
Snowpack dynamics in the Lebanese mountains from
quasi-dynamically downscaled ERA5 reanalysis

updated by assimilating remotely-sensed fractional
snow-covered area

Esteban Alonso-González1, Ethan Gutmann2, Kristoffer Aalstad3, Abbas Fayad4, Marine
Bouchet5  , Simon Gascoin5

1- Instituto Pirenaico de Ecología, Spanish Research Council (IPE-CSIC), Zaragoza, Spain
2- Research Application Laboratory, National Center for Atmospheric Research (RAL-NCAR), Boulder, CO, United States 
3- Department of Geosciences, University of Oslo, Oslo, Norway
4- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
5- Centre d'Etudes Spatiales de la Biosphère (CESBIO), UPS/CNRS/IRD/INRA/CNES, Toulouse, France

Abstract:  The  snowpack  over  the  Mediterranean  mountains  constitutes  a  key  water
resource for the downstream populations. However, its dynamics have not been studied in
detail yet in many areas, mostly because of the scarcity of snowpack observations. In this
work, we present a characterization of the snowpack over the two mountain ranges of
Lebanon.  To obtain the necessary snowpack information,  we have developed a 1 km
regional  scale  snow  reanalysis  (ICAR_assim)  covering  the  period  2010-2017.
ICAR_assim was developed by means of ensemble-based data assimilation of MODIS
fractional snow-covered area (fSCA) through thean energy and mass snow balance model
the  Flexible  Snow  Model  (FSM2),  using  the  Particle  Batch  Smoother  (PBS).  The
meteorological forcing data was obtained by a regional atmospheric simulation developed
throughfrom the Intermediate Complexity Atmospheric Research model (ICAR) nested
inside  a  coarser  regional  simulation  developed  byfrom the  Weather  Research  and
Forecasting model (WRF). The boundary and initial conditions of WRF were provided
by the ERA5 atmospheric  reanalysis.  ICAR_assim showed very good agreement  with
MODIS gap-filled snow products,  with a spatial  correlation of R = 0.98 in the snow
probability (P(snow) P(snow) ), and a temporal correlation of R = 0.88 in the day of
peak snow water equivalent (SWE). Similarly, ICAR_assim has shown a correlation with
the seasonal mean SWE of R = 0.75 compared with in-situ observations from Automatic
Weather  Stations  (AWS).  The  results  highlight  the  high  temporal  variability  of  the
snowpack in the Lebanon ranges, with differences between Mount Lebanon and Anti-
Lebanon that cannot be only be explained by its hypsography beenwith Anti-Lebanon in
the rain shadow of Mount Lebanon. The maximum fresh water stored in the snowpack is
in  the  middle  elevations  approximately  between  2200  and  2500  m  a.s.l.  Thus,  the
resilience to further warming is low for the snow water resources of Lebanon due to the
proximity of the snowpack to the zero isotherm.
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1. Introduction

The hydrological processes related to mountain areas are essential for the water supplies
to a large part of humanity (Viviroli et al., 2007)(Viviroli  et al.,  2007)(Viviroli et al.,
2007)(Viviroli  et  al.,  2007)(Viviroli  et  al.,  2007)(Viviroli  et  al.,  2007)(Viviroli  et  al.,
2007)(Viviroli et al., 2007). Despite the relatively mild temperature of the Mediterranean
climates,  mountainsmountains there  often  exhibits  deep  and  long-lasting
snowpackssnowpacks accumulating more than 3 meters and an average snow seson of 5
months at the summit areas (Alonso-González et al., 2020; Fayad et al., 2017b). Thus,
as most of the annual precipitations falls during winter season (García-Ruiz et al., 2011)
the mountain snowpack strongly reshapes the hydrographs to sustainesustain high flows
until  the  end  of  the  spring (López-Moreno  and García-Ruiz  2004),  permitting  better
synchronization of water demand and availability during the dry season (García-Ruiz et
al.,  2011).  Mediterranean  snowpacks  are  characterized  by  a  high  interannual
variabilityMediterranean snowpacks are characterized by a high interannual variability,
which affect the amount and seasonality of river flows (López-Moreno and García-Ruiz
2004). Despite this variability, the thickness and high density exhibited by Mediterranean
snowpacksthe snowpack in the Mediterranean climate (Fayad et al., 2017b), makes them
an effective water storage system. In addition, high sublimation rates are associated with
Mediterranean snowpacks (Fayad and Gascoin, 2020; Herrero et al., 2016; Schulz and de
Jong, 2004). The fact that snowpack conditions are close to isothermal during most of the
snow  season  makes  them  highly  sensitive  to  the  current  climate  warming (Alonso-
González et al., 2020a; López-Moreno et al., 2017; Yilmaz et al., 2019).

The  Lebanon  Mountainsmountains are  a  clear  example  of  Mediterranean
mountainsmountains,  where  snow  exerts  a  key  control  on  the  hydrology  and  water
resources  are  critically  dependent  on  the  interannual  fluctuations  of  the  snow
packsnowpack (El-Fadel et al., 2000). Despite itstheir importance, snow observations in
the  region  are  scarce (Fayad  et  al.,  2017a),  making  the  study  of  distributed  snow
dynamics  challenging.  Recently,  Fayad  and  Gascoin  (2020)  have  develop  distributed
snowpack  simulations  over  key  areas  of  Mount  Lebanon,  forcing  the  model  by
interpolating observations of the few existing  aAutomatic  wWeather  sStations  (AWS)
using the SnowModel by  Liston and Elder (2006).  They showed the importance of the
liquid  water  percolation  scheme given the  isothermal  condition  of  the snowpack and
estimated the snow water equivalent over three key catchments in the windward western
divide of Mount Lebanon. However, due to the lack of meteorological data outside this
area, these simulations did not cover the whole mountain area of the country and were
limited to three snow seasons.
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Remote sensing and numerical modeling have become reliable tools to generate useful
meteorological  information for mountain regions  (Lundquist  et  al.,  2019),  and also to
generate robust snow data worldwide. Atmospheric reanalyses are a valuable source of
long term (multidecadal) climatological information, especially at planetary scales (e.g.
Wegmann et al., 2017; Wu et al., 2018). However, spatially downscaling such products is
mandatory to derive relevant snow information over complex terrain (Baba et al., 2018b;
Mernild  et  al.,  2017  among  others).  Dynamical  downscaling  has  been  shown  to
outperform statistically gridded products for meteorological variables in complex terrain
(Gutmann et al., 2012). More specifically, high resolution fully dynamical meteorological
models  can reproduce the snowfall  patterns  over complex terrain (Ikeda et  al.,  2010;
Rasmussen  et  al.,  2011).  However,  the  computational  cost  of  fully dynamical
downscaling solutions becomes prohibitive for large domains at high spatial resolutions.
To reduce the computational cost,  many different solutions of varying complexity have
been developed using statistical  interpolations corrected with the topography or using
simplifications of the atmospheric dynamics (Fiddes and Gruber, 2014; Gutmann et al.,
2016; Liston and Elder, 2006). In this way, energy and mass balance snowpack models
have been coupled with atmospheric models to develop multidecadal snow simulations
(Alonso-González et al., 2018; van Pelt et al., 2016 among others). In addition,  remote
sensing products have been widely used to study the duration and variability of the snow
cover  (Gascoin et al., 2015; Saavedra et al., 2017; Yilmaz et al., 2019).  However, less
often, numerical modeling and remote sensing have been combined in a data assimilation
framework to study the multiyear snowpack dynamics. Assimilation of remotedremotely
sensed  snow  cover  observations  has  been  shown shown  considerable  potential tofor
improveing numerical  snowpack models  outputs  in  both distributed  (e.g.  Baba et  al.,
2018; Margulis et al., 2016) and semi distributed simulations (Cluzet et al., 2020; Fiddes
et al., 2019). These approaches are particularly promising in data-scarce regions to reduce
the biases in atmospheric forcing.

In this work, we have simulated the snowpack of the Lebanon Mountainsmountains, as
an alternative to sparse snowpack observations . We have generated a 1 km resolution
snowpack reanalysis, using an ensemble based assimilation of fractional snow -covered
area  (fSCA)  obtained  from  the  Moderate  Resolution  Imaging  Spectroradiometer
(MODIS) satellite sensor. More specifically, the ERA5 reanalysis  (Hersbach, 2016) was
dynamically downscaled using regional atmospheric models in two steps. First, a 10 km
resolution  atmospheric  simulation  using  the  Weather  Research  and  Forecast  model
(WRF)  (Skamarock et al., 2008) was performed covering the period between 2010 and
2017. Then,  a finer  1 km simulation  using the Intermediate  Complexity Atmospheric
Research model (ICAR)  (Gutmann et al.,  2016) was nested inside the previous WRF
simulation covering the same time period. To improve the ICAR snowpack outputs, the
new simulated meteorological  data  generated  was  used to  force  an  energy and mass
balance  snowpack  model,  the  Flexible  Snow  Model  (FSM2)  (Essery,  2015),
previouslywhile perturbing  the  meteorological  fields  to  generate  an  ensemble  of
snowpack simulations. Then, the Particle Batch Smother (PBS) (Margulis et al., 2015), a
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Bayesian data assimilation scheme, was applied to assimilate daily remotely sensed fSCA
information.  We  tested  the  generated  snow  products  in  the  mountainsmountains of
Lebanon with independent observations. Finally, the dynamics of the snowpack in the
mountainsmountains of Lebanon are studied from the generated multi-year snow time
series. The objectives of this paper are: i) to explore the potential of a methodology to
develop a  snowpack reanalysis  over  data  scarce  regions  and ii)  to  describe  the  main
snowpack dynamics  over  the  Lebanese  mountains.  This  is  the  first  use of  ICAR for
generating a snow reanalysis.

2. Study area

Lebanon is a country located on the eastern Mediterranean Sea between latitudes 33° and
35° N. Its climatology is typically Mediterranean (Peel et al., 2007) influenced mainly by
its proximity to the Mediterranean Sea and its complex topography (Figure 1). There are
two main mountain ranges that run in parallel to the Mediterranean coast from North to
South.  These  mountain  ranges  are  the  Mount  Lebanon  and  Anti-Lebanon
Mountainsmountains, reaching 3088 m a.s.l. (Qurnat as Sawdā peak) and 2814 m a.s.l.
(Mount  Hermon  peak)  respectively. The Lebanese  mountains  are  highly  karstified
encouraging the infiltration of rainfall and snowmelt. The land cover is mostly composed
of bare rocks and soils with irregularly distributed patches of shrubland, as well as oaks
and pine forest.

Despite Lebanon having more available water resources than its neighboring countries, it
is considered a water scarce region (El-Fadel et al., 2000), where droughts are frequent
and are expected to increase due to climate change (Farajalla et al., 2011). The particular
spatial distribution of its mountain ranges constitutes an effective topographical barrier to
humidity advected from the Mediterranean sea, enhancing the winter precipitation as  a
consequence of  orographic effects (Jomaa et al., 2019).usTh In these mountain ranges, of
the countrywide area a lying over a seasonal snowpack appears every year the combined
effects of orography and Mediterranean climate results in yearly seasonal-snowpack over
a large part of the country  (Mhawej et al., 2014). 

It was estimated from satellite retrievals of snow cover that 31% of the spring discharge
of  Lebanon  is  associated  with  snow melt (Telesca  et  al.,  2014). In  addition,  the
groundwater  dynamics  of  Lebanon  are  mainly  controlled  by  the  snow  melt  as
consequence of its karstic nature (Bakalowicz et al., 2008; El-Fadel et al., 2000).  Thus,
the water resource provided by the snowpack is crucial for the Lebanese society. The
dependence of Lebanon on snow resources became with this need becoming more acute
during the recent drought in the Eastern Mediterranean (Cook et al., 2016). In addition,
the water stress increased notably in recent years partially due to the increase in domestic
water demand, agricultural water use, and the Syrian refugee crisis  (Jaafar et al., 2020)
but also due to the poor management of the water resources, and water pollution.
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3. Data and Methods

3.1 Regional atmospheric simulations configuration

To generate the meteorological forcing,  we used the ICAR atmospheric model nested
inside a WRF simulation forced by the ERA5 reanalysis.  Previously, tThe WRF model
was  used  to  generate  a  regional  atmospheric  simulation  on  a  10  km x  10  km grid,
covering the eastern part of the Mediterranean Sea with  179 x  179 grid cells, centered
over Lebanon’s  Mountainsmountains (Figure 1). In the vertical dimension, the domain
iswas composed of 35 levels with the top set to 50 hPa, similarly to other studies over
Mediterranean regions (Arasa et al., 2016). The simulation covers the period from 01st of
January 2010 to 30th of June 2017, using the first 9 months as spin-up period allowing for
physical equilibrium between the external forgcings and the land model  (Montavez et al.,
2017).  We used the ERA5 reanalysis dataset at an hourly frequency as boundary and
initial  conditions  of  the  WRF  model (3.8  version)  model.  The  ERA5 dataset  is  an
atmospheric  reanalysis,  which  replaces  the  widely  used  ERA-Interim  reanalysis
(Berrisford et al., 2009). It has a spatial gridresolution of 30 km with 138 vertical levels
with the top at 80 km. It  provedhas been shown to out perform ERA-interim in many
climatological applications and as a forcing dataset for different modeling applications
(Albergel  et  al.,  2018;  Tarek  et  al.,  2019;  Wang  et  al.,  2019  among  others).  The
parametrization  schemes  used  in  the  WRF  simulation include:  the  Thompson  cloud
microphysics  scheme  (Thompson  et  al.,  2008),  the  NCAR  Community  Atmosphere
Model (CAM) scheme for both shortwave and longwave radiations (Neale et al., 2004),
the Noah-MP scheme for the land surface physics (Niu et al., 2011), the Mellor-Yamada-
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Figure 1: Atmospheric models domain configuration (left) and Lebanon Localization 
map (right). The red dots represent the AWS positions.
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Janjic scheme for the planetary boundary layer (Janjic, 2002) and the Betts-Miller-Janjic
scheme  (Betts  and Miller,  1986; Janjic,  1994) for deep and shallow convection.  This
WRF configuration has  provedshown its consistency in previous studies simulating the
seasonal snowpack over complex terrain (Ikeda et al., 2010; Rasmussen et al., 2011). In
addition to the described parametrization, we applied the spectral nudging technique to
satisfy the large scale atmospheric conditions at the higher altitudes, while allowing the
model to have its own dynamics inside the planetary boundary layer (Von Storch et al.,
2000; Waldron et al., 1996). The spectral nudging  technique  was applied for the wind
vectors,  temperature and geopotential  with a wave number of  1one in each direction,
based  on the  parameters  recommended  by  Gómez  and  Miguez-Macho  (2017),  and
nudging the waves above ~ 1000 km wavelength.

Next, the ICAR model was used to obtain a finer 1 km x 1 km spatial grid atmospheric
simulation nested in the aforementioned WRF simulation domain.  This enabled us to
significantly reduce the high computational cost compared to a long-term high-resolution
WRF  simulation.  ICAR is  a  4D  meso-atmospheric  model  designed  for  downscaling
purposes  based  on  linear  mountain  wave  theory.  The  linear  theory  allows  ICAR to
compute the main dynamical effect of topography on the atmosphere using an analytical
solution,  thus  avoiding  the  need  to  solve  the  Navier-Stokes  equations  and  reducing
computational cost by a factor of 100. The center of the ICAR simulation was established
in the center of the WRF simulation,  using 179 x 179 grid cells  in both latitude and
longitude  directions  and preventing  the boundaries  from intersecting  complex terrain.
The model top was situated at 4150 m above the topography with 12 vertical levels, using
the default model levels heights (Horak et al., 2019). The model configuration used: the
Thompson cloud microphysics scheme  (Thompson et al., 2008),  the Noah land surface
model  (Chen and Dudhia, 2001) and the Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA) for the advection (Smolarkiewicz and Margolin, 1998).
Convection schemes were not implemented for this simulation and the radiative fluxes at
the surface were prescribed by WRF. The lack of convection could have some impact on
the total amount of precipitation, and therefore on the seasonal snowpack. However, such
deviations in the total amount of precipitation are partly compensated by the PBS (as
described in section 3.3.2).

3.2 Ensemble-based fractional snow cover assimilation

3.2.1 MODIS fractional snow cover area data   estimation  

For this study, we used satellite observations of fSCA, assimilated in an ensemble of
snow simulations to  improve the snow water equivalent products (SWE) of ICAR. The
daily fSCA information was obtained by means of the MODIS sensor, which is orbiting
the Earth on board two satellites, Terra and Aqua. We have chosen MODIS because of its
daily revisit time combined with a spatial resolution of 500 m, which is higher than our
ICAR simulation. More specifically, we have used the nNormalized dDifference sSnow
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iIndex  (NDSI)  retrievals  of  the  collection  6  of  the  NASA  snow-cover  products
MOD10A1 (Terra)  (Hall  et al.,  2006) and MYD10A1 (Aqua)  (Hall  and Riggs, 2016)
distributed by the National Snow and Ice Data Center. To estimate the fSCA from the
MODIS NDSI we have used a linear function following Salomonson and Appel (2004).
The coefficients of the function were optimized using a series of 20 m resolution snow
products from Theia Snow collection  (Gascoin et al., 2019). The Theia Snow collection
provides  snow cover  area  maps that  were derived  from Sentinel-2 observations.  The
revisit period of Sentinel-2 is at  most 5 days since the launch of Sentinel-2B (i.e. after
march 2017). It can be  shorter in areas where successive swaths overlap laterally. We
downloaded  645  Theia  Sentinel-2  snow  products  acquired  between  2017-09-03  and
2018-12-24 over Lebanon.  For every Sentinel-2 image we can match a MODIS image
since there is a MODIS image every day over Lebanon during the same period.  Theia
binary  snow maps  were  resampled to  500 m fSCA in  the  same grid  as  the  MODIS
products by averaging the contributing pixels.  By comparing these fSCA Theia maps
with  the  MOD10A1  products  we  could  find  5.84x104 cloud-free  pixels  which
corresponded to MOD10A1 snow-covered pixels on the same date. A subset of 40% of
thesethe NDSI-fSCA were used to fit athe linear function using the least squares method.
The  optimized  function  was  tested  against  the  remaining  data  and  yielded  an  fSCA
RMSE of 11% and a mean absolute error of 5.7%. The same analysis was done with
MYD10A1 (Aqua) products but we did not use them in the following  opted not to use
them in the remainder of the analysis because as they exhibited a lower agreement with
the  Theia  Sentinel-2 snow cover  products  (RMSE of  21%).  The lower agreement  of
MYD10A1 is likely due to degraded detectorssensors (Wang et al., 2012) but may also be
related to the difference between the overpass time of Sentinel-2 (10:30 local time) and
Aqua (13:30 local time), while Terra share the same overpass time as Sentinel-2.

We reprojected the generated MODIS fSCA products to the  spheroid datum (6370 km
earth  radius) Lambert  conformal  projection  used  in  the  ICAR simulation.  To  avoid
artifacts as consequence of the data gaps of MODIS imagery caused by the cloud cover,
we  have  performed  the  aggregation  when  the  majority  of  the  MODIS  cells  used  to
calculate each new resampled cell was cloud free (less than 25% cloud cover), otherwise
the cell was considered empty missing for the scene in question. In previous studies, the
MODIS fSCA products have provedshown to have a good performance retrieving fSCA
information compared with field observations even considering its moderate resolution
(Aalstad et al., 2020). Thus, they are a robust resource to use when developing regional
scale snow reanalysis.

3.2.2 P  article batch smoother implementation  

The assimilation  procedure  was implemented  using  the PBS scheme (Margulis  et  al.,
2015). The PBS assigns a weight to each ensemble member according to its agreement
with  the  observations  through  Bayes  theorem.  The  most  obvious  advantage  of  this
technique is its computational efficiency, as it avoids the resampling step common in
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other  assimilation  algorithms. A  complete  description  of  the  PBS  can  be  found  in
Margulis et al. (2015). It is also summarized in  Aalstad et al. (2018) and  Fiddes et al.
(2019). The PBS has been shown to perform well relative to other assimilation algorithms
when used to assimilate fSCA information (Aalstad et al., 2018; Margulis et al., 2015),
even  though it  can  suffer  from  particle degeneracy as  consequence  of  a  highly
inhomogeneous distribution of weights (Van Leeuwen, 2009). TIn this context, the PBS
has been successfully used to develop a series of snowpack reanalyses  (Cortés et  al.,
2016; Fiddes et al., 2019; Margulis et al., 2016).

For  the  prior  of  the  PBS  implementation,  we  generated  an  ensemble  of  snowpack
simulations  forcing  the  FSM2 (Essery,  2015),  with  the  ICAR  predicted  surface
meteorology.  The configuration  of the FSM2 model  includes  an  albedo correction  as
snow ages with time differently for melting and cold snow, and increaseds with snowfall
with a maximum of 0.9. The compaction rate was calculated based on overburden and
thermal  metamorphism (Verseghy,  1991).  The  turbulent  exchange  coefficient  was
stability  corrected based on the bulk Richardson number. The thermal conductivity was
calculated  based  on  snow  density.  Finally,  the  FSM2  configuration  accounted  for
retention and refreezing of water inside the snowpack. Such a configuration has been
shown  to  properly  simulate  the  inter-  and  intra-annual  variability  of  the  snowpack
dynamics  over  mountains mountains with  a  similar  Mediterranean  climate  (Alonso-
González et al., 2018).

To generate the ensemble of forcing datasets, we perturbed the precipitation and the 2 m
air  temperature  surface  fields  of  the  ICAR output  using  a  log-normal  and  a  normal
(Gaussian)  probability  density  functions  respectively.  We  choose  the  mean  of  the
probability functions from the averaged biases of the ICAR simulation, estimated form
independent observations provided by three mountain AWS at the locations shown in
Figure 1 (Fayad et al., 2017a). The variance of the probability distribution functions was
calculated by increasingdoubling the variance of the errors by a factor of two to increase
the spread of the ensemble to cover the apparent uncertainty in the of ICAR outputs. The
precipitation phase had to be recalculated for the new synthetic temperatures for each
ensemble  member.  Due to  the strong dependency of  the  snowpack over  Lebanon on
precipitation phase, a simple temperature threshold based precipitation phase partitions
are  not  recommended  (Fayad  and  Gascoin,  2020).  Instead,  we  have  used  the
psychrometric  energy  balance  method  approach  proposed  by  Harder  and  Pomeroy
(2013),  where the  precipitation  phase is  estimated  by means of the estimation  of  the
temperature of the falling hydrometeor calculated form the air temperature and relative
humidity. A total of 400 ensemble members per ICAR cell were independently generated
by  randomly  drawing  multiplicative  time-constant  parameters  from  the  log-normal
probability  function  for  precipitation, and  additive  parameters  from  the  normal
probability function for the 2 m air temperature. 
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To estimate the fSCA of each ensemble member we used the probabilistic snow depletion
curve  proposed  by  Liston  (2004).  This  model  simulates  the  subgrid  peak  SWE
distribution using a lognormal probability density function. Then, the fSCA is diagnosed
using  the  accumulated  melt  depth  estimated  from the  energy  balance  outputs  of  the
FSM2, the peak mean SWE, and the peak subgrid  of variationcoefficient  coefficient of
variation (CV) of the lognormal probability density function, assuming a constant melt
over  the  grid  cell.  The  coefficient  of  variation  of  the  lognormal  probability  density
functionThe  CV used in this model is strongly controlled by the characteristics of the
terrain. We have included thise CV parameter as part of the assimilation, perturbing its
value inside the recommended values in Liston (2004) using a mean of 0.4 and a variance
of 0.01 (Aalstad et al., 2018). The PBS was implemented over the fSCA ensemble over
each  grid  cell  and  season  independently,  using  the  values  of  the  melting  season,
corresponding  withto the months of March through June. Finally,  the generated SWE
products (ICAR_assim hereafter) were estimated from the weighted mean of the SWE of
the ensemble members, where the weights were obtained using the PBS. A schematic
description of the whole process is presented in Figure 2.
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Figure 2: Schematic flow chart of the ICAR_assim snow product develop-
ment
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3.3 Validation procedure and analysis of the SWE products

The ICAR atmospheric simulation and the ICAR_assim products were compared against
independent observations. First,  the ICAR atmospheric simulation was compared with
three  automatic  weather  stations  (AWS) located  in  the  main  mountain  range  of  the
domain  (Fayad et  al.,  2017a)(Figure  1).  Temperature  and precipitation  measurements
were aggregated to the hourly model output frequency  from the original 30-minute time
resolution.  Then,  the  temperature  and  precipitation  biases  were  estimated.  The
precipitation  data  was  available  only  in  two  of  the  AWS.  The  error  values  and  its
variance  were  used  to  define  the  shape  of  the  probability  density  functions  of  the
perturbation parameters described above to generate each ensemble.

Table 1: AWS geographical coordinates and elevations. Elevation of the ICAR cell that 
contains each AWS.

AWS Snow seasons Elevation
[m a.s.l.]

Latitude
(WGS84)

Longitude
(WGS84)

ICAR elevation
[m a.s.l.]

A 2013 to 2016 2834 34.27º N 36.09º E 2827

B 2014 to 2016 1843 34.14º N 35.88º E 1746

C 2011 to 2016 2296 33.98º N 35.86º E 2272

After the PBS implementation, we compared the ICAR and ICAR_assim snow products
with the snow depth observed information derived from  a Campbell  SR50A acoustic
gauge ofat the three  AWS. The observed snow depth  was transformed into SWE by
assuming a constant snow density value of 467 kg m−3, estimated from observations in the
area (Fayad et al., 2017a). That was necessary to make the AWS data comparable with
the  ICAR snow outputs  as  they are provided only as  SWE. Even if  it  is  commonly
implemented in operational atmospheric forecast models, the assumption of a constant
density could introduce obvious bias in the SWE estimation (Dawson et al., 2017). In the
Mediterranean snowpacks, such biases are partially reduced as consequence of the high
densification  rates  of  the  snowpack  (Bormann  et  al.,  2013;  Fayad  et  al.,  2017b).
However,  we introduced a sensitivity  analysis  in  the comparison, varying the density
value in the range of ± 15% to illustrate such uncertainity. To compensate the big shift
between the ICAR and ICAR_assim resolutions (1 km x 1 km) and the point-scale nature
of the AWS observations, we have interpolated a new SWE series from the 4 nearest cells
of the simulations using the inverse distance method. Then, 

The spatial accuracy of the SWE products was compared againstto satellite observations.
First, we developed a daily gapfilled snow cover time series covering the time period of
the  ICAR simulation  from the  MODIS  snow cover  products  using  the  methodology
proposed by  Gascoin et al. (2015). Then, the products were aggregated to estimate the
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averaged snow presence over each cell in percentage (P(snow) P(snow) ). The MODIS
P(snow) P(snow)  product was aggregated to the ICAR grid to make it comparable. Then,
we  calculate  the  P(snow) P(snow)  for  the  ICAR  and  ICAR_assim  simulations.  We
chosechoose a  SWE  MODIS  detection  threshold  of  20  mm  to  calculate  the  P(snow)

P(snow)  from the simulated SWE series, inside the range recommended by Gascoin
et al. (2015). All the spatial analyseis and the data assimilation was computed over the
areas  that  had  exhibited  a  P(snow) P(snow)  >  5%,  which  amounts  to  a  total
areasurface of 4412 km2.

4. Results and Discussion

4.1 Atmospheric simulation results

The use of ICAR is justified as it is computationally inexpensive compared to similar
WRF  simulations,  while  retaining  a  physical  basis  to  enable  simulations  in  regions
lacking observations.  The speed up factors  can  range from 140 in its  more  complex
configurations (as choose for this study) to 800 in its simpler configurations (Gutmann et
al.,  2016).  However,  the  linear  theory  simplification  presents  some  limitations  when
predicting  the  motion  of  the  atmosphere,  such  as  interactions  between  waves  and
turbulence (Nappo, 2012) or the lack of explicit convection. Despite these limitations,
ICAR has been shown to be a valuable tool for downscalling proposes showing a good
performance  comparedconsistency with  observations  (Horak  et  al.,  2019),  as  well  as
compared  with  fully  dynamical WRF simulations  (Gutmann  et  al.,  2016).  Figure  23
shows how the ICAR model was able to improve the 2 m air temperature data, compared
with the ERA5 reanalysis (ICAR mean error= 2.8ºC compared with 8.5ºC in ERA5),
showing comparable performances than the WRF coarser simulation (WRF mean error =
2.3 ºC). It was not expected to improve the parent WRF simulation with ICAR, but the
increase  of  resolution  was  necessary  as  the snowpack simulations requires  higher
resolutions.  This  effect  is  caused by tThe  coarser  ERA5 resolution, that  smooths  the
terrain  causingleads to warm biases.  This is particularly evident in the Lebanon ranges
were  the  elevation  gradient  ranges  from 0  to  3000 m a.s.l.  in  approximately  25  km
(Figure 1). Despite the  obviousclear improvement in the temperature performance, the
simulation  is  biased  towards  slightly  higher  temperatures  than  in  the  AWS  data.
However,  the main  temporal  patterns  and the  magnitude  of  the temperature  are  well
represented.
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Similarly, precipitation outputs of ICAR were compared with the gauges deployed in two
of the AWS sites. ICAR reduces the spread of the daily precipitation errors of ERA5 as
shown in Figure 34 (standard deviation of 11.5mm in ERA5 compared with the 8.4mm of
ICAR), even though the ERA5 error are already surprisingly low considering the spatial
resolution and the fact that precipitation is challenging to simulate by numerical models
especially  over  complex  terrain  (Legates,  2014).  This  validation  provides  a  range  of
uncertainty  estimates  to  help  generate  the  probability  density  functions  for  the

12

Figure 3: ERA5 (bluegreen), WRF (blue), ICAR (red) and AWS (black) daily tem-
perature data. The boxplots represent the distribution of the errors and the gray 
shadows the data gaps in the observations.
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perturbations of the ensemble. The selected parameters to define the shape of the normal
probability  density  function  which  defines  the  additive  perturbation  index  ofto the
temperature  were  set  to  a  mean  of  -3.0  ºC  and  a  variance  of  1.8  ºC.  Similarly,  the
parameters of the lognormal probability density function used to obtain the multiplicative
perturbation factors for the precipitation were a mean of 2.0 and a variance of 0.75. Even
though the parameters were designed to model the uncertainty of ICAR, they are similar
to comparable  implementations  of the PBS (Cortés  et  al.,  2016).  Through the forced
increase of the variance of the probability density functions, we ensure that the ensemble
of snow simulations covers the expected uncertainty space of ICAR, while the PBS has
proved to be robust to progressive variations of the perturbation parameters (Cortés et al.,
2016).

4.2 Fractional snow cover assimilation
The new proposed linear relationship function to derive fSCA from NDSI has improved 
the MODIS fSCA products when compared with the relationship function by Salomon-

13

Figure 4: ERA5 (blue)(green), WRF (blue), , ICAR (red) and AWS (black) daily precipi-
tation data. The boxplots represent the distribution of the errors and the gray shadows
the data gaps in the observations.
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son and Appel (2004) (Supplementary figure 1). Using the relationship function by Sa-
lomonson and Appel (2004) resulted in larger mean absolute error (MAE) (6.2% com-
pared to 5.7%) and Root Mean Squared Error (RMSE) (12% compared to 11% ). The 
equation of the linear fit is:

fSCA=1.23⋅NDSI+0.23

The performance of ICAR_assim was compared against snow depth measurements at the
AWS  locations (Figure  45)  and MODIS gapfilled  products  (Figures 5  6  and  67). In
general, ICAR has a  tendency to underestimate the SWE compared with ICAR_assim.
This is likely related to the  warm biases detected in the simulation, combined with the
limitations  of the snow model  implemented in the Noah land surface model  used by
ICAR (Barlage et al., 2010). Thus, future versions of ICAR with better representations of
the  snow  processes  through  the  useimplementation of  more  complex  land  surface
parametrizations like Noah-MP (Niu et al., 2011), as used in the parent WRF simulation,
could potentially improve the accuracy of ICAR’s SWE outputs  (Suzuki and Zupanski,
2018).  This  effect  could  be  particularly  enhanced  in  the  mild  climatic  conditions  of
Lebanon, as larger disagreements in the SWE outputs between Noah and Noah-MP occur
under  warm conditions  (Kuribayashi  et  al.,  2013).  However,  the  improvement  of  the
snow representations of ICAR is obvious compared with ERA5 reanalysis as it was not
able to reproduce the snowpack at all as a result of its coarse resolution.the improvement
of  the  snow representations  of  ICAR is  clear  when compared with  ERA5 reanalysis
which was not able to reproduce the snowpack at all due to its coarse resolution.
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Figure 5: Comparison between observed, ICAR , FSM, and ICAR_assim. SWE products. 
The green in the background indicates the time steps when ICAR_assim improves the 
performance of ICAR.



The  results  of  the  validation  of  ICAR_assim  show  a  good  agreement  with  the
observations. The use of FSM to generate the ensemble of simulations, introduced some
uncertainty in the snow simulations. Some water years showed earlier snow melts. As the
uncertainty of the snow models associated  to the forcing is higher than the uncertainty
associated by the use of different model parameterizations and model structures (Günther
et al., 2019), we hypothesize that such differences were caused by the differences in the
precipitation phase partitioning, that is challenging to simulate in the areas that remain
close to 0 ∘  C during the snow season (Fayad and Gascoin,  2020). The lack of spring
snowfalls in some years may have deep implications in the snowpack simulation that are
not limited to its effect in the mass balance and the releasing of latent heat by refreezing
the liquid precipitation. It leads to lower albedos, which combined with the high short
wave radiation of Lebanon due to its latitude causes earlier snow melts. However, such
discrepancies  are greatly  minimized in ICAR_assim,  by the assimilation of the fSCA
retrievals. 

The  results  of  the  validation  of  ICAR_assim  show  a  good  agreement  with  the
observations. For the estimated SWE, the  mean squared error (rootRMSE) and the mean
absolute error (MAE) relative to the AWS were 189.2 mm and 104.52 mm respectively
after removing the summer from the analyses, with a coefficient of correlation (R) of 0.75
for the annual mean SWE accumulation. Even though ICAR_assim generally shows a
good  agreement  with  the  observations  (especially  considering  the  scale  mismatch
between the stations and ICAR_assim), some clear differences were found. Figure  45
exhibits a surprisingly high difference in the magnitude of the observed SWE and the
ICAR_assim  output  for  the  2011/2012  winter  season  in  the  third  AWS.  However,
independent observations in the area have described an exceptional snowpack during the
2011/2012in this season, with snow depths more than 6 m even reaching up to 10 m
locally  (Koeniger et al., 2017). Such disagreements between the AWS information and
the independent observations can be explained by the high spatial heterogeneity of the
snow depth at point scales (López-Moreno et al., 2011). This effect was studiedin depth
in the Atlas  mountainsmountains, where the agreement of the snow simulations rapidly
drops using resolutions over 250 m (Baba et al., 2019). Such spatial heterogeneity has
been shown to be particularly high over mount Lebanon due to the important role of the
wind redistribution as consequence of  geomorphology (Fayad and Gascoin, 2020). For
example, Fayad and Gascoin (2020), reported large differences with the AWS data from
in situ measurements on 15 of January 2016, when they measured snow depths up to 258
cm on the surroundings of the third AWS location (Figure 45; bottom panel), while the
AWS sensor  itself  detected  7.5  cm. However,  the  comparison  between  the  temporal
patterns  of the snow cover  over Lebanon from MODIS gap-filled daily  products and
ICAR_assim  have  shown  good  levels  of  agreement  with  a  RMSE=270.2  km2,  a
MAE=124.1 km2  over a total surface of 4412km2  (Figure 56), and a Pearson correlation
value of R=0.88 in the annual maximum of the snow cover extent (Figure 56). The larger
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spatial  support  of  the  MODIS  products  permits  a  more  representative  and  extensive
validation of ICAR_assim. Thus, the good agreement between both snow cover products
and the generally  comparable  SWE magnitudes with the AWS observations shows the
temporal consistency of the ICAR_assim reanalysis.

The  spatial  patterns  of  ICAR_assim,  were  also  compared  with  the  MODIS gapfilled
products (Figure 7). The spatial  comparison of the  P(snow) P(snow)   showed a very
good level of agreement demostrating the potential of fSCA assimilation through the PBS
in improving the ICAR SWE products. with a The comparison showed a correlation
value of R=0.98, a RMSE=3.0 % and a MAE=2.3 % improving the ICAR simulation that
exhibited  values  of  R=0,79,  RMSE=14.3%  and  MAE=12.3%.  There  was  a  general
tendency  to  slightly  underestimate  the  P(snow) P(snow)  values  by  ICAR_assim,
specially at the lower elevations. We hypothesize that this effect could be caused by the
selection of a constant SWE depth to calculate the snow cover from the ICAR_assim
product.  Thus,  the  shallow  snowpacks  whose  SWE  values  are  under  the  selected
threshold are not recorded as snow presence in the ICAR_assim even though they could
potentially be detected as snow by the MODIS sensor. In addition, the MODIS snow
cover products should be considered less accurate over areas of  fast meltingrapid melt
(Gascoin et al., 2015). Such mismatch between ICAR_assim and MODIS combined with
the fact that the 2011 – 2012 snow season showed persistent cloud covers related with its
exceptional snowpack, could explain the biases in the Figure 6. During the 2011 – 2012
snow season, the gapfilling algorithm had less information to fill the MODIS snow cover
time  series,  while  the  PBS had propagated  the  fSCA information  through the  whole
season from the few available observations. In summary, our results have shown how
ICAR_assim can accurately  reproduce the inter-annual  and intr-annual  spatiotemporal
patterns  of  the  snow  cover,  with  a  SWE  magnitude  comparable  with  independent
observations that agree well in itsterms of temporal patterns.
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Figure 6: Daily snow cover extent comparison between MODIS gapfilled products and 
ICAR_assim.
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4.3 Snowpack dynamics over Lebanon mountainsmountains

ICAR_assim exhibits some limitations that should be considered. First, despite the high
resolution  of  the  reanalysis  the  regional  nature  of  the  simulations  prevent  the
representation  of  some  processes  like  wind  or  avalanches  snow  redistribution.  In
addition, there are some other sources of uncertainty involved in the development of the
reanalysis,  like the depletion  curve,  the fSCA derived from MODIS or  the  structural
uncertainty associated with each model. However, ICAR_assim has been shown to be
consistent with the limited observations providing a valuable resource in the data scarce
context of the Lebanese mountains.

Figure 78 shows the spatial distribution of the mean peak SWE values and its temporal
coefficient of variation for the  2010-2017 time periodrecent years. Such values can be
influenced  by  the  fact  that  the  study  period  is  relatively  humid  compared  with  the
previous  years  (Cook et  al.,  2016),  showing slightly  higher  values  than  a  long  term
climatology.  However,  the  length  of  the  reanalyses  constitutes  a  reasonably
representative sample of the main snowpack dynamics over the region . The snowpack
over  Lebanon has  exhibited  the high  temporal  variability  that  is  characteristic  of  the
Mediterranean snowpacks (Fayad et al., 2017b), with similar values of the coefficient of
variation as those observed onin other Mediterranean mountain ranges (Alonso-González
et al., 2020). The maximum accumulations reach 2000 mm of SWE and are located at the
higher elevations of mount Lebanon, where there is a plateau over the elevation of the
winter zero isotherm (Fayad and Gascoin, 2020). The temporal coefficient of variation of
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Figure 7: Snow probability spatial comparison between observed MODIS products and 
ICAR_assim.
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the annual peak SWE follows unequal spatial patterns,, . It tendingtends to exhibit higher
values  over  the areas  sheltered from direct  intereactioninteraction with the warm and
moist  Mediterranean  air.  iIn  addition  it  exhibits  to  a  decreasing  trend with  elevation
(Figure  89) as  found  in  other  Mediterranean  ranges (Alonso-González  et  al.,  2020),
reaching a mimimum of 15%.

There are  obviousclear differences between the Lebanon and Anti-Lebanon ranges, that
can be just partially explained by their different orography. Despite the closeness of both
Lebanon  and  Anti-Lebanon  ranges,  they  exhibit  different  relationships  between  the
values of mean peak SWE (Figure  89 top panel) and snow duration( Figure  89 bottom
panel) and  with the elevation, showing that the differences are not just related to the
particular orography of each range, but also with its climatological characteristics. Thus,
at  comparable  elevations  mount  Lebanon  tends  to  show  higher  values  of   P(snow)
P(snow)  and  mean  peak  SWE,  with  lower  values  of  coefficient  of  variation,

suggesting thicker, longer lasting and seasonally ensuredstable snowpack. The orographic
precipitation caused by the uplift  of the Mediterranean moisture is a major source of
precipitation  in  the  area  (Jomaa  et  al.,  2019), tThat  is  probably  why  Anti-Lebanon
mountainsmountains shows lower peak accumulations than Mount Lebanon, with  Anti-
lebanon  in  the  rain  shadow  leading  to  lower  precipitation  and  snow  accumulation.
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Figure 8: Averaged annual peak SWE (left) and annual coefficient of variation 
(right).
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However,  despite  the  differences  in  the  coefficient  of  variation  values,  they  tend  to
become similar at the higher elevations. The same coefficient of variation occurs in the
elevations where the precipitation leads the snow accumulation while they differ at the
lower elevations, where the accumulation is conditioned by the temperature. This effect
suggest  warmer  conditions  on  the  Anti-Lebanon mountain  as  consequence  of  leeside
wind effects (Foëhn type effect), and confirm the sensitivity of the snow simulation to the
chosen  partition  phase  method  over  Mediterranean  mountainsmountains (Fayad  and
Gascoin, 2020).
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Figure 9: Relationship between annual peak SWE and elevation (top), coefficient of 
variation and elevation (middle), and snow duration and elevation (bottom).
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Figure 910 shows the averaged seasonal SWE accumulation at different elevations over
both the Lebanon and Anti-Lebanon ranges.  Each elevation represents the aggregated
pixels of the elevation with a range of ± 50 m a.s.l. For reference, they show on average a
peak SWE of 306 mm at the elevation band of 2000 m a.s.l., which is comparable to
those found in the Iberian Peninsula mountain ranges  (Alonso-González et  al.,  2020).
More specifically, the peak SWE and duration values shows intermediate values between
the Central Iberian and Pyrenees ranges at 2000 m a.s.l, but with a peak SWE coefficient
of variation of 53 %, that is greater than the highest values of Iberia located at Sierra
Nevada with 34 %. The relative area lying at  each elevation compared with the total
elevation over 1300 m a.s.l. is represented to highlight the importance of the hypsography
from the hydrological  point of view. Thus, Lebanon exhibits  a deep and long lasting
snowpack with up to 1000 mm of peak SWE on average particularly over 2500 m a.s.l.,
but the relative areal coverage of such elevations is very low. This suggest that the mean
peak SWE series at lower elevations could hide a large variation in mass due to the wider
areas at lower elevations where many different peak SWE values can coexist, as Alonso-
González et al.(2020) found in the Iberian mountain ranges.

The thick snowpacks found at the higher elevations are not necessarily the biggest fresh
water resources available due to the hypsometry of the mountain area. Figure 101 shows
about the average amount of freshwater stored in the snowpack per elevations band. It is
obvious that the maximum amount of freshwater is stored between 2100 to 2500 m.a.s.l.,
despite the fact that thicker snowpacks are at higher elevations. The cumulative water

21

Figure 10: Mean annual evolution of  SWE at different elevation bands. Dark blue line 
represent the Anti-lebanon range, black line the Mount Lebanon range,  and red line 
the relative areal coverage of each elevation above 1300 m a.s.l.
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storage in the snowpack is  more than double in  the medium elevation zone (average
maximum up to  520552 Hm3 from 1300 to 2300m a.s.l.) when compared to the higher
areas (average maximum up to 201189 Hm3 at 2400 m a.s.l. and onward), been. This is
an important part of the yearly water budget, as mean annual precipitation was estimated
in  to be  7200 Hm3 for the period (2010-2016)  (Jaafar et al., 2020). Noting that this in
contrast to the fact that the orography of Lebanon encourages the storage of snow in the
upper areas because of the existence of a high elevation plateau This result suggests new
challenges  on  the  water  management  of  Lebanon  in  the  future  as  a  consequence  of
climate warming.  The snowpack at  low elevation  areas is  more sensitive  to warming
(Fayad et al., 2017a; Fayad and Gascoin, 2020).(Fayad et al., 2017a; Fayad and Gascoin,
2020). These results suggest new challenges for the water management of Lebanon in the
future as a consequence of warming climate.  The snowpack at low elevation areas is
more sensitive to warming  (Jefferson, 2011; Marty et al.,  2017; Sproles et al.,  2013),
particularly  over  areas  with  mild  winter  conditions  as  has  been  shown  in  other
Mediterranean regions (Alonso-González et al., 2020a).

45. Conclusions

The assimilation of MODIS fSCA through the use of the PBS has proven to be a cost
effective  way  to  use  remote  sensing  data  in  snow  simulations,  and  is  particularly
appropriate  for  simulating  snow  in  data  scarce  regions.  Thus,  the  generated  SWE
products show good agreement with MODIS snow cover gapfilled data, with R = 0.98,
RMSE = 3.0 % and MAE = 2.3 %  for the spatial map of the probability of snow. The
time series of snow  cover showed a R=0.88, RMSE=270.2 km2, and MAE=124.1 km2
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Figure 11: Averaged annual water stored in the snowpack at different elevation bands.
Dark blue line represent the Anti-Lebanon range, black line the Mount Lebanon range ,
and red line the relative areal coverage of each elevation above 1300 m a.s.l.
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over a total surface of 4412km2. The performances in terms of SWE magnitude with the
few available point-scale observations withwas R=0.75, RMSE=189.2 mm, and MAE =
104.5 mm after removing the summer from the analyses.

The  snowpack  over  Lebanon  is  characterized  by  a  high  temporal  variability.  Some
differences exist between its two main mountain ranges. Thus, Mount Lebanon exhibits
thicker, longer and more regular snowpacks compared to the Anti-Lebanon range. Such
differences  cannot  only be explained by the elevation  difference  but  also reflects  the
dryer conditions on the leeside of the Mount Lebanon range due the rain shadow effect.
The hypsometry  of  Lebanon  results  in  the  most  important  snow freshwater  reservoir
being in the middle elevations (2200-2500 m a.s.l.). Snowpacks at these elevations close
to the 0 ºC isotherm are highly vulnerable to climate warming. As such, our findings
suggest big challenges for the future management of water resources over the Lebanon
region.
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