1 Supplement of

Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves

5 Mu et al.

- 6 *Correspondence to*: Mengyuan Mu (<u>mu.mengyuan815@gmail.com</u>)
- 7

Figure S1. Out-of-box CABLE experiment which uses the model default plant physiological and soil hydraulic parameters and the default 6 soil layers. (a) E_{tr} and E_s between 2013 and 2015. The shaded areas represent uncertainty between three ambient rings. Both simulations and observations are smoothed to aid visualisation. (b) θ in the top 0.25m from 2013 to 2019. (c) vertical distribution of θ in the out-of-box CABLE simulation at observed dates from 2013 to 2019. (d) θ difference between CABLE and observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations).

Figure S2. High soil resolution experiment (*Hi-Res-1*) which uses 31 soil layers but the soil parameters do not change with depth. (a) E_{tr} and E_s between 2013 and 2015. The shaded areas represent uncertainty between three ambient rings. Both simulations and observations are smoothed to aid visualisation. (b) θ in the top 0.25m from 2013 to 2019. (c) vertical distribution of θ in *Hi-Res-1* at observed dates from 2013 to 2019. (d) θ difference between CABLE and observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations).

Figure S3. Experiment based on *Hi-Res-2* but uses the observed soil moisture minima at each soil layer across 4.6 m to constrain θ_w and uses the observed maxima to set θ_{sat} over the top 0.3m. (a) E_{tr} and E_s between 2013 and 2015. The shaded areas represent uncertainty between three ambient rings. Simulations and observations are smoothed using a 3-day running mean to aid visualisation. (b) θ in the top 0.25m from 2013 to 2019. (c) The vertical distribution of θ in this experiment at observed dates between 2013 to 2019. (d) The differences in θ between CABLE and the observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations).

32 33 34 35 36 **Figure S4.** Optimising K_{sat} for the 4.6m soil column against observed θ over 4.6 m (θ_{all}), θ in top 0.25 m (θ_{top}), E_{tr} and E_s . The lower root mean square error (RMSE) represents the better optimised value. $K_{sat} \times 10$ is the optimal value which is emphasized by the vertical dashed line.

38 39 40 41 42 43 44 45 Figure S5. Soil parameter optimisation experiment (Opt) which uses the observed soil moisture minima at each soil layer across 4.6 m to constrain θ_w , uses the observed maxima to set θ_{sat} over the top 0.3m and uses the optimal $K_{sat} \times 10$. (a) E_{tr} and E_s between 2013 and 2015. The shaded areas represent uncertainty between three ambient rings. Simulations and observations are smoothed using a 3-day running mean to aid visualisation. (b) θ in the top 0.25m from 2013 to 2019. (c) The vertical distribution of θ in the Opt experiment at observed dates between 2013 to 2019. (d) The differences in θ between CABLE and the observations (note, for (c) and (d) the horizontal axis is not linear, rather it reflects periods of observations).

48 Table S1. Physiology parameters comparison between CABLE default values and EucFACE measured values. Citations: * Wang et al.

(2011) ; ** Yang et al. (2020) ; *** De Kauwe et al. (2015).

			Values	
Parameters	Definitions	Units	CABLE*	EucFACE**
0,J	Quantum yield of electron transport rate	μmol electron μmol ⁻¹ photon	0.2	0.3
$ heta_J$	Curvature of leaf response of electron transport to absorbed photosynthetically active radiation	-	0.7	0.48
ΔS	Entropy factor	$J \text{ mol}^{-1} \text{ K}^{-1}$	486.0 (V _{cmax}) 495.0 (J _{max})	639.60 (V _{cmax}) 638.06 (J _{max})
Ea	Activation energy	J mol ⁻¹	73637 (V _{cmax}) 50300 (J _{max})	66386 (V _{cmax}) 32292 (J _{max})
g_l	Parameter represents the g_s sensitivity to photosynthesis	kPa ^{0.5}	4.1***	5
H_d	Deactivation energy	J mol ⁻¹	149252 (V _{cmax}) 152044 (J _{max})	200000
q	The nonlinearity of the g_1 dependence of θ	-	-	0.425
$J_{max,25}$	Value of <i>J_{max}</i> at 25°C	µmol electron m ⁻² s ⁻¹	110	159
Vcmax,25	Value of V _{cmax} at 25°C	μ mol C m ⁻² s ⁻¹	55	91

Table S2. Performance metrics for θ at the different depths among the different experiments. Bold numbers are the best value among these sectors are the best value among the sectors are the sectors are the best value among the sectors are the best value among the sectors are the sectors are the best value among the sectors are the sectors are the best value among the sectors are the
experiments.

<u>0' 1''</u>	θ	r	RMSE	MBE	P5	P95
Simulation			m ³ m ⁻³	m ³ m ⁻³	$m^3 m^{-3}$	m ³ m ⁻³
Ctl	top 0.25m	0.79	0.08	0.05	0.05	-0.05
Sres		0.82	0.13	0.11	0.10	0.00
Watr		0.71	0.09	0.06	0.05	-0.04
Hi-Res-1		0.71	0.09	0.06	0.05	-0.04
Hi-Res-2		0.72	0.08	0.05	0.05	-0.06
Opt		0.71	0.07	0.00	0.02	-0.13
β-hvrd		0.76	0.07	-0.01	0.01	-0.14
β-exp		0.72	0.07	0.00	0.00	-0.13
Ctl	top 1.5m	0.92	0.08	0.07	0.08	0.08
Sres		0.89	0.13	0.13	0.10	0.15
Watr		0.84	0.05	0.05	0.04	0.04
Hi-Res-1		0.77	0.05	0.05	0.05	0.03
Hi-Res-2		0.76	0.10	0.09	0.10	0.07
Opt		0.72	0.07	0.06	0.07	0.03
β-hvrd		0.78	0.05	0.05	0.03	0.03
β-exp		0.75	0.06	0.06	0.06	0.03
Ctl	1.5-4.6m	0.85	0.15	0.15	0.16	0.13
Sres		0.80	0.16	0.16	0.18	0.13
Watr		0.57	0.03	-0.03	-0.01	-0.04
Hi-Res-1		0.78	0.02	-0.01	0.01	0.00
Hi-Res-2		0.80	0.07	0.06	0.07	0.07
Opt		0.57	0.04	0.04	0.05	0.03
β-hvrd		0.76	0.03	0.03	0.04	0.03
β-exp		0.65	0.04	0.03	0.05	0.03

57 References

- De Kauwe, M. G., Zhou, S.-X. X., Medlyn, B. E., Pitman, A. J., Wang, Y. P., Duursma, R. A. and Prentice, I. C.: Do land
 surface models need to include differential plant species responses to drought? Examining model predictions across a
 mesic-xeric gradient in Europe, Biogeosciences, 12(24), 7503–7518, doi:10.5194/bg-12-7503-2015, 2015.
- Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., van Gorsel, E. and Luhar, A.: Diagnosing
 errors in a land surface model (CABLE) in the time and frequency domains, J. Geophys. Res., 116(G1), G01034,
 doi:10.1029/2010JG001385, 2011.

Yang, J., Medlyn, B. E., De Kauwe, M. G., Duursma, R. A., Jiang, M., Kumarathunge, D., Crous, K. Y., Gimeno, T. E., Wujeska-Klause, A. and Ellsworth, D. S.: Low sensitivity of gross primary production to elevated CO₂ in a mature eucalypt woodland, Biogeosciences, 17(2), 265–279, doi:10.5194/bg-17-265-2020, 2020.