  
m3 m-3 

P5 
mm or  
m3 m-3 

P95  
mm or  
m3 m-3 

Ctl Etr 0.85 0.34 0.15 0.00 0.54 
Sres  0.84 0.59 0.40 0.03 1.04 
Watr  0.83 0.40 0.19 0.01 0.64 
Hi-Res-1  0.80 0.38 0.11 0.00 0.58 
Hi-Res-2  0.82 0.37 0.13 0.01 0.57 
Opt  0.86 0.37 0.19 0.01 0.62 
β-hvrd  0.84 0.61 0.41 0.02 1.10 
β-exp  0.86 0.46 0.29 0.02 0.82 
Ctl Es 0.65 0.70 0.12 -0.06 1.22 
Sres  0.55 0.42 0.24 0.00 0.26 
Watr  0.67 0.29 0.00 -0.05 0.08 
Hi-Res-1  0.65 0.32 0.11 0.00 0.19 
Hi-Res-2  0.66 0.31 0.09 -0.01 0.16 
Opt  0.68 0.28 0.00 -0.06 0.07 
β-hvrd  0.67 0.27 -0.04 -0.04 0.05 
β-exp  0.67 0.28 -0.04 -0.06 0.07 
Ctl 𝜃 0.90 0.12 0.12 0.13 0.11 
Sres  0.89 0.15 0.15 0.15 0.14 
Watr  0.78 0.02 0.00 0.01 -0.01 
Hi-Res-1  0.83 0.02 0.01 0.02 0.00 
Hi-Res-2  0.83 0.08 0.07 0.08 0.06 
Opt  0.68 0.05 0.04 0.06 0.03 
β-hvrd  0.81 0.04 0.04 0.04 0.02 
β-exp  0.73 0.05 0.04 0.05 0.03 

 1106 
 1107 
Table 3. Average values from each experiment. Precipitation (P), total evapotranspiration (ET), transpiration (Etr), soil evaporation (Es), 1108 
canopy evaporation (Ec), total runoff (R) including surface and subsurface runoff, soil water drainage to aquifer (Dr), gross primary 1109 
production (GPP), latent heat (QE), sensible heat (QH), and volumetric water content in the 4.6m soil column (θ).  1110 
 1111 

 Ctl Sres Watr Hi-Res-1 Hi-Res-2 Opt β-hvrd β-exp 
P (mm y-1) 661        
ET (mm y-1) 657 617 499 505  504 494 542 512 
Etr (mm y-1) 341 402 344 323  327 344 403 373 
Es (mm y-1) 305 204 143 170  165 138 126 127 
Ec (mm y-1) 11 12 12 12  12 12 12 12 
R (mm y-1) 7 49 1 2  2 0 0 0 
Dr (mm y-1) 0 0 153 152  158 163 120 147 
GPP (g C m-2 y-1) 1703 1770 1682 1653  1665 1704 1776 1741 
QE (W m-2) 52 49 40 40  40 39 43 41 
QH (W m-2) 15 17 25 25  26 27 24 26 
θ (m3 m-3) 0.33 0.35 0.20 0.21 0.27 0.25 0.24 0.24 
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