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1 Description of the study watersheds and data
1.1 Study watersheds

In this study, 14 large watersheds across environmental zones in China were selected. The properties of four dominant soil
types, the land cover of the selected watersheds in 2001 and detailed information of hydrological and climate data are listed in
Tables S1-S3. The temporal variations of lead area index (LAI) are shown in Fig. S1.

The Pingjiang and Xiangshui watersheds are located in the upper reach of the Ganjiang River in the Poyang Lake
basin. They lie in hill regions in the Jiangxi province (Liu et al., 2016), where the mean elevations are the lowest among 14
watersheds (314 m and 440 m above sea level, respectively). The Tangwang River and Xinancha River watersheds are nested
and situated in the Xiaoxing’an Mountain that flow into the Songhua River. The Tangwang River watershed has a drainage
area of 19198 km?, the largest onein this study. The Xinancha River watershed with an area of 2585 km? is an upstream sub-
watershed of the Tangwang River. They are characterized by gentle hills with the lowest mean slope of 8.7° and 11.3°,
respectively. The Upper Zagunao, Zagunao, Upper Heishui River and Heishui River watersheds located in the transitional
zone from the Southeast Tibet Canyon to Sichuan basin flow into the Minjiang River, the largest tributary of the Upper Yangtze
River (Zhang et al., 2012). These watersheds are featured by steep slopes with the slope ranging from 0 to 72° and a mean
slope of greater than 27°. The Gongbujiangda and Gengzhang are two nested watersheds located in the Niyang River basin,
originating from a glacier lake in Mount Nyaingentanglha and eventually entering into the Yarlung Zangbo River (Zhang et
al., 2011). Located in the transitional zones from Qinghai-Tibet Plateau to the Southeast Tibet Canyon, the Gongbujiangda
and Gengzhang watersheds are featured by the highest mean elevation of 4946 and 4752 m asl., respectively. As sub-
watersheds of Jing River basin, the Dongchuan, Heishuichuan, Jingchuan and Rui River watersheds lie in the Loess Plateau.
The Dongchuan and Heishuichuan watersheds are neighboring rivers originating from the northeast parts of Jing River basin
with lower elevation and steeper slope, while the Jingchuan and Rui River watersheds situated in southwest regions of Jing
River basin are characterized by higher elevation and lower slope.

The Pingjiang and Xiangshui watersheds locate in subtropical monsoon climate zone with more than 70% of annual
precipitation falling in the wet season from March to August. Their hydrological regime is rain-dominated regime. The
Tangwang River and Xinancha River watershed are situated in a temperate continental monsoon climate zone with cold dry
winter and humid wet summer, where wet season mean temperature is about 13 °C and mean temperature can reach -11 °C in
dry season (Table 1). They also belong to rain-dominated watersheds. The climate of Upper Zagunao, Zagunao, Upper Heishui
River, Heishui River, Gongbujiangda and Gengzhang watersheds can be classified as alpine climate, which are characterized
by cold winter and cool summer. These watersheds are frequently disturbed by southwest monsoon in summer (Li et al.,
2018b), leading to a wet season from May to October with mean precipitation greater than 600 mm. The hydrological regime

of these watersheds is hybrid controlled by rainfall and snow. Located in the semi-arid region, the Dongchuan, Heishuichuan,
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Jingchuan and Rui River watersheds belong to temperate continental climate. Precipitation in the Loess Plateau decreases with
latitude, leading to more precipitation in southern watersheds (Jingchuan and Rui River) than in the northern ones (Dongchuan
and Heshuichuan). The hydrological year (November to October) of these four watersheds can be divided into dry season from
November to April and wet season between May and October.

Dominant soil type in the Pingjiang and Xiangshui watersheds is LIXISOLS, accounting for 63.8% and 80.3% of
total watershed area, respectively. LIXISOLS is frequently distributed in the forested areas, characterized by high permeability
and moderate weathering degree of minerals (Jiang and Ji, 2011). Under a humid and warm condition, LIXISOLS is easy to
be eroded (Baldwin, 1938; Bockheim et al., 2014). The Tangwang River and Xinancha River are dominated by LUVISOLS
that is featured with distinct seasonal humidity and low permeability (Duan and Cai, 2018). There are more than 20 types of
soil in the Upper Zagunao, Zagunao, Upper Heishui River and Heishui River watersheds, and over 80% of watersheds are
occupied with LEPTOSOLS. Soils in these watersheds are characterized by distinct altitudinal pattern, and the distribution of
soil is associated with temperature, water distribution and vegetation type. In addition, due to intensive harvesting activities in
the early years, soils in the Upper Minjiang River basin were severely impaired, resulting in serious soil erosion and
degradation. Similar to the former four watersheds, the Gongbujiangda and Gengzhang are mainly occupied by LEPTOSOLS.
The Dongchuan, Heshuichuan, Jingchuan and Rui River watersheds in the Loess Plateau are dominated by CAMBISOLS,
where topsoils are directly exposed in open air, and frequently washed up by heavy rainstorm in wet season, resulting severe
soil erosion. The properties of four dominant soil types are listed in Table S1.

Table S1: The properties of four dominant soil types in the study watersheds

Topsoil Topsoil Subsoil Subsoil
Topsoil . available P Topsoil Subsoil . available Subsoil
. Topsoil saturated . Subsoil saturated
. . organic L water . bulk organic . water . bulk
Dominant soil type salinity . hydraulic . salinity . hydraulic .
carbon holding .. density carbon holding .. density
(dS/m) . conductivity (dS/m) . conductivity
(%) capacity (g/cm3) (%) capacity (g/cm3)
(mm/h) (mm/h)
(cm/cm) (cm/cm)
LUVISOLS 1.20 0.56 0.13 9.94 1.46 0.62 0.59 0.13 4.89 1.50
LIXISOLS 1.34 0.23 0.12 4.15 1.44 0.56 0.24 0.12 1.50 1.44
LEPTOSOLS 1.38 0.19 0.13 13.54 145 0.34 0.18 0.16 6.29 1.55
CAMBISOLS 0.79 0.37 0.13 12.46 1.52 044 0.33 0.12 691 1.55

The major vegetation types in the Pingjiang and Xiangshui watersheds include subtropical evergreen broadleaf forest
and planted evergreen coniferous forest. The dominant natural tree species are Castanopsis fabri, Castanopsis sclerophylla,
Schima superba, Sassafras tzumu and Castanopsis fissa, while planted tree species include Pinus massoniana, Cunninghamia
lanceolata, Camellia oleifera Abel and Phyllostachys heterocycle (Liu et al., 2016). These two watersheds have experienced
large-scale harvesting since 1960s, forest cover decreased by 10% during 1965-1984 (Liu et al., 2016). After that, a series of
afforestation and forest restoration programs have been implemented to mitigate serious environment issues in the Poyang
Lake basin, then forest coverage recovered to 18% in the Pingjiang watershed and 55% in the Xiangshui watershed in 2001

(Table S2), respectively. During the study period, seasonal LAI in the Pingjiang watershed (1.45 m?/m? in dry season and 1.90
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m?/m? in wet season) was lower than in the Xiangshui watershed (dry season LAI of 2.54 m*/m? and wet season LAI of 3.17
m?/m? (Fig. S1)). Watersheds in the Xiaoxing’an Mountain are covered with a large area of temperate mixed forests, and
dominated tree species are Pinus koraiensis, Picea jezoen, Abies nephrolepis, Fraxinus mandschurica, Quercus mongolica
and Tilia amurensis (Cai and Tan, 2007; Duan and Cai, 2018; Liu et al., 2011; Yao et al., 2015). Due to a large proportion of
deciduous forests, dry season LAI in the Tangwang River and Xinancha River watersheds was less than 1.00 m?*/m?, while wet
season LAI can rise to 3.50 m?/m?. Alpine meadow and subalpine coniferous forest are dominated vegetation types in the
Upper Zagunao, Zagunao, Upper Heishui River and Heishui River watersheds. Vegetation distribution is featured with distinct
altitudinal pattern. Forest coverages in the year 2001 were 46% in the Upper Zagunao, 52% in the Zagunao, 34% in the Upper
Heishui River and 37% in the Heishui River, respectively (Table S2). The dominant tree species in these watersheds are Abies
faxoniana, Picea purpurea, Picea asperata Mast and Betula albo-sinensi (Zhang et al., 2012; Cui et al., 2012). Forests in the
Upper Zagunao and Zagunao watersheds were severely logged from 1950s to 1980s and strictly protected after 1998 (Hou et
al., 2018b; Zhang et al., 2008). Thus, LAI showed no increase but a slight decrease at the beginning of recovery period (Fig.
S1). On the contrary, seasonal LAI was on an increase in the Upper Heishui River and Heishui River due to limited forest
disturbances. Similar to the watersheds in the Minjiang River basin, the Gongbujiangda and Gengzhang watersheds are
dominated by alpine meadows and subalpine coniferous forests. Picea likiangensis var. Linzhiensis and Abies georgei var.
Smithii are two major species (Zhang et al., 2011). From 1983 to 2003, there was a slight decrease in LAI from 1983 to 1993,
while a sharp increase can be seen after 1998 (Fig. S1). Long-term average dry season LAI were 0.11 m%*m? in the
Gongbujiangda and 0.22 m?m? in the Gengzhang, and wet season LAI were 0.45 m?*m? and 0.59 m?/m?, respectively.
Vegetation coverage are extremely low in watersheds in the Loess Plateau, and shrubland and grassland cover large areas of
the Dongchuan, Heshuichuan, Jingchuan and Rui River watersheds (Table S2), where Quercus wutaishanica, Larix principis-
rupprechtii and Pinus tabuliformis are dominant tree species (Wang et al., 2010; Xu et al., 2015). Dry season LAI in the
Dongchuan, Heshuichuan, Jingchuan and Rui River were 0.19 m*m?, 0.34 m?/m?, 0.26 m*m? and 0.28 m?*/m?, respectively,

while the corresponding wet season LAI were 0.59 m*m?, 1.51 m?*/m?, 0.98 m?*/m? and 1.23 m?/m>.



Table S2: Land cover of the selected watersheds in the year of 2001

Watersheds Forest (%) Shrubland (%) Grassland (%) Farmland (%) Snow (%) Other lands (%)
Pingjiang 17.9 2.8 49.5 21.7 0.0 8.2
Xiangshui 55.0 1.3 34.1 8.7 0.0 0.9
Tangwang River 91.3 0.1 2.2 5.7 0.0 0.7
Xinancha River 93.8 0.2 1.0 4.5 0.0 0.5
Upper Zagunao 45.9 1.0 50.1 1.2 0.3 1.6
Zagunao 52.1 2.1 42.6 1.7 0.2 1.3
Upper Heishui River 34.2 0.4 63.3 1.3 0.7 0.1
Heishui River 373 1.2 58.7 2.5 0.2 0.2
Gongbujiangda 3.9 0.8 83.5 0.2 4.0 7.7
Gengzhang 14.5 1.3 67.3 0.2 9.2 7.5
Dongchuan 1.7 2.1 35.8 60.4 0.0 0.0
Heshuichuan 254 17.1 31.5 26.0 0.0 0.0
Jingchuan 18.8 2.2 36.5 423 0.0 0.2
Rui River 20.1 5.7 30.2 44.0 0.0 0.0
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Figure S1: The temporal variations of dry season, wet season and annual leaf area index (LAI) in 14 study watersheds.
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1.2 Climate data

CMA dataset contains daily climatic observations from 752 active stations in China and the earliest climate data can date back
to 1950s. There are active climate stations within or around the Tangwang River, Xinancha River, Zagunao River, Upper
Heishui River and Heishui River watersheds, and daily records collected from CMA climate stations (http://data.cma.cn) were
used in these watersheds for analysis (Table S3). Due to a lack of long-term climate data from CMA stations within the
Pingjiang, Xiangshui, Dongchuan, Heshuichuan, Jingchuan and Rui River watersheds, we generated spatial-interpolated
gridded climate dataset by ANUSPLIN model based on CMA data. Monthly mean temperature, maximum temperature,
minimum temperature and precipitation from all CMA climate stations in the Poyang Lake basin were collected as inputs, and
ANUSPLIN model was then applied to interpolate point climate records into spatial gridded climate dataset based on digital
elevation model (DEM) (Hartkamp et al., 1999; Price et al., 2000; Wang et al., 2006), and from which climate data for Pingjiang
and Xiangshui watersheds were eventually derived. Similarly, climate data for the Dongchuan, Heshuichuan, Jingchuan and
Rui River watersheds were derived from spatial-interpolated dataset by use of all CMA climate stations in the Yellow River
basin. Climate data for the Upper Zagunao, Gongbujiangda and Gengzhang watersheds were obtained from active hydrological

stations or rain gauges due to the lack of active CMA stations within these watersheds.

Table S3: Detailed information of hydrological station, sources of climate data and study period

Watersheds Hydrological station ~ Longitude Latitude Climate data source Study period
Pingjiang Hanlingiao 115°04° 26° 02’ ANUSPLIN? 1982-2006
Xiangshui Mazhou 115°50° 25°23° ANUSPLIN? 1982-2006
Tangwang River Chenming 129°29° 46° 48’ Yichun, Hegang' 1983-2001
Xinancha River Nancha 129°15° 47° 08’ Yichun' 1983-2001
Upper Zagunao Zagunao 103° 10’ 31°26° Miyaluo, Li County? 1983-2004
Zagunao Sangping 103° 35’ 31°28 Songpan, Dujiangyan! ~ 1983-2005
Upper Heishui River ~ Heishui 103° 31°02° Songpan, Hongyuan! 1988-2002
Heishui River Shaba 103° 40° 31°50° Songpan, Hongyuan! 1988-2002
Gongbujiangda Gongbujiangda 93°15° 29053 Gongbujiangda’ 1983-2003
Gengzhang Gengzhang 94° 09’ 29° 44° Gengzhang? 1983-2003
Dongchuan Jiagiao 107° 32’ 36° 03’ ANUSPLIN? 1983-2003
Heshuichuan Bangiao 107° 35’ 35°33 ANUSPLIN? 1983-2003
Jingchuan Jingchuan 107°12° 3512 ANUSPLIN? 1983-2003
Rui River Yuanjiaan 107°12° 3512 ANUSPLIN? 1983-2003

Note: Climate data source: ! CMA station; 2ANUSPLIN model; and 3hydrological stations or rain gauges.
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2 Seasonal hydrological responses to vegetation change

2.1 Improved single watershed approach

An improved single watershed approach combined modified double mass curve (MDMC) and time series Multivariate
Autoregressive Integrate Moving Average model (ARIMAX) was employed to quantify seasonal streamflow variations
attributed to vegetation change, climate variability and other factors. Firstly, MDMC with accumulated seasonal effective
precipitation plotted versus accumulated seasonal streamflow was performed to exclude the effects of climate variability on
seasonal streamflow (Fig. S2a). There is a consistent relationship between seasonal streamflow and seasonal effective
precipitation in a watershed during a period with limited hydrological impact of non-climate factors, resulting in a straight line
in the MDMC (Zhang et al., 2012). In other words, seasonal streamflow variation is only determined by climate variability
during an undisturbed period or a period of limited watershed disturbances. Once non-climate factors produce a detectable
impact on seasonal streamflow, a breakpoint in the MDMC can be found. A linear regression model based on the accumulated
seasonal effective precipitation and accumulated seasonal flows before the breakpoint can be built, and the differences between
observed line and predicted line built by linear regression model after the breakpoint can represent the accumulated seasonal
streamflow variation attributed to non-climate factors (AQunc) (Li et al., 2018a; Wei and Zhang, 2010; Zhang and Wei, 2012).
Then, multivariate ARIMA (ARIMAX) model, a typical ARIMA model with one or multiple external variables was introduced
to quantify seasonal streamflow variation attributed to vegetation change and other factors (Engle and Watson, 1981). Here,
an ARIMAX model was fitted by time series of accumulated seasonal streamflow variation attributed to non-climate factors
from MDMC (AQunc) with accumulated LAI variation (ALAI:) added as an external variable. After that, the predicted
accumulated seasonal streamflow variation attributed to non-climate factors (AQunc0) can be generated from a significant
ARIMAX model (p<0.10). The differences between the predicted and observed seasonal streamflow variation attributed to
non-climatic factors (AQu) can be expressed as statistical errors (AQse) and the accumulated seasonal streamflow variation
attributed to other factors (AQ,) (Fig. 2b). Finally, the 95% confidence interval (95%CI) was further used to differentiate
statistical errors and seasonal streamflow variation attributed to other factors. Data points located within 95%CI were viewed
as statistical errors only, while points fall beyond 95%CI were attributed to both seasonal streamflow variation to other factors
and statistical errors (Fig. 2¢). Once seasonal streamflow variation attributed to other factor was estimated, seasonal streamflow
variation attributed to vegetation change (AQy) can be computed eventually (Hou et al., 2018a; Hou et al., 2018b). Equations
(S1) to (S5) showed the calculations of the improved single watershed approach.

AQanc = Qa = Qao (S1)
AQqc = AQq — Alanc (82)
AQqq = AQanc — AQanao (S3)
AQ, = AQq — AQse (S4)



200

205

AQy = AQn — AQ, (S5)

where O, and Q¢ are the observed accumulated seasonal streamflow, and predicted accumulated seasonal streamflow by the
linear regression model in MDMC, respectively; AQunc stands for accumulated seasonal streamflow variation attributed to
non-climate factors; AQqc and AQ, represent accumulated seasonal streamflow variation attributed to climate variability and
seasonal streamflow variation, respectively; AQ,,.o stands for the predicted accumulated seasonal streamflow variation
attributed to non-climatic factors from ARIMAX model, AQ,;is accumulated seasonal streamflow variation from others. AQy,
AQ, and AQ, represent seasonal streamflow variations attributed to others, vegetation change and other factors; AQse is

statistical errors.
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Figure S2: An example of the improved single watershed approach.
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2.2 Effects of vegetation change on seasonal streamflow

According to the improved single watershed approach (Figs. S3 to S5), hydrological responses to climate variability, vegetation
change and other factors can be quantified (Figs. S6 to S7). In dry season, vegetation loss can increase streamflow by 20.7 mm
(8.8%), 135.7 mm (82.7%), 66.2 mm (46.0%), 49.5 mm (51.6%), 3.8 mm (58.5%) and 4.0 mm (24.2%) in the Pingjiang, Upper
Zagunao, Zagunao, Gengzhang, Dongchuan and Jingchuan watersheds, respectively, while it can decrease streamflow by 30.9
mm (102.6%) and 23.4 mm (62.0%) in the Tangwang River and Xinancha River watersheds, respectively (Table S3). As a
result of vegetation gain, dry season streamflow declined by 29.1% (5.8 mm) in the Rui River watershed and increased by
26.5% (64.2 mm), 4.6% (6.3 mm), 30.0% (35.4 mm), 44.1% (26.7 mm) and 2.4% (0.1 mm) in the Xiangshui, Upper Heishui
River, Heishui River, Gongbujiangda and Heshuichuan watersheds, respectively. In wet season, vegetation loss can increase
streamflow by 28.5 mm (4.6%) in the Xiangshui, 20.6 mm (3.3%) in the Upper Zagunao, 1.9 mm (0.5%) in the Zagunao, 44.7
mm (5.1%) in the Gengzhang, respectively and reduced streamflow by 1.4 mm (6.3%) in the Dongchuan watersheds. Wet
season streamflow reduction due to vegetation gain in the Pingjiang, Tangwang River, Upper Heishui River, Heishui River,
Gongbujingda, Jingchuan and Rui River watersheds varied from 8.4 mm to 104.7 mm (1.3%-94.2%). However, vegetation
gain increased wet season streamflow by 31.9 mm (10.9%) and 0.6 mm (3.9%) in the Xinancha River and Heshuichuan

watersheds, respectively.
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Figure S3: Modified double mass curves (MDMCs) for the study watersheds.
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Figure S4: Observed accumulated seasonal streamflow variation attributed to non-climatic factors by MDMC and predicted

accumulated seasonal streamflow variation attributed to non-climatic factors by ARIMAX.
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Figure S5: 95% confidence intervals (95% CIs) of seasonal streamflow variation attributed to others.
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Figure S6: Dry season streamflow variations and their components.
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Figure S7: Wet season streamflow variations and their components.



Table S4: Seasonal streamflow response to climate variability, vegetation change and other factors, and seasonal ecohydrological

240  sensitivity in the study watersheds
Disturbed A0 AQ. A0, 40, AQ. A0, a0, A0 ALAT »
Watersheds  period MM (mm)  (om)  om) mm) R R W ) 87
Dry season  64.4 -9.7 20.7 534 -4.1 8.8 22.6 27.2 -0.2 3.03
PJ 1996-2005
Wet season  15.0 61.4 213 =250 10.2 -3.5 -4.1 2.5 13.1 0.83
Dry season 16.3 -90.5 64.2 42.6 -37.3 26.5 17.6 6.7 28.6 1.27
XS 1993-2005
Wet season 8.8 65.0 28.5 -84.7 10.5 4.6 -13.7 1.4 -17.4 0.40
Dry season -4.6 114 -30.9 14.9 379  -1026 494  -153 -6.7 27.75
TR 1995-2001
Wet season  -88.8  -30.4 -52.9 -5.4 -12.7 -22.0 22 -37.0 3.6 4.36
Dry season -7.7 13.3 -23.4 24 35.2 -62.0 6.4 -20.5 -6.8 5.07
XR 1986-2001
Wet season  -80.2  -108.8 319 -33 -37.0 10.9 -1.1 -27.3 8.8 1.10
Dry season  49.3 -59.3 1357  -27.1  -36.1 82.7 -16.5  30.1 -24.7 3.74
UZGN 1989-2004
Wet season  57.8 -7.4 20.6 44.6 -1.2 33 7.2 9.4 -4.4 4.11
Dry season 44 -66.3 66.2 44 -46.0 46.0 3.1 3.0 21.1 1.37
ZGN 1997-2005
Wet season  -24.1 -29.8 1.9 2.7 -5.1 0.5 0.5 -4.1 -1.4 2.24
Dry season  -18.5  -759 6.3 51.1 -55.5 4.6 373 -135 354 1.01
UHR 1992-2002
Wet season  -58.9 83.0 -97.0 -449 13.2 -15.4 7.1 9.4 5.0 2.02
Dry season -2.6 -63.1 354 25.1 -53.6 30.0 21.3 2.2 15.2 2.08
HR 1992-2002
Wet season  -55.8 67.0 -1047 -18.1 14.2 -22.2 -3.8  -11.8 3.7 3.49
Dry season 5.1 -34.4 26.7 12.7 -56.7 44.1 21 8.4 17.1 4.45
GBJD 1988-2003
Wet season  79.7 94.9 -8.4 -6.9 17.9 -1.6 -1.3 15 35 0.51
Dry season 4.0 -78.3 49.5 32.8 -81.7 51.6 343 42 212 4.90
GZ 1990-2003
Wet season  136.6  128.8 44.7 -37.0 14.6 5.1 -4.2 15.5 -0.4 1.17
Dry season -0.7 -5.0 3.8 0.5 -76.9 58.5 7.8 -10.5 -4.8 6.54
DC 1991-2003
Wet season 44 5.1 -1.4 0.8 21.9 -6.3 3.6 19.3 -0.2 2.16
Dry season -33 -6.4 0.1 3.1 -138.4 24 65.6 -70.4 38 3.45
HSC 1988-2003
Wet season 6.8 9.8 0.6 -3.6 67.0 39 -39.2 218 34 1.40
Dryseason -10.8  -16.4 4.0 1.6 -98.9 24.2 9.4 -65.3 -0.5 8.27
IC 1998-2003
Wet season  -7.2 34.2 -37.2 -4.2 86.6 942  -107 -183 22.4 3.57
Dry season -8.7 -16.1 -5.8 13.1 -80.4 -29.1 65.7  -43.8 38 6.03
RR 1991-2003
Wet season  -35.0 -1.6 -18.8  -14.6 -2.5 -29.0 225  -54.0 44 222
Note: (1) PJ, XS, TR, XR, UZGN, ZGN, UHR, HR, GBID, GZ, DC, HSC, JC and RR refer to the Pingjiang, Xiangshui, Tangwang River,
Xinancha River, Upper Zagunao, Zagunao, Upper Heishui River, Heishui River, Gongbujiangda, Gengzhang, Dongchuan, Heishuichuan,
Jingchuan and Rui River watersheds, respectively.
(2) AQ, AQc, AQv and AQo stand for seasonal streamflow variations, seasonal streamflow variation to climate variability, vegetation
245  change and other factors, respectively.

(3) ALAI means LAI deviation compared to average LAI before the first breakpoint.
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250

3 Comparisons of dry season and wet season ecohydrological sensitivity in the study watersheds dominated by different

climate condition, climate zone, dominant soil type and hydrological regime
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Figure S8: Comparisons of dry season and wet season ecohydrological sensitivity in different climate zones. (The Pingjiang and

Xiangshui watersheds belong to subtropical monsoon climate, the Tangwang River and Xinancha River lie in temperate continental

climate zone, the Upper Zagunao, Zagunao, Upper Heishui River, Heishui River, Gongbujiangda and Gengzhang experience alpine

climate, and the Dongchuan, Heishuichuan, Jingchuan and Rui River are characterized by temperate continental climate.)
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Figure S9: Comparisons of dry season and wet season ecohydrological sensitivity in different climate conditions. (Watershed

classifications can be found in Table 3.)
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Figure S10: Comparisons of dry season and wet season ecohydrological sensitivity in different dominant soil types. (Watershed

classifications can be found in Table 3.)
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265 Figure S11: Comparisons of dry season and wet season ecohydrological sensitivity in different hydrological regimes. (Watershed

classifications can be found in Table 3.)

Table SS: Statistical test for the differences of dry season and wet season ecohydrological sensitivity in climate zone, climate

condition, dominant soil types and hydrological regime

Mann-Whitney U test

Classification Spa vs. Spv
z p
Climate zone Subtropical monsoon climate 3.36 <0.001
Temperate continental monsoon climate 3.65 <0.001
Alpine climate 2.90 0.004
Temperate continental climate 2.93 0.003
Climate condition Energy-limited 3.36 <0.001
Equitant 1.59 0.11
Water-limited 5.28 0.00
Dominant soil type LIXISOLS 3.36 <0.001
LUVISOLS 3.65 <0.001
LEPTOSOLS 2.90 0.004
CAMBISOLS 2.93 0.003
Hydrological regime Rain-dominated 4.98 <0.001
Hybrid 2.90 0.004

270  Note: Sz and Sy refer to dry season and wet season ecohydrological sensitivity.
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